Junta threshold for low degree Boolean functions on the slice

Yuval Filmus*
The Henry and Marylin Taub Faculty of Computer Science
Technion - Israel Institute of Technology
Haifa, Israel
yuvalfi@cs.technion.ac.il

Submitted: Mar 15, 2022; Accepted: Feb 13, 2023; Published: Mar 24, 2023
(C) The author. Released under the CC BY-ND license (International 4.0).

Abstract

We show that a Boolean degree d function on the slice $\binom{[n]}{k}$ is a junta if $k \geqslant 2 d$, and that this bound is sharp. We prove a similar result for A-valued degree d functions for arbitrary finite A, and for functions on an infinite analog of the slice.

Mathematics Subject Classifications: 94D10,06E30

1 Introduction

A classical result of Nisan and Szegedy [NS94] states that a Boolean degree d function on the Boolean cube $\{0,1\}^{n}$ is an $O\left(d 2^{d}\right)$-junta. Let us briefly explain the various terms involved:

- A function f on the Boolean cube is Boolean if $f(x) \in\{0,1\}$ for all $x \in\{0,1\}^{n}$.
- A function f on the Boolean cube has degree (at most) d if there is a polynomial P of degree at most d in n variables such that $f\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{1}, \ldots, x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in\{0,1\}$.
- A function f is an m-junta if there are m indices $1 \leqslant i_{1}, \ldots, i_{m} \leqslant n$ and a function $g:\{0,1\}^{m} \rightarrow \mathbb{R}$ such that $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)$.

[^0]Chiarelli, Hatami and Saks [CHS20] improved the bound to $O\left(2^{d}\right)$, and the hidden constant was further optimized by Wellens [Wel20].

The slice $\binom{[n]}{k}$, also known as the Johnson scheme $J(n, k)$, consists of all vectors in $\{0,1\}^{n}$ of Hamming weight k. Is it the case that all Boolean degree d functions on the slice $\binom{[n]}{k}$ are $m(d)$-juntas, for some constant $m(d)$? Two partial answers to this question appear in [FI19b, FI19a]. First, if f is a Boolean degree 1 function on $\binom{[n]}{k}$ and $k, n-k \geqslant 2$ then f is a 1-junta [FI19b]. Second, there exist constants $C(d)=\Theta\left(2^{d}\right)$ such that if f is a Boolean degree d function on $\binom{[n]}{k}$ and $k, n-k \geqslant C(d)$, then f is an $O\left(2^{d}\right)$-junta [FI19a].

The reason that both of these results require both k and $n-k$ to be large is that given a function f on $\binom{[n]}{k}$, we can construct a dual function \bar{f} on $\binom{[n]}{n-k}$ with similar properties by defining $\bar{f}\left(x_{1}, \ldots, x_{n}\right)=f\left(1-x_{1}, \ldots, 1-x_{n}\right)$. For this reason, when we consider the slice $\binom{[n]}{k}$, we typically assume that $n \geqslant 2 k$.

One of the open questions in [FI19a] asks for the minimal k for which every Boolean degree d function on $\binom{[n]}{k}$ is a junta, whenever $n \geqslant 2 k$. In this paper, we completely resolve this question.

Theorem 1. Let $d \geqslant 1$. There exists a constant $m(d)$ such that the following holds.
If $k \geqslant 2 d$ then for any $n \geqslant 2 k$, every Boolean degree d function on $\binom{[n]}{k}$ is an $m(d)$ junta.

Conversely, if $1 \leqslant k<2 d$ then for every m there exist $n \geqslant 2 k$ and a Boolean degree d function on $\binom{[n]}{k}$ which is not an m-junta.

The second part of the theorem follows from functions of the form

$$
\sum_{i=1}^{\ell} \prod_{j=1}^{e} x_{(e-1) i+j}, \quad e=\min (d, k)
$$

When $n \geqslant 2 \ell e$, these functions are not ℓe-juntas.
\boldsymbol{A}-valued functions We prove Theorem 1 in the more general setting of A-valued functions, for any finite A. These are functions f such that $f(x) \in A$ for all $x \in\{0,1\}^{n}$. When $A=\{0,1, \ldots, a-1\}$ (or more generally, any arithmetic progression of length a), the junta threshold is $a d$. The situation gets more interesting when A is not an arithmetic progression. For example, when $A=\{0,1,3\}$, the threshold for $d=1$ is $k=2$, and the threshold for $d=2$ is $k=6$. The latter threshold is tight due to the following example, which is A-valued when $k=5$:

$$
3-2 \sum_{1 \leqslant i \leqslant m} x_{i}+\sum_{1 \leqslant i<j \leqslant m} x_{i} x_{j} .
$$

When A is not an arithmetic progression, the threshold depends on a parameter first studied, in the special case of $A=\{0,1\}$, by von zur Gathen and Roche [vzGR97]. Let $W(A, d)$ be the minimal value W such that every degree d polynomial P satisfying $P(0), \ldots, P(W) \in A$ is constant.

Theorem 2. Let A be a finite set containing at least two elements, and let $d \geqslant 1$. There exists a constant $m(A, d)$ such that the following holds. Define

$$
k(A, d)=d+\max _{1 \leqslant s \leqslant d}\left(\left\lfloor\frac{d}{s}\right\rfloor(W(A, s)-s)\right),
$$

which is equal to $|A| d$ if A is an arithmetic progression.
If $k \geqslant k(A, d)$ then for any $n \geqslant 2 k$, every A-valued degree d function on $\binom{[n]}{k}$ is an $m(A, d)$-junta.

Conversely, if $1 \leqslant k<k(A, d)$ then for every m there exist $n \geqslant 2 k$ and an A-valued degree d function on $\binom{[n]}{k}$ which is not an m-junta.

When A is an arithmetic progression, the maximum in the definition of $k(A, d)$ is obtained (not necessarily uniquely) at $s=1$. When $A=\{0,1,3\}$ and $d=2$, the maximum is obtained uniquely at $s=2$.

The infinite slice When $1 \leqslant k<2 d$, the non-junta example in the Boolean case extends to infinitely many variables:

$$
\sum_{i=1}^{\infty} \prod_{j=1}^{e} x_{(e-1) i+j}, \quad e=\min (d, k)
$$

The same holds for the non-junta example we gave for $A=\{0,1,3\}$ and $d=2$. This is a general feature of our non-junta examples. We can think of such expressions as function on the infinite slice $\binom{[\infty]}{k}$, which consists of all vectors in $\{0,1\}^{\mathbb{N}}$ of Hamming weight k. Conversely, when $k \geqslant k(A, d)$, every A-valued degree d function on $\binom{[\infty]}{k}$ is a junta.
Theorem 3. Let A be a finite set containing at least two elements, and let $d \geqslant 1$. The following holds for the parameters $m(A, d), k(A, d)$ defined in Theorem 2.

If $k \geqslant k(A, d)$ then every A-valued degree d function on $\binom{[\infty]}{k}$ is an $m(A, d)$-junta.
Conversely, if $1 \leqslant k<k(A, d)$ then there exists an A-valued degree d function on $\binom{[\infty]}{k}$ which is not an m-junta for any finite m.

Structure of the paper After a few preliminaries in Section 2, we prove our main theorems in Section 3. We conclude the paper with a few remarks in Section 4.

2 Preliminaries

Slice For integers $0 \leqslant k \leqslant n$, we define the slice $\binom{[n]}{k}$ as

$$
\binom{[n]}{k}=\left\{x \in\{0,1\}^{n}: \sum_{i=1}^{n} x_{i}=k\right\} .
$$

We think of functions on the slice as accepting as input n bits $x_{1}, \ldots, x_{n} \in\{0,1\}$, with the promise that exactly k of them are equal to 1 .

A function f on the slice $\binom{[n]}{k}$ is A-valued, for some $A \subseteq \mathbb{R}$, if $f(x) \in A$ for all $x \in\binom{[n]}{k}$. A Boolean function is a $\{0,1\}$-valued function.

Degree For $S \subseteq[n]=\{1, \ldots, n\}$, we define

$$
x_{S}=\prod_{i \in S} x_{i},
$$

with $x_{\emptyset}=1$. We call x_{S} a degree $|S|$ monomial.
A function on the slice $\binom{[n]}{k}$ has degree (at most) d if it can be expressed as a polynomial of degree at most d over the variables x_{1}, \ldots, x_{n}. We will usually omit the words "at most".

Lemma 4. If $k \geqslant d$, then every degree d function on $\binom{[n]}{k}$ can be expressed as a linear combination of degree d monomials.

Proof. Let f be a degree d function on $\binom{[n]}{k}$. By definition, it can be expressed as a polynomial P of degree at most d. Since $x_{i}^{2}=x_{i}$, we can replace each monomial of P by its multilinearization, obtained by replacing higher powers of each x_{i} by x_{i}, obtaining a multilinear polynomial Q of degree at most d expressing f. Using the identity

$$
x_{S}=\frac{1}{\left(\begin{array}{c}
k-|S| \\
d-|S|
\end{array}\right.} \sum_{\substack{S \subseteq T \subseteq[n] \\
|T|=d}} x_{T},
$$

which is valid over $\binom{[n]}{k}$, we can convert Q into an equivalent polynomial in which all monomials have degree exactly d.

It turns out that if $n-k \geqslant d$ then the representation given by the lemma is unique. For this and more on the spectral perspective on functions on the slice, consult [Fil16, FM19].

