Proof of a Conjecture Involving Derangements and Roots of Unity

Han Wang
Department of Mathematics
Nanjing University
Nanjing 210093, People’s Republic of China
hwang@smail.nju.edu.cn

Zhi-Wei Sun *
Department of Mathematics
Nanjing University
Nanjing 210093, People’s Republic of China
zwsun@nju.edu.cn

Submitted: Jul 6, 2022; Accepted: Mar 5, 2023; Published: Apr 7, 2023
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let $n > 1$ be an odd integer, and let ζ be a primitive nth root of unity in the complex field. Via the Eigenvector-eigenvalue Identity, we show that

$$\sum_{\tau \in D(n-1)} \text{sign}(\tau) \prod_{j=1}^{n-1} \frac{1 + \zeta^{j-\tau(j)}}{1 - \zeta^{j-\tau(j)}} = (-1)^{\frac{n-1}{2}} \frac{(n-2)!!}{n},$$

where $D(n-1)$ is the set of all derangements of $1, \ldots, n-1$. This confirms a previous conjecture of Z.-W. Sun. Moreover, for each $\delta = 0, 1$ we determine the value of $\det[x + m_{jk}]_{1\leq j,k \leq n-1}$ completely, where

$$m_{jk} = \begin{cases}
(1 + \zeta^{j-k})/(1 - \zeta^{j-k}) & \text{if } j \neq k, \\
\delta & \text{if } j = k.
\end{cases}$$

Mathematics Subject Classifications: 05A19, 11C20, 15A18, 15B57, 33B10.

*Corresponding author. Supported by the National Natural Science Foundation of China (grant no. 11971222).
1 Introduction

For \(n \in \mathbb{Z}^+ = \{1, 2, 3, \ldots\} \), let \(S_n \) be the symmetric group of all permutations of \(\{1, \ldots, n\} \). A permutation \(\tau \in S_n \) is called a derangement of \(\{1, \ldots, n\} \) if \(\tau(j) \neq j \) for all \(j = 1, \ldots, n \). For convenience, we use \(D(n) \) to denote the set of all derangements of \(\{1, \ldots, n\} \). The derangement number \(D_n = |D(n)| \) plays important roles in enumerative combinatorics. It is well known that

\[
D_n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}
\]

(cf. (10.2) of [8, p. 90]).

Let \(n > 1 \) be an odd integer. Z.-W. Sun [5, Theorem 1.2] proved that

\[
\det \left[\tan \frac{j - k}{n} \right]_{1 \leq j, k \leq n-1} = n^{-2}.
\]

As

\[
\tan \pi x = \frac{2 \sin \pi x}{2 \cos \pi x} = \frac{i}{1 + e^{2\pi i x}},
\]

we see that

\[
\det \left[\tan \frac{j - k}{n} \right]_{1 \leq j, k \leq n-1} = i^{n-1} \det \left[\frac{1 - \zeta^j}{1 + \zeta^j} \right]_{1 \leq j, k \leq n-1}
\]

\[
= (-1)^{(n-1)/2} \sum_{\tau \in D(n-1)} \text{sign}(\tau) \prod_{j=1}^{n-1} \frac{1 - \zeta^{j - \tau(j)}}{1 + \zeta^{j - \tau(j)}},
\]

where \(\zeta = e^{2\pi i/n} \).

Z.-W. Sun ([6] and [7, Conj. 11.24]) conjectured that if \(n > 1 \) is odd and \(\zeta \) is a primitive \(n \)th root of unity in the complex field \(\mathbb{C} \) then

\[
\sum_{\tau \in D(n-1)} \text{sign}(\tau) \prod_{j=1}^{n-1} \frac{1 + \zeta^{j - \tau(j)}}{1 - \zeta^{j - \tau(j)}} = (-1)^{n-1} \frac{((n-2)!!)^2}{n}.
\]

(1)

Our first goal is to prove an extension of this conjecture.

