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Abstract

An almost Moore (d, k)-digraph is a regular digraph of degree d > 1, diameter
k > 1 and order N(d, k) = d + d2 + · · · + dk. So far, their existence has only been
shown for k = 2, whilst it is known that there are no such digraphs for k = 3, 4 and
for d = 2, 3 when k ! 3. Furthermore, under certain assumptions, the nonexistence
for the remaining cases has also been shown. In this paper, we prove that (4, k) and
(5, k)-almost Moore digraphs with self-repeats do not exist for k ! 5.

Mathematics Subject Classifications: 05C35, 05C20, 05C50

1 Introduction

Given two natural numbers d and k, the degree/diameter problem asks for the largest
possible number of vertices in a [directed] graph with maximum [out-]degree d and diam-
eter k (a survey is given by Miller and Širáň in [18]). Plesńık and Znám in [19] and later
Bridges and Toueg in [6] proved that the number of vertices in a digraph is less than the
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Moore bound, M(d, k) = 1 + d + · · · + dk unless d = 1 or k = 1. Then, the question of
finding for which values of d > 1 and k > 1 there exist digraphs of order

N(d, k) = M(d, k)− 1 = d+ d2 + · · ·+ dk

becomes an interesting problem. Regular digraphs of degree d > 1, diameter k > 1 and
order N(d, k) are called almost Moore (d, k)-digraphs (or (d, k)-digraphs for short). These
digraphs turn out to be d-regular [17].

Concerning the existence of such (d, k)-digraphs, Fiol et al. showed in [12] that (d, 2)-
digraphs do exist for any degree d > 1 and Gimbert completed their classification for
k = 2 in [14]. But so far, it seems that they do not exist for the remaining values of the
diameter. Nevertheless, nonexistence has been proven only for a few cases. Conde et al.
in [9, 10] showed the nonexistence of (d, 3) and (d, 4)-digraphs. On the other hand, Miller
and Fris in [16] proved that there are no (2, k)-digraphs with k ! 3 and Baskoro et al.
showed in [5] the nonexistence of (3, k)-digraphs for k ! 3. In [11], Conde et al. proved
that there are infinitely many primes k for which (4, k)-digraphs and (5, k)-digraphs do
not exist.

Also we have to mention that there exist two conjectures such that, assuming that
either of them is true, the nonexistence of (d, k)-digraphs for any d ! 4 and k ! 5
is proven. One of them is based on the structure of the out-neighbours of the k-type
vertices, those whose distance to its repeat is k (see [1, 2]). From it Cholily in [7] proved
the nonexistence. The other conjecture was given by Gimbert in [13] and it is related
to the factorization in Q[x] of the polynomials Fn,k(x) = Φn(1 + x + · · · + xk), Φn(x)
being the nth cyclotomic polynomial. In [8] the nonexistence is also proven assuming this
conjecture.

In this paper, we prove that almost Moore digraphs of degree d = 4 and d = 5 with
self-repeats do not exist for any diameter k ! 5. To do this we take advantage of the
cycle structure of the permutation of repeats given by Sillasen in [20] for such degrees.

2 Permutation cycle structures of (4, k) and (5, k)-digraphs

Given a digraph G, we will denote by V (G) the set of its vertices and by E(G) the set of
its arcs. If u and v are vertices of G and (u, v) is an arc, it is said that u is adjacent to
v. A walk of length ℓ from u to v is a sequence of vertices u = w0, w1, . . . , wℓ−1, wℓ = v
such that each (wi−1, wi) is an arc. A digraph with maximum out-degree at most d > 1,
diameter at most k > 1 and order N = d + d2 + · · · + dk must have all vertices with
out-degree d and its diameter must be k (see [12]). Moreover, its in-degrees are also d
(see [17]). Such a digraph is called (d, k)-digraph.

A (d, k)-digraph G has the property that for each vertex v ∈ V (G) there exists only
a vertex u ∈ V (G), called the repeat of v and denoted by r(v), such that there are
exactly two walks from v to r(v) of length at most k (one of them of length k). If
r(v) = v, the vertex v is called a self-repeat of G. The map r, which assigns to each
vertex v ∈ V (G) the vertex r(v), is an automorphism of G (see [3]). For any t ! 1, we
can define rt(v) = r(rt−1(v)), with r0(v) = v. Then, the smallest integer t ! 1 such that
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Figure 1: Repeat of a vertex in a (d, k)-digraph

rt(v) = v is called the order of v. In Figure 1, we can see graphically the notion of repeat
of a vertex v, showing the different possibilities for the level in which r(v) belongs.