Junta A function f on the slice $\binom{[n]}{k}$ is a J-junta, where $J \subseteq[n]$, if there is a function $g:\{0,1\}^{J} \rightarrow \mathbb{R}$ such that $f(x)=g\left(\left.x\right|_{J}\right)$ for all $x \in\binom{[n]}{k}$; here $\left.x\right|_{J}$ is the restriction of x to the coordinates in J.

A function is an m-junta if it is a J-junta for some set J of size at most m.
Given $x \in\binom{[n]}{k}$ and $i, j \in[n]$, we define $x^{(i j)}$ to be the vector obtained by switching coordinates i and j.

Lemma 5. Let f be a function on the slice $\binom{[n]}{k}$. Suppose that I, J are disjoint subsets of $[n]$ such that for every $i \in I$ and $j \in J$ there exists $x \in\binom{[n]}{k}$ such that $f(x) \neq f\left(x^{(i j)}\right)$.

If f is an m-junta then $m \geqslant \min (|I|,|J|)$.
Proof. Suppose that f is an m-junta. Then there is a set $K \subseteq[n]$ of size at most m and a function $g:\{0,1\}^{K} \rightarrow \mathbb{R}$ such that $f(x)=g\left(\left.x\right|_{K}\right)$ for all $x \in\binom{[n]}{k}$. In particular, if $i, j \notin K$ then $f(x)=f\left(x^{(i j)}\right)$ for all $x \in\binom{[n]}{k}$. This shows that either $K \supseteq I$ or $K \supseteq J$, and so $m \geqslant|K| \geqslant \min (|I|,|J|)$.

The main result of [FI19a] states that Boolean degree d functions on $\binom{[n]}{k}$ are juntas for large k.

Theorem 6 ([FI19a]). There exist constants $C, K>0$ such that the following holds. If $C^{d} \leqslant k \leqslant n-C^{d}$ and f is a Boolean degree d function on $\binom{[n]}{k}$, then f is a $K C^{d}$-junta.

A similar result holds for A-valued functions.
Corollary 7. For every finite set A containing at least two elements there exist constants $C_{A}, K_{A}>0$ such that the following holds. If $C_{A}^{d} \leqslant k \leqslant n-C_{A}^{d}$ and f is an A-valued degree d function on $\binom{[n]}{k}$, then f is a $K_{A} C_{A}^{d}-j u n t a$.
Proof. For each $a \in A$, define

$$
f_{a}(x)=\prod_{\substack{b \in A \\ b \neq a}} \frac{f(x)-b}{a-b}
$$

The function f_{a} is a Boolean degree $(|A|-1) d$ function, and

$$
f(x)=\sum_{a \in A} a f_{a}(x) .
$$

Let $C_{A}=C^{|A|-1}$ and $K_{A}=|A| K$. If $C_{A}^{d} \leqslant k \leqslant n-C_{A}^{d}$ then the theorem shows that each f_{a} is a $K C_{A}^{d}$-junta, hence f is a $K_{A} C_{A}^{d}$-junta.
Infinite slice For an integer $k \geqslant 0$, we define the infinite slice $\binom{[\infty]}{k}$ as

$$
\binom{[\infty]}{k}=\left\{x \in\{0,1\}^{\mathbb{N}}: \sum_{i=1}^{\infty} x_{i}=k\right\} .
$$

A function f on the infinite slice $\binom{[\infty]}{k}$ has degree d if it can be expressed as an infinite sum of monomials of degree at most d :

$$
f(x)=\sum_{\substack{S \subseteq \mathbb{N} \\|S| \leqslant d}} c(S) x_{S}
$$

While the sum is infinite, all but 2^{k} of the monomials are non-zero on any given input, and therefore the sum on the right defines a real-valued function. Lemma 4 extends to this setting.

The definition of junta and Lemma 5 extend to this setting as well.
Bipartite Ramsey theorem We assume familiarity with the classical Ramsey theorem. Our proof will also make use of a bipartite Ramsey theorem, whose simple proof we include for completeness.

Theorem 8. Let $c, d \in \mathbb{N}$ be parameters. For every $k \geqslant 1$ there exists $n \geqslant 1$ such that the following holds.

Suppose that A, B are two disjoint sets of size n. Suppose furthermore that all subsets of $A \cup B$ of size d are colored using one of c colors. Then there exist subsets $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ of size k and colors c_{0}, \ldots, c_{d} such that every $T \subseteq A^{\prime} \cup B^{\prime}$ of size d has color $c_{|T \cap A|}$.

Proof. We will prove the theorem under the assumption that A, B are infinite. The finite version then follows by compactness.

Let m be such that given a set X of size m together with a coloring of all of its subsets of size at most d using c colors, we can find a subset $A^{\prime} \subseteq X$ of size k and colors c_{0}, \ldots, c_{d} such that the color of any $T \subseteq A^{\prime}$ of size at most d is $c_{|T|}$. Such an m exists due to Ramsey's theorem.

Let X be an arbitrary subset of A of size m. Let χ be the c-coloring of the subsets of $A \cup B$ of size d. Assign every $T_{B} \subseteq B$ of size at most d the color

$$
T_{A} \mapsto \chi\left(T_{A} \cup T_{B}\right),
$$

where T_{A} ranges over all subsets of X of size $d-\left|T_{B}\right|$. That is, the color of T_{B} is one of $c^{\binom{m}{d-\left|T_{B}\right|}}$ possible functions. Applying Ramsey's theorem, we find an infinite subset $B^{\prime} \subseteq B$ and a list of colors $c_{T_{A}}$, one for each $T_{A} \subseteq X$ of size at most d, such that for all $T_{B} \subseteq B^{\prime}$ of size $d-\left|T_{A}\right|$, we have $\chi\left(T_{A} \cup T_{B}\right)=c_{T_{A}}$.

The choice of m guarantees the existence of a subset $A^{\prime} \subseteq X$ of size k and colors c_{0}, \ldots, c_{d} such that for every $T_{A} \subseteq A^{\prime}$ of size at most d and for every $T_{B} \subseteq B^{\prime}$ of size $d-\left|T_{A}\right|$, we have $\chi\left(T_{A} \cup T_{B}\right)=c_{T_{A}}=c_{\left|T_{A}\right|}$.

When A, B are infinite, the proof above produces a subset $A^{\prime} \subseteq A$ of size k and an infinite subset $B^{\prime} \subseteq B$. It is natural to wonder whether we can ask for both A^{\prime} and B^{\prime} to be infinite. This is impossible in general. Indeed, let A, B be two copies of \mathbb{N}, and color $A \times B$ using two colors as follows: $\chi(i, j)=1$ if $i<j$ and $\chi(i, j)=0$ otherwise. The reader can check that there are no infinite subsets A^{\prime}, B^{\prime} such that $\chi(i, j)$ is the same for all $i \in A^{\prime}$ and $j \in B^{\prime}$.

3 Main theorems

In this section we prove Theorems 1 to 3 . Since Theorem 1 is a special case of Theorem 2, it suffices to prove Theorems 2 and 3. These theorems will follow from the following theorem, which is our main result.

Theorem 9. Let A be a finite set containing at least two elements, and let $d \geqslant 1$. There exists a constant $\kappa(A, d)$, defined below, such that the following holds.

If $k \geqslant \kappa(A, d)$ then there exists a constant $m(A, d, k)$ such that every A-valued degree d function on $\binom{[n]}{k}$ is an $m(A, d, k)$-junta.

Conversely, if $1 \leqslant k<\kappa(A, d)$ then for every $m \geqslant 1$ there exist an n and an A-valued degree d function on $\binom{[n]}{k}$ which is not an m-junta. Similarly, there exists an A-valued degree d function on $\binom{[\infty]}{k}$ which is not an m-junta for any finite m.

The constant $\kappa(A, d)$ is the smallest value κ such that all of the following hold:

1. $\kappa>d$.
2. For all $e \in\{0, \ldots, d-1\}$: if P is a univariate polynomial of degree at most $d-e$ and $P(0), \ldots, P(\kappa-e) \in A$ then P is constant.
3. For all $t \geqslant 0$ and $r, s \geqslant 1$ satisfying $t+r s \leqslant d$: if P is a univariate polynomial of degree at most s and $P(0), \ldots, P\left(\left\lfloor\frac{\kappa-t}{r}\right\rfloor\right) \in A$ then P is constant.

We show in Section 3.5 that $\kappa(A, d)$ exists, that is, some κ satisfies all these constraints.
Since $\kappa>d$, if the polynomial P in Item 2 is not constant then the sequence $P(0), \ldots, P(\kappa-e)$ is not constant. For the same reason, if the polynomial P in Item 3 is not constant then the sequence $P(0), \ldots, P\left(\left\lfloor\frac{k-t}{r}\right\rfloor\right)$ is not constant.

Let us explain this definition by way of proving the converse part of Theorem 9.
Proof of converse part of Theorem 9. Let a, b be two distinct elements of A. For each k such that $1 \leqslant k<\kappa(A, d)$ and each $m^{\prime} \geqslant k$, we will construct n and an A-valued degree d function on the slice $\binom{[n]}{k}$ which is not an m^{\prime}-junta. In order to prove that the function is not a junta, we will appeal to Lemma 5 , employing sets I, J such that $\min (|I|,|J|) \geqslant m:=m^{\prime}+1$.

Suppose first that $1 \leqslant k \leqslant d$. Let $n=2 k m$, and consider the function

$$
f(x)=a+(b-a) \sum_{i=1}^{m} x_{\{(i-1) k+1, \ldots, i k\}} .
$$

By construction, f has degree at most k. The sum is always at most 1 , and so this function is A-valued. Let $I=\{1, \ldots, k m\}$ and $J=\{k m+1, \ldots, 2 k m\}$. For each $i^{\prime}=(i-1) k+\ell \in I$ and $j \in J$, let $x \in\binom{[n]}{k}$ be given by $x_{(i-1) k+1}=\cdots=x_{i k}=1$, and all other coordinates are zero. Then $f(x)=b$ and $f\left(x^{\left(i^{\prime} j\right)}\right)=a$. Applying Lemma 5, we see that f is not an m^{\prime}-junta.