Theorem 1. Let \(n > 1 \) be an odd integer, and let \(\zeta \in \mathbb{C} \) be a primitive \(n \)th root of unity. For \(j, k = 1, \ldots, n \) define

\[
a_{jk} = \begin{cases} (1 + \zeta^{j-k})/(1 - \zeta^{j-k}) & \text{if } j \neq k, \\ 0 & \text{if } j = k. \end{cases}
\]

Then we have

\[
\det[x + a_{jk}]_{1 \leq j, k \leq n-1} = (-1)^{n-1} \frac{((n-2)!!)^2}{n}.
\]

(2)
Applying Theorem 1 with $x = 1$, we immediately obtain the following result.

Corollary 2. Let $n > 1$ be odd. Then, for any primitive nth root $\zeta \in \mathbb{C}$ of unity, we have
\[
\det[\tilde{a}_{jk}]_{1 \leq j, k \leq n-1} = (-1)^{\frac{n+1}{2}} \frac{(n-2)!!)^2}{n^{2n-1}},
\]
where
\[
\tilde{a}_{jk} = \begin{cases}
1/(1 - \zeta^{j-k}) & \text{if } j \neq k, \\
1/2 & \text{if } j = k.
\end{cases}
\]

For any odd integer $n > 1$, Sun ([6] and [7, Conj. 11.22]) also conjectured that if $\zeta \in \mathbb{C}$ is a primitive nth root of unity then
\[
\sum_{\tau \in D(n-1)} \text{sign}(\tau) \prod_{j=1}^{n-1} \frac{1}{1 - \zeta^{j-\tau(j)}} = (n-1)^{n-1} \frac{(n-1)!^2}{n^{2n-1}}.
\]
(3)

Recently, X. Guo et al. [4] proved (3) via using the following result which dates back to Jacobi in 1834 (cf. P.B. Denton, S.J. Parke, T. Tao and X. Zhang [2, Theorem 1]).

Theorem 3 (Eigenvector-eigenvalue Identity). Let A be an $n \times n$ matrix over \mathbb{C} which is Hermitian (i.e., the transpose A^T of A coincides with the conjugate of A), and let $\lambda_1, \ldots, \lambda_n$ be its n real eigenvalues. Let $v_n = (v_{n,1}, \ldots, v_{n,n})^T$ be an eigenvector associated with the eigenvalue λ_n of the matrix A such that its norm $\|v_n\| = \sqrt{\sum_{j=1}^{n} |v_{n,j}|^2}$ equals 1. Let $j \in \{1, \ldots, n\}$ and let A_j be the $(n-1) \times (n-1)$ Hermitian matrix formed by deleting the jth row and the jth column from A. Let $\lambda_{j,1}, \ldots, \lambda_{j,n-1}$ be all the real eigenvalues of A_j. Then we have
\[
|v_{n,j}|^2 \prod_{k=1}^{n-1} (\lambda_n - \lambda_k) = \prod_{k=1}^{n-1} (\lambda_n - \lambda_{j,k}).
\]

Motivated by Theorem 1, we also establish the following result.

Theorem 4. Let $n > 1$ be odd. Then, for any primitive nth root $\zeta \in \mathbb{C}$ of unity, we have
\[
\det[x + b_{jk}]_{1 \leq j, k \leq n-1} = (-1)^{\frac{n+1}{2}} (nx + 1) \frac{(n-1)!!)^2}{n(n-1)},
\]
(4)
where
\[
b_{jk} = \begin{cases}
(1 + \zeta^{j-k})/(1 - \zeta^{j-k}) & \text{if } j \neq k, \\
1 & \text{if } j = k.
\end{cases}
\]

We are going to prove Theorems 1 and 4 in Sections 2 and 3, respectively.
2 Proof of Theorem 1

We need the following easy lemma.

