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Abstract

We show that the edges of any graph G containing two edge-disjoint spanning
trees can be blue/red coloured so that the blue and red graphs are connected and
the blue and red degrees at each vertex differ by at most four. This improves a
result of Hörsch. We discuss variations of the question for digraphs, infinite graphs
and a computational question, and resolve two further questions of Hörsch in the
negative.

Mathematics Subject Classifications: 05C02

1 Introduction

Finding edge-disjoint spanning trees in a graph has a rich history. The seminal result is
the independent characterisation by Tutte [11] and Nash-Williams [7] of the presence of k
edge-disjoint spanning trees in a finite graph. Much research has focussed on whether the
packed spanning trees can be chosen to satisfy extra properties (for example, see [1, 2, 3]).
It is folklore that the edges of any graph G can be coloured blue and red such that the
blue degree and red degree of each vertex differ by at most two. The intersection of
these two problems asks how well the colour-degrees can be balanced in a blue/red-edge
colouring of a graph that contains a double tree – the union of two edge-disjoint spanning
trees – subject to each colour class being connected. Kriesell [6] was the first to consider
balancing colour-degrees in a blue/red-edge colouring of a double tree. Building on his
work, Hörsch [5] gave the first constant bound when G is a double tree.

Theorem 1 (Hörsch [5]). Let G be a finite double tree. The edges of G may be coloured
blue and red such that the blue and red graphs are both spanning trees and the blue and
red degrees of each vertex differ by at most five.
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Our main result is two-fold. Firstly we reduce the above bound to four.

Theorem 2. Let G be a finite double tree. The edges of G may be coloured blue and red
such that the blue and red graphs are both spanning trees and the blue and red degrees of
each vertex differ by at most four.

Moreover, we obtain the same bound in the more general case where G is any graph
containing a spanning double tree.

Theorem 3. Let G be a finite graph containing a spanning double tree. The edges of G
may be coloured blue and red such that the blue and red graphs both contain spanning trees
and the blue and red degrees of each vertex differ by at most four.

Hörsch asked whether Theorem 1 can be extended to infinite graphs. The Tutte-Nash-
Williams characterisation does not hold for infinite graphs: Oxley [8] gave countable
locally finite graphs satisfying the characterisation but not containing k edge-disjoint
spanning trees. However, Tutte proved that the characterisation is still valid for countable
graphs if one asks for the edge-disjoint subgraphs to be semiconnected : a subgraph H ⊂ G
is semiconnected if it contains an edge of every finite cut of G. We give an extension of
this form of Theorem 3 to countably infinite graphs.

Theorem 4. Let G be a countably infinite graph containing a spanning double tree. The
edges of G may be coloured blue and red such that the blue and red graphs are both semi-
connected and the blue and red degrees of each vertex differ by at most four (or are both
infinite). Further, if G is a double tree, the blue and red graphs may be chosen to be
acyclic.

Hörsch asked whether digraphs can be balanced with the role of trees being played by
arborescences: rooted trees where all edges are directed away from the root.

Question 5. Is there a constant C such that the following holds for every digraph D
that is the union of two arc-disjoint arborescences? The edges of D can be coloured blue
and red such that the blue and red graphs are both arborescences and the blue and red
out-degrees of each vertex differ by at most C?

We provide an infinite family of counterexamples that need C ! |V (D)|−2, answering
Hörsch’s question in the negative. We further show that the natural analogue where the
role of trees is played by strongly connected digraphs is also false.

Hörsch also asked an algorithmic question.

Question 6. Does there exist a polynomial time algorithm to decide if a given Eulerian
double tree has a perfectly balanced double tree decomposition?

Reducing the NP-complete problem (cf. Péroche [9]) of finding two edge-disjoint
Hamiltonian cycles in a 4-regular graph to this decision problem, we show that Question 6
is equivalent to the problem P versus NP.

the electronic journal of combinatorics 30(1) (2023), #P1.54 2



The paper is organised as follows. In Section 2 we give the proof of Theorem 2 and the
main tools used to prove Theorem 3; in Section 3 we conclude the proof of Theorem 3; in
Section 4 we discuss the infinite case and prove Theorem 4; in Section 5 we describe our
constructions for digraphs; in Section 6 we address Question 6. Finally, in Section 7, we
conclude with some natural questions of our own.

1.1 Notation

We use standard notation. Throughout we consider all graphs to be multigraphs without
self-loops. For a graph G = (V,E) with vertices V and edges E we write e(G) for |E|
and |G| for |V |. For a vertex v ∈ V , we denote the neighbourhood of v by Γ(v). Given a
partition A⊔B = V of the vertices of G, we write E(A,B) for the set of edges in E with
endpoints in both A and B, and e(A,B) = |E(A,B)|. If A ⊂ V we write G[A] to denote
the subgraph induced by A. When X is a set of vertices (respectively edges) and x is a
vertex (respectively edge), we use the shorthand X + x and X − x to mean X ∪ {x} and
X \ {x}. For a graph G, a vertex v and an edge e we write G− v for the graph obtained
by deleting v and all edges incident with it and G− e for the graph obtained by deleting
e. If e /∈ E(G), G+ e denotes the graph obtained by adding e to E(G).

We use ⊔ to denote a disjoint union. Throughout we write G = S1 ⊔ · · · ⊔ Sk to
mean that S1, . . . , Sk are spanning subgraphs of G and E(G) = E(S1) ⊔ · · · ⊔E(Sk). We
sometimes refer to this as a decomposition of G. If S1, . . . , Sk are trees, we refer to it as
a k-tree decomposition; if further k = 2, a double tree decomposition.

Definition 7. Let G be a graph, c an integer, and suppose G = S1 ⊔ · · · ⊔ Sk. A vertex
v ∈ V (G) is said to be c-balanced in S1 ⊔ · · · ⊔ Sk if for all i, j,

|dSi
(v)− dSj

(v)| " c.

We say that the decomposition G = S1 ⊔ · · · ⊔ Sk is c-balanced if every v ∈ V (G) is
c-balanced in it.

When the constant c is clear, we write balanced for brevity. Note, for example, that
Theorem 2 can be phrased as ‘every finite double tree admits a 4-balanced double tree
decomposition’.

2 Balancing double trees

Fix an integer c ! 2 and suppose there are double trees with no c-balanced double tree
decomposition. Throughout this section, we take G to be such a double tree with |G|
minimal.

Call a vertex v ∈ V (G) small if dG(v) " c+2 and big otherwise. A simple observation
that will be used throughout the section is that small vertices are balanced in any double
tree decomposition. We call a vertex v ∈ V (G) an ℓ-vertex if dG(v) = ℓ.
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In Sections 2.1-2.4 we show that a minimal counterexample G satisfies a collection of
structural properties. Finally, in Section 2.5 we make a discharging argument with c = 4
to conclude that G has too many edges for a double tree.

Our arguments to show that G cannot contain certain substructures have the following
template.

