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Abstract

Consider an undirected graph G = (V,E). A subgraph of G is a subset of
its edges, while an orientation of G is an assignment of a direction to each of its
edges. Provided with an integer circulation–demand d : V → Z, we show an explicit
and efficiently computable bijection between subgraphs of G on which a d-flow
exists and orientations on which a d-flow exists. Moreover, given a cost function
w : E → (0,∞) we can find such a bijection which preserves the w-min-cost-flow.

In 2013, Kozma and Moran [Electron. J. Comb. 20(3)] showed, using dimen-
sional methods, that the number of subgraphs k-edge-connecting a vertex s to a
vertex t is the same as the number of orientations k-edge-connecting s to t. An
application of our result is an efficient, bijective proof of this fact.

Mathematics Subject Classifications: 05C20, 05C85

1 Introduction

LetG = (V,E) be a simple graph with positive cost function w : E → (0,∞). We regardG
as a digraph, treating every undirected edge as a pair of directed edges in reverse direction.
Denote the set of subgraphs of G by S(G) =

{
K ⊂ E : ∀e∈E|{e, eR} ∩K| 6= 1

}
, and the

set of orientations of G by O(G) =
{
L ⊂ E : ∀e∈E|{e, eR} ∩ L| = 1

}
, where (u, v)R =

(v, u).
A function d : V → Z such that

∑
u∈V d(u) = 0 is called an integer demand. A

d-flow on G is function f : E → [0, 1] such that for any u ∈ V we have
∑

v∼u f((u, v))−
f((v, u)) = d(u). We say that f is a flow on a directed subgraph D ⊂ E if f(e) = 0 for all
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e /∈ D. Denote Sd, Od, Dd for the set of subgraphs, orientations and directed subgraphs
of G on which a d-flow exists. Given a cost function w : E → R+ and a flow f , write
|f |w =

∑
e∈E w(e)|f(e)| for the total w-cost of f . The w min-cost-flow satisfying d is the

d-flow for which this cost is minimal.
Our main result is the following.

Theorem 1. For any graph G, integer demand d and cost function w, there exists an
explicit bijection between Sd and Od, computable in polynomial time, which preserves a w
min-cost-flow.

We call a path from s to t in G an (s, t)-path. A directed graph is said to k-connect
s and t if there exist k edge-disjoint (s, t)-directed paths. Denote Sk and Ok the sets of
subgraphs and orientations of G which k-connect s and t, respectively.

A collection of k disjoint (s, t)-directed paths is called minimal in a directed graph D
if the total weight of edges participating in the paths is minimal. Recalling the classical
Integrality Theorem, which guarantees that any integer-valued min-cost-flow problem in
a graph (i.e. with capacity 1 for each edge) has an integer optimal solution, Theorem 1
implies the following.

Theorem 2. For any weighted graph G = (V,E,w) there exists an explicit bijection
between Sk and Ok, computable in polynomial time. Moreover, this bijection preserves a
collection of k edge disjoint paths with minimal total weight with respect to w.

The result could be easily generalized to vertex disjoint paths by introducing vertex
capacities.

2 Background and motivation

The study of the relationship between subgraphs and orientations is a classical subject
in combinatorics. In 1960 Nash-Williams [8], generalizing a 1939 result by Robbins [10],
showed that every undirected graph G has a well-balanced orientation. Chvátal and
Thomassen [2] proved that every undirected bridgeless (i.e. 2-edge-connected) graph of
radius r admits an orientation of radius at most r2 + r, and that this bound is best
possible. In [1] Bernardi showed that evaluation of the Tutte polynomial counts both the
spanning subgraphs and the orientations of G.

In 2013, Kozma and Moran [6], introduced Vapnik-Chervonenkis (VC) theory to the
subject. They showed that there are several properties φ of graphs, for which number of
subgraphs of a given graph G which satisfy φ is either the same, or dominates the number
of orientations satisfying it. Their proof relies upon shattering extremal systems, using
the sandwich theorem [9]. Recently Bucić, Janzer and Sudakov [3] used this method to
count H-free orientations of a given graph G.

In particular, it was shown in [6] that |Sk| = |Ok|. Their method, however, is non-
constructive, and its näıve algorithmic application is of exponential complexity in |E|. In
Theorem 2 we obtain an explicit, natural and efficiently computable bijection between Sk
and Ok, which preserves a particular collection of k-disjoint paths.
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2.1 Notation and conventions

Throughout G = (V,E), the base graph, w : E → R+, the weight function, d : V → Z,
the demand function, E ′ ∈ O(E) an arbitrary orientation of G and an a priori order
e1, . . . , e|E| on the edges of E are all fixed. We also define

χ(e) =

{
e for e ∈ E ′,
eR for eR ∈ E ′.