Note that a (d, k)-digraph does not contain cycles of length less than k and in case
that v is a vertex belonging in a cycle of length k then v is a self-repeat vertex.

Given a (d, k)-digraph G, its adjacency matrix A satisfies the equation

I +A+ · · ·+Ak = J + P (1)

where J denotes the all-one matrix and P = (pij) is the (0,1)-matrix associated with the
map r, which is equivalent to saying pij = 1 iff r(i) = j. The map r, which is a permutation
of the set of vertices V (G) = {1, . . . , N}, has a cycle structure which corresponds to its
unique decomposition into disjoint cycles. The number of permutation cycles of r of each
length i " N , will be denoted by mi and the vector

(m1,m2, . . . ,mN)

will be referred as the permutation cycle structure of G. It means that there are m1

self-repeats, 2m2 vertices of order 2 under the permutation r and so on. Hence

N!

i=1

imi = N.

We will consider (4, k) and (5, k)-digraphs G with diameter k ! 5. For these cases, the
possible cycle structures of the permutation of repeats are given by Sillasen [20]. The
corresponding structures containing self-repeats have also been deduced in [2] by Baskoro
et al.

Proposition 1. Let G be a (d, k)-digraph, d = 4 or d = 5, with order N = d+d2+· · ·+dk.
The permutation cycle structure of G must be one of these forms:

• If d = 4:
(k, 0,m3, 0, . . . , 0), k + 3m3 = N,
(0, . . . , 0,mi, 0, . . . , 0), imi = N, i ! 2.
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• If d = 5:

(k,m2, 0, . . . , 0), k + 2m2 = N,
(k, 0, 0,m4, 0, . . . , 0) k + 4m4 = N,
(0, . . . , 0,mi, 0, . . . , 0), imi = N, i ! 2,
(0, . . . , 0,mj, 0, . . . ,m2j, 0, . . . , 0), jmj + 2jm2j = N, j ! 2, with either

k + 2 vertices of order j and N − k − 2 of order 2j, or
M(3, k) + 1 vertices of order j and N −M(3, k)− 1 of order 2j.

We will see that (d, k)-digraphs, k ! 5, with these permutation cycle structures with
m1 = k do not exist either when d = 4 or d = 5.

Proposition 2. The adjacency matrix A of a (d, k)-digraph, d = 4 or d = 5, with
permutation cycle structure with m1 = k satisfies

TrAi = 0, 1 " i " k − 1, TrAk = k, TrPA = 0, TrAk+1 = dN − k.

Proof. Since G has no cycles of length less than k, its adjacency matrix A satisfies

TrAi = 0 for i = 1, 2, . . . , k − 1.

Since TrP = m1 = k, we have in our case TrAk = TrP = k. From (1), we have that
A + A2 + · · · + Ak+1 = JA + PA. Then, taking into account JA = dJ because G is
diregular, we deduce

TrAk + TrAk+1 = dN + TrPA. (2)

It is known that TrPA = |R(G)| (see [13], Section 3), where

R(G) = {v ∈ V (G) | (r(v), v) ∈ E(G)}. (3)

Besides, in [13], Proposition 3, Gimbert showed that there exists a partition of the set
R(G), R(G) = C1 ∪ C2 ∪ . . . ∪ Ch, such that each Ci = {vi, r(vi), . . . , rti−1(vi)}, where
vi ∈ R(G) has order ti ! k + 1 as an element of the permutation r. Nevertheless, in
our case, taking into account the permutation cycle structures with m1 = k given in
Proposition 1, we get a contradiction. Indeed, if d = 4 all vertices have order " 3 (since
mi = 0, ∀i ! 4) whereas if d = 5 all vertices have order " 4 (since mi = 0, ∀i ! 5).
Thus, since we are considering diameter k ! 5, we have R(G) = ∅ and hence TrPA = 0.
Therefore TrAk+1 = dN − k.

