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Abstract

The search for the smallest possible d-regular graph of girth g has a long history,
and is usually known as the cage problem. This problem has a natural extension to
hypergraphs, where we may ask for the smallest number of vertices in a d-regular,
r-uniform hypergraph of given (Berge) girth g. We show that these two problems
are in fact very closely linked. By extending the ideas of Cayley graphs to the
hypergraph context, we find smallest known hypergraphs for various parameter
sets. Because of the close link to the cage problem from graph theory, we are able
to use these techniques to find new record smallest cubic graphs of girths 23, 24,
28, 29, 30, 31 and 32.

Mathematics Subject Classifications: 05C25, 05C38, 05C65

1 Introduction

The problem of finding the smallest possible graph of given girth and minimum degree
(the cage problem) is an active area of research (see the survey [5]). There is a natural
extension of this problem to hypergraphs, and we will be concerned in this paper with both
problems and with the links between them. We begin with some elementary definitions.

A hypergraph H is a set of vertices V (H) and a set E(H) of subsets of V (H) called
hyperedges (or simply edges if there is no risk of confusion). The degree or valency of
a vertex is the number of hyperedges containing it; if every vertex has the same degree
d, then we say the hypergraph is d-regular. If all hyperedges have the same cardinality
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r, then we say the hypergraph is r-uniform. A Berge cycle of length k in a hypergraph
is a sequence v0, e0, v1, e1, . . . , vk−1, ek−1, v0 such that each vi is contained in ei−1 and ei
(mod k), all vi are distinct and all ei are distinct. (Note that other definitions of ‘cycle’
in hypergraphs are possible; in this work we are concerned only with Berge cycles.) The
girth of a hypergraph is the length of its smallest Berge cycle. We say a hypergraph is
linear if two distinct hyperedges meet in at most one vertex; thus a hypergraph is linear
if and only if its girth is at least 3. With these definitions, a graph may be viewed as
a 2-uniform hypergraph, and then the usual graph definitions of degree and girth are
consistent with the hypergraph equivalents.

A hypergraph may equivalently be viewed as an incidence structure, and it is natural
to associate with the hypergraph H a bipartite incidence graph (or Levi graph) I(H)
which has vertex set V (H) (black vertices) and E(H) (white vertices); there is an edge
from v to e in I(H) if and only if v ∈ e in H. If H is a d-regular, r-uniform hypergraph,
then I(H) is a (d, r)-biregular bicoloured graph; we use the term ‘bicoloured’ here to
emphasise that the black and white vertices are distinguished. By swapping these colour
classes in I(H) we get the incidence graph I∗ of the dual hypergraph H∗. This is r-regular
and d-uniform.

The remainder of the paper is organised as follows. In Section 2 we investigate the girth
parameter in dual hypergraphs and deduce new lower bounds on the minimum number
of vertices of a d-regular, r-uniform hypergraph in the case where r > d. In Section 3 we
describe a method of finding small examples of d-regular, r-uniform hypergraphs of given
girth, based on similar methods used in the graph cage problem. In addition, we show
how hypergraphs can be used to obtain new examples of small regular graphs of given
girth, by exploiting the idea of duality. Finally in Section 4 we summarise the results of a
large computer search, including a number of new entries in the table of smallest known
cubic graphs of given girth.

2 Dual hypergraphs

A simple counting argument (see for example Ellis and Linial [4] following Hoory [8])
yields the following lower bound M(d, r, g) (the Moore bound) on the number of vertices
of a d-regular, r-uniform hypergraph H of girth g. If g = 2k + 1 is odd, then

|V (H)| ! M(d, r, g) = 1 + d(r − 1)
(d− 1)k(r − 1)k − 1

(d− 1)(r − 1)− 1
(1)

and if g = 2k is even, then

|V (H)| ! M(d, r, g) = r
(d− 1)k(r − 1)k − 1

(d− 1)(r − 1)− 1
. (2)

The following simple observations are fundamental to the remainder of the paper.

Observation 1. A (Berge) cycle of length ℓ in a hypergraph corresponds to a cycle of
length 2ℓ in its Levi graph.
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Observation 2. Since the Levi graph of a hypergraph is isomorphic to that of its dual,
the girth of a hypergraph is equal to the girth of its dual.