1. Locally modify G to create a double tree H with |H| < |G|.
2. Use minimality to find a balanced decomposition for H.
3. From this decomposition recover a decomposition for G.
4. Argue that this decomposition is balanced.

Step 1 is referred to as the reduction step, step 3 as the reconstruction step. In step 4, we
need only show that the vertices involved in the reduction and reconstruction steps are
balanced, as all other vertices are balanced in step 2 and left untouched afterwards.

Our methods refine those of Hörsch [5]. There are two main novel ideas. The first
is using edge swaps to control the structure around certain 3-vertices (cf. Lemma 13).
This is used to force blue and red degrees above 1 and so aid balancedness. The second
is controlling the parity of the degrees of the neighbours of 2-vertices. These ideas are
crucial to most of our structural lemmas.

In figures, big vertices are black, small vertices are white. When the status of a vertex
is unclear, we indicate it in grey. As a convention, when a graph has a double tree
decomposition with trees labelled by 1 and 2, we use blue for tree 1, red for tree 2 and
black when the colour is irrelevant.

2.1 2-vertices

Let v be a 2-vertex and x, y its (not necessarily distinct) neighbours. As v is a leaf in both
trees of any double tree decomposition of G, removing it yields a double tree H, which
admits a balanced decomposition by minimality of G. We refer to this as the standard
reduction for 2-vertices. This reduction can be reversed in the obvious way by adding
back v and the edges incident to it.

x y

v

(a) Start configuration.

x y

(b) Reduced configuration.

Figure 1: Standard reduction for 2-vertices.

Lemma 8. Let v ∈ V (G) be a 2-vertex. Then the neighbours x, y of v are distinct, big
and dG(x) ≡ dG(y) ≡ c+ 1 mod 2.

Proof. Let vx, vy be the edges incident to v. If x = y, then the standard reduction for
2-vertices immediately gives a balanced decomposition for G, a contradiction.
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Suppose x is small. Apply the standard reduction for 2-vertices to obtain a double
tree H with a balanced blue/red double tree decomposition. We may then add v back by
giving vy a colour in which the degree of y was smallest, and vx the other colour. Since
x is small, this yields a balanced decomposition for G, a contradiction.

Suppose for contradiction that dG(x) ≡ c mod 2. Apply the standard reduction for
2-vertices to v to obtain a double tree H with balanced decomposition H = S1 ⊔ S2. In
particular, |dS1(x)− dS2(x)| " c. By the congruence condition,

|dS1(x)− dS2(x)| ≡ dS1(x) + dS2(x) = dG(x)− 1 ≡ c− 1 mod 2,

so in fact, |dS1(x)− dS2(x)| " c− 1. By symmetry we may assume that dS1(y) ! dS2(y).
Put v back, adding vx to S1 and vy to S2. Then y is still balanced and the degree
difference at x has increased by at most 1, so is at most c. This is a contradiction.

The following observation appeared in Hörsch [5, Lemma 2] when c = 5; a straight-
forward modification of the proof gives the result for any c ! 2.

Lemma 9. Every big vertex v ∈ V (G) is adjacent to at most one 2-vertex.

2.2 Edge swaps

We remind the reader of a simple tool that will be used repeatedly in our arguments. Given
a double tree decomposition G = T1⊔T2 and an edge e ∈ E(T1) we may swap it with some
f ∈ E(T2) such that G = S1⊔S2, where E(S1) = E(T1)−e+f and E(S2) = E(T2)−f+e,
is a double tree decomposition. Indeed, T1 splits into two components after removing e
and adding e to T2 creates a cycle C. We may thus choose f to be any edge of C − e
with an endpoint in each component. We will refer to this as swapping e. Note that if
e ∈ E(T1) is incident to a leaf x of T1, then f must also be incident to x. In particular,
after swapping e, x is still a leaf of T1.

Lemma 10. Let G be a double tree with a blue/red decomposition and xy a blue edge such
that x is a leaf in the blue tree. Then x remains a leaf in the blue tree after swapping xy.

This is particularly useful for 3-vertices as in any blue/red double tree decomposition
a 3-vertex must be a leaf in some colour.

2.3 3-vertices

Let v be a 3-vertex with (not necessarily distinct) neighbours x, y, b where the edges vx, vy
are red and the edge vb is blue as in Figure 2a. Remove v and join x and y in red to
form H; we will refer to this as the standard reduction for 3-vertices. If v has two blue
neighbours and one red neighbour, then there is an analogous reduction. Since v was a
leaf in the blue tree and xvy is the only path from x to y in the red tree, the resulting
blue/red decomposition is a double tree decomposition for H. Further, |H| = |G|− 1 so,
by minimality, H has a balanced double tree decomposition. A particularly useful feature
of this reduction is that it is reversible: given a double tree containing the configuration

the electronic journal of combinatorics 30(1) (2023), #P1.54 5



x

y

bv

(a) Start configuration.

x

y

b

(b) Reduced configuration.

Figure 2: Standard reduction for 3-vertices.

shown in Figure 2b we may delete the edge xy, add a new vertex v joined to x and y in
red and joined to b in blue to form another double tree.

Using this reduction, Hörsch [5, Proposition 10] showed the following.

Lemma 11. Let v ∈ V (G) be a 3-vertex and G = T1 ⊔ T2 a double tree decomposition.
Suppose that v is a leaf in T2 with vb ∈ E(T2) its unique incident edge. Then b is big.

Suppose that v is a 3-vertex with two edges to small vertices. Let vb be the third edge
incident to v. Lemma 11 shows that in any double tree decomposition of G, the edge vb
is of the opposite colour to the other two edges. However, swapping the edge vb gives a
contradiction. So every 3-vertex has at most one edge to a small vertex and so only the
following types of 3-vertices can occur.

Definition 12 (types of 3-vertex). We say that a 3-vertex is
• rich if all its neighbours are big;
• poor if it is adjacent to three distinct vertices, two big, one small;
• bad if it has a small neighbour and is joined to a big vertex by a double edge.

We are ready to prove a key result that gives structure around poor 3-vertices.

Lemma 13. Let v ∈ V (G) be a poor 3-vertex with big neighbours x, y and small neighbour
s. In any tree decomposition G = T1 ⊔ T2 where vs ∈ E(T1):

• Exactly one of vx, vy is in E(T1).
• If vy ∈ E(T2), then swapping vy gives the double tree decomposition G = T ′

1 ⊔ T ′
2,

where E(T ′
1) = E(T1)− vx+ vy and E(T ′

2) = E(T2) + vx− vy.
• The path from x to y in T1 does not contain s.

Proof. Firstly, by Lemma 11, at least one of vx, vy is in E(T1). They cannot both be
otherwise v is an isolated vertex in T2. This gives the first bullet point.

Suppose that vy ∈ E(T2) and so vx ∈ E(T1) and v is a leaf in T2 as in Figure 3a.
Consider swapping vy. Then vy becomes blue and so, by the first bullet point, vx becomes
red.

