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Abstract

Let n > 1 be an odd integer, and let { be a primitive nth root of unity in the
complex field. Via the Eigenvector-eigenvalue Identity, we show that

n—1 ; ;
, 1+ ¢ n=1 ((n —2))2
Z sign(7) H T_a—0) (-1)= o
T7€D(n—1) Jj=1
where D(n — 1) is the set of all derangements of 1,...,n — 1. This confirms a

previous conjecture of Z.-W. Sun. Moreover, for each § = 0,1 we determine the
value of det[x 4+ mi]1<jr<n—1 completely, where

o JAFITRA =T i Ak,
e if j = k.
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1 Introduction

Forn € Z* ={1,2,3,...}, let S,, be the symmetric group of all permutations of {1,...,n}.
A permutation T € S, is called a derangement of 1,... nif 7(j) # j forall j =1,... n.
For convenience, we use D(n) to denote the set of all derangements of 1,...,n. The
derangement number D,, = |D(n)| plays important roles in enumerative combinatorics.

It is well known that
D, =n! z": —(_1)k
no £ k!
-0

(cf. (10.2) of [8, p.90]).
Let n > 1 be an odd integer. Z.-W. Sun [5, Theorem 1.2] proved that

det {tan 7Tj _ } =n"2
N J1gik<n—1
As ,
2sinmx 1 — e?mm
tanmxr = =1 —
2cosmx 1 4 e2miz
we see that
_ 1 — ik
det [tan ? } =" det {—Ck]
1<, k<n—1 1+ ¢ 1<), k<n—1
n—1 ; ;
1— (70
— (_1)(n=1)/2 : i N
Y s [T o
T€D(n—1) j=1

where ¢ = >™/7,

Z.-W. Sun ([6] and [7, Conj. 11.24]) conjectured that if n > 1 is odd and ( is a
primitive nth root of unity in the complex field C then

, " ) a1 ((n = 2)11)2

Our first goal is to prove an extension of this conjecture.

Theorem 1. Let n > 1 be an odd integer, and let ( € C be a primitive nth root of unity.
For j,k=1,...,n define

L YA i # R
SR ifj = k.

Then we have
a1 ((n—2)1)2

detlz + ajiliciuen-t = (~1)F 220 )
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Applying Theorem 1 with z = 1, we immediately obtain the following result.

Corollary 2. Letn > 1 be odd. Then, for any primitive nth root ¢ € C of unity, we have

((n—2)N)?

) n-1
det[a]’khgj,kgnfl =(-1)z non—1 7’

where

)12 ifj =k

A =
For any odd integer n > 1, Sun ([6] and [7, Conj. 11.22]) also conjectured that if
¢ € C is a primitive nth root of unity then

_ n 1 DT n—1)\2
Z 81gn(r)H1_<jT(j):( 2 ( 5 !). (3)

T€D(n—1) j=1

_ {Ua—ffﬂ if j # k.

Recently, X. Guo et al. [4] proved (3) via using the following result which dates back to
Jacobi in 1834 (cf. P.B. Denton, S.J. Parke, T. Tao and X. Zhang [2, Theorem 1]).

Theorem 3 (Eigenvector-eigenvalue Identity). Let A be an n x n matriz over C which
is Hermitian (i.e., the transpose AT of A coincides with the conjugate of A), and let
Ay ..oy Ay beits noreal eigenvalues. Let v, = (vp 1, . . . ,vn’n)T be an eigenvector associated

with the eigenvalue A, of the matriz A such that its norm ||v, || = /> 27 [vn;|* equals 1.
Let j € {1,...,n} and let A; be the (n—1) x (n—1) Hermitian matrixz formed by deleting
the jth row and the jth column from A. Let X\j1,...,Ajn—1 be all the real eigenvalues of
A;. Then we have

n—1 n—1
on P TT O = M) = T = Aj).
k=1 k=1

Motivated by Theorem 1, we also establish the following result.
Theorem 4. Letn > 1 be odd. Then, for any primitive nth root ¢ € C of unity, we have

i n— 1)IH?
det[z + bjrli<jk<n—1 = (_1)%(”“’ + 1)%’

(4)

where | |
b = J AT/ =) afj#k,
Rt ifj= k.

We are going to prove Theorems 1 and 4 in Sections 2 and 3, respectively.

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(2) (2023), #P2.1 3



2 Proof of Theorem 1

We need the following easy lemma.

Lemma 5. Letn € ZT and s € {0,...,n — 1}. For any primitive nth root { of unity in
a field F, we have the identity

cr S e 5
Z 1—a¢r =1 (5)

o<r<n

Proof. Clearly,

n—1 C_TS n—1 —rg n—1 n—1 .ﬁL’k n—1 nas
_ ™k _ r(k—s) _ )
Zl_xCT Zl_xnz(ajg) 1 — C 1— xn
r=0 r=0 =0 k=0 r=0
Thus 1 .
-t 1-a l-ax an —1
as desired. ]

Remark 6. Lemma 5 in the case F' = C is essentially equivalent to [3, Theorem 3.1].