2.1 Computing some traces of PAℓ

In order to compute the traces of PAℓ, ℓ ! 1, we generalize the set R(G) defined in (3).
Note that

(PAℓ)ii =
N!

j=1

P ijA
ℓ
ji = Aℓ

r(i)i.
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Taking into account that the entry uv of the matrix Aℓ is precisely the number of walks
of length ℓ from u to v, then TrPAℓ is the number of vertices u such that there is a walk
of length ℓ from r(u) to u, where each vertex u is counted according to the number of
r(u) → u walks of length ℓ. This is precisely the cardinality of the multiset

Rℓ(G) = {u ∈ V (G) | there is a r(u) → u walk of length ℓ}.

Note that R1(G) is the set R(G) defined above.

Proposition 3. Let (m1,m2, . . . ,ms, 0, . . . , 0) be the permutation cycle structure of a
(d, k)-digraph. If Rℓ(G) ∕= ∅, then ℓ ! k+1

s
.

Proof. Let u ∈ Rℓ(G) and let us denote by r(u), w1, . . . , wℓ−1, u a walk of length ℓ from
r(u) to u in G. Let t be the order of u as an element of the permutation r. Since r is an
automorphism of G, we have that the sequences rt

′+1(u), rt
′
(w1), . . . , r

t′(wℓ−1), r
t′(u) for

all 1 " t′ < t, are sequences of arcs in G. Finally, the sequence

u = rt(u), rt−1(w1), . . . , r
t−1(wℓ−1), r

t−1(u), . . . , r(u), . . . , u

is a cycle of length ℓt if rt
′
(wi) ∕= rt

′′
(wj) for all i ∕= j and t′ ∕= t′′. Otherwise, shorter

cycles appear inside this sequence. Taking into account that a (d, k)-digraph contains
no cycles of length less than k and contains at most a cycle of length k consisting of its
self-repeats, then ℓs ! ℓt ! k + 1 and the result follows.

Recall that TrPAℓ = |Rℓ(G)|. Then we have the following result:

Corollary 4. Let A be the adjacency matrix of a (d, k)-digraph with permutation matrix
P and (m1,m2, . . . ,ms, 0, . . . , 0) being the permutation cycle structure. Then

TrPAℓ = 0, 1 " ℓ <
k + 1

s
.

Considering our permutation cycle structures for degree d = 4 and diameter k ! 5
given in Proposition 1 we have:

Corollary 5. The adjacency matrix A of a (4, k)-digraph with permutation matrix P and
permutation cycle structure with m1 = k satisfies

TrPAℓ = 0, TrAk+ℓ = dk+ℓ − dℓ, 1 < ℓ <
k + 1

3
.

Proof. Since for degree d = 4 the unique permutation cycle structure with m1 = k is
(k, 0,m3, 0, . . . , 0), from Corollary 4 we have TrPAℓ = 0, for 1 " ℓ < k+1

s
with s = 3.

Concerning TrAk+ℓ, note that for ℓ = 2 (in which case k ! 6) we have from (1) that

TrAk + TrAk+1 + TrAk+2 = TrJA2 + TrPA2 = d2N.

Then, from Proposition 2, it turns out that TrAk+2 = d2N − TrAk − TrAk+1 = d2N −
dN = dk+2 − d2. Now we can derive the claim for 2 < ℓ < k+1

3
by strong induction

on ℓ. Indeed, assuming TrAk+i = dk+i − di holds for 2 " i < ℓ, it turns out that
TrAk+ℓ = dℓN −

"ℓ−1
i=0 TrA

k+i = dℓN − dℓ−1N = dk+ℓ − dℓ.
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Moreover, taking into account that for the cycle structure (k, 0,m3, 0, . . . , 0) the per-
mutation matrix P and the automorphism r satisfy, respectively, P 2 = P−1 and r2 = r−1,
we can extend the previous result as follows:

Corollary 6. The adjacency matrix A of a (4, k)-digraph with permutation matrix P and
permutation cycle structure with m1 = k satisfies

TrP 2Aℓ = 0, 1 " ℓ <
k + 1

3
.

Proof. In this case,

(P 2Aℓ)ii =
N!

j=1

P 2
ijA

ℓ
ji =

N!

j=1

P−1
ij A

ℓ
ji = Aℓ

r−1(i)i,

which coincides with the cardinality of

R′
ℓ(G) = {u ∈ V (G) | there is a r−1(u) → u walk of length ℓ}.