We now prove the third bullet point. We may assume by symmetry that vy ∈ E(T2)
and so vx ∈ E(T1). Suppose that there is a path P in T1 from x to y that contains s and
let P ′ be the subpath of P from s to y. Consider swapping vy: we have just shown that
vx becomes red. But then yvsP ′ forms a blue cycle, which is impossible.
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x

y

sv

(a) v a leaf in T2 with vy ∈ E(T2).

x

y

sv

(b) Configuration after swapping vy.

Figure 3: Edge swap in Lemma 13.

Lemma 14. Let v ∈ V (G) be adjacent to ℓ ! 1 bad 3-vertices via their double edges.
Then,

dG(v) ! 2ℓ+ c+ 1.

Proof. Let v be a vertex in G with a bad neighbour u, and let w ∕= v be the small
neighbour of u. Fix a double tree decomposition G = T1 ⊔ T2. By symmetry we may
assume uw ∈ E(T1).

Apply the standard reduction for 3-vertices to u and let H be the resulting graph with
balanced double tree decomposition H = S1 ⊔ S2. Without loss of generality we may

v u w v w

Figure 4: Reduction step in Lemma 14.

assume that vw ∈ E(S1). Define G = T ′
1 ⊔ T ′

2, where

E(T ′
1) = E(S1)− vw + vu+ uw,

E(T ′
2) = E(S2) + vu,

reversing the reduction. All vertices, except possibly v, are balanced in T ′
1 ⊔ T ′

2. Since v
is adjacent to ℓ bad 3-vertices via double edges, we have dT ′

1
(v) ! ℓ and dT ′

2
(v) ! ℓ. In

particular, if dG(v) " 2ℓ+ c, then v is balanced also, which is a contradiction.

2.4 Critical vertices

A vertex v in G is said to be critical if dG(v) = c + 3, that is, if its degree is just large
enough for it to be big. A simple observation is that critical vertices are balanced in a
blue/red decomposition if and only if both their blue and red degrees are at least two. We
combine this observation with the final bullet point of Lemma 13 to great effect: suppose
a big vertex v has a blue edge to a poor 3-vertex u and u has blue degree two in a given
blue/red decomposition. Then the final bullet point of Lemma 13 guarantees that v has
blue degree at least two. If further v is critical and has red degree at least two, then it is
balanced.

Lemma 15. Let v ∈ V (G) be a critical vertex.
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(i) If all neighbours of v are small, then v is not adjacent to bad 3-vertices.
(ii) At most one neighbour of v is a poor 3-vertex.
(iii) If v is adjacent to a 2-vertex, then v is not adjacent to a poor 3-vertex.

Note that Lemmas 9, 15.(ii) and 15.(iii) yield that a critical vertex has at most one
neighbour that is either a 2-vertex or a poor 3-vertex.

Proof. (i) Suppose not and let G = T1⊔T2 be a double tree decomposition. Let v ∈ V (G)
be critical with all neighbours small and let u ∈ Γ(v) be a bad 3-vertex, and w ∕= v be
the small neighbour of u. By symmetry we may assume uw ∈ E(T1).

Apply the standard reduction for 3-vertices to u, let H be the resulting double tree
and H = S1 ⊔ S2 a balanced double tree decomposition. Without loss of generality we
may assume that vw ∈ E(S1).

Case 1. dS1(v) ! 2.
Reverse the reduction to get G = T ′

1 ⊔ T ′
2, where

E(T ′
1) = E(S1)− vw + vu+ uw,

E(T ′
2) = E(S2) + vu.

Then dT ′
1
(v) = dS1(v) ! 2 and dT ′

2
(v) ! dS2(v) + 1 ! 2, and so, since v is critical, it is

balanced and thus the decomposition T ′
1 ⊔ T ′

2 is balanced, a contradiction.
Case 2. dS1(v) = 1.
Let H = S ′

1 ⊔ S ′
2 be the decomposition obtained after swapping vw. Since v is a leaf

in S1, it remains a leaf in S ′
1. Moreover, every vertex in the neighbourhood of v is small,

so every big vertex is balanced in S ′
1 ⊔ S ′

2. Now vw ∈ E(S ′
2) and dS′

2
(v) ! 2, so by Case

1 we can find a balanced decomposition G = T ′
1 ⊔ T ′

2, a contradiction.
(ii) Suppose that v ∈ V (G) is critical and u, w ∈ Γ(v) are distinct poor 3-vertices. Let

the other neighbours of u and w be u1, u2 and w1, w2 (not necessarily distinct) respectively,
as in Figure 5a, where u2, w2 are small. By Lemma 13 we may perform edge swaps to
ensure {vw,ww2} ⊂ E(Ti) and {uv, uu2} ⊂ E(Tj) for some i, j ∈ {1, 2}. Apply the

v

u2

u1 w1

w2u w

(a) Configuration in G.

v

u2

u1 w1

w2

x

(b) Reduction to H.

Figure 5: Reduction step in Lemma 15.(ii). Dashed edges are in the same tree, dotted
edges are in the same tree.

standard reduction for 3-vertices to u and w and add a 2-vertex x adjacent to both u1 and
w1, yielding a double tree H which by induction has a balanced double tree decomposition
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H = S1 ⊔ S2. Without loss of generality we may assume that vw2 ∈ E(S1). We consider
multiple cases.

Case 1. vu2 ∈ E(S1).

v

u2

u1 w1

w2

x

(a) Configuration in H = S1 ⊔ S2.

v

u2

u1 w1

w2u w

(b) Configuration in G = T ∗
1 ⊔ T ∗

2 .

v

u2

u1 w1

w2u w

(c) Configuration in G = T ′
1 ⊔ T ′

2.

Figure 6: Reconstruction in Case 1.

By symmetry we may assume that xw1 ∈ E(S1). Reverse the reductions and delete x
to give G = T ∗

1 ⊔ T ∗
2 , where

E(T ∗
1 ) = E(S1)− xw1 − vu2 − vw2 + vu+ uu2 + vw + ww2,

E(T ∗
2 ) = E(S2)− xu1 + uu1 + ww1,

as in Figure 6b. Consider swapping ww1. Lemma 13 implies that we get the decomposition
G = T ′

1 ⊔ T ′
2 shown in Figure 6c, where

E(T ′
1) = E(T ∗

1 )− vw + ww1,

E(T ′
2) = E(T ∗

2 )− ww1 + vw.

We claim that G = T ′
1⊔T ′

2 is balanced. All degree differences are the same as in S1⊔S2

at all big vertices except v where a blue edge has become red. By Lemma 13, there is a
path in T ′

1 from v to u1 that does not use u2. Since also uv ∈ E(T ′
1), we get dT ′

1
(v) ! 2. As

v is critical this means it is balanced, and therefore G = T ′
1 ⊔ T ′

2 is balanced, as required.
Case 2.i. vu2 ∈ S2 and xu1 ∈ S1.
Reverse the reductions to get G = T ′

1 ⊔ T ′
2, where

E(T ′
1) = E(S1)− xu1 − vw2 + uu1 + vw + ww2,

E(T ′
2) = E(S2)− xw1 − vu2 + ww1 + uv + uu2,

as in Figure 7b. Further, since S1 ⊔ S2 is balanced and degree differences of big vertices
remained unchanged, T ′

1 ⊔ T ′
2 is balanced, a contradiction.
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v

u2

u1 w1

w2

x

(a) Configuration in H = S1 ⊔ S2.

v

u2

u1 w1

w2u w

(b) Reconstruction in G = T ′
1 ⊔ T ′

2.