Given a directed subgraph D ⊂ E we write w(D) =
∑

e∈D w(e).
For simplicity we assume that E has no two distinct subsets of equal total weight

so that for any subgraph D ⊂ E and any demand function d, the min-cost-flow (i.e.
minimum w-cost d-flow) on D is unique. To extend our results to the general case, extend
the partial order induced by w to a complete order, by breaking ties lexicographically in
our a-priori order on e1, . . . , e|E|. Namely, by treating w(f) as smaller than w(f ′) also
when both weights are equal and f ′(ei) > f(ei) for the minimum i for which f ′(ei) 6= f(ei).

We denote the unique solution to the min-cost-flow problem in the directed subgraph
D ⊂ E by A(D), whenever such a solution exists. Using the integrality theorem, we treat
A(D) both as a set of directed edges and as a flow.

To simplify addition and subtraction of edges from a directed subgraph we employ
the orientation operation D ⊕ e := {D ∪ {e}} \ eR, the symmetric inclusion operation,
D + e := D ∪ {e, eR} and the symmetric exclusion operation D − e := D \ {e, eR}.

3 The bijection

Our bijection relies on the following lemma.

Lemma 3. Let D ∈ Dd and e ∈ G. Then at least one of the following holds:

• A(D ⊕ e) = A(D),

• A(D ⊕ eR) = A(D).

Proof. If either e ∈ D, eR ∈ D or both, the lemma is straightforward, as A(D) cannot
include both e and eR. We may therefore assume that {e, eR} ∩D = ∅.

The classical Integrality Theorem, guarantees that any min-cost-flow problem in a
graph (i.e. with capacity 1 for each edge) has an integer optimal solution. Write F0 for
the min-cost d-flow in D, F1 for the min-cost d-flow in D ∪ {e}, and F2 for the min-cost
d-flow in D ∪ {eR}.

Assume for the sake of obtaining a contradiction that these three flows are distinct, so
that, by monotonicity, |F1|w, |F2|w < |F0|w. In particular, this implies, by the integrality
theorem, that F1 assigns flow 1 to e and F2 assigns flow 1 to eR, as otherwise one of
these flows would be valid also on D. This implies, however, that F1+F2

2
, which is also a

d-flow, assigns a total of 0 flow to e, so that it is a proper flow on D. Clearly, the total
weight of this flow is less than the maximum among |F1|w and |F2|w, a contradiction to
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the minimality of F0. By our assumption that |F |w uniquely characterizes F , we deduce
that either F0 = F1 or F0 = F2.

We also require the following observation.

Lemma 4. Let D ∈ Dd and e ∈ A(D), then A(D) = A(D + e).

Proof. Assume to the contrary that A(D + e) 6= A(D) = A(D ⊕ e) and denote by F0 the
flow corresponding to A(D) and F1 for the flow corresponding to A(D+e), as in the proof
of lemma 3. By monotonicity, we have |F1|w < |F0|w. By minimality this implies that
F1(e

R) = 1 while by our assumption F0(e) = 1. Hence F0+F1

2
is a flow on D satisfying

|F0+F1

2
| < |F1|, a contradiction. Therefore A(D) = A(D + e).

Equipped with Lemma 3, the orientation E ′ and our order (e1, . . . , e|E|), we are ready
to present our bijection in the next couple of sections.

3.1 The Sd → Od bijection

The bijection φ : Sd → Od is iteratively obtained by firstly orienting e1, then e2 and so
forth. This is done by applying a sequence of maps φi : Dd → Dd for i ∈ {1, . . . , |E|},
such that for all i 6 |E| we have φi(D) \ {ei, eRi } = D \ {ei, eRi } and A(D) = A(φi(D)).
Define φi(D) as follows.

Firstly, we make sure that the orientation of ei will not alter the min-cost d-flow.

1. if A(D) 6= A
(
D ⊕ ei

)
we set φi(D) := D ⊕ eRi ,

2. if A(D) 6= A
(
D ⊕ eRi

)
we set φi(D) := D ⊕ ei.

In the remaining case, where A(D) = A(D ⊕ {ei}) = A
(
D ⊕ {eRi }

)
we do the following:

3. if ei ∈ D we set φi(D) := D ⊕ χ(ei),

4. if ei /∈ D we set φi(D) := D ⊕ χ(ei)
R.

Observe that, by Lemma 3, rules (1.) and (2.) are mutually exclusive so that φi is well
defined, A(D) = A(φi(D)) and |φi(D) ∩ {ei, eRi }| = 1.

We then set φ(K) := φ|E| ◦ φ|E−1| ◦ · · · ◦ φ1(K) so that φ maps Sd to Od and

A(K) = A(φ(K)). (1)

3.2 The Od → Sd bijection

The reverse bijection ψ : Od → Sd is obtained similarly. This time we iterate by first
deciding whether to include both e|E| & eR|E| or neither of them, then e|E|−1 & eR|E|−1 and

so forth. This is done by applying a sequence of maps ψi : Dd → Dd for i ∈ {1, . . . , |E|},
such that for all i 6 |E| we have ψi(D) \ {ei, eRi } = D \ {ei, eRi }.