As in the proof of Proposition 3, the order t of u ∈ R′
ℓ(G) satisfies ℓt ! k + 1, that is

ℓ ! (k + 1)/t. Since the order t of each vertex is " 3, it turns out R′
ℓ(G) = ∅ when

ℓ < (k + 1)/3 and hence TrP 2Aℓ = 0.

3 On the characteristic polynomial of (4, k) and (5, k)-digraphs

Given a permutation matrix P of order N and the all-one matrix J , the characteristic
polynomial of J + P is (see[4])

φ(J + P , x) = det(xI − (J + P )) = (x− (N + 1))(x− 1)m1−1

N#

i=2

(xi − 1)mi ,

where (m1,m2, . . . ,mN) is the permutation cycle structure of P . Its factorization in Q[x]
in terms of cyclotomic polynomials Φn(x) is given by:

φ(J + P , x) = (x− (N + 1))(x− 1)m(1)−1

N#

n=2

Φn(x)
m(n), (4)

wherem(n) =
"

n|i mi represents the total number of permutation cycles of order multiple
of n. Notice that J + P is a diagonalizable matrix in C and its minimal polynomial is

m(J + P , x) = (x− (N + 1))(x− 1)
#

m(n) ∕=0

Φn(x). (5)

Lemma 7. The adjacency matrix A of a (d, k)-digraph G is a diagonalizable matrix in C.
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Proof. If G has permutation matrix P , taking into account the adjacency matrix A
satisfies the identity I +A + · · · +Ak = J + P and substituting x by 1 + x + · · · + xk

in m(J + P , x) we get a new polynomial p(x), which vanishes at A. Since the factors
x(1+x+ · · ·+xk−1) and Φn(1+x+ · · ·+xk) have no multiple roots, the claim follows.

From equations (1) and (4), the problem of the factorization of the characteristic
polynomial of G, φ(G, x) = det(xI −A) in Q[x] is related to the study of factorization
in Q[x] of the polynomial:

Fn,k(x) = Φn(1 + x+ · · ·+ xk), n ! 2.

If Fn,k(x) is irreducible in Q[x], then Fn,k(x) is a factor of φ(G, x) and its multiplicity
is m(n)/k (see [13]). More than this, the “cyclotomic conjecture” proposed by Gimbert
gives the factorization in Q[x] of the polynomials Fn,k(x). Assuming this conjecture, the
nonexistence of (d, k)-digraphs is proven in [8].

From (5) we derive the following result:

Lemma 8. The adjacency matrix A of a (d, k)-digraph, d = 4, 5, satisfies p(A) = 0,
where

• if d = 4 with permutation cycle structure (k, 0,m3, 0, . . . , 0), N = k + 3m3,

p(x) = (x− d)x(xk−1 + · · ·+ x+ 1)F3,k(x), (6)

with F3,k(x) = (xk + · · ·+ x+ 1)2 + (xk + · · ·+ x+ 1) + 1.

• if d = 5 with permutation cycle structure (k,m2, 0, . . . , 0), N = k + 2m2,

p(x) = (x− d)x(xk−1 + · · ·+ x+ 1)F2,k(x), (7)

with F2,k(x) = xk + · · ·+ x+ 2.

• if d = 5 with permutation cycle structure (k, 0, 0,m4, 0, . . . , 0), N = k + 4m4,

p(x) = (x− d)x(xk−1 + · · ·+ x+ 1)F2,k(x)F4,k(x), (8)

with F4,k(x) = (xk + · · ·+ x+ 1)2 + 1.

4 Nonexistence of (4, k)-digraphs with self-repeats

In this section we consider (d, k)-digraphs with d = 4 and k ! 5 containing self-repeats,
that is, whose permutation cycle structure is (k, 0,m3, 0, . . . , 0).

Proposition 9. Almost Moore digraphs of degree d = 4 and diameter k with self-repeats
do not exist in the following cases:

• k ! 5 is an odd number.