Figure 7: Reconstruction in Case 2.i.

v

u2

u1 w1

w2

x

(a) Configuration in H = S1 ⊔ S2.

v

u2

u1 w1

w2u w

(b) Configuration in G = T ∗
1 ⊔ T ∗

2 .

v

u2

u1 w1

w2u w

(c) Configuration in G = T ′
1 ⊔ T ′

2.

Figure 8: Reconstruction in Case 2.ii.

Case 2.ii. vu2 ∈ E(S2) and xu1 ∈ E(S2).
Reverse the reductions to get G = T ∗

1 ⊔ T ∗
2 , where

E(T ∗
1 ) = E(S1)− xw1 − vw2 + uu1 + vw + ww2,

E(T ∗
2 ) = E(S2)− xu1 − vu2 + vu+ uu2 + ww1,

as in Figure 8b. By edge swapping uu1 and ww1 and noting that u, w are leaves in
T ∗
1 , T

∗
2 respectively, Lemma 11 guarantees that we obtain the double tree decomposition

G = T ′
1 ⊔ T ′

2, where

E(T ′
1) = E(T ∗

1 )− uu1 − vw + uv + ww1,

E(T ′
2) = E(T ∗

2 )− uv − ww1 + uu1 + vw.

Vertices v, u1, w1 are balanced in S1 ⊔ S2, hence with respect to T ′
1 ⊔ T ′

2 as well, as
degree differences remained unchanged. All other degree differences at big vertices were
preserved, so G = T ′

1 ⊔ T ′
2 is balanced, a contradiction.
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(iii) Let v ∈ V (G) be critical, G = T1 ⊔ T2 be a double tree decomposition and
suppose that u, w ∈ Γ(v) are a 2-vertex and a poor 3-vertex, respectively. Let v3 be
the small neighbour of w, and v1, v2 ∕= v the other big neighbours of u, w respectively,
where Lemma 8 ensures v1 ∕= v. By symmetry we may assume that w is a leaf in T2.
By Lemma 13, we may swap edges to ensure that wv2 ∈ E(T2). Apply the standard

v

v1 v2

v3u w

(a) Configuration in G.

v

v1 v2

v3

x

(b) Reduction to H.

Figure 9: Reduction step in Lemma 15.(iii).

reduction for 2-vertices and 3-vertices to u and w respectively, and add a new 2-vertex x
joined to v1 and v2, yielding a double tree H as shown in Figure 9b. By minimality of G,
H has a balanced double tree decomposition H = S1 ⊔ S2. By symmetry we may assume
that vv3 ∈ E(S1). We treat two cases separately.

Case 1. xv2 ∈ E(S2).

v

v1 v2

v3

x

(a) Configuration in H = S1 ⊔ S2.

v

v1 v2

v3u w

(b) Reconstruction in G = T ′
1 ⊔ T ′

2.

Figure 10: Reconstruction step in Case 1.

Reverse the reductions to get G = T ′
1 ⊔ T ′

2, where

E(T ′
1) = E(S1)− xv1 − vv3 + vw + wv3 + uv1,

E(T ′
2) = E(S2)− xv2 + wv2 + uv,

as in Figure 10b. We claim that every vertex in T ′
1⊔T ′

2 is balanced. All degree differences
are unchanged at big vertices except at v where a red edge has been added. By Lemma 13,
there is a path in G from v2 to v in T ′

1 that does not pass through v3, so dT ′
1
(v) ! 2. As

v is critical, it is balanced, as required.
Case 2. xv2 ∈ E(S1)
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v

v1 v2

v3

x

(a) Configuration in H = S1 ⊔ S2.

v

v1 v2

v3u w

(b) Configuration in G = T ∗
1 ⊔ T ∗

2 .

v

v1 v2

v3u w

(c) Configuration in G = T ′
1 ⊔ T ′

2 after
swapping wv2.

Figure 11: Reconstruction in Case 2.

Reverse the reductions to get G = T ∗
1 ⊔ T ∗

2 , where

E(T ∗
1 ) = E(S1)− xv2 − vv3 + uv + wv3 + vw,

E(T ∗
2 ) = E(S2)− xv1 + uv1 + wv2,

as in Figure 11b. After swapping wv2 we obtain, by Lemma 13, the decomposition
G = T ′

1 ⊔ T ′
2 shown in Figure 11c. Since u and w are leaves in T ′

1, T
′
2 respectively with

vu ∈ E(T ′
1) and vw ∈ E(T ′

2), we have dT ′
i
(v) ! 2 for i = 1, 2 and therefore v is balanced

as it is critical. All other degree differences at big vertices remain unchanged. Hence,
G = T ′

1 ⊔ T ′
2 is balanced, a contradiction.

2.5 Discharging

In this section we conclude the proof of Theorem 2 by applying the lemmas above with
c = 4.

Proof of Theorem 2. Let G be a counterexample minimising the number of vertices n.
Define the initial charge function f : V → Q by f(v) = d(v) and the discharging procedure
as follows. For each big vertex v and each edge vu it is incident to, send to the vertex u

• charge 1 if u is a 2-vertex,
• charge 1/2 if u is a poor 3-vertex,
• charge 1/2 if u is a bad 3-vertex (note that a bad 3-vertex receives a total charge of
1 from v because of the double edge),

• charge 1/3 if u is a rich 3-vertex.
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Let g : V → Q be the charge function after the discharging procedure has taken place.
Then !

v∈V (G)

g(v) =
!

v∈V (G)

f(v) = 4n− 4.

We claim that every vertex v of G has g(v) ! 4, which will give a contradiction.
Indeed, if d(v) ! 9, then, by Lemma 9, v is adjacent to at most one 2-vertex and

therefore
g(v) ! 9− (1 + 8 · 1

2
) = 4.

If d(v) = 8, then, by Lemma 8, v cannot be adjacent to any 2-vertices and therefore

g(v) ! 8− 8 · 1
2
= 4.

If d(v) = 7, we distinguish two cases.

1. If Γ(v) contains only small vertices, then by Lemma 15.(i), v does not have bad 3-
vertices in its neighbourhood, and by Lemmas 9, 15.(ii), 15.(iii), v has at most one
neighbour that is a 2-vertex or a poor 3-vertex. Therefore, g(v) ! 7−1−6 ·1/3 = 4.

2. If Γ(v) has a big vertex, using Lemmas 9, 14, 15.(ii), 15.(iii), we similarly get that
g(v) ! 7− 1− 2 · 1/2− 3 · 1/3 = 4.