Lemma 5. Let \(n \in \mathbb{Z}^+ \) and \(s \in \{0, \ldots, n-1\} \). For any primitive \(n \)th root \(\zeta \) of unity in a field \(F \), we have the identity

\[
\sum_{0 < r < n} \frac{\zeta^{-rs}}{1 - x\zeta^r} = \frac{\sum_{j=0}^{n-1} x^j - nx^s}{x^n - 1}.
\]

(5)

Proof. Clearly,

\[
\sum_{r=0}^{n-1} \frac{\zeta^{-rs}}{1 - x\zeta^r} = \sum_{r=0}^{n-1} \frac{\zeta^{-rs}}{1 - x^n} \sum_{k=0}^{n-1} (x\zeta^r)^k = \sum_{k=0}^{n-1} \frac{x^k}{1 - x^n} \sum_{r=0}^{n-1} \zeta^{r(k-s)} = \frac{nx^s}{1 - x^n}.
\]

Thus

\[
\sum_{r=1}^{n-1} \frac{\zeta^{-rs}}{1 - x\zeta^r} = \frac{nx^s}{1 - x^n} - \frac{1}{1 - x} = \frac{\sum_{j=0}^{n-1} x^j - nx^s}{x^n - 1}
\]

as desired. \(\square \)

Remark 6. Lemma 5 in the case \(F = \mathbb{C} \) is essentially equivalent to [3, Theorem 3.1].

Corollary 7. Let \(n \in \mathbb{Z}^+ \) and \(s \in \{0, \ldots, n-1\} \). Let \(\zeta \) be any primitive \(n \)th root of unity in the field \(\mathbb{C} \).

(i) If \(n \) is odd, then

\[
\sum_{0 < r < n} \frac{\zeta^{-rs}}{1 + \zeta^r} = \frac{(-1)^sn - 1}{2}.
\]

(6)

(ii) We have

\[
\sum_{0 < r < n} \frac{\zeta^{-rs}}{1 - \zeta^r} = \frac{n - 1}{2} - s.
\]

(7)

Proof. (i) When \(n \) is odd, putting \(x = -1 \) in (5) we immediately get (6).

(ii) Letting \(x \to 1 \) in (5) we obtain (7) since

\[
\lim_{x \to 1} \sum_{j=0}^{n-1} \frac{x^j - nx^s}{x^n - 1} = \lim_{x \to 1} \sum_{j=0}^{n-1} \frac{x^j - nx^s}{(x^n - 1)'} = \lim_{x \to 1} \frac{\sum_{0 < j < n} jx^{j-1} - nx^{s-1}}{nx^{n-1}}
\]

\[
= \sum_{j=0}^{n-1} \frac{j - ns}{n} = \frac{1}{n} \sum_{j=0}^{n-1} j - s = \frac{n - 1}{2} - s
\]

by L’Hospital’s rule.

Combining the above, we have completed the proof of Corollary 7. \(\square \)
Remark 8. It seems that the identity (7) should be known long time ago. We note that it essentially appeared as [3, (3.5)] though \((n-1)/2\) in [3, (3.5)] should be corrected as \((n+1)/2\).

Now we give an auxiliary proposition.

Proposition 9. Let \(n \in \mathbb{Z}^+, k \in \{1, \ldots, n\}\) and \(s \in \{0, \ldots, n-1\}\). For any primitive \(n\)th root \(\zeta\) of unity in a field \(F\), we have

\[
\sum_{j=1}^{n} \frac{1 + x\zeta^{j-k}}{1 - x\zeta^{j-k}} \zeta^{s(k-j)} = 1 + 2 \sum_{j=0}^{n-1} \frac{x^j - nx^s}{x^n - 1} - n\delta_{s0},
\]

where the Kronecker symbol \(\delta_{st}\) is 1 or 0 according as \(s = t\) or not. Consequently, if \(\zeta\) is a primitive \(n\)th root of unity in \(\mathbb{C}\), then

\[
\sum_{j=1}^{n} \frac{1 + \zeta^{j-k}}{1 - \zeta^{j-k}} \zeta^{s(k-j)} = \begin{cases} n - 2s & \text{if } 0 < s < n, \\ 0 & \text{if } s = 0. \end{cases}
\]