From now on, we assume that $k>d$.
Suppose next that $e \in\{0, \ldots, d-1\}$ and there exists a univariate polynomial P of degree at most $d-e$ such that $P(0), \ldots, P(k-e) \in A$ and P is non-constant. Since $k \geqslant d$, the list $P(0), \ldots, P(k-e)$ cannot be constant, and so $P(w) \neq P(w-1)$ for some $w \in\{1, \ldots, k-e\}$. Let $n=e+2 m$, where $m \geqslant k-e$, and consider the function

$$
f(x)=a\left(1-x_{\{1, \ldots, e\}}\right)+x_{\{1, \ldots, e\}} P\left(\sum_{i=1}^{m} x_{e+i}\right) .
$$

By construction, f has degree at most $e+(d-e)=d$. If $x_{\{1, \ldots, e\}}=0$ then $f(x)=a$, and otherwise, the input to P is at most $k-e$, and so f is A-valued. Let $I=\{e+1, \ldots, e+m\}$ and $J=\{e+m+1, \ldots, e+2 m\}$. For each $i^{\prime}=i+e \in I$ and $j \in J$, let $x \in\binom{[n]}{k}$ be any input such that $x_{1}=\cdots=x_{e}=1 ; x_{e+h}=1$ for exactly w many $h \in\{1, \ldots, m\}$; and $x_{j}=0$. This requires $e+w \leqslant k$ inputs to be 1 and $m-w+1 \leqslant m$ inputs to be 0 . Since $n-k \geqslant m$, such an input exists. The input x satisfies $f(x)=P(w)$ and $f\left(x^{(i j)}\right)=P(w-1)$. Applying Lemma 5 , we see that f is not an m^{\prime}-junta.

Finally, suppose that $t \geqslant 0$ and $r, s \geqslant 1$ satisfy $t+r s \leqslant d$, and that there exists a univariate polynomial P of degree at most $s \leqslant\left\lfloor\frac{d-t}{r}\right\rfloor$ such that $P(0), \ldots, P\left(\left\lfloor\frac{k-t}{r}\right\rfloor\right) \in A$ and P is non-constant. Since $k \geqslant d$, the list $P(0), \ldots, P\left(\left\lfloor\frac{k-t}{r}\right\rfloor\right)$ cannot be constant, and
so $P(w) \neq P(w-1)$ for some $w \in\left\{1, \ldots,\left\lfloor\frac{k-t}{r}\right\rfloor\right\}$. Let $n=t+2 r m$, where $m \geqslant k-t$, and consider the function

$$
f(x)=a\left(1-x_{\{1, \ldots, t\}}\right)+x_{\{1, \ldots, t\}} P\left(\sum_{i=1}^{m} x_{\{t+(i-1) r+1, \ldots, t+i r\}}\right) .
$$

By construction, f has degree at most $t+r s \leqslant d$. If $x_{\{1, \ldots, t\}}=0$ then $f(x)=a$, and otherwise, the input to P is at most $\frac{k-t}{r}$, and so f is A-valued. Let $I=\{t+1, \ldots, t+r m\}$ and $J=\{t+r m+1, \ldots, t+2 r m\}$. For each $i^{\prime}=t+(i-1) r+\ell$ and $j \in J$, let $x \in\binom{[n]}{k}$ be given by $x_{1}=\cdots=x_{t}=1 ; x_{t+(h-1) r+1}=\cdots=x_{t+h r}=1$ for exactly w many $h \in\{1, \ldots, m\}$; and $x_{j}=0$. This requires $t+r w \leqslant k$ inputs to be 1 and $m-w+1 \leqslant m$ inputs to be 0 . Since $n-k \geqslant m$, such an input exists. The input x satisfies $f(x)=P(w)$ and $f\left(x^{(i j)}\right)=P(w-1)$. Applying Lemma 5 , we see that f is not an m^{\prime}-junta.

Taking $m=\infty$ and allowing for infinitely many more input coordinates, in all cases listed above we obtain A-valued degree d functions on $\binom{[\infty]}{k}$ which are not m-juntas for any finite m. For example, when $1 \leqslant k \leqslant d$ we can consider the function

$$
f(x)=a+(b-a) \sum_{i=1}^{\infty} x_{\{2(i-1) k+2, \ldots, 2 i k\}}
$$

For any m, we can take $I=\left\{x_{2}, x_{4}, \ldots, x_{2 m}\right\}$ and $J=\left\{x_{1}, x_{3}, \ldots, x_{2 m-1}\right\}$ and conclude, via Lemma 5 , that f is not an $(m-1)$-junta.

The proof of Theorem 9 occupies Sections 3.1 to 3.4. In order to complete the proof of Theorems 2 and 3, we need the following lemma, proved in Section 3.4.

Lemma 10. Let A be a finite set containing at least two elements, and let $d \geqslant 1$. The parameters $\kappa(A, d)$ and $k(A, d)$, defined in Theorems 2 and 9, are equal.

Furthermore, if A is an arithmetic progression then $k(A, d)=|A| d$.
We can now prove our main theorems.
Proof of Theorem 2. Given Lemma 10, the converse direction follows from Theorem 9. These two results also imply that for every $k \geqslant k(A, d)$ there is a constant $m(A, d, k)$ such that for any $n \geqslant 2 k$, any A-valued degree d function on $\binom{[n]}{k}$ is an $m(A, d, k)$-junta. Corollary 7 shows that if $k \geqslant C_{A}^{d}, n \geqslant 2 k$, and f is an A-valued degree d function on $\binom{[n]}{k}$, then f is a $K_{A} C_{A}^{d}$-junta. Therefore the theorem holds for

$$
m(A, d)=\max \left(\left\{m(A, d, k): k \leqslant k(A, d)<C_{A}^{d}\right\} \cup\left\{K_{A} C_{A}^{d}\right\}\right)
$$

Proof of Theorem 3. Given Lemma 10, the converse direction follows from Theorem 9. Suppose now that $k \geqslant k(A, d)$ and that f is an A-valued degree d function on $\binom{[\infty]}{k}$.

We first show that f is an m-junta for $m=2 m(A, d)$. Suppose that this is not the case. We construct a sequence $i_{1}, j_{1}, \ldots, i_{m(A, d)+1}, j_{m(A, d)+1}$ as follows. Given $i_{1}, j_{1}, \ldots, i_{t}, j_{t}$ for
$t \leqslant m(A, d)$, since f is not a K_{t}-junta for $K_{t}=\left\{i_{1}, j_{1}, \ldots, i_{t}, j_{t}\right\}$, we can find an input $v_{t+1} \in\binom{[\infty]}{k}$ and indices $i_{t+1}, j_{t+1} \notin K_{t}$ such that $f\left(v_{t+1}\right) \neq f\left(v_{t+1}^{\left(i_{t+1} j_{t+1}\right)}\right)$.

Let S_{t} be the set of 1-indices of v_{t}, and let f^{\prime} be the restriction of f to a finite slice obtained by zeroing out all coordinates other than the ones in

$$
\bigcup_{t=1}^{m(A, d)+1}\left(S_{t} \cup\left\{i_{t}, j_{t}\right\}\right)
$$

According to Theorem $2, f^{\prime}$ is a K-junta for some K of size at most $m(A, d)$. By construction, the inputs $v_{1}, \ldots, v_{m(A, d)+1}$ restrict to inputs on the domain of f^{\prime} which satisfy $f^{\prime}\left(v_{t}\right) \neq f^{\prime}\left(v_{t}^{\left(i_{t} j_{t}\right)}\right)$. This means that K intersects $\left\{i_{t}, j_{t}\right\}$ for all $t \in[m(A, d)+1]$, and so $|K|>m(A, d)$. This contradiction shows that f must be an m-junta. Therefore we can identify f with an A-valued degree d function on $\binom{[m]}{d}$, which according to Theorem 2 is an $m(A, d)$-junta.

3.1 Quantization

Let f be an A-valued degree d function on $\binom{[n]}{k}$, where $k \geqslant d$. According to Lemma 4, we can represent f as a linear combination of degree d monomials. In this part of the proof we show that the coefficients are quantized, in the sense that they belong to a set \mathfrak{C} depending only on A, d, k.

Lemma 11. For any $k \geqslant d \geqslant 1$ and finite $A \subseteq \mathbb{R}$ there exists a finite set $\mathfrak{C} \subseteq \mathbb{R}$ such that the following holds.

Let f be an A-valued degree d function on $\binom{[n]}{k}$, where $n \geqslant k+d$, and suppose that

$$
f(x)=\sum_{\substack{S \subseteq[n] \\|S|=d}} c(S) x_{S}
$$

Then all coefficients $c(S)$ belong to \mathfrak{C}.
Proof. Let $S \subseteq[n]$ be an arbitrary subset of size d, and let $I \subseteq[n]$ be an arbitrary subset of size k disjoint from S. For every $e \in\{0, \ldots, d\}$, define

$$
h(e)=\sum_{\substack{S^{\prime} \subseteq S \\\left|S^{\prime}\right|=e\left|I^{\prime}\right|=k-e}} \sum_{\substack{I^{\prime} \subseteq I\\}} f\left(S^{\prime} \cup I^{\prime}\right) .
$$

Each $h(e)$ is a sum of at most 2^{d+k} many elements from A, and so belongs to some finite set.