If d(v) ∈ {4, 5, 6}, then g(v) = d(v) ! 4.
If d(v) = 3, there are two cases.

1. If v is a rich 3-vertex, it receives a charge of 1/3 from each of its edges, thus
g(v) = 3 + 3 · 1/3 = 4.

2. If v is a poor or bad 3-vertex, it receives a charge of 1/2 from two of its edges, thus
g(v) = 3 + 2 · 1/2 = 4.

If d(v) = 2, then, by Lemma 8, v receives a charge of 1 from both its neighbours and thus
g(v) = 4, as required.

3 General graphs

In this section we write G = A + M to mean that G = A ⊔ M where A is a spanning
double tree and M a graph.

We deduce Theorem 3 from a slightly more general statement.

Theorem 16. Let G = A+M . Then G admits a 4-balanced decomposition into subgraphs
G = G1 ⊔G2 such that (A ∩G1) ⊔ (A ∩G2) is a double tree decomposition of A.

Theorem 16 follows from similar arguments to those used for Theorem 2, with suitable
modifications.

Fix an integer c ! 2 and suppose there are graphs G = A + M with no c-balanced
decomposition G = G1 ⊔G2 such that A∩G1 and A∩G2 are spanning trees. We take G
to be such a graph where
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1. e(M) is minimal,
2. subject to this, |G| is minimal.

Again, define v ∈ V (G) to be big if dG(v) ! c + 3 and small otherwise. If dG(v) = c + 3
we again call v critical.

In figures, edges of M are dashed.

3.1 Edges of M

Lemma 17. If e ∈ E(M) is incident to a vertex v, then v is big and dG(v) ≡ c+1 mod 2.

Proof. Let uv ∈ E(M). Remove uv, rebalance the resulting graph using minimality of G
and add uv to the appropriate part so that u is balanced in the resulting decomposition
G = G1 ⊔G2. By construction we further have that (A ∩G1) ⊔ (A ∩G2) is a double tree
decomposition. All degree differences have been preserved at vertices of G other than u or
v, and u is balanced in G1 ⊔G2 by construction. Hence, the vertex v cannot be balanced
in G1 ⊔G2.

If v is small, then v is clearly balanced in G = G1 ⊔ G2. If dG(v) ≡ c mod 2, then a
parity argument similar to that of Lemma 8 shows that v is balanced. Thus, neither can
occur.

As a consequence, the edges of M are not incident to any 3-vertices. We will use the
terminology of rich, poor and bad 3-vertices defined in Section 2.3. When we do edge
swaps we will do them within the double tree A.

Note that all edges appearing in Lemmas 8, 9 and 11-15 are incident to a small vertex
and so are in the double tree A by Lemma 17. Hence these lemmas all still hold in
G. Indeed, reductions and reconstructions are unchanged when the vertices and edges
involved are in A. For our purposes we require a slight strengthening of Lemma 15.(i)
(this follows immediately from the proof of Lemma 15 when applied in this context).

Lemma 18. Let v ∈ V (G) be a critical vertex. If all neighbours of v in A are small, then
v is not adjacent to any bad 3-vertex.

Edges of M are subject to further constraints, which we will need in the discharging
argument.

Lemma 19. The subgraph M is a matching.

Proof. Let u, v, w ∈ V (G) and suppose that uv, vw ∈ E(M). Then define H = B + N
by deleting edges uv, vw from M (to give N), and by adding a new 2-vertex x joined to
both u and w in the double tree (to give B). Then e(N) < e(M) and so by minimality we
may find a balanced decomposition H = H1 ⊔H2, where (B ∩H1)⊔ (B ∩H2) is a double
tree. By symmetry we may assume ux ∈ E(H1), xw ∈ E(H2). Define G = G1⊔G2 where
E(G1) = E(H1)−ux+uv and E(G2) = E(H2)−xw+vw. Then G = G1⊔G2 is a balanced
decomposition as degree differences have been preserved. Also, (A ∩ G1) ⊔ (A ∩ G2) is a
double tree as (B ∩H1) ⊔ (B ∩H2) was, giving a contradiction.
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Lemma 20. Let v ∈ V (G). Then v cannot be both adjacent to a 2-vertex and incident to
an edge of M .

Proof. Suppose that u, v ∈ V (G), uv ∈ E(M) and v is adjacent to a 2-vertex w. Let
v′ ∕= v be the other neighbour of w. By Lemma 17, both u and v are big.

Case 1. u = v′.

v

wu

(a) Configuration in G.

v

u

(b) Reduction to H.

Figure 12: Reduction step in Lemma 20 when u = v′.

DefineH = B+N by deleting w (soA becomesB) and removing uv (soM becomesN).
Then e(N) < e(M) and so, by minimality, there is a balanced decomposition H = H1⊔H2

where (B ∩H1)⊔ (B ∩H2) is a double tree decomposition. Without loss of generality we
may assume that dH1(v) " dH2(v).

Define G = G1 ⊔ G2 where E(G1) = E(H1) + uv + vw and E(G2) = E(H2) + wu.
Then as dH1(v) " dH2(v), the vertex v is balanced in G1 ⊔ G2. Since all other degree
differences have been preserved, the decomposition G = G1 ⊔ G2 is balanced. Further,
(A ∩G1) ⊔ (A ∩G2) is a double tree, giving a contradiction.

Case 2. u ∕= v′.

v

v′

wu

(a) Configuration in G.

v

v′

u

(b) Reduction to H.

Figure 13: Reduction step in Lemma 20 when u ∕= v′.

Define H = B+N by deleting w (so A becomes B), removing uv from M and adding
uv′ (so M becomes N), as in Figure 13b. Then e(N) = e(M) and |H| < |G| so by
minimality there is a balanced decomposition H = H1 ⊔H2 where (B ∩H1) ⊔ (B ∩H2)
is a double tree decomposition. Without loss of generality, uv′ ∈ E(H1).

Define G = G1 ⊔ G2 where E(G1) = E(H1) − uv′ + uv + wv′, E(G2) = E(H2) + vw.
Note that since B ∩H1 and B ∩H2 are both spanning trees, the two subgraphs A ∩ G1

and A ∩G2 are as well. The decomposition is balanced as H = H1 ⊔H2 is balanced and
degree differences are preserved, a contradiction.

Lemma 21. Let v ∈ V (G) be a critical vertex. Then v cannot be both adjacent to a poor
3-vertex and incident to an edge of M .
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v

s
w

u

(a) Configuration in G.

v

su

(b) Reduction to H.

Figure 14: Reduction step in Lemma 21 when u = v′.

Proof. Suppose that u, v ∈ V (G) where v is critical, uv ∈ E(M) and v is adjacent to a
poor 3-vertex w. By Lemma 17, both u and v are big. Let s be the small neighbour of w
and v′ ∕= v be the other big neighbour of w.