Corollary 7. Letn € Z* and s € {0,...,n—1}. Let ¢ be any primitive nth root of unity
in the field C.
(i) If n is odd, then

> -l ©)

o<r<n 1 + CT

C*TS _n_l
Zl—(’"— 5 S (7)

0<r<n

(ii) We have

Proof. (i) When n is odd, putting z = —1 in (5) we immediately get (6).
(i) Letting  — 1 in (5) we obtain (7) since

X et (S —nat) Y e = et
lim =2 = lim J = lim J
x—1 v — 1 x—1 (:L‘” — 1)’ x—1 nxn1
n—1 . n—1
i —ns 1 . -1
— Z]_O— — 5 j — 8§ = n — S
n n 4 2
Jj=0
by L’Hospital’s rule.
Combining the above, we have completed the proof of Corollary 7. n
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Remark 8. It seems that the identity (7) should be known long time ago. We note that
it essentially appeared as [3, (3.5)] though (n — 1)/2 in [3, (3.5)] should be corrected as
(n+1)/2.

Now we give an auxiliary proposition.

Proposition 9. Letn € ZT, k € {1,...,n} and s € {0,...,n — 1}. For any primitive
nth root ¢ of unity in a field F', we have

n 3 n—1 y s
1+ z¢i* (k—3) Do ¥ —nax
—_— s = 1 2 - 58 ) 8
J_le—accﬂ—kC * an —1 110s0 (8)
ik

where the Kronecker symbol dg is 1 or 0 according as s =t or not. Consequently, if ¢ is
a primitive nth root of unity in C, then

Zl—i—({_kcs(kfj): n—2s 2'f0<s<n, (9)
~1-¢ 0 if s =0.
Gk
Proof. In view of Lemma 5, we have
n 1+ xé—j—k (i) n—1 1 + mCT - n—1 C_rs n—1 -
: s _ ST 9 . rSs
le—x@—kg ;1—ng§ — 1 — (¢ ZIC
j;k r= r= r=
n—1 s n—1 n—1 s
! —nx o) —nx
2527—0 1= ¢ 2223—0 +1—ndy.
" — = z"
This proves (8).
When F' = C, letting x — 1 in (8) or using the identity (7), we get (9). O

We also need another lemma.
Lemma 10 (Sun [5]). For any matriz M = [mjklo<jr<n over C, we have

det[z 4+ mjr]o<jren = det(M) + x det(M'),

where M = |m/ |1<jp<n with mly, = mjx — mjo — mog + Moo-
Proof of Theorem 1. Obviously A = [a;r]i1<k j<n s a Hermitian matrix. For each k =
1,...,n, by Proposition 9 we have

n n ; .

s L+¢7% . n—2s)(k ifse{l,...,n—1},

N I i I

— —1-¢ 0 if s =n.

=t Tk
Thus A\ =n—2s (s =1,...,n—1) and A, = 0 are all the eigenvalues of A; moreover,
for each s = 1,...,n, the column vector

U(s) _ %(g—s) C—Zs) o 7C—'rLs)T
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is an eigenvector of norm 1 associated with the eigenvalue \,.

Let A, be the Hermitian matrix [ajx]1<k j<n—1, and let A, 1, ..., Ay n—1 be all the eigen-
values of A,. Note that v™ = (1,...,1)"/{/n. Applying Theorem 3 with j = n, we
obtain that

n—1 n—1
1 -1
(—=1)" " det(A,) = JJ(0 = M) = ‘ [I() i) = (= ) [(n - 2k)
k=1 =1 k=1
and hence
1 (n—1)/2

d il — — —
et(A = H (n—2k)(n—2(n—k))

k=1

1) 1)/2 (- 1)(n—1)/2

_ e II (n — 2k)? ! z ((n —2)!)

On the other hand,

n—1 i i
) 1+ J=7(5)
det(A,) = det(AL) = det[a ) 1<jhen1 = Z sign(7) H 1_ gjf(j)'

T€D(n—1) j=1

Combining the last two equalities, we immediately get (2) for z = 0.
By Lemma 10, we have

det[z + aji)icjren—1 = det(AL) + x det(AL),
where A;, = [a};]o<jk<n—1 With

a;k = Qjk — Qj1 — Q1 + Q11 = Qjp — Q51 — Q-
It is easy to see that aj; = —aj;, for all j,k=2,...,n —1. So we have

det(A!) = det(—A!) = (—1)"%det(4)) = —det(4)

and hence
(_1)(7171)/2
det[z + aji]i<jren—1 = det(A,) + xdet(A]) = det(4,) = ———((n — 2)!")%
n
This ends our proof. O

3 Proof of Theorem 4

Lemma 11. Let n € {2,3,4,...}, and let  be a primitive nth root of unity. For j, k =
1,...,n, define

o fua=amy itk
700 ifj = k.
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(i) The n eigenvalues of [cji + Ojkl1<ik<n are s — (n—1)/2 (s =1,...,n).
(ii) If n is odd, then

ot (n+1)((n—1)I)?

detlejk + djpli<jnen—1 = (—1) n(n —1)2r—1

(10)
Proof. (i) For j,k=1,...,n, let

- 1+icot7rj_7k if 7 #£k,
o if j = k.