In order to express $h(e)$ in terms of the coefficients $c(T)$, for $e \in\{0, \ldots, d\}$ define

$$
\gamma(e)=\sum_{\substack{S^{\prime} \subseteq S \\\left|S^{\prime}\right|=e}} \sum_{\substack{I^{\prime} \subseteq I \\\left|I^{\prime}\right|=d-e}} c\left(S^{\prime} \cup I^{\prime}\right)
$$

Simple combinatorics shows that

$$
h(e)=\sum_{e^{\prime}=0}^{e}\binom{d-e^{\prime}}{d-e}\binom{k-d+e^{\prime}}{e} \gamma\left(e^{\prime}\right) .
$$

Each $h(e)$ is a linear combination of $\gamma(0), \ldots, \gamma(e)$ whose coefficients depend only on d, k, in which the coefficient of $\gamma(e)$ is non-zero. Therefore we can express each $\gamma(e)$ as a similar linear combination of $h(0), \ldots, h(e)$. In particular, $c(S)=\gamma(d)$ is some linear combination of $h(0), \ldots, h(d)$, and so belongs to some finite set.

The condition $n-k \geqslant d$ is necessary: if $n-k<d$ then

$$
C \prod_{i=1}^{d}\left(1-x_{i}\right)
$$

is a degree d polynomial which represents the zero function for any $C \in \mathbb{R}$.
As an aside, Lemma 11 implies that the representation of Lemma 4 is unique. Indeed, if $f=\sum_{S} c_{1}(S) x_{S}=\sum_{S} c_{2}(S) x_{S}$ are two such representations, then $f=\sum_{S}\left(\theta c_{1}(S)+\right.$ $\left.(1-\theta) c_{2}(S)\right) x_{S}$ is another such representation for any real θ. If $c_{1}(S) \neq c_{2}(S)$, then $\left\{\theta c_{1}(S)+(1-\theta) c_{2}(S): \theta \in \mathbb{R}\right\}=\mathbb{R}$, contradicting Lemma 11 when applied to the finite set A which is the range of f.

3.2 Bunching of coefficients

Suppose that f is a degree d junta. Lemma 11 shows that its degree d expansion is quantized. Yet it is not necessarily the case that the degree d expansion is sparse. For example, the degree d expansion of $x_{\{1, \ldots, d-1\}}$ is

$$
\frac{1}{k-d+1} \sum_{i=d}^{n} x_{\{1, \ldots, d-1, i\}} .
$$

In the following steps of the proof, we gradually convert this kind of expansion into an expansion which mentions a bounded number of variables. The first step shows that the coefficients $c(S)$ in the degree d expansion are "bunched" in the following sense.

Lemma 12. For finite $A \subseteq \mathbb{R}$ containing at least two elements, $d \geqslant 1$, and $k \geqslant \kappa(A, d)$, there is a constant N for which the following holds.

Let f be an A-valued degree d function on $\binom{[n]}{k}$, where $n \geqslant k+d$, and suppose that

$$
f(x)=\sum_{\substack{S \subseteq[n] \\|S|=d}} c(S) x_{S}
$$

is the expansion whose existence is guaranteed by Lemma 4.
We can assign each subset $T \subseteq[n]$ of size smaller than d a value $c(T) \in \mathfrak{C}$ (where \mathfrak{C} is the set promised by Lemma 11) such that $c(T \cup\{i\})=c(T)$ for all but N many $i \in[n] \backslash T$.

The proof of Lemma 12 proceeds by backwards induction on the size of the set T. The bulk of the work lies in the basis of the induction.

Proof of Lemma 12, base case. Under the assumptions of Lemma 12, we assign for each subset $T \subseteq[n]$ of size $d-1$ a value $c(T) \in \mathfrak{C}$ such that $c(T \cup\{i\})=c(T)$ for all but N_{d-1} many $i \in[n] \backslash T$, where N_{d-1} is a constant depending only on A, d, k.

Fix a subset $T \subseteq[n]$ of size $d-1$. We partition $[n] \backslash T$ into $|\mathfrak{C}|$ sets X_{γ} as follows: X_{γ} contains all $i \notin T$ such that $c(T \cup\{i\})=\gamma$. For every $\gamma_{1} \neq \gamma_{2}$, we color all non-empty subsets $S \subseteq X_{\gamma_{1}} \cup X_{\gamma_{2}}$ of size at most d as follows: the color assigned to S is

$$
T^{\prime} \mapsto c\left(T^{\prime} \cup S\right)
$$

where T^{\prime} ranges over all subsets of T of size $d-|S|$. According to Lemma 11, the color of S is one of $\left.\left|\mathfrak{C}^{\mid}\right| \begin{array}{c}d-1 \\ d-|S|\end{array}\right)$ possible functions. Applying Theorem 8 repeatedly, there is a constant M, depending only on A, d, k, such that if $\left|X_{\gamma_{1}}\right|,\left|X_{\gamma_{2}}\right| \geqslant M$ then there exist subsets $X_{\gamma_{1}}^{\prime} \subseteq X_{\gamma_{1}}$ and $X_{\gamma_{2}}^{\prime} \subseteq X_{\gamma_{2}}$ of size k and colors $c_{T^{\prime}, e} \in \mathfrak{C}$, for all $T^{\prime} \subseteq T$ and $e \leqslant d-\left|T^{\prime}\right|$, such that if $S \subseteq T \cup X_{\gamma_{1}}^{\prime} \cup X_{\gamma_{2}}^{\prime}$ has size d then $c(S)=c_{S \cap T,\left|S \cap X_{\gamma_{1}}\right|}$.

We now prove that for every $T^{\prime} \subseteq T$ there exists a color $c_{T^{\prime}} \in \mathfrak{C}$ such that $c_{T^{\prime}, e}=c_{T^{\prime}}$ for all $e \leqslant d-\left|T^{\prime}\right|$. The proof is by induction on $\left|T^{\prime}\right|$. Suppose that the claim holds for all proper subsets of some $T^{\prime} \subseteq T$. We prove it for T^{\prime}.

Let $w \leqslant k-\left|T^{\prime}\right|$. The value of f on an input consisting of T^{\prime} together with w elements from $X_{\gamma_{1}}^{\prime}$ and $k-\left|T^{\prime}\right|-w$ elements from $X_{\gamma_{2}}^{\prime}$ is

$$
\sum_{T^{\prime \prime} \subsetneq T^{\prime}}\binom{k-\left|T^{\prime \prime}\right|}{d-\left|T^{\prime \prime}\right|} c_{T^{\prime \prime}}+\sum_{e=0}^{d-\left|T^{\prime}\right|}\binom{w}{e}\binom{k-\left|T^{\prime}\right|-w}{d-\left|T^{\prime}\right|-e} c_{T^{\prime}, e} .
$$

This is a polynomial $P(w)$ of degree at most $d-\left|T^{\prime}\right|$ such that $P(0), \ldots, P\left(k-\left|T^{\prime}\right|\right) \in A$, and so since $k \geqslant \kappa(A, d), P$ is constant.

Since $P(e)$ only depends on $c_{T^{\prime}, 0}, \ldots, c_{T^{\prime}, e}$, it follows that for every $w \in\left\{1, \ldots, d-\left|T^{\prime}\right|\right\}$ we have

$$
P(w)-P(w-1)=\binom{k-\left|T^{\prime}\right|-w}{d-\left|T^{\prime}\right|-w} c_{T^{\prime}, w}-\sum_{e=0}^{w-1} \rho_{w, e} c_{T^{\prime}, e},
$$

for some $\rho_{w, 0}, \ldots, \rho_{w, w-1}$. If $c_{T^{\prime}, 0}=c_{T^{\prime}, 1}=\cdots=c_{T^{\prime}, w}=c_{T^{\prime}}$ then $P(w)=P(w-1)$ since both are equal to $\sum_{T^{\prime \prime} \subseteq T^{\prime}}\binom{k-\left|T^{\prime \prime}\right|}{d-\left|T^{\prime \prime}\right|} c_{T^{\prime \prime}}$. This shows that $\sum_{e} \rho_{w, e}=\binom{k-\left|T^{\prime}\right|-w}{d-\left|T^{\prime}\right|-w}$.

We can now prove inductively that $c_{T^{\prime}, w}=c_{T^{\prime}, 0}$ for $w \in\left\{1, \ldots, d-\left|T^{\prime}\right|\right\}$. Suppose that this holds for $w^{\prime}<w$. Then $0=P(w)-P(w-1)=\binom{k-\left|T^{\prime}\right|-w}{d-\left|T^{\prime}\right|-w}\left(c_{T^{\prime}, w}-c_{T^{\prime}, 0}\right)$, and so $c_{T^{\prime}, w}=c_{T^{\prime}, 0}$. We can therefore take $c_{T^{\prime}}=c_{T^{\prime}, 0}$.

Any $i_{1} \in X_{\gamma_{1}}^{\prime}$ satisfies $\gamma_{1}=c\left(T \cup\left\{i_{1}\right\}\right)=c_{T, 1}$. Similarly, any $i_{2} \in X_{\gamma_{2}}^{\prime}$ satisfies $\gamma_{2}=c\left(T \cup\left\{i_{2}\right\}\right)=c_{T, 0}$. Since $\gamma_{1} \neq \gamma_{2}$ whereas $c_{T, 0}=c_{T, 1}$, we reach a contradiction. It follows that at most one of the sets X_{γ} can satisfy $\left|X_{\gamma}\right| \geqslant M$. Choosing $c\left(T^{\prime}\right)$ to be the value γ which maximizes $\left|X_{\gamma}\right|$, the base case follows, with $N_{d-1}=|\mathfrak{C}| M$.