First suppose that u = v′. By edge flipping and Lemma 13 we may assume that vw
and ws are in the same tree. We carry out the standard reduction for 3-vertices at w so
that A becomes a double tree B and delete uv from M to get N– see Figure 14b. Let
H = B +N .

Now e(N) < e(M), so by minimality there is a balanced decomposition H = H1 ⊔H2

where (B ∩ H1) ⊔ (B ∩ H2) is a double tree decomposition. Without loss of generality,
vs ∈ E(B) ∩ E(H1).

v

su

(a) Configuration in H.

v

s
w

u

(b) Configuration in G = G1 ⊔G2.

v

s
w

u

(c) Configuration in G = G′
1 ⊔G′

2.

Figure 15: Reconstruction step in Lemma 21 when u = v′.

Define G = G1 ⊔G2 by

E(G1) = E(H1)− vs+ uv + vw + ws,

E(G2) = E(H2) + uw,

as in Figure 15b. Degree differences at all big vertices of G except v have been preserved
and (A∩G1)⊔ (A∩G2) is a double tree. Hence, if v is balanced we have a contradiction.
If dG2(v) ! 2 then v is balanced. Otherwise, swap the edge uw in the double tree
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decomposition A = (A∩G1)⊔ (A∩G2) to obtain A = T1⊔T2. Define G = G′
1⊔G′

2 where

E(G′
1) = E(T1) ⊔ (E(M) ∩G1)− uv

E(G′
2) = E(T2) ⊔ (E(M) ∩G2) + uv,

as in Figure 15c. Then degree differences at all vertices of G except v have been preserved
and (A ∩G′

1) ⊔ (A ∩G′
2) is a double tree, but now dG2(v) ! 2, giving a contradiction.

We may therefore assume u ∕= v′. By edge flipping and Lemma 13 we may assume that

v

v′

swu

(a) Configuration in G.

v

v′

su

(b) Reduction to H.

Figure 16: Reduction step in Lemma 21 when u ∕= v′.

edges vw and ws are in the same tree. We carry out the standard reduction for 3-vertices
at w so that A becomes a double tree B. We let N = M − uv+ uv′. See Figure 16b. Let
H = B +N .

Then e(N) = e(M) and |H| < |G| so, by minimality, there is a balanced decomposition
H = H1 ⊔H2 where (B ∩H1)⊔ (B ∩H2) is a double tree decomposition. Without loss of
generality, uv′ ∈ E(N) ∩ E(H1).

Case 1. vs ∈ E(B) ∩ E(H2).

v

v′

su

(a) Configuration in H.

v

v′

swu

(b) Reconstruction in G.

Figure 17: Reconstruction step in Case 1.

Reverse the reductions to give a decomposition G = G1 ⊔G2 defined by

E(G1) = E(H1)− uv′ + uv + wv′,

E(G2) = E(H2)− vs+ vw + ws,

as in Figure 17b. Since B ∩ H1 and B ∩ H2 are both connected, T1 := A ∩ G1 and
T2 := A ∩G2 are as well and form a double tree decomposition for A.
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All degree differences at big vertices have been preserved except at v where an extra
blue edge is present. But, by Lemma 13, the path from v to v′ in T2 does not contain
s, so dG2(v) ! dT2(v) ! 2 and so v is balanced in G = G1 ⊔ G2 as it is critical. Hence,
G = G1 ⊔G2 is balanced, a contradiction.

Case 2. vs ∈ E(B) ∩ E(H1).

v

v′

su

(a) Configuration in H.

v

v′

swu

(b) Configuration in G = G∗
1 ⊔G∗

2.

v

v′

swu

(c) Configuration in G = G1 ⊔G2.

Figure 18: Reconstruction step in Case 2.

Reverse the reductions to give a decomposition G = G∗
1 ⊔G∗

2 where

E(G∗
1) = E(H1)− uv′ − vs+ uv + vw + ws,

E(G∗
2) = E(H2) + wv′,

as in Figure 18b. Since B ∩ H1 and B ∩ H2 are both connected, T1 := A ∩ G∗
1 and

T2 := A∩G∗
2 are as well and form a double tree decomposition for A. Let A = S1 ⊔S2 be

the double tree decomposition obtained by swapping edge wv′ in A (this swaps with wv
by Lemma 13). Let G = G1 ⊔G2 be the decomposition where

E(G1) = E(M ∩G∗
1) ⊔ E(S1),

E(G2) = E(M ∩G∗
2) ⊔ E(S2).

Then S1 = A∩G1 and S2 = A∩G2 are both spanning trees. All degree differences at big
vertices have been preserved with respect to H1 ⊔H2 except at v where an extra red edge
is present. Furthermore, dG1(v) ! dS1(v)+1 ! 2 and so v is balanced in G = G1 ⊔G2 as
it is critical. Hence, G = G1 ⊔G2 is balanced, a contradiction.

3.2 Discharging

Proof of Theorem 16. Let G = A+M be a counterexample to the bound c = 4 such that
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1. e(M) is minimal,
2. subject to this, |G| is minimal.

Define the charge function f : V → Q to be the degree of v in the double tree A:
f(v) = dA(v). Define the discharging procedure similarly to the proof of Theorem 2. For
each edge uv ∈ E(A), a big vertex v sends to its neighbour u

• charge 1 if u is a 2-vertex,
• charge 1/2 if u is a poor 3-vertex,
• charge 1/2 if u is a bad 3-vertex,
• charge 1/3 if u is a rich 3-vertex.

Let g : V → Q be the charge function after the discharging procedure has taken place.
Then !

v∈V (G)

g(v) =
!

v∈V (G)

f(v) = 2e(A) = 4n− 4.

We claim that every vertex v of G has g(v) ! 4, which will give a contradiction. As in
the proof of Theorem 2, the claim holds if v ∈ V (G) is not incident to any edge of M . If
v is incident to at least one edge of M , then, by Lemmas 17, 19 and 20, v is big, has odd
degree, is incident to exactly one e ∈ E(M), and is not adjacent to any 2-vertices. There
are two cases remaining:

1. d(v) = k ! 9. Then g(v) ! (k − 1)− (k − 1)/2 ! 4.

2. d(v) = 7. By Lemma 21, v is not adjacent to any poor 3-vertex. If all neighbours
of v in A are small, then, by Lemma 18, g(v) ! 6− 6 · 1/3 ! 4. Otherwise v has a
big neighbour in A, so by Lemma 14, g(v) ! 6− 2 · 1/2− 3 · 1/3 ! 4.

4 Balancing infinite graphs

Let G = (V,E) be an undirected graph. Recall that a spanning subgraph H ⊂ G is
called semiconnected if it contains an edge of every finite cut of G. We note that this
notion depends on the ambient graph G and that for finite graphs, the notions of spanning
connected and semiconnected subgraphs coincide.

The following are the main results of this section, which, together with Theorem 2
and Theorem 3 respectively, can be combined to yield Theorem 4.

Theorem 22. Let c be minimal such that any finite double tree has a c-balanced decom-
position into spanning trees. Then if G is a countable infinite double tree, it admits a
c-balanced decomposition G = S1 ⊔ S2 where S1, S2 are semiconnected and acyclic.