Firstly, we verify that the decision to include or exclude ei & eRi will not alter the
min-cost d-flow.

the electronic journal of combinatorics 30(1) (2023), #P1.9 4



1. if A(D) 6= A
(
D + ei

)
we set ψi(D) := D − ei,

2. if A(D) 6= A
(
D − ei

)
we set ψi(D) := D + ei.

In the remaining case, where A(D) = A(D + ei) = A(D − ei), we do the following:

3. if χ(ei) ∈ D we set ψi(D) := D + ei,

4. if χ(ei) /∈ D we set ψi(D) := D − ei.

Observe that, by Lemma 4 rules (1.) and (2.) are mutually exclusive, as the former’s
condition is impossible if {ei, eRi } ∩ A(D) 6= ∅ and the latter’s is impossible otherwise.
Hence that ψi is well defined, A(D) = A(ψi(D)) and |ψi(D) ∩ {ei, eRi }| 6= 1.

We then set ψ(L) := ψ1 ◦ ψ2 ◦ · · · ◦ ψ|E|(L) so that ψ maps Od to Sd and

A(L) = A(ψ(L)). (2)

4 Proof of bijectivity

In this section we establish the fact that ψ is the inverse function of φ and, as a conse-
quence, Theorem 1.

This is an immediate consequence of the following

Proposition 5. For all D ∈ Dd it holds that

• if |D ∩ {ei, eRi }| 6= 1 then D = ψi ◦ φi(D)

• if |D ∩ {ei, eRi }| = 1 then D = φi ◦ ψi(D)

Proof. Firstly, we show three statements,

either A(D) = A(D ⊕ ei) or A(D) = A(D ⊕ eRi ),

either A(D) = A(D + ei) or A(D) = A(D − ei),
A(D) = A(D + ei) = A(D − ei) if and only if A(D) = A(D ⊕ ei) = A(D ⊕ eRi ).

(3)

The first two observations are immediate from Lemma 3 and Lemma 4, respectively. To
see the last equivalence, observe that the same two lemmata imply that the statements
A(D + ei) 6= A(D − ei) and A(D ⊕ ei) 6= A(D ⊕ eRi ) are both equivalent to the fact that
ei ∈ A(D + ei) or eRi ∈ A(D + ei).

Using (3) we deduce that ψi(D),φi(D),ψi◦φi(D) and φi◦ψi(D), are either all produced
by rules (1.) and (2.) of their respective definition, or all produced by rules (3.) and (4.).

We first consider the case that they are all produced by rules (1.) and (2.). In this
case

A(D ⊕ ei) 6= A(D) or A(D ⊕ ei) 6= A(D), (4)

A(D + ei) 6= A(D) or A(D − ei) 6= A(D). (5)
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Observe that if |ψi(D) ∩ {ei, eRi }| 6= 1 then {ψi(φi(D)), D} ⊂ {D + ei, D − ei}. so that
the first item of the proposition follows from (5) together with the fact that, by (1)
and (2), A(ψi(φi(D))) = A(D). Similarly, if |ψi(D) ∩ {ei, eRi }| = 1 then φi(ψi(D)), D ∈
{D ⊕ ei, D ⊕ eRi }, so that the first item of the proposition follows from (4) together with
the fact that, by (1) and (2), A(φi(ψi(D))) = A(D).

We are left with the case that ψi(D),φi(D),ψi ◦ φi(D) and φi ◦ψi(D) are all produced
by rules (3.) and (4.), whence

• If {ei, eRi } ⊂ D then φ(D) = D ⊕ χ(ei) and ψi ◦ φi(D) = (D ⊕ χ(ei)) + ei = D.

• If {ei, eRi }∩D = ∅ then φ(D) = D⊕χ(ei)
R and ψi ◦φi(D) = (D⊕χ(ei)

R)− ei = D.

• If {ei, eRi }∩D = {χ(ei)} then ψ(D) = D+ei and φi ◦ψi(D) = (D+ei)⊕χ(ei) = D.

• If {ei, eRi }∩D = {χ(ei)
R} then ψ(D) = D−ei and φi◦ψi(D) = (D−ei)⊕χ(ei)

R = D.

5 Complexity

As for Theorem 2, finding the minimal k disjoint (s, t)-directed path could be done ef-
ficiently using the Suurballe algorithm [11], an extension of the Dijkstra algorithm [4].
The worst case complexity of this algorithm is O(k|E|+k|V | log |V |). The general case of
Theorem 1, has the complexity of solving the min-cost-flow problem, solvable via linear
programming. For a survey on the complexity of the problem in various settings see [5].
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