The inductive step is more elementary.

Proof of Lemma 12, inductive step. Let $e \leqslant d-2$. Suppose that each subset $T \subseteq[n]$ of size $e+1$ is assigned a value $c(T) \in \mathfrak{C}$ such that $c(T \cup\{i\})=c(T)$ for all but N_{e+1} many $i \in[n] \backslash T$. We assign for each subset $T \subseteq[n]$ of size e a value $c(T) \in \mathfrak{C}$ such that $c(T \cup\{i\})=c(T)$ for all but N_{e} many $i \in[n] \backslash T$, where $N_{e}=|\mathfrak{C}|\left(N_{e+1}^{2}+N_{e+1}+1\right)$.

Fix a subset $T \subseteq[n]$ of size e. For $\gamma \in \mathfrak{C}$, let X_{γ} consist of all $i \in[n] \backslash T$ such that $c(T \cup\{i\})=\gamma$. In order to prove the inductive step, it suffices to show that at most one $\gamma \in \mathfrak{C}$ satisfies $\left|X_{\gamma}\right| \geqslant N_{e+1}^{2}+N_{e+1}+1$.

Suppose, for the sake of contradiction, that $\left|X_{\gamma_{1}}\right|,\left|X_{\gamma_{2}}\right| \geqslant N_{e+1}^{2}+N_{e+1}+1$ for some $\gamma_{1} \neq$ γ_{2}. Choose $N_{e+1}+1$ arbitrary elements $i_{1}, \ldots, i_{N_{e+1}+1} \in X_{\gamma_{1}}$. By assumption, for each i_{s} there is an exceptional set E_{s} of size at most N_{e+1} such that if $j \in[n] \backslash\left(T \cup\left\{i_{s}\right\} \cup E_{s}\right)$ then $c\left(T \cup\left\{i_{s}, j\right\}\right)=c\left(T \cup\left\{i_{s}\right\}\right)=\gamma_{1}$. Since $\left|X_{\gamma_{2}}\right|>\left(N_{e+1}+1\right) N_{e+1}$, there exists $j \in X_{\gamma_{2}}$ which does not belong to any E_{s}, and consequently $c\left(T \cup\left\{j, i_{s}\right\}\right)=\gamma_{1}$ for all $s \in\left\{1, \ldots, N_{e+1}+1\right\}$. However, this contradicts the promise that $c(T \cup\{j, i\})=c(T \cup\{j\})=\gamma_{2}$ for all but N_{e+1} many $i \in[n] \backslash(T \cup\{j\})$.

Lemma 12 follows by taking $N=\max \left(N_{0}, \ldots, N_{d-1}\right)$.

3.3 Sparsification

If $c(S) \neq 0$ for some S of size $d-1$, then we can sparsify the expansion of f by introducing the appropriate product of x_{S}. In this way, we can recover $x_{\{1, \ldots, d-1\}}$ from its degree d expansion. The following lemma carries out this procedure for all sets of size smaller than d.

Lemma 13. For finite $A \subseteq \mathbb{R}$ containing at least two elements, $d \geqslant 1$, and $k \geqslant \kappa(A, d)$, there is a constant M and a finite subset \mathfrak{D} for which the following holds.

Let f be an A-valued degree d function on $\binom{[n]}{k}$, where $n \geqslant k+d$. Then f has an expression of the form

$$
f(x)=\sum_{\substack{S \subseteq[n] \\|S| \leq d}} C(S) x_{S},
$$

where $C(S) \in \mathfrak{D}$, and for every $T \subseteq[n]$ of size less than d, we have $C(T \cup\{i\})=0$ for all but at most M many $i \in[n] \backslash T$.

Proof. The transformation proceeds in several stages, and accordingly, for each $e \leqslant d$ we will construct a constant M_{e}, a finite subset \mathfrak{D}_{e} (both depending only on A, d, k), and coefficients $c_{e}(S) \in \mathfrak{D}_{e}$ for all sets $S \subseteq[n]$ of size at most d, such that

$$
f(x)=\sum_{\substack{S \subseteq[n] \\|S|<e \text { or }|S|=d}}\binom{k-|S|}{d-|S|} c_{e}(S) x_{S}
$$

and the following properties hold:
(a) For every $T \subseteq[n]$ of size less than e, we have $c_{e}(T \cup\{i\})=0$ for all but at most M_{e} many $i \in[n] \backslash T$.
(b) For every $T \subseteq[n]$ of size between e and $d-1$, we have $c_{e}(T \cup\{i\})=c_{e}(T)$ for all but at most M_{e} many $i \in[n] \backslash T$.

Once we prove that, taking $M=M_{d}, \mathfrak{D}=\mathfrak{D}_{d}$ and $C(S)=\binom{k-|S|}{d-|S|} c_{d}(S)$ will prove the lemma.

When $e=0$, Lemma 12 shows that we can take $M_{0}=N, \mathfrak{D}_{0}=\mathfrak{C}$, and $c_{0}=c$.
Now suppose that we have constructed $M_{e}, \mathfrak{D}_{e}, c_{e}$, where $e<d$. We define $c_{e+1}(S)=$ $c_{e}(S)$ if $|S| \leqslant e$, and

$$
c_{e+1}(S)=c_{e}(S)-\sum_{\substack{T \subseteq S \\|T|=e}} c_{e}(T)
$$

if $|S|>e$. Since the sum on the right contains at most 2^{d} terms, we can construct the finite subset \mathfrak{D}_{e+1} from the finite subset \mathfrak{D}_{e}. Next, let us check that the new coefficients represent f :

$$
\begin{aligned}
& \sum_{\substack{S \subseteq[n]}}\binom{k-|S|}{d-|S|} c_{e+1}(S) x_{S}= \\
& |S| \leqslant e \text { or }|S|=d \\
& \sum_{\substack{S \subseteq[n] \\
|S|<e}}\binom{k-|S|}{d-|S|} c_{e}(S) x_{S}+\sum_{\substack{T \subseteq[n] \\
|T|=e}}\binom{k-e}{d-e} c_{e}(T) x_{T}+\sum_{\substack{S \subseteq[n] \\
|S|=d}}\left(c_{e}(S)-\sum_{\substack{T \subseteq S \\
|T|=e}} c_{e}(T)\right) x_{S}= \\
& \sum_{\substack{S \subseteq[n] \\
|S|<e}}\binom{k-|S|}{d-|S|} c_{e}(S) x_{S}+\sum_{\substack{T \subseteq[n] \\
|T|=e}} c_{e}(T) \sum_{\substack{T \subseteq S \subseteq[n] \\
|S|=d}} x_{S}+\sum_{\substack{S \subseteq[n] \\
|S|=d}}\left(c_{e}(S)-\sum_{\substack{T \subseteq S \\
|T|=e}} c_{e}(T)\right) x_{S}= \\
& \sum_{\substack{S \subseteq[n] \\
|S|<e}}\binom{k-|S|}{d-|S|} c_{e}(S) x_{S}+\sum_{\substack{S \subseteq[n] \\
|S|=d}} c_{e}(S) x_{S}=f(x) .
\end{aligned}
$$

It remains to prove properties (a) and (b). Property (a) follows for sets of size less than e by induction. If $T \subseteq[n]$ has size e and $c_{e+1}(T \cup\{i\}) \neq 0$ for some $i \in[n] \backslash T$ then since

$$
c_{e+1}(T \cup\{i\})=c_{e}(T \cup\{i\})-c_{e}(T)-\sum_{\substack{R \subseteq T \\|R|=e-1}} c_{e}(R \cup\{i\}),
$$

either $c_{e}(T \cup\{i\}) \neq c_{e}(T)$ or $c_{e}(R \cup\{i\}) \neq 0$ for some subset $R \subseteq T$ of size $e-1$. Property (b) of c_{e} shows that there are at most M_{e} many $i \notin T$ such that $c_{e}(T \cup\{i\}) \neq$ $c_{e}(T)$. For each R, property (a) of c_{e} shows that there are at most M_{e} many $i \notin T$ such that $c_{e}(R \cup\{i\}) \neq 0$. In total, we deduce that $c_{e+1}(T \cup\{i\})=0$ for all but at most $(e+1) M_{e}$ indices $i \notin T$.

The proof of property (b) is similar. If $T \subseteq[n]$ has size at least $e+1$ and $c_{e+1}(T \cup\{i\}) \neq$ $c_{e+1}(T)$ then since

$$
c_{e+1}(T \cup\{i\})-c_{e+1}(T)=c_{e}(T \cup\{i\})-c_{e}(T)+\sum_{\substack{R \subseteq T \\|R|=e-1}} c_{e}(R \cup\{i\}),
$$

either $c_{e}(T \cup\{i\}) \neq c_{e}(T)$ or $c_{e}(R \cup\{i\}) \neq 0$ for some $R \subseteq T$ of size $e-1$ not including i. Property (b) of c_{e} shows that there are at most M_{e} many $i \notin T$ such that $c_{e}(T \cup\{i\}) \neq$ $c_{e}(T)$. For each R, property (a) of c_{e} shows that there are at most M_{e} many $i \notin T$ such that $c_{e}(R \cup\{i\}) \neq 0$. In total, we deduce that $c_{e+1}(T \cup\{i\})=c_{e+1}(T)$ for all but at most $2^{d} M_{e}$ indices $i \notin T$.