Theorem 23. Let c be minimal such that any finite graph containing a spanning double
tree has a c-balanced decomposition into spanning connected graphs. Then if G is a count-
able infinite graph containing a spanning double tree, it admits a c-balanced decomposition
G = S1 ⊔ S2 where S1, S2 are semiconnected.
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As the proof of both of these theorems is virtually the same, we only spell out a proof
of the first.

Proof of Theorem 22. Fix a double tree decomposition G = T1 ⊔ T2 for G. Without loss
of generality we may assume that G is locally finite. Indeed, if v ∈ V (G) is a vertex
of infinite degree with neighbours x1, x2, . . . , we may replace it with a path of double
edges v0v1v2 . . . where vi is connected to every vertex in {x(c+1)i+k : k ∈ [c+ 1]}. Within
each Ti, the vertex v becomes a countably infinite path. Note that under this operation,
G = T1 ⊔ T2 remains a countably infinite graph and each Ti remains a tree.

Applying this reduction to every vertex of infinite degree we obtain a locally finite
countable double tree H. Moreover, any finite cut in G is a finite cut in H, so if S ⊂ H is
semiconnected, then S produces a semiconnected subgraph of G after contracting paths
of H corresponding to infinite degree vertices of G. If H has a c-balanced decomposition
T1 ⊔ T2 into semiconnected spanning graphs, every vertex vi must have at least one edge
of both T1 and T2 that is not an edge of the path. Hence we may reconstruct a balanced
decomposition into semiconnected spanning graphs for G by merging the double paths we
created, as degrees with infinite degree have infinite degree in both trees after merging.

Let V = {v1, v2, . . . } and Vi = {v1, . . . , vi} for i ∈ N. For each n we define Gn to be
the graph obtained by contracting each connected component C of G − Vn to a vertex
vC , referred to as auxiliary vertices of Gn. Each graph Gn is finite as e(Vn, G − Vn) is
finite, since Vn is finite and G is locally finite. Further, each Gn contains a double tree
Hn such that Hn[Vn] = G[Vn]. Indeed, let T1 ⊔ T2 be a double tree decomposition for G.
Contracting the connected components of G−Vn may create cycles. Since T1, T2 restricted
to Vn are both acyclic, each such cycle necessarily contains some vC , for some connected
component C of G− Vn. Hence, we may remove edges incident to auxiliary vertices until
we obtain a double tree Hn.

By assumption, each Hn has a c-balanced decomposition T
(n)
1 ⊔ T

(n)
2 . By a standard

compactness argument we may pass to a subsequence (nk)k such that for every k ! ℓ the
decompositions agree on Vℓ, i.e.

T
(nk)
1 [Vℓ] = T

(nℓ)
1 [Vℓ],

T
(nk)
2 [Vℓ] = T

(nℓ)
2 [Vℓ].

Take S1 and S2 to be the unions of (T
(nk)
1 [Vk])k and (T

(nk)
2 [Vk])k, respectively. Clearly,

S1 and S2 are spanning subgraphs of G. Since G is locally finite, for any v ∈ V (G)
there is some K such that for k ! K, we have Γ(v) ⊂ Vk and thus {e ∈ E(G) : v ∈
e} ⊂ E(T

(nk)
1 )⊔E(T

(nk)
2 ). This implies that S1 and S2 partition the edges of G and since

every decomposition T
(nk)
1 ⊔ T

(nk)
2 is c-balanced, we conclude that S1 ⊔ S2 is c-balanced.

Moreover, S1 and S2 are acyclic as any cycle would be contained in T
(nℓ)
1 [Vℓ] or T

(nℓ)
2 [Vℓ]

for some ℓ, a contradition.
It remains to check that S1 and S2 intersect every finite cut of G. Let (A,B) be a

finite cut of G. Since (A,B) is finite, there is some k such that E(A,B) ⊂ G[Vk]. Let

x ∈ A ∩ Vk and y ∈ B ∩ Vk. Since T
(nk)
1 is connected and contains Vk, it contains a path
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P from x to y. We claim that P ∩ E(A,B) ∕= ∅, finishing the proof. Indeed, the path
P may be extended to a path P ′ between x and y in G such that P ′ and P coincide on
G[Vk], and whose only additional edges have endpoints outside of Vk. Since (A,B) is a
cut of G, P ′ ∩ E(A,B) ∕= ∅. But E(A,B) ⊂ E(G[Vk]) so P ∩ E(A,B) ∕= ∅. Hence, S1 is
semiconnected. Similarly, S2 is semiconnected.

This compactness argument can easily be modified to yield Theorem 23 by applying
Theorem 3 instead of Theorem 2 in the proof.

5 Digraphs

Arborescences are the natural analogue for trees in digraphs and so Hörsch’s Question 5
asks whether the digraph analogue of Theorem 1 holds. A natural analogue of connect-
edness for digraphs is strong connectedness. The following question is then the digraph
analogue of Theorem 3: does any union of two strongly connected digraphs allow a bal-
anced decomposition into two strongly connected digraphs? We answer both this and
Question 5 in the negative. In fact, our counterexamples have unique decompositions and
these decompositions are not balanced.

5.1 Arborescences

In this subsection we answer Question 5 in the negative. More precisely, we show the
following.

Theorem 24. Let k ! 2. For any c > 0, there is a digraph D = (V,A) that is the disjoint
union of k arborescences (all rooted at the same vertex ), such that, in any decomposition
D = A1 ⊔ · · · ⊔ Ak into arborescences, there is some vertex v and some i, j with

|doutAi
(v)− doutAj

(v)| > c.

Proof. For k = 2, we construct an example on vertex set V = {v1, . . . , vn} as in Figure 19.

v1 vn

Figure 19: Construction in Theorem 24 when k = 2.
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Let B1 be the arborescence in blue and B2 the directed path in red. We claim that
this is the unique double arborescence decomposition of the resulting digraph Dn, up to
reordering, thus proving the result as

doutB1
(vn)− doutB2

(vn) = n− 2.

Indeed, let Dn = C1 ⊔ C2 be an arbitrary double arborescence decomposition of Dn.
Vertex v1 has in-degree zero so must be the root of both C1, C2. Without loss of generality,
#     »v1vn ∈ A(C1). Since C2 is rooted at v1, it contains a directed path from v1 to vn. But
the only such path that does not use the arc #     »v1vn is the path B2. Hence, C2 = B2 and
C1 = B1, as claimed.

This example can easily be generalised to show Theorem 24 for general k, for example
by adding k − 2 copies of the directed path B2.

5.2 Strongly connected digraphs

We now give the counterexample for the second question mentioned above.

s

v1 vn

t

Figure 20: Construction in Theorem 25 when k = 2.

Theorem 25. Let k ! 2. For any c > 0, there is a digraph D = (V,A) that is the union
of k strongly connected digraphs, such that in any decomposition D = S1 ⊔ · · · ⊔ Sk into
strongly connected digraphs, there is a vertex v and some i, j with

|doutSi
(v)− doutSj

(v)| > c.