Proof. In view of Lemma 5, we have

\[
\sum_{j=1}^{n} \frac{1 + \zeta^{j-k}}{1 - \zeta^{j-k}} \zeta^{s(k-j)} = \sum_{r=1}^{n-1} \frac{1 + \zeta^r}{1 - \zeta^r} \zeta^{-sr} = 2 \sum_{r=1}^{n-1} \frac{\zeta^{-rs}}{1 - x\zeta^r} - \sum_{r=1}^{n-1} \zeta^{-rs}
\]

\[
= 2 \sum_{j=0}^{n-1} \frac{x^j - nx^s}{x^n - 1} + 1 - \sum_{r=0}^{n-1} \zeta^{-rs} = 2 \sum_{j=0}^{n-1} \frac{x^j - nx^s}{x^n - 1} + 1 - n\delta_{s0}.
\]

This proves (8).

When \(F = \mathbb{C}\), letting \(x \to 1\) in (8) or using the identity (7), we get (9). \(\square\)

We also need another lemma.

Lemma 10 (Sun [5]). For any matrix \(M = [m_{jk}]_{0 \leq j, k \leq n}\) over \(\mathbb{C}\), we have

\[
\det[x + m_{jk}]_{0 \leq j, k \leq n} = \det(M) + x \det(M'),
\]

where \(M' = [m'_{jk}]_{1 \leq j, k \leq n}\) with \(m'_{jk} = m_{jk} - m_{j0} - m_{0k} + m_{00}\).

Proof of Theorem 1. Obviously \(A = [a_{jk}]_{1 \leq j, k \leq n}\) is a Hermitian matrix. For each \(k = 1, \ldots, n\), by Proposition 9 we have

\[
\sum_{j=1}^{n} a_{jk} \zeta^{-js} = \sum_{j=1}^{n} \frac{1 + \zeta^{j-k}}{1 - \zeta^{j-k}} \zeta^{-js} = \begin{cases} (n - 2s)\zeta^{-ks} & \text{if } s \in \{1, \ldots, n-1\}, \\ 0 & \text{if } s = n. \end{cases}
\]

Thus \(\lambda_s = n - 2s\ (s = 1, \ldots, n-1)\) and \(\lambda_n = 0\) are all the eigenvalues of \(A\); moreover, for each \(s = 1, \ldots, n\), the column vector

\[
\nu^{(s)} = \frac{1}{\sqrt{n}}(\zeta^{-s}, \zeta^{-2s}, \ldots, \zeta^{-ns})^T
\]
is an eigenvector of norm 1 associated with the eigenvalue λ_s.

Let A_n be the Hermitian matrix $[a_{jk}]_{1 \leq j, k \leq n-1}$, and let $\lambda_{n, 1}, \ldots, \lambda_{n, n-1}$ be all the eigenvalues of A_n. Note that $v^{(n)} = (1, \ldots, 1)^T / \sqrt{n}$. Applying Theorem 3 with $j = n$, we obtain that

$$(-1)^{n-1} \det(A_n) = \prod_{k=1}^{n-1} (0 - \lambda_{n,k}) = \frac{1}{\sqrt{n}} \prod_{k=1}^{n-1} (0 - \lambda_k) = \frac{(-1)^{n-1}}{n} \prod_{k=1}^{n-1} (n - 2k)$$

and hence

$$\det(A_n) = \frac{1}{n} \prod_{k=1}^{(n-1)/2} (n - 2k)(n - 2(n - k)) = \frac{(-1)^{(n-1)/2}}{n} \prod_{k=1}^{(n-1)/2} (n - 2k)^2 = \frac{(-1)^{(n-1)/2}}{n} ((n - 2)!!)^2.$$

On the other hand,

$$\det(A_n) = \det(A_n^T) = \det[a_{jk}]_{1 \leq j, k \leq n-1} = \sum_{\tau \in D(n-1)} \text{sign}(\tau) \prod_{j=1}^{n-1} \frac{1 + \zeta^{j-\tau(j)}}{1 - \zeta^{j-\tau(j)}}.$$

Combining the last two equalities, we immediately get (2) for $x = 0$.