• k ! 6 is an even number of the form k = 2(p− 1) where p is a prime number.
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Proof. Notice that 4N is precisely the number of arcs in a (4, k)-digraphG, hence Equation
(2) together with the condition TrPA = 0 shows that each arc of the digraph G belongs
to exactly one cycle of G of length k or k + 1. This means that there exists a positive
integer t ∈ Z+ such that

4N = k + t(k + 1). (9)

Clearly this is impossible for any odd number k ! 5. More in general, since N =
4 + 42 + · · ·+ 4k = 4

3
(4k − 1), we have from (9) that

t =
4k+2 − 13

3(k + 1)
− 1

and consequently, a necessary condition for the existence of G is

4k+2 ≡ 13 (mod 3(k + 1)) (10)

Let k = 2s. We show next that 42s ≡ 1 (mod 3(2s + 1)) whenever s = p − 1 being p a
prime number. Indeed, clearly 4p−1 ≡ 1 (mod 3) and since 4p−1 ≡ 1 (mod p) we have
that 4p−1 ≡ 1 (mod 3p). Any prime number p > 2 is an odd number p = 2s + 1, hence
42s ≡ 1 (mod 3(2s+ 1)).

Remark 10. We performed an exhaustive computer search for all values of k with 5 " k <
106 satisfying Equation (10) and we found that there are none satisfying this condition.
Hence (4, k)-digraphs do not exist for this range of values of k.

4.1 Matrix approach

Let A be the adjacency matrix of a (4, k)-digraph, k ! 5, whose permutation cycle
structure is (k, 0,m3, 0, . . . , 0). Since A is a diagonalizable matrix (see Lemma 7), A can
be expressed in a basis of eigenvectors as a diagonal matrix with eigenvalues (see [13]),

• d with multiplicity 1;

• λi, 1 " i " m3 + k − 1, roots of the factor xk + · · ·+ x2 + x;

• αi, 1 " i " m3, roots of the factor xk + · · · + x2 + x + 1 − ρ, ρ being a primitive
cubic root of unity; and

• βi, 1 " i " m3, conjugates of αi, that is, roots of the factor x
k+ · · ·+x2+x+1−ρ2.
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That is, in such a basis,

A =

$

%%%%%%%%%%%%%%%%&

d 0 . . . 0 0 . . . 0 0 . . . 0
0 λ1 . . . 0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 . . . λn3 0 . . . 0 0 . . . 0
0 0 . . . 0 α1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 . . . 0 0 . . . αm3 0 . . . 0
0 0 . . . 0 0 . . . 0 β1 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...
0 0 . . . 0 0 . . . 0 0 . . . βm3

'

(((((((((((((((()

,

with n3 = m3 + k − 1. In the same basis, the matrices of J and P are:

J =

$

%%%&

N 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

'

((()
and P =

$

%%%%%%%%%%%%%%&

1 . . . 0 0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 ρ . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . ρ 0 . . . 0
0 . . . 0 0 . . . 0 ρ2 . . . 0
...

. . .
...

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0 0 . . . ρ2

'

(((((((((((((()

.

From this, TrJ = N , TrP = k +m3 +m3(ρ+ ρ2) = k, and the trace of A, which is the
sum of the roots of its characteristic polynomial, can be written as follows

Tr (A) = d+

m3+k−1!

i=1

λi +

m3!

i=1

αi +

m3!

i=1

βi = 0.

Since A is a diagonalizable matrix (see Lemma 7), so is Aℓ in the same basis of eigenvec-
tors. Thus,

Tr (Aℓ) = dℓ +

m3+k−1!

i=1

λℓ
i +

m3!

i=1

αℓ
i +

m3!

i=1

βℓ
i , 1 " ℓ < k. (11)

Note that we can express
m3!

i=1

αℓ
i = aℓ + bℓρ and

m3!

i=1

βℓ
i = aℓ + bℓρ

2, aℓ, bℓ ∈ Z. (12)

Indeed,
"m3

i=1 α
ℓ
i corresponds to the sum of the ℓth powers of all roots of some irreducible

factors of xk+· · ·+x2+x+1−ρ in Q(ρ). Then according to Newton-Girard formulas these
sums only depend on the coefficients of their terms. The sum

"m3

i=1 β
ℓ
i is the conjugate of"m3

i=1 α
ℓ
i .
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Proposition 11. Let G be a (4, k)-digraph with self-repeats. Then

0 = Tr (Aℓ) = dℓ +

m3+k−1!

i=1

λℓ
i , 1 " ℓ <

k + 1

3
. (13)

Proof. Taking into account identities (11) and (12) we have

0 = Tr (Aℓ) = dℓ +

m3+k−1!

i=1

λℓ
i + (aℓ + bℓρ) + (aℓ + bℓρ

2).