Observation 2 allows us to obtain a better bound for the minimum order of a d-regular,
r uniform hypergraph H of girth 2k + 1 than that noted in [4], in the case where r > d.

Since |V (H)| = |E(H∗)| = r

d
|V (H∗)| and since H∗ also has girth g, it follows that

|V (H)| ! r

d

!
1 + r(d− 1)

(d− 1)k(r − 1)k − 1

(d− 1)(r − 1)− 1

"
. (3)

Since expression (3) exceeds expression (1) if r > d, we can find a tighter bound for the
minimum order in this case. Since a similar argument holds for hypergraphs of even girth,
we have the following result.

Theorem 3. Let H be a d-regular, r uniform hypergraph of girth g. If g = 2k+1 is odd,
then

|V (H)| !

#
$$$%

$$$&

1 + d(r − 1)
(d− 1)k(r − 1)k − 1

(d− 1)(r − 1)− 1
if r " d;

r

d

!
1 + r(d− 1)

(d− 1)k(r − 1)k − 1

(d− 1)(r − 1)− 1

"
if r > d.

If g = 2k is even, then

|V (H)| !

#
$$$%

$$$&

r
(d− 1)k(r − 1)k − 1

(d− 1)(r − 1)− 1
if r " d;

r2

d

(d− 1)k(r − 1)k − 1

(d− 1)(r − 1)− 1
if r > d.

The impact of Theorem 3 can be seen in Table 1.

Ignoring Theorem 3 Allowing for Theorem 3
d \ r 2 3 4 5 6 7 8 2 3 4 5 6 7 8

2 5 13 25 41 61 85 113 5 15 34 65 111 175 260
3 10 31 64 109 166 235 316 10 31 76 152 266 427 643
4 17 57 121 209 321 457 617 17 57 121 245 434 700 1058
5 26 91 196 341 526 751 1016 26 91 196 341 606 982 1487
6 37 133 289 505 781 1117 1513 37 133 289 505 781 1267 1922
7 50 183 400 701 1086 1555 2108 50 183 400 701 1086 1555 2360
8 65 241 529 929 1441 2065 2801 65 241 529 929 1441 2065 2801

Table 1: Order bounds for d-regular, r-uniform hypergraphs of girth 5
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3 Cayley hypergraphs

Our observations above on duality mean that since the dual of a 2-regular, d-uniform
hypergraph is simply a graph of the same girth, the cage problems for graphs and hy-
pergraphs have a very natural link. To explore this further, we note that many of the
constructions of small graphs of large girth in the survey [5] depend on Cayley graphs or
similar constructions. We therefore seek a natural analogue of these constructions in the
hypergraph context.

Recall that given a group G and an inverse-closed subset S of G, the Cayley graph
Cay(G,S) has vertex set the elements of G, with an edge from u to v if and only if
u−1v ∈ S. There are a number of ways to generalise this idea to the hypergraph setting,
but for our purposes the most useful definition is one described in [2].

Definition 4. Let G be a finite group, S ⊆ G\{1} and let t ! 2. The t-Cayley hypergraph
t-Cay(G,S) has vertex set G and hyperedge set {{g, gs, . . . , gst−1} : g ∈ G, s ∈ S}.

Note that taking t = 2 in the above definition reduces to the usual definition of a
Cayley graph.

Our principal interest is in d-regular, r-uniform hypergraphs, and so we restrict the
set S to consist of d elements of order exactly r, with suitable conditions on the choice of
these elements to ensure that the hypergraph is linear (no two hyperedges sharing more
than one vertex). With this restriction, the hyperedges of r-Cay(G,S) are then the left
cosets of 〈s〉 for all s ∈ S.

In the following section we apply this idea to the cage problem for cubic graphs.

4 Smallest known cubic graphs of given girth

The problem of finding the smallest 3-regular (cubic) graph of given girth has a long
history. For girths of 13 or larger, the optimal value is not known, and for larger girths
the smallest known graphs are significantly larger than the Moore bound. (For the history
of this problem and the current state of knowledge, see the survey paper [5].)

It is thus of interest to try to improve the bounds on the smallest cubic graphs of given
girth. Much of the focus of previous authors has been on Cayley graphs or other vertex-
transitive graphs. It turns out that by searching for “small” 2-regular, 3-uniform Cayley
hypergraphs of given girth, as described in Section 3, we can make some improvements
to the current record graphs. We note that the graphs constructed by this method are
edge-transitive but not necessarily vertex-transitive; thus this population has been less
extensively investigated by previous authors.