By Lemma 10, we have

$$\det[x + a_{jk}]_{1 \leq j, k \leq n-1} = \det(A_n^T) + x \det(A'_n),$$

where $A'_n = [a'_{jk}]_{2 \leq j, k \leq n-1}$ with

$$a'_{jk} = a_{jk} - a_{j1} - a_{1k} + a_{11} = a_{jk} - a_{j1} - a_{1k}.$$

It is easy to see that $a'_{kj} = -a'_{jk}$ for all $j, k = 2, \ldots, n - 1$. So we have

$$\det(A'_n) = \det(-A'_n) = (-1)^{n-2} \det(A'_n) = -\det(A'_n)$$

and hence

$$\det[x + a_{jk}]_{1 \leq j, k \leq n-1} = \det(A_n) + x \det(A'_n) = \det(A_n) = \frac{(-1)^{(n-1)/2}}{n} ((n - 2)!!)^2.$$

This ends our proof.

\section{Proof of Theorem 4}

\textbf{Lemma 11.} Let $n \in \{2, 3, 4, \ldots\}$, and let ζ be a primitive nth root of unity. For $j, k = 1, \ldots, n$, define

$$c_{jk} = \begin{cases} 1/(1 - \zeta^{j-k}) & \text{if } j \neq k, \\ 0 & \text{if } j = k. \end{cases}$$

\textbf{The Electronic Journal of Combinatorics} 30(2) (2023), \#P2.1
The n eigenvalues of $[c_{jk} + \delta_{jk}]_{1 \leq j,k \leq n}$ are $s - (n - 1)/2$ ($s = 1, \ldots, n$).

(ii) If n is odd, then

$$\det[c_{jk} + \delta_{jk}]_{1 \leq j,k \leq n-1} = (-1)^{n+1} \frac{(n+1)((n-1)!!)^2}{n(n-1)2^{n-1}}.$$ \hspace{1cm} (10)

Proof. (i) For $j,k = 1, \ldots, n$, let

$$t_{jk} = \begin{cases} 1 + i \cot \frac{\pi j-k}{n} & \text{if } j \neq k, \\ 0 & \text{if } j = k. \end{cases}$$

By F. Calogero and A. M. Perelomov [1, Theorem 1], the n numbers $2s - n - 1$ ($s = 1, \ldots, n$) are all the eigenvalues of the matrix $[t_{jk}]_{1 \leq j,k \leq n}$. Thus

$$\det[x \delta_{jk} - t_{jk}]_{1 \leq k \leq n} = \prod_{s=1}^{n} (x - (2s - n)).$$ \hspace{1cm} (11)

For $j,k = 1, \ldots, n$ with $j \neq k$, clearly

$$t_{jk} = 1 - \frac{2 \cos \frac{\pi j-k}{n}}{2i \sin \frac{\pi j-k}{n}} = 1 - \frac{e^{2\pi i \frac{j-k}{n}} + 1}{e^{2\pi i \frac{j-k}{n}} - 1} = \frac{2}{1 - e^{2\pi i \frac{j-k}{n}}}.$$

Note that $\zeta = e^{2\pi i a/n}$ for some $1 \leq a \leq n$ with $\gcd(a,n) = 1$. Applying the Galois automorphism σ_a in the Galois group $\text{Gal}(\mathbb{Q}(e^{2\pi i/n})/\mathbb{Q})$ with $\sigma_a(e^{2\pi i/n}) = e^{2\pi i a/n}$, we obtain from (11) the polynomial identity

$$\det[x \delta_{jk} - 2c_{jk}]_{1 \leq k \leq n} = \prod_{s=1}^{n} (x - (2s - n)).$$ \hspace{1cm} (12)

Thus

$$\det[x \delta_{jk} - c_{jk}]_{1 \leq j,k \leq n} = \prod_{s=1}^{n} \left(x - s + \frac{n+1}{2}\right),$$

and hence

$$\det[x \delta_{jk} - c_{jk} - \delta_{jk}]_{1 \leq j,k \leq n} = \det[(x-1) \delta_{jk} - c_{jk}]_{1 \leq j,k \leq n}$$

$$= \prod_{s=1}^{n} \left(x - 1 - s + \frac{n+1}{2}\right) = \prod_{s=1}^{n} \left(x - \left(s - \frac{n-1}{2}\right)\right).$$

So the numbers $s - (n - 1)/2$ ($s = 1, \ldots, n$) are all the eigenvalues of $[c_{jk} + \delta_{jk}]_{1 \leq j,k \leq n}$.