By F. Calogero and A. M. Perelomov [1, Theorem 1], the n numbers 2s —n — 1 (s =

1,...,n) are all the eigenvalues of the matrix [t;x]1<;jr<n. Thus
det[xdjx — tikli<h<n = H(:c —(2s—n—-1)). (11)
s=1

For j,k=1,...,n with j # k, clearly

2 cos Ti=k | 2
p=1-—ln g 2 " T

. i - ik
2isin wl= 2mE 1 1 — e2mits

Note that ¢ = €>™@/" for some 1 < a < n with ged(a,n) = 1. Applying the Galois
automorphism o, in the Galois group Gal(Q(e*™/™)/Q) with o,(e2™/™) = e2™/" we
obtain from (11) the polynomial identity

n

det[zd — 2¢jicnen = [ (2 = (25 —n — 1)). (12)
s=1
Thus
- n+1
det[$5jk — Cjk]léj,kén = 1_[1 ($ — S+ 9 ) 5
and hence

det[z0r — cjr — Oji)i<cjken = det[(z — 1)dj — Cir)i<jnen

O N (G )]

s s=1

So the numbers s — (n — 1)/2 (s = 1,...,n) are all the eigenvalues of [cj; + 0;x]1<jk<n-
(ii) Now assume that n is odd. Let

3—n 5—n n+1
{Al,...,An}:{ }

5 g g

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(2) (2023), #P2.1 7



with A, = 0. Then the column vector

1 n—1 n—1 n—1
) — _— ("5 275 e T
v \/ﬁ(c 7C ) 7€ )

is an eigenvector of norm 1 associated with the eigenvalue A, of C' = [¢ji + djk]1<jk<n; IR
fact, for each j = 1,...,n, clearly

. o g —k)25t
TN e+ )T Z o
k=1 b=
l
n—1 n+1
pu— —_ 1 pu—
by applying (7) with s = (n 4+ 1)/2.

Let C,, be the Hermitian matrix [cj + djx]1<jr<n—1, and let A\, 1,..., Ay o1 be all the
eigenvalues of C,,. Note that v(™ = (Q*%, o nil )T /\/n. Applying Theorem 3 with
7 = n, we obtain that

n—1 _nmn-1) 2 n-1 _ n

_ ¢ (—1)nt ( n— 1)
—1)"tdet(C,) = 0— k) = 0—X\g) = k—
e = [T0 A = || TI0 -2 == 11 .
= e
and hence
(n—3)/2
(n—1)(n+1)
det(C,,) ST [[ m—1-28)(n—1-2(n—1-k))
k=1
(n—3)/2
(0= D +1)
=y L -2
_ (_1)"7“ (n + 1)((” B 1)”)2
2n=In(n — 1)

This concludes the proof. O

Proof of Theorem 4. Let B be the n x n matrix [bjx]1<k j<n. With the aid of (9),

1+ ik (e n+1—-2s if0<s<n
1+ D= ’ 13
Zl—@ kC 1 if s=0. (13)
J#k
Thus, for each k =1,...,n, we have
_ 1+Gk ; (n+1-2s)C" ifse{l,....n—1}
b ]3_ k3_|_ Js ) ) 9
Z e ‘ Z — (i £ {1 if s =n.
J#k
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Recall that n is odd. Let

{p1, - st ={n—-1,n-3,...,21,0,—-2,...,—(n—3)}

with p, = 0. By the above, the column vector
u(n) = _(CinTﬂa C72nT+17 R CinT)T

is an eigenvector of norm 1 associated with the eigenvalue u,, of the matrix B.

Let B, be the Hermitian matrix [bji]1<k j<n—1, and let fi,1, . .., ftn,n—1 be all the eigen-
values of B,. Note that u(® = (C’nTH, (T n(n2+1))T/\/ﬁ. Applying Theorem 3 with
J = n, we obtain that

n—1 ,”(";1) 2 n—1 (_1)n—1 n—1
vn n -
k=1 k=1 e
and hence
1 b2
det(B,) = 1—2k 1—2n+1—k
et(Bn) = — ll(n+ )(n+ (n+ )
(n—1)/2
-1 ((n — 1)1)?
_ (1)t T 2 1 —9k)2 = (12— )
()t T (e 1= 2k = (el

k=1

This proves (4) for x = 0.
By Lemma 10 we have

det[z + bjkli<jran—1 = det(BY) + x det(B!)

for certain (n—2) x (n—2) matrix B/, over C not depending on z. As 1+bj, = 2(cjr+01)
(with ¢jx given by Lemma 11) for all j,k =1,...,n — 1, we have

det(Bn) + det(B;l) = det[l + bjk:]lgj,kgn = 2n—1 det[cjk + 5jk]1<j,k<n—1

::m+&ﬂ—UWMM%Z%?%E:(n+Dda@M

with the aid of Lemma 11. Therefore

det]x + bji|i<jkcn—1 =det(By) + z(ndet(B,)) = (1 4+ nzx) det(B,)
2

((n—1)!M)

:enﬁwymm)mn_n

as desired. This ends our proof of Theorem 4. O]
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