The method used to find suitable 2-regular, 3-uniform hypergraphs is as follows. The
basic idea is to identify a candidate group G generated by two elements a, b both of order
3. We begin by finding all such groups of order no more than 2000, making use of the
library of small groups in GAP [7]. To this list we append all the perfect groups of order
up to a million which can be generated by two elements of order 3, again using GAP. (This
includes all the simple groups PSL(2, q) in this range, which have been used by previous

the electronic journal of combinatorics 30(1) (2023), #P1.57 4



authors to good effect.) In addition, we added a number of groups generated by two
random elements of order 3 in a suitable symmetric group.

We then construct all possible direct products of groups in this list, with the restriction
that the resultant group should have order under 2 million and still be generated by two
elements of order 3. This gives a list of 34 970 candidate groups; of course, this is not
an exhaustive list of all possible groups in this range. The upper limit of the orders of
groups considered was chosen on grounds of practicality; in fact it was sufficient to find
many interesting examples.

For each group G in our candidate list, the algorithm carries out the following steps.

1. Find orbit representatives of pairs a, b of elements of order 3 generating G. (Or a
random sample if there are too many.)

2. Compute the girth of H = 3-Cay(G, {a, b}). This is the smallest g such that there
exists a word α1β2α3β4 · · ·αg−1βg = 1, where each αi ∈ {a, a−1} and βj ∈ {b, b−1}.

3. The dual H∗ is then a cubic bipartite graph of order 2
3
|G| and also has girth g.

A table of current record smallest cubic graphs for girths up to 32 is maintained on
the CombinatoricsWiki website [3]. Our search has resulted in updates to the table of
cubic graphs at girths 23, 24, 28, 29, 20, 31 and 32. Table 2 shows the revised table
of record graphs. The groups and generating sets giving rise to the 2-regular, 3-uniform
hypergraphs used in these constructions are listed in Table 5 in the Appendix.

Note that for the odd girths in the table, the graphs have been constructed by excision
from a slightly larger graph of girth one greater. Variations on the method of excision
have been used by previous authors [5]. Here we have used a simple method based on
the ideas of Biggs [1], where we excise one large tree from the graph using the method of
Biggs, then repeatedly excise further 4-vertex trees until no further progress can be made.

5 Smallest known graphs and hypergraphs of given girth

As noted in Section 1, a d-regular, r-uniform hypergraph of girth g can be viewed as an
incidence structure having a Levi graph which is a bipartite graph of girth 2g, and with
each vertex in one partition having degree d and each vertex in the other partition degree
r. Such a graph is called a bipartite (d, r; 2g) graph and the study of the smallest such
graphs with given parameters was initiated in [6]. The natural “Moore” bound for such
graphs is derived in [6] and is essentially identical to the expressions in Equations 1 and 2.

Here we confine ourselves to tabulating those hypergraphs where the smallest known
examples can be determined from the results of our search described in Section 4. A
3-regular, 3-uniform hypergraph of order n and girth g has an incidence graph which is
a cubic bipartite graph of order 2n and girth 2g. So the smallest hypergraphs can be
determined from the list of smallest known bipartite cubic graphs of even girth. These
are tabulated in Table 3.
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Girth Order Description
3 4 K4

4 6 K3,3

5 10 Petersen
6 14 Heawood
7 24 McGee
8 30 Tutte
9 58 Brinkmann-McKay-Saager
10 70 O’Keefe-Wong
11 112 McKay-Myrvold; Balaban
12 126 Benson
13 272 McKay-Myrvold; Hoare
14 384 McKay; Exoo
15 620 Biggs
16 960 Exoo
17 2 176 Exoo
18 2 560 Exoo
19 4 324 Hoare
20 5 376 Exoo
21 16 028 Exoo
22 16 206 Biggs-Hoare
23 35 446 This paper
24 35 640 This paper
25 108 906 Exoo
26 109 200 Bray-Parker-Rowley
27 285 852 Bray-Parker-Rowley
28 368 640 This paper
29 805 746 This paper
30 806 736 This paper
31 1 440 338 This paper
32 1 441 440 This paper

Table 2: Smallest known cubic graphs of given girth
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Girth Graph Hypergraph