(ii) Now assume that n is odd. Let

$$\{\lambda_1, \ldots, \lambda_n\} = \left\{\frac{3-n}{2}, \frac{5-n}{2}, \ldots, \frac{n+1}{2}\right\}$$

The electronic journal of combinatorics 30(2) (2023), #P2.1 7
with \(\lambda_n = 0 \). Then the column vector

\[
v^{(n)} = \frac{1}{\sqrt{n}} (\zeta^{-\frac{n+1}{2}}, \zeta^{-\frac{n+3}{2}}, \ldots, \zeta^{-\frac{n(n-1)}{2}})^T
\]

is an eigenvector of norm 1 associated with the eigenvalue \(\lambda_n \) of \(C = [c_{jk} + \delta_{jk}]_{1 \leq j, k \leq n} \); in fact, for each \(j = 1, \ldots, n \), clearly

\[
\zeta^{j\frac{n+1}{2}} \sum_{k=1}^{n} (c_{jk} + \delta_{jk}) \zeta^{-k\frac{n+1}{2}} = \sum_{k=1, k \neq j}^{n} \frac{\zeta^{(j-k)\frac{n+1}{2}}}{1 - \zeta^{j-k}} + 1
\]

\[
= \sum_{r=1}^{n-1} \frac{\zeta^{-r\frac{n+1}{2}}}{1 - \zeta^{-r}} + 1 = \frac{n-1}{2} - \frac{n+1}{2} + 1 = 0
\]

by applying (7) with \(s = (n+1)/2 \).

Let \(C_n \) be the Hermitian matrix \([c_{jk} + \delta_{jk}]_{1 \leq j, k \leq n-1}\), and let \(\lambda_n, \ldots, \lambda_{n-1} \) be all the eigenvalues of \(C_n \). Note that \(v^{(n)} = (\zeta^{-\frac{n+1}{2}}, \ldots, \zeta^{-\frac{n(n-1)}{2}})^T / \sqrt{n} \). Applying Theorem 3 with \(j = n \), we obtain that

\[
(-1)^{n-1} \det(C_n) = \prod_{k=1}^{n-1} (0 - \lambda_{n,k}) = \left| \frac{\zeta^{-\frac{n(n-1)}{2}}}{\sqrt{n}} \right|^2 \prod_{k=1}^{n-1} (0 - \lambda_k) = \frac{(-1)^{n-1}}{n} \prod_{k=1}^{n} \left(k - \frac{n-1}{2} \right)
\]

and hence

\[
\det(C_n) = \frac{(n-1)(n+1)}{2^{n-1} n} \prod_{k=1}^{(n-3)/2} (n - 1 - 2k)(n - 1 - 2(n - 1 - k))
\]

\[
= (-1)^{n+1} \frac{(n-1)(n+1)}{2^{n-1} n} \prod_{k=1}^{(n-3)/2} (n - 1 - 2k)^2
\]

\[
= (-1)^{n+1} \frac{(n+1)((n-1)!!)^2}{2^{n-1} n(n-1)}.
\]

This concludes the proof.

\[\square \]

Proof of Theorem 4. Let \(B \) be the \(n \times n \) matrix \([b_{jk}]_{1 \leq j, k \leq n}\). With the aid of (9),

\[
1 + \sum_{j=1}^{n} 1 + \frac{\zeta^{j-k}}{1 - \zeta^{j-k}} \zeta^{s(k-j)} = \begin{cases} n + 1 - 2s & \text{if } 0 < s < n, \\ 1 & \text{if } s = 0. \end{cases}
\]