Proof. For k = 2 we construct a family (Dn) of examples. The digraph Dn has vertex
set V = {s, t, v1, . . . , vn} as in Figure 20. Let S1 and S2 be the digraphs in blue and
red, respectively. It is sufficient to show that this is the unique decomposition of Dn into
strongly connected digraphs, as

|doutS1
(t)− doutS2

(t)| = n− 1.
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Let Dn = R1 ⊔R2 be a decomposition of Dn into strongly connected digraphs. With-
out loss of generality,

#»
st ∈ A(R1). Since R2 is strongly connected, there is a path

from s to t in R2. The only such path that does not use
#»
st is the path P with arcs

{ #  »sv1,
#     »v1v2, . . . ,

#           »vn−1vn,
#  »
vnt}. Hence, all arcs of P are in R2. Since R1 is strongly con-

nected, there are paths from t to vi and from vi to s in R1, for each i ∈ [n]. The only such
paths disjoint from P are the arcs

# »
tvi and

#  »vis, respectively. Hence, R1 = S1 and finally
R2 = S2, as claimed.

Similarly as for Theorem 24, these examples can be generalised to arbitrary k ! 2 by
adding k − 2 copies of S1.

6 Complexity

In this section we will show that the decision problem “Given an Eulerian double tree,
does it have a perfectly balanced double tree decomposition?” is NP-hard, addressing
Question 6. We will refer to this problem as PBDT. We need the following results.

1. Péroche [9]: the decision problem “Given a graph with maximum degree 4, does it
contain two edge-disjoint Hamiltonian cycles?” is NP-complete.1

2. Roskind, Tarjan [10]: there is an algorithm which, given a graph G, decides in
polynomial time whetherG is a double tree, and outputs a double tree decomposition
if it is.

Note that if a graph contains two edge-disjoint Hamiltonian cycles, then every vertex has
degree at least 4. So we immediately deduce from the result of Péroche that the decision
problem “given a 4-regular graph, does it contain two edge-disjoint Hamiltonian cycles?”
is NP-complete. It suffices to reduce this problem to PBDT. Let A be an algorithm
solving PBDT.

Given a 4-regular graph G, fix a vertex v and let its neighbours be v1, v2, v3, v4. We
perform the following reductions: for i = 1, 2, 3, let Gi be the graphs obtained by removing
v, adding vertices x, y and adding edges from x to v1, vi+1 and connecting y to the other
two vj.

v

v3

v1

v4

v2

(a) Configuration in G.

x

y

v1 v2

v3 v4

(b) Configuration in G1.

For i = 1, 2, 3, run the algorithm of Roskind and Tarjan on Gi. If it outputs a double
tree decomposition for Gi, run A on it.

1This problem is referred to as ‘2-PAR’ in the paper of Péroche.
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Claim 26. The graph G contains two disjoint Hamiltonian cycles if and only if one of
G1, G2, G3 has a perfectly balanced double tree decomposition.

Proof. Note that for i = 1, 2, 3, if Gi has a perfectly balanced decomposition T1 ⊔T2 then
T1, T2 are two edge-disjoint Hamiltonian paths with endpoints x and y. Indeed, every
v ∈ V (Gi) \ {x, y} must have degree 2 in each tree and x, y must be leaves.

Therefore, a perfectly balanced double tree decomposition in Gi corresponds to two
edge-disjoint Hamiltonian cycles in G by merging vertices x and y. Conversely, two edge-
disjoint Hamiltonian cycles in G yield a perfectly balanced decomposition in at least one
of the three splittings of v into x and y described above.

Hence, the above algorithm is a valid polynomial time reduction of finding two edge-
disjoint Hamiltonian cycles in a 4-regular graph to PBDT.

7 Conclusion

We have shown that every double tree has a partition into two trees such that the degrees
at each vertex differ by at most four (improving on Hörsch’s [5] bound of five). Can this be
further improved? There are examples of double trees that admit a 2-balanced double tree
decomposition, but no 1-balanced double tree decomposition. The only such examples
known to the authors involve taking an odd cycle, whose edges cannot be colored blue/red
without creating a vertex with degree difference 2, and making it into a double tree while
preserving degree differences. See below for example. In any double tree decomposition,
one of the vertices of the triangle has degree difference 2.

It seems natural to conjecture that this lower bound is tight.

Conjecture 27. Any double tree has a 2-balanced double tree decomposition.

The question of balancing double trees can naturally be generalised to balancing k-
trees, as well as graphs containing k edge-disjoint trees.

Question 28. Let k ! 2. What are the smallest constants ck, dk > 0 such that the
following hold?

• Any finite graph which is the union of k edge-disjoint spanning trees has a k-tree
decomposition that is ck-balanced.

• Any finite graph containing k edge-disjoint spanning trees has a dk-balanced decom-
position into connected spanning subgraphs.
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By repeatedly applying Theorem 1, Hörsch [5] obtained the bound ck " 22 log k. We
could similarly derive improved bounds on ck and dk by repeatedly applying Theorem 3.
When the requirement that each graph in the decomposition is a tree is dropped (so
any k-edge colouring of the original graph G is allowed), a uniform bound on the colour-
degree differences is attainable. Indeed, let H be the hypergraph whose vertices are the
edges of G and whose hyperedges are the stars centred at each vertex of G. Then H has
maximum degree 2 and so bounded discrepancy – see, for example, the paper of Doerr
and Srivastav [4, Theorem 3.7].

In particular, given a finite graph G containing k edge-disjoint spanning trees, we
can apply any bound on ck to any k edge-disjoint spanning trees in G, then balance
the remaining edges using bounded discrepancy. Consequently, upper bounds on ck are
bounds on dk with a constant error term. It would be particularly interesting to resolve
Hörsch’s conjecture [5] of whether there is a uniform upper bound on the ck.

The digraphs used for the proofs of Theorems 24 and 25 in Section 5 rely on the
uniqueness of the decompositions into arborescences/strongly connected digraphs. It is
natural to ask what happens if our starting digraph is less restricted. If the starting
digraph is a union of more arborescences than colours in the edge-colouring, then there
will be many possible decompositions.

Question 29. Are there constants c, t such that if D is a disjoint union of t spanning
arborescences sharing a root, then the edges of D can be coloured blue/red such that the
out-degrees are c-balanced and both graphs contain arborescences?

The same question is also interesting for strongly connected digraphs. The hypothesis
thatD is a disjoint union of t strongly connected spanning digraphs is slightly cumbersome
and it would seem natural to replace it with some high connectivity condition. As far as
we are aware, the following question is open and would be interesting to resolve.

Question 30. For each positive integer t is there a constant k such that the edges of any
k-strongly connected digraph can be partitioned into t parts each of which is spanning
and strongly connected?

For undirected graphs the corresponding statement follows from the Tutte-Nash-
Williams characterisation with k = 4t.
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