We complete the proof of the inductive step by taking $M_{e+1}=2^{d} M_{e}$.

3.4 Junta conclusion

Lemma 13 gives us an expression for f in which the coefficients $C(S)$ are locally sparse: for each T, only a bounded number of coefficients $C(T \cup\{i\})$ are non-zero. We would like to extend this to global sparsity: only a bounded number of coefficients $C(S)$ are non-zero. We do so in steps, proving the following lemma inductively.

Lemma 14. For any finite $A \subseteq \mathbb{R}$ containing at least two elements, $d \geqslant 1$, and $k \geqslant$ $\kappa(A, d)$, and any $t+r \leqslant d$, there exist constants $N(t, r) \geqslant k+d$ and $L(t, r)$ such that the following holds.

Let f be an A-valued degree d function on $\binom{[n]}{k}$, where $n \geqslant N(t, r)$. Let $C(S)$ be the coefficients of the expression in Lemma 13. For any subset $T \subseteq[n]$ of size t, there are at most $L(t, r)$ many subsets $R \subseteq[n] \backslash T$ of size r such that $C(T \cup R) \neq 0$.

Before proving the lemma, let us briefly show how it implies the main part of Theorem 9 (we proved the converse part at the beginning of Section 3).

Proof of main part of Theorem 9. We prove the theorem with

$$
m(A, d, k)=\max \left(N(0,1), \ldots, N(0, d), \sum_{r=1}^{d} r L(0, r)\right) .
$$

Let f be an A-valued degree d function on $\binom{[n]}{k}$, where $k \geqslant \kappa(A, d)$. If $n<N(0, r)$ for some $r \in\{1, \ldots, d\}$, then f is trivially an n-junta, and so an $m(A, d, k)$-junta. Otherwise, consider the expression promised by Lemma 13:

$$
f(x)=\sum_{\substack{S \subseteq[n] \\|S| \leqslant d}} C(S) x_{S} .
$$

According to Lemma 14 , for all $r \in\{1, \ldots, d\}$, at most $L(0, r)$ many sets $S \subseteq[n]$ of size r satisfy $C(S) \neq 0$. If we take the union of all these sets for all r, we obtain a set J of size at most $m(A, d, k)$ such that f is a J-junta, completing the proof.

We now turn to the proof of Lemma 14.
Proof of Lemma 14. When $r=0$, the lemma trivially holds, for $N(t, 0)=k+d$ and $L(t, 0)=1$. When $r=1$, the lemma follows directly from Lemma 13, taking $N(t, 1)=$ $k+d$ and $L(t, 1)=M$. Therefore we can assume that $r \geqslant 2$.

We prove the lemma for all other parameters by induction: first on r, then on t. This means that given t, r, we assume that the lemma holds for all $\left(t^{\prime}, r^{\prime}\right)$ such that $r^{\prime}<r$ and for all $\left(t^{\prime}, r\right)$ such that $t^{\prime}<t$, and prove it for (t, r).

Let us be given t, r such that $t+r \leqslant d$ and $r \geqslant 2$, and let $T \subseteq[n]$ be a set of size t. We want to bound the size of the collection \mathcal{R} consisting of all subsets of $[n]$ of size r which are disjoint from T and satisfy $C(T \cup R) \neq 0$. We will show that for the correct choice of $N(t, r) \geqslant t+r$ and $L(t, r)$, the assumption $|\mathcal{R}| \geqslant L(t, r)$ leads to a contradiction. It follows that $|\mathcal{R}|<L(t, r)$.

Starting with \mathcal{R}, we will extract subcollections $\mathcal{R} \supseteq \mathcal{R}_{1} \supseteq \mathcal{R}_{2} \supseteq \mathcal{R}_{3} \supseteq \mathcal{R}_{4}$ which are more and more structured:

- All $R \in \mathcal{R}_{1}$ are good: $C(S)=0$ for all subsets $S \subseteq T \cup R$ intersecting R other than $T \cup R$ itself.
- The sets in \mathcal{R}_{2} are disjoint.
- If $R_{1}, \ldots, R_{s} \in \mathcal{R}_{3}$ are such that $C(S) \neq 0$ for some subset $S \subseteq T \cup R_{1} \cup \cdots \cup R_{s}$ intersecting R_{1}, \ldots, R_{s} and different from $T \cup R_{i}$ then $|S \cap T|+r s \leqslant d$.
- For all $T^{\prime} \subseteq T$ and all $R_{1}, \ldots, R_{s} \in \mathcal{R}_{4}$, the sum of $C\left(T^{\prime} \cup S\right)$ over all subsets $S \subseteq R_{1} \cup \cdots \cup R_{s}$ intersecting R_{1}, \ldots, R_{s} only depends on T^{\prime} and s.

Choosing $L(t, r)$ large enough, we will be able to guarantee that $\left|\mathcal{R}_{4}\right| \geqslant k$. Choosing $N(t, r)$ large enough, we will be able to find k many points P outside of T, \mathcal{R}_{4} such that $C(S)=0$ for any $S \subseteq T \cup \bigcup \mathcal{R}_{4} \cup P$ intersecting P, and this will enable us to reach a contradiction.

We now proceed with the details. Rephrasing the above definition, a set $R \in \mathcal{R}$ is good if $C\left(T^{\prime} \cup R^{\prime}\right)=0$ for all $T^{\prime} \subseteq T$ and non-empty $R^{\prime} \subseteq R$, other than $T^{\prime}=T$ and $R^{\prime}=R$. In order to show that many sets are good, we bound the number of sets which are bad.

Let $T^{\prime} \subsetneq T$ be a set of size $t^{\prime}<t$. According to the induction hypothesis, the number of $R^{\prime} \subseteq[n]$ of size $r^{\prime} \in\{1, \ldots, r\}$ disjoint from T^{\prime} such that $C\left(T^{\prime} \cup R^{\prime}\right) \neq 0$ is at most $L\left(t^{\prime}, r^{\prime}\right)$. Applying the induction hypothesis again, for each such R^{\prime}, the number of sets $R^{\prime \prime} \subseteq[n]$ of size $r-r^{\prime}$ disjoint from $T \cup R^{\prime}$ such that $C\left(T \cup R^{\prime} \cup R^{\prime \prime}\right) \neq 0$ is at most $L\left(t+r^{\prime}, r-r^{\prime}\right)$. Every set $R \in \mathcal{R}$ which is bad due to $T^{\prime} \neq T$ is of the form $R^{\prime} \cup R^{\prime \prime}$, and so for each T^{\prime}, there are at most $L\left(t^{\prime}, r^{\prime}\right) L\left(t+r^{\prime}, r-r^{\prime}\right)$ such sets.

If $T^{\prime}=T$ then the same argument works as long as $r^{\prime}<r$. It follows that the number of bad sets is at most

$$
\Lambda^{\prime}=\sum_{t^{\prime}=0}^{t-1}\binom{t}{t^{\prime}} \sum_{r^{\prime}=1}^{r} L\left(t^{\prime}, r^{\prime}\right) L\left(t+r^{\prime}, r-r^{\prime}\right)+\sum_{r^{\prime}=1}^{r-1} L\left(t, r^{\prime}\right) L\left(t+r^{\prime}, r-r^{\prime}\right)
$$

Accordingly, if we define \mathcal{R}_{1} to consist of all good $R \in \mathcal{R}$, then $\left|\mathcal{R}_{1}\right| \geqslant \Lambda_{1}:=L(t, r)-\Lambda^{\prime}$.
The next step is constructing \mathcal{R}_{2}. To that end, consider a graph whose vertices are the sets in \mathcal{R}_{1}, and in which two vertices R_{1}, R_{2} are connected if they are not disjoint. We will show that the graph has bounded degree, and so a large independent set.

If $R_{1}, R_{2} \in \mathcal{R}_{1}$ are not disjoint then there is some $i \in R_{1}$ such that $i \in R_{2}$. Given $i \in R_{1}$, the induction hypothesis shows that the number of possible R_{2} is $L(t+1, r-1)$, since $R_{2} \backslash\{i\}$ is a subset of $[n]$ of size $r-1$, disjoint from $T \cup\{i\}$, such that $C(T \cup\{i\} \cup$ $\left.\left(R_{2} \backslash\{i\}\right)\right) \neq 0$. Since there are r choices for i, this shows that the degree of every vertex in the graph is at most $r L(t+1, r-1)$.

A simple greedy algorithm now constructs a subset $\mathcal{R}_{2} \subseteq \mathcal{R}_{1}$ of size at least $\Lambda_{2}:=$ $\Lambda_{1} /(r L(t+1, r-1)+1)$.

In order to construct \mathcal{R}_{3}, we consider a hypergraph on the vertex set \mathcal{R}_{2}. For each $T^{\prime} \subseteq T$ and $s \leqslant d$ such that $\left|T^{\prime}\right|+r s>d$, we add a hyperedge $\left\{R_{1}, \ldots, R_{s}\right\}$ (where all R_{i} are different) if there exist non-empty $R_{i}^{\prime} \subseteq R_{i}$ such that $C\left(T^{\prime} \cup R_{1}^{\prime} \cup \cdots \cup R_{s}^{\prime}\right) \neq 0$ (we define $C(S)=0$ if $|S|>d$). We will show that this graph contains few hyperedges, specifically at most $K_{t, r}\left|\mathcal{R}_{2}\right|^{s-1}$ hyperedges of uniformity s.