From Corollary 5 we also have

0 = Tr (PAℓ) = dℓ +

m3+k−1!

i=1

λℓ
i + (aℓρ+ bℓρ

2) + (aℓρ
2 + bℓρ).

Subtracting one equation from the other we get aℓ = 0. Besides,

0 = Tr (P 2Aℓ) = dℓ +

m3+k−1!

i=1

λℓ
i + bℓρ

3 + bℓρ
3,

from where, it turns out bℓ = 0 and the claim follows.

Concerning the sums
"m3+k−1

i=1 λℓ
i , we know the eigenvalues λi, 1 " i " m3 + k − 1,

are roots of the factor
xk + · · ·+ x2 + x = x

#

n ∕=1n|k

Φn(x).

Since the cyclotomic polynomials Φn(x) are irreducible in Q[x], it follows that there exist
nonnegative integers an such that

m3+k−1!

i=1

λℓ
i =

!

n ∕=1, n|k

anSℓ(Φn(x)), (14)

where Sℓ(a(x)) denotes the sum of the ℓth powers of all roots of a(x).
The sums Sℓ(Φn(x)) are known as Ramanujan sums and can be computed as follows

(see [15]):

Lemma 12. Let n and ℓ be two positive integers. Then

Sℓ(Φn(x)) =
!

j|gcd(n,ℓ)

µ

*
n

j

+
j,

where µ(n) denotes the Möbius function.

Theorem 13. Almost Moore digraphs of degree d = 4 with self-repeats do not exist for
diameter k ! 5.
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Proof. Let G be an (4, k)-digraph with self-repeats. From (13) and (14), its adjacency
matrix A satisfies

0 = TrAℓ = dℓ +
!

n ∕=1, n|k

anSℓ(Φn(x)), 1 " ℓ <
k + 1

3
.

Note if ℓ and k are relatively prime then for every n | k we have

Sℓ(Φn(x)) = µ(n). (15)

In particular, if there exists an integer ℓ such that

gcd(ℓ, k) = 1 and 1 < ℓ <
k + 1

3
, (16)

then Sℓ(Φn(x)) = S1(Φn(x)) for all n with n | k, which would imply that

TrAℓ − TrA = dk − d = 0,

which is impossible unless d = 1 or k = 1.
Now, we will prove that there exists an integer ℓ satisfying (16) if k ! 20 (see Remark

10 for the remaining values of k). More precisely, we show that if k ! 20 then there exists
a positive integer ℓ with 1 < ℓ < (k + 1)/3 such that gcd(k, ℓ) = 1. Consider the distinct
consecutive prime numbers until k+1

3
:

2 = p1 < p2 < · · · < pr <
k + 1

3
" pr+1.

If for the contrary, gcd(k, ℓ) > 1 for every positive integer ℓ with 1 < ℓ < k+1
3
, then it

means that
k = pα1

1 pα2
2 . . . pαr

r , αi ! 1.

If k ! 20 then (k + 1)/3 ! 7 and therefore r ! 3. Hence

⌊(k + 1)/3⌋ = pα1
1 pα2−1

2 pα3
3 . . . pαr

r ! 2pr. (17)

Recall now that Ramanujan primes are the smallest integers Rn for which there are at
least n primes between x/2 and x, for all x ! Rn. Then, since 2 is the 1st Ramanujan
prime, there exists a prime number between pr and 2pr. Thus, pr+1 < 2pr and it turns
out

⌊(k + 1)/3⌋ " pr+1 < 2pr,

which is a contradiction with (17).
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5 Nonexistence of (5, k)-digraphs with self-repeats

We will consider the permutation cycle structures given in Proposition 1 for (5, k)-
digraphs, k ! 5, with m1 = k self-repeats, that is,

(k,m2, 0, . . . , 0) and (k, 0, 0,m4, 0, . . . , 0).

Theorem 14. Almost Moore digraphs of degree d = 5 with permutation cycle structure
(k,m2, 0, . . . , 0) do not exist for diameter k ! 5.