6 14 7
8 30 15
10 70 35
12 126 63
14 384 192
16 960 480
18 2 560 1 280

Girth Graph Hypergraph

20 5 376 2 688
22 16 206 8 103
24 35 640 17 820
26 109 200 54 600
28 368 640 184 320
30 806 736 403 368
32 1 441 440 720 720

Table 3: Smallest known 3-regular, 3-uniform hypergraphs

In a similar way, a 2-regular, 3-uniform hypergraph can be viewed as the dual of a
cubic graph. If this cubic graph had order n, then its dual hypergraph has order 3n/2
and the same girth. This allows us to tabulate these hypergraphs in Table 4.

Girth Graph Hypergraph

3 4 6
4 6 9
5 10 15
6 14 21
7 24 36
8 30 45
9 58 87
10 70 105
11 112 168
12 126 189
13 272 408
14 384 576
15 620 930
16 960 1 440
17 2 176 3 264

Girth Graph Hypergraph

18 2 560 3 840
19 4 324 6 486
20 5 376 8 064
21 16 028 24 042
22 16 206 24 309
23 35 446 53 169
24 35 640 53 460
25 108 906 163 359
26 109 200 163 800
27 285 852 428 778
28 368 640 552 960
29 805 746 1 208 619
30 806 736 1 210 104
31 1 440 338 2 160 507
32 1 441 440 2 162 160

Table 4: Smallest known 2-regular, 3-uniform hypergraphs
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Appendix

Table 5 lists the order, isomorphism class and generators for the groups used to construct
the record graphs identified in Table 2.

Girth Order Group and generators

24 53 460 PSL(2, 11)× (Z3
3 ⋊ Z3)

(6, 9, 8)(12, 15, 17)(13, 14, 20)(16, 18, 19)
(1, 3, 6)(2, 5, 8)(4, 7, 9)(10, 12, 16)(11, 20, 18)(14, 15, 17)

28 552 960 (Z4
2 ⋊ SL(2, 5))× SL(2, 3)×A4

(2, 3, 4)(6, 12, 9)(7, 8, 11)(14, 19, 18)(15, 24, 23)(16, 17, 26)(20, 25, 21)(22, 28, 27)
(29, 30, 32)(31, 34, 33)(35, 38, 37)(36, 40, 39)(41, 45, 44)(42, 46, 43)(47, 50, 49)
(48, 52, 51)

(1, 2, 3)(5, 6, 7)(8, 9, 10)(13, 14, 15)(16, 17, 23)(18, 27, 28)(19, 24, 21)(22, 26, 25)
(29, 34, 37)(30, 45, 43)(31, 46, 44)(32, 39, 33)(35, 40, 49)(36, 38, 51)(41, 52, 47)
(42, 50, 48)

30 1 210 104 (Z3
7 · PSL(3, 2))× (Z7 ⋊ Z3)

(2, 5, 6)(3, 4, 7)(10, 27, 28)(11, 32, 16)(12, 24, 21)(13, 33, 14)(15, 40, 49)
(17, 23, 22)(18, 44, 38)(19, 41, 47)(20, 35, 36)(25, 60, 54)(26, 42, 45)(29, 61, 57)
(30, 53, 52)(31, 39, 48)(34, 43, 46)(37, 62, 55)(50, 59, 58)(51, 63, 56)

(1, 2, 3)(4, 5, 6)(8, 11, 61)(9, 44, 33)(10, 19, 34)(12, 17, 63)(13, 23, 53)(14, 16, 62)
(15, 26, 31)(18, 52, 40)(21, 22, 60)(24, 32, 59)(25, 55, 41)(27, 29, 38)(28, 45, 36)
(30, 54, 43)(35, 37, 56)(39, 50, 57)(42, 51, 58)(46, 48, 49)

32 2 162 160 Z3 × PSL(2, 13)× PSL(2, 11)
(1, 2, 3)(4, 6, 10)(5, 14, 12)(8, 9, 11)(16, 20, 17)(18, 26, 22)(19, 23, 27)(21, 24, 28)
(6, 9, 11)(7, 8, 14)(10, 12, 13)(15, 17, 27)(16, 26, 20)(19, 24, 21)(22, 28, 25)

Table 5: Generators for record 2-regular, 3-uniform hypergraphs
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