Let $T^{\prime} \subseteq T$ have size t^{\prime} and let $s \leqslant d$ be such that $t^{\prime}+r s>d$. We want to bound the number of sets $\left\{R_{1}, \ldots, R_{s}\right\}$ (where all R_{i} are different) such that $C\left(T^{\prime} \cup R_{1}^{\prime} \cup \cdots \cup R_{s}^{\prime}\right) \neq 0$ for some non-empty $R_{i}^{\prime} \subseteq R_{i}$. If $R_{i}^{\prime}=R_{i}$ for all i then $\left|T^{\prime} \cup R_{1}^{\prime} \cup \cdots \cup R_{s}^{\prime}\right|=t^{\prime}+r s>d$, and so $C\left(T^{\prime} \cup R_{1}^{\prime} \cup \cdots \cup R_{s}^{\prime}\right)=0$. Therefore $R_{i}^{\prime} \neq R_{i}$ for some i. By rearranging the indices, we can assume that $R_{s}^{\prime} \neq R_{s}$.

There are at most $\left|\mathcal{R}_{2}\right|^{s-1}$ many choices for R_{1}, \ldots, R_{s-1}. For each choice of distinct R_{1}, \ldots, R_{s-1}, there are at most $2^{s r}$ many choices of non-empty $R_{1}^{\prime}, \ldots, R_{s-1}^{\prime}$. Given $R_{1}^{\prime}, \ldots, R_{s-1}^{\prime}$ of combined size u and given $r^{\prime} \in\{1, \ldots, r-1\}$, the induction hypothesis shows that there are at most $L\left(t^{\prime}+u, r^{\prime}\right)$ many sets $R_{s}^{\prime} \subseteq[n]$ of size r^{\prime}, disjoint from $T^{\prime} \cup R_{1}^{\prime} \cup \cdots \cup R_{s-1}^{\prime}$, such that $C\left(T^{\prime} \cup R_{1}^{\prime} \cup \cdots \cup R_{s}^{\prime}\right) \neq 0$. For each such R_{s}^{\prime}, the induction hypothesis shows that there are at most $L\left(t+r^{\prime}, r-r^{\prime}\right)$ many sets $R_{s}^{\prime \prime} \subseteq[n]$ disjoint from $T \cup R_{s}^{\prime}$ such that $C\left(T \cup R_{s}^{\prime} \cup R_{s}^{\prime \prime}\right) \neq 0$. Altogether, the number of hyperedges of uniformity s is at most

$$
\sum_{t^{\prime}=0}^{t}\binom{t}{t^{\prime}}\left|\mathcal{R}_{2}\right|^{s-1} 2^{s r} \sum_{u=0}^{d} \sum_{r^{\prime}=1}^{r-1} L\left(t^{\prime}+u, r^{\prime}\right) L\left(t+r^{\prime}, r-r^{\prime}\right),
$$

where $L\left(t^{\prime}, r^{\prime}\right)=0$ if $t^{\prime}+r^{\prime}>d$. Hence we can find a constant $K_{t, r}$ (depending on known $L\left(t^{\prime}, r^{\prime}\right)$) such that for every $s \leqslant d$, the number of hyperedges of uniformity s is at most $K_{t, r}\left|\mathcal{R}_{2}\right|^{s-1}$.

Suppose now that we sample a subset of \mathcal{R}_{2} by including each $R \in \mathcal{R}_{2}$ with probability $p=\left|\mathcal{R}_{2}\right|^{-(1-1 / d)}$, and then removing all R which are incident to any surviving hyperedge. The expected number of surviving R is at least

$$
p\left|\mathcal{R}_{2}\right|-\sum_{s=1}^{d} s p^{s} K_{t, r}\left|\mathcal{R}_{2}\right|^{s-1}=\left|\mathcal{R}_{2}\right|^{1 / d}-K_{t, r} \sum_{s=1}^{d} s\left|\mathcal{R}_{2}\right|^{s / d-1} \geqslant\left|\mathcal{R}_{2}\right|^{1 / d}-K_{t, r} d^{2} .
$$

In particular, we can find a subset \mathcal{R}_{3} of size at least $\Lambda_{3}:=\Lambda_{2}^{1 / d}-K_{t, r} d^{2}$ which spans no
hyperedges. That is, if $R_{1}, \ldots, R_{s} \in \mathcal{R}_{3}$ and $C(S) \neq 0$ for some $S \subseteq T \cup R_{1} \cup \cdots \cup R_{s}$ intersecting all of R_{1}, \ldots, R_{s}, then $|S \cap T|+r s>d$.

We construct \mathcal{R}_{4} by applying Ramsey's theorem. For every s such that $r s \leqslant d$, we color every subset $\left\{R_{1}, \ldots, R_{s}\right\} \subseteq \mathcal{R}_{3}$ of size s by the function

$$
T^{\prime} \mapsto \sum_{\substack{R_{1}^{\prime} \subseteq R_{1}, \ldots, R_{s}^{\prime} \subseteq R_{s} \\ R_{1}^{\prime}, \ldots, R_{s}^{\prime} \neq \emptyset}} C\left(T^{\prime} \cup R_{1}^{\prime} \cup \cdots \cup R_{s}^{\prime}\right) .
$$

where T^{\prime} ranges over all subsets of T (recall that we defined $C(S)=0$ when $|S|>d$). According to Lemma 11, all summands belong to a finite set \mathcal{D}, and so the sum attains one of at most $|\mathcal{D}|^{2^{r s}}$ possible values. Consequently, the number of colors is at most $\left(|\mathcal{D}|^{2^{r s}}\right)^{2^{t}}$. If \mathcal{R}_{3} is large enough then we can apply Ramsey's theorem to obtain a subset $\mathcal{R}_{4} \subseteq \mathcal{R}_{3}$ of size k, and values $\Gamma\left(T^{\prime}, s\right)$ for all $T^{\prime} \subseteq T$ and $s \leqslant\lfloor d / r\rfloor$, such that all distinct $R_{1}, \ldots, R_{s} \in \mathcal{R}_{4}$ satisfy

$$
\sum_{\substack{R_{1}^{\prime} \subseteq R_{1}, \ldots, R_{s}^{\prime} \subseteq R_{s} \\ R_{1}^{\prime}, \ldots, R_{s}^{\prime} \neq \emptyset}} C\left(T^{\prime} \cup R_{1}^{\prime} \cup \cdots \cup R_{s}^{\prime}\right)=\Gamma\left(T^{\prime}, s\right) .
$$

We can extend the definition of Γ to larger s. The construction of \mathcal{R}_{3} guarantees that $\Gamma\left(T^{\prime}, s\right)=0$ if $\left|T^{\prime}\right|+r s>d$. Moreover, since all $R \in \mathcal{R}_{4}$ are good, we know that $\Gamma\left(T^{\prime}, 1\right)=0$ if $T^{\prime} \neq T$ and $\Gamma(T, 1) \neq 0$.

At this point, we can explain how to choose $L(t, r)$. We choose $L(t, r)$ so that the condition $\left|\mathcal{R}_{3}\right| \geqslant \Lambda_{3}$ is strong enough in order for the application of Ramsey's theorem detailed above to go through.

Let V consist of the union of all sets in \mathcal{R}_{4}. The next step is to choose a set $P=$ $\left\{p_{1}, \ldots, p_{k}\right\} \subseteq[n]$ of size k such that $C(S)=0$ for any subset $S \subseteq T \cup V \cup P$ intersecting P. This will be possible assuming that n is large enough.

We choose P in k steps. In the i^{\prime} th step, given the choice of p_{1}, \ldots, p_{i-1}, we choose p_{i}. For any $e<d$ and any subset $S^{\prime} \subseteq T \cup V \cup\left\{p_{1}, \ldots, p_{i-1}\right\}$ of size e, there are at most $L(e, 1)$ many $p \notin S^{\prime}$ such that $C\left(S^{\prime} \cup\{p\}\right) \neq 0$. Therefore we can find a suitable p_{i} as long as

$$
n>N_{i}(t, r):=t+k r+i-1+\sum_{e=0}^{d-1}\binom{t+k r+i-1}{e} L(e, 1) .
$$

Accordingly, we choose $N(t, r)=\max \left(k+d, N_{k}(t, r)+1\right)$. This ensures that we can choose the set P.

Let T^{\prime} be an inclusion-minimal subset of T such that $\Gamma\left(T^{\prime}, s\right) \neq 0$ for some $s>0$, and let $t^{\prime}=\left|T^{\prime}\right|$. This means that $\Gamma\left(T^{\prime \prime}, s\right)=0$ for all $T^{\prime \prime} \subsetneq T^{\prime}$ and $s>0$. Such a choice is possible since $\Gamma(T, 1) \neq 0$. Also, let $s^{\prime}>0$ be the minimal value such that $\Gamma\left(T^{\prime}, s^{\prime}\right) \neq 0$.

Let w be such that $t^{\prime}+r w \leqslant k$. The value of f on an input consisting of T^{\prime} together with the union of w sets from \mathcal{R}_{4} and $k-t^{\prime}-r w$ elements from P is

$$
\sum_{T^{\prime \prime} \subseteq T^{\prime}} \sum_{s=0}^{d}\binom{w}{s} \Gamma\left(T^{\prime \prime}, s\right)=\sum_{T^{\prime \prime} \subseteq T^{\prime}} \Gamma\left(T^{\prime \prime}, 0\right)+\sum_{s=s^{\prime}}^{\left\lfloor\frac{d-t^{\prime}}{r}\right\rfloor}\binom{w}{s} \Gamma\left(T^{\prime}, s\right)
$$

This is a polynomial $Q(w)$ of degree at most $\left\lfloor\frac{d-t^{\prime}}{r}\right\rfloor$ such that $Q(0), \ldots, Q\left(\left\lfloor\frac{k-t^{\prime}}{r}\right\rfloor\right) \in A$, and so since $k \geqslant \kappa(A, d), Q$ is constant. However, by construction, $Q\left(s^{\prime}\right)-Q\left(s^{\prime}-1\right)=$ $\Gamma\left(T^{\prime}, s^{\prime}\right) \neq 0$. We have reached the required contradiction, completing the proof.