(13)

Thus, for each \(k = 1, \ldots, n \), we have

\[
\sum_{j=1}^{n} b_{jk} \zeta^{-js} = \zeta^{-ks} + \sum_{j=1}^{n} 1 + \frac{\zeta^{j-k}}{1 - \zeta^{j-k}} \zeta^{-js} = \begin{cases} (n + 1 - 2s)\zeta^{-ks} & \text{if } s \in \{1, \ldots, n-1\}, \\ 1 & \text{if } s = n. \end{cases}
\]

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(2) (2023), #P2.1
Recall that \(n \) is odd. Let
\[
\{\mu_1, \ldots, \mu_n\} = \{n-1, n-3, \ldots, 2, 1, 0, -2, \ldots, -(n-3)\}
\]
with \(\mu_n = 0 \). By the above, the column vector
\[
u^{(n)} = \frac{1}{\sqrt{n}}(\zeta^{-\frac{n+1}{2}}, \zeta^{-\frac{n+1}{2}}, \ldots, \zeta^{-\frac{n+1}{2}})^T
\]
is an eigenvector of norm 1 associated with the eigenvalue \(\mu_n \) of the matrix \(B \).

Let \(B_n \) be the Hermitian matrix \([b_{jk}]_{1 \leq j, k \leq n-1}\), and let \(\mu_{n,1}, \ldots, \mu_{n,n-1} \) be all the eigenvalues of \(B_n \). Note that \(u^{(n)} = (\zeta^{-\frac{n+1}{2}}, \ldots, \zeta^{-\frac{n+1}{2}})^T/\sqrt{n} \). Applying Theorem 3 with \(j = n \), we obtain that
\[
(-1)^{n-1} \det(B_n) = \prod_{k=1}^{n-1} (0 - \mu_{n,k}) = \left| \frac{\zeta^{-\frac{n+1}{2}}}{\sqrt{n}} \right| \prod_{k=1}^{n-1} (0 - \mu_k) = \frac{(-1)^{n-1}}{n} \prod_{k=1}^{n-1} (n + 1 - 2k)
\]
and hence
\[
\det(B_n) = \frac{n-1}{n} \prod_{k=2}^{(n-1)/2} (n + 1 - 2k)(n + 1 - 2(n + 1 - k)) = (-1)^{(n+1)/2} \frac{n-1}{n} \prod_{k=1}^{(n-1)/2} (n + 1 - 2k)^2 = (-1)^{(n+1)/2} \left(\frac{(n-1)!!}{n(n-1)} \right)^2.
\]
This proves (4) for \(x = 0 \).

By Lemma 10 we have
\[
\det[x + b_{jk}]_{1 \leq j, k \leq n-1} = \det(B_n^T) + x \det(B_n')
\]
for certain \((n-2) \times (n-2)\) matrix \(B_n' \) over \(\mathbb{C} \) not depending on \(x \). As \(1 + b_{jk} = 2(c_{jk} + \delta_{jk}) \) (with \(c_{jk} \) given by Lemma 11) for all \(j, k = 1, \ldots, n-1 \), we have
\[
\det(B_n) + \det(B_n') = \det[1 + b_{jk}]_{1 \leq j, k \leq n} = 2^{n-1} \det[c_{jk} + \delta_{jk}]_{1 \leq j, k \leq n-1} = (n+1)(-1)^{(n+1)/2} \left(\frac{(n-1)!!}{n(n-1)} \right)^2 = (n+1) \det(B_n)
\]
with the aid of Lemma 11. Therefore
\[
\det[x + b_{jk}]_{1 \leq j, k \leq n-1} = \det(B_n) + x(n \det(B_n)) = (1 + nx) \det(B_n)
\]
\[
= (-1)^{\frac{n+1}{2}} (1 + nx) \left(\frac{(n-1)!!}{n(n-1)} \right)^2
\]
as desired. This ends our proof of Theorem 4. \(\square\)
References