Proof. Let G be a (5, k)-digraph with structure (k,m2, 0, . . . , 0). Note that such a struc-
ture is not possible. Indeed, in this case the unique factor Fn,k(x) appearing in the
characteristic polynomial φ(G, x) is according to (7),

F2,k(x) = Φ2(1 + x+ · · ·+ xk) = 2 + x+ x2 + · · ·+ xk,

which is irreducible in Q[x] [13]. Hence the cyclotomic conjecture holds in this particular
case (see [13]). Therefore such a digraph does not exist (see [8], Theorem 2). Indeed, the
characteristic polynomial factorizes as

φ(G, x) = (x− 5)xa0
#

n|k, n ∕=1

Φn(x)
anF2,k(x)

m2/k, a0 +
!

n|k, n ∕=1

ϕ(n)an = k +m2 − 1.

Since the trace of Aℓ, whith A the adjacency matrix of G and 1 " ℓ " k, is the sum of
the ℓth powers of all roots of φ(G, x), we have

0 = TrAℓ = 5ℓ +
!

n|k, n ∕=1

anSℓ(Φn(x)) +
m2

k
Sℓ(F2,k(x)).

Taking ℓ = 1 and another value for ℓ less than k and relatively prime with k, it follows
from (15) that S1(Φn(x)) = Sℓ(Φn(x)) = µ(n) and from Lemma 3 in [8] that S1(F2,k(x)) =
Sℓ(F2,k(x)) = −ϕ(n). Therefore

0 = TrAℓ − TrA = 5ℓ − 5,

which is impossible.

Theorem 15. Almost Moore digraphs of degree d = 5 with permutation cycle structure
(k, 0, 0,m4, 0, . . . , 0) do not exist for diameter k ! 5.

Proof. Concerning the structure (k, 0, 0,m4, 0, . . . , 0), we have m(2) = m4. Then, since
as before the factor F2,k(x) (which appears in the characteristic polynomial, see (8))
is irreducible, we get k | m4. Therefore, taking h = m4/k, it turns out k(1 + 4h) =
5 + 52 + · · ·+ 5k = 5(5k − 1)/4, that is,

5k ≡ 1 (mod 4k). (18)
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If k = p > 2 is a prime number, since 5p ≡ 5 (mod p), we have 5 ≡ 1 (mod k), which is
not possible. If k is an odd composite number with prime factorization

k = pr11 pr22 . . . prss , 2 < p1 < p2 < . . . < ps,

from (18) we also derive 5k ≡ 1 (mod p1). Using Fermat’s Little Theorem

1 = 5k = 5
k
p1

p1 = 5
k
p1 ≡ 5k/p

r1
1 (mod p1).

Consider d = gcd(p1 − 1, k/pr11 ). Since p1 < p2, . . . , ps it turns out d = 1. Thus, there
exist two integers x, y such that

(p1 − 1)x+ (k/pr11 )y = 1.

Hence
5 = 5(p1−1)x+(k/p

r1
1 )y = (5p1−1)x · (5k/p

r1
1 )y ≡ 1 (mod p1).

Therefore 5 ≡ 1 (mod p1) so that p1 = 2, which is a contradiction in the case k odd.
In the case k even with v2(k) = α ! 1, we can see by induction that v2(5

k−1) = α+2.
Now, we will prove there is no even integer k satisfying

5(5k − 1) = 4k(1 + 4h). (19)

Assume that first k = 2α. By induction we can prove

(52
α − 1)/2α+2 ≡ 3 (mod 4), (20)

which is a contradiction with (19). Indeed, for α = 1 we get (52 − 1)/23 = 3. Assuming
true for α, for α + 1 we have

(52
α+1 − 1)/2α+3 = ((52

α − 1)/2α+2)((52
α

+ 1)/2) ≡ 3 (mod 4).

Note that congruence (20) can be extended to an integer k = 2αk′, with α ! 1 and 2 ∤ k′,
as follows

(52
αk′ − 1)/2α+2 ≡ k′ + 2 (mod 4),

which contradicts equality (19).

We have seen (5, k)-digraphs with permutation cycle structures (k,m2, 0, . . . , 0) and
(k, 0, 0,m4, 0, . . . , 0) do not exist for diameter k ! 5. Since they are the unique structures
containing selfrepeteats for d = 5, the nonexistence of them can be concluded.
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