3.5 The parameter $k(A, d)$

In this subsection we show that $k(A, d)=\kappa(A, d)$, and prove that $k(A, d)=|A| d$ when A is an arithmetic progression, thus proving Lemma 10. We start by giving an alternative formula for $\kappa(A, d)$ in terms of the parameter $W(A, d)$ introduced in Section 1, which is the minimal value W such that every degree d polynomial P satisfying $P(0), \ldots, P(W) \in A$ is constant.

Before giving the formula for $\kappa(A, d)$ in terms of $W(A, d)$, let us show that $W(A, d)$ is indeed well-defined.

Lemma 15. If $A \subseteq \mathbb{R}$ is a set containing at least two elements and $d \geqslant 1$ then $d<$ $W(A, d) \leqslant|A| d$.

Proof. Suppose that P is a degree d polynomial. We will show that if $P(0), \ldots, P(W) \in A$ for $W=|A| d$ then P is constant, and so $W(A, d) \leqslant|A| d$. According to the pigeonhole principle, there is $a \in A$ such that $P(i)=a$ for at least $d+1$ many $i \in\{0, \ldots, W\}$. Since every non-constant degree d polynomial has at most d roots, we conclude that P is constant.

In order to show that $W(A, d)>d$, we will exhibit a non-constant degree d polynomial P satisfying $P(0), \ldots, P(d) \in A$. Let $a, b \in A$ be two distinct elements of A. We define

$$
P(x)=a+(b-a) \prod_{i=0}^{d-1} \frac{x-i}{d-i}
$$

By construction, $P(0)=\cdots=P(d-1)=a$ and $P(d)=b$.
Here is the formula for $\kappa(A, d)$ in terms of $W(A, d)$. It is the minimal κ which satisfies the following conditions:

1. $\kappa \geqslant d+1$.
2. $\kappa-e \geqslant W(A, d-e)$ for all $e \in\{0, \ldots, d-1\}$.
3. $\left\lfloor\frac{\kappa-t}{r}\right\rfloor \geqslant W(A, s)$ whenever $r, s \geqslant 1$ and $t+r s \leqslant d$.

This results in the following formula, whose proof is immediate.
Lemma 16. If $A \subseteq \mathbb{R}$ is a finite set containing at least two elements and $d \geqslant 1$ then

$$
\kappa(A, d)=\max \left(d+1, \max _{0 \leqslant e \leqslant d-1} e+W(A, d-e), \max _{\substack{1 \leqslant s \leqslant d \\ 1 \leqslant r \leqslant\lfloor d / s\rfloor}} d-r s+r W(A, s)\right) .
$$

Using this formula, we can prove Lemma 10.
Proof of Lemma 10. Lemma 15 shows that $W(A, d) \geqslant d+1$. Consequently, $0+W(A, d-$ $0) \geqslant d+1$, and so we can drop the first term in the formula in Lemma 16. Taking $s=d-e$ and $r=1$, the third term recovers the second term. Therefore

$$
\kappa(A, d)=\max _{\substack{1 \leqslant s \leqslant d \\ 1 \leqslant r \leqslant\lfloor d / s\rfloor}} d+r(W(A, s)-s)=\max _{1 \leqslant s \leqslant d} d+\left\lfloor\frac{d}{s}\right\rfloor(W(A, s)-s),
$$

since $W(A, s) \geqslant s+1$ according to Lemma 15 . The expression on the right-hand side coincides with the formula for $k(A, d)$ in the statement of Theorem 2.

Suppose now that A is an arithmetic progression, say $A=\{a, a+b, \ldots, a+(m-1) b\}$, where $m=|A|$. The polynomial $P(x)=a+b x$ shows that $W(A, 1)>|A|-1$, and so $W(A, 1)=|A|$ according to Lemma 15. Taking $s=1$ in the formula for $k(A, d)$, this shows that $k(A, d) \geqslant d+d(|A|-1)=|A| d$. On the other hand, for every $s \in\{1, \ldots, d\}$ we have

$$
d+\left\lfloor\frac{d}{s}\right\rfloor(W(A, s)-s) \leqslant d+\frac{d}{s}(s|A|-s)=|A| d
$$

using Lemma 15. Therefore $k(A, d)=|A| d$.
When A is not an arithmetic progression, it is not necessarily the case that $k(A, d)=$ $|A| d$. For example, $k(A, 1)=W(A, 1)$ is the length of the longest arithmetic progression contained in A.

Here are the values of $W(A, d), k(A, d)$ for several choices of A :

A	$W(A, d)$					$k(A, d)$									
	1	2	3	4	5		1		2		3		4		
$\{0,1\}$	2	4	4	6	6	2	[1]	4	[1, 2]	6	[1]	8	[1, 2]	10	[1]
$\{0,1,3\}$	2	6	6	7	8	2	[1]	6	[2]	7	[2]	12	[2]	13	[2]
\{0, 1, 4, 5, 20\}	2	5	7	8	8	2	[1]	5	[2]	7	[3]	10	[2]	11	[2]
\{0, 1, 27, 126, 370\}	2	4	4	10	10	2	[1]	4	[1,2]	6	[1]	10	[4]	11	

The numbers in squares indicate that values of s for which $k(A, d)$ is attained.

4 Final remarks

Another threshold Theorem 6, proved in [FI19a], states that if $C^{d} \leqslant k \leqslant n-C^{d}$ and f is a Boolean degree d function on $\binom{[n]}{k}$, then f is a $K C^{d}$-junta. The result proved in [FI19a] is in fact stronger: under the same assumptions, there is a Boolean degree d function g on the Boolean cube $\{0,1\}^{n}$ such that f is the restriction of g to the slice. This implies the junta conclusion since every Boolean degree d function on the Boolean cube is an $O\left(2^{d}\right)$-junta [NS94, CHS20, Wel20].

In this paper, we answer one open question raised in [FI19a]: we find the minimal $k=k(d)$ such that every Boolean degree d function on $\binom{[n]}{k}$, where $n \geqslant 2 k$, is a junta.

Another open question in [FI19a] asks for the minimal $\ell=\ell(d)$ such that every Boolean degree d function on $\binom{[n]}{\ell}$, where $n \geqslant 2 \ell$, is the restriction of a Boolean degree d function on $\{0,1\}^{n}$. Clearly, $\ell(d) \geqslant k(d)$. Is it the case that $\ell(d)=k(d)$? When $d=1$, this follows from [FI19b].

More generally, we can define $\ell(A, d)$ for any finite A. It is not always the case that $\ell(A, d)=k(A, d)$. For example, if $A=\{0,5,7,8,12,13,15\}$ then $k(A, 1)=2$ whereas $\ell(A, 1)=3$. Indeed, the function $5 x_{1}+7 x_{2}+8 x_{3}$ is A-valued on $\binom{[n]}{2}$ for any $n \geqslant 4$, but is not the restriction of any A-valued degree 1 function on $\{0,1\}^{n}$.

Multislice The multislice is the generalization of the slice to functions on $\{0, \ldots, m-1\}$ for arbitrary m. Given a partition $n=\lambda_{0}+\cdots+\lambda_{m-1}$, the corresponding multislice consists of all vectors in $\{0, \ldots, m-1\}^{n}$ containing exactly λ_{i} coordinates whose value is i. Given another partition $k=k_{1}+\cdots+k_{m-1}$, we can consider the family of multislices with $\lambda_{0} \geqslant k$ and $\lambda_{1}=k_{1}, \ldots, \lambda_{m-1}=k_{m-1}$. We conjecture that all of our results extend to this setting.

Acknowledgements

We thank Akihiro Munemasa and Steven Surya for their careful reading of the manuscript, and Gabriella Tankel, Antoine Vinciguerra, and the reviewer for helpful comments.

References

[CHS20] John Chiarelli, Pooya Hatami, and Michael Saks. An asymptotically tight bound on the number of relevant variables in a bounded degree Boolean function. Combinatorica, 40(2):237-244, 2020.
[FI19a] Yuval Filmus and Ferdinand Ihringer. Boolean constant degree functions on the slice are juntas. Discrete Mathematics, 342(12):111614, 2019.
[FI19b] Yuval Filmus and Ferdinand Ihringer. Boolean degree 1 functions on some classical association schemes. Journal of Combinatorial Theory, Series A, 162:241270, 2019.
[Fil16] Yuval Filmus. Orthogonal basis for functions over a slice of the Boolean hypercube. Electronic Journal of Combinatorics, 23(1):\#P1.23, 2016.
[FM19] Yuval Filmus and Elchanan Mossel. Harmonicity and invariance on slices of the Boolean cube. Probability Theory and Related Fields, 175(3-4):721-782, 2019.
[NS94] Noam Nisan and Márió Szegedy. On the degree of Boolean functions as real polynomials. Comput. Complexity, 4(4):301-313, 1994. Special issue on circuit complexity (Barbados, 1992).
[vzGR97] Joachim von zur Gathen and James R. Roche. Polynomials with two values. Combinatorica, 17(3):345-362, 1997.
[Wel20] Jake Wellens. Relationships between the number of inputs and other complexity measures of Boolean functions. arXiv:2005.00566, 2020.

[^0]: *This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 802020-ERC-HARMONIC.

