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Abstract

We study two building games and two removing games played on a finite hy-
pergraph. In each game two players take turns selecting vertices of the hypergraph
until the set of jointly selected vertices satisfies a condition related to the edges of
the hypergraph. The winner is the last player able to move. The building achieve-
ment game ends as soon as the set of selected vertices contains an edge. In the
building avoidance game the players are not allowed to select a set that contains an
edge. The removing achievement game ends as soon as the complement of the set
of selected vertices no longer contains an edge. In the removing avoidance game the
players are not allowed to select a set whose complement does not contain an edge.
We develop some generic tools for finding the nim-value of these games and show
that the nim-value can be an arbitrary nonnegative integer. The outcome of many
of these games were previously determined for several special cases in algebraic and
combinatorial settings. We provide several examples and show how our tools can
be used to refine these results by finding nim-values.

Mathematics Subject Classifications: 91A46, 05C65, 05C35, 06A15

1 Introduction

Avoidance and achievement games, sometimes called positional games, are combinatorial
games that are extensively studied in both impartial [20, 21] and partizan [5] settings.
The focus of this paper is a class of impartial games that provides a common framework
for many of the special cases considered in the literature and listed in Section 8. This
class of games is played on a finite hypergraph, so we call them impartial hypergraph
games. Two players take turns selecting previously unselected vertices until the set of
jointly selected vertices satisfies a condition related to the edges of the hypergraph. We
consider four different games. Two of them are building games [1, 3, 13, 14, 36]. In these
games, the players try to achieve or avoid having the set of selected vertices contain an
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edge. The other two games are removing games [23]. In these games, the players try to
achieve or avoid having the complement of the set of selected vertices no longer contain
an edge. In the removing games, the players essentially delete vertices until the remaining
vertices no longer contain an edge. As is standard in normal play, the last player to move
is the winner.

Every impartial game [2, 32] has an associated nim-value or Sprague-Grundy number.
The nim-value contains a lot of information about the game. It encodes the outcome of
the game and describes the game’s behavior with respect to game sums. Because of this,
games with the same nim-value are considered equivalent.

Many hypergraph games can be effectively analyzed using structure theory. This
theory uses an equivalence relation called structure equivalence on the game positions.
Structure equivalence is compatible with the option structure of a hypergraph game.
This means that the quotient digraph of the game digraph contains enough information
to determine the nim-value of the game. This quotient digraph is often much smaller than
the original digraph. So it provides a practical algorithm for finding the nim-value. It
also provides a visualization of the game that can create useful insights for proving results
about families of games. Structure equivalence is used for group and convex geometry
games in [7, 8, 9, 10, 11, 17, 28].

After some background information on impartial games, hypergraphs, and closure sys-
tems in Section 2, we develop the basic general theory of impartial hypergraph games in
Section 3. Structure theory is developed in Sections 4–6 as a generalization of results in
[17]. In Section 7, we find the nim-values of games played on hypergaphs with relatively
simple edge structures. Section 8 connects our theory to the existing literature on avoid-
ance and achievement games. In Section 9, we show that the nim-value of a hypergraph
game can be any nonnegative integer. We finish with a few open questions in Section 10.

2 Preliminaries

The parity of a non-negative integer n is denoted by pty(n) := n mod 2. The parity of a
set A is the parity of the size of the set, that is, pty(A) := pty(|A|). For f : X → Y and
A ⊆ X, we write f(A) := {f(a) | a ∈ A} for the image of the subset A. The complement
of a set A is denoted by A∁. We use the notation ∁V (H) = {V \ A | A ∈ H} or simply
∁(H) = {A∁ | A ∈ H} for a family H of subsets of V .

2.1 Impartial games

We recall the basic terminology of impartial combinatorial games. See [2, 32] for further
details. An impartial game G consists of a finite set P of positions, a starting position,
and a function Opt : P → 2P that provides the set of options Opt(P ) for all P ∈ P .
At the beginning of the game the starting position becomes the current position. Two
players take turns picking an option of the current position to become the new current
position. A position P is called terminal if it has no options, that is, Opt(P ) = ∅. The
game ends when the current position becomes a terminal position. The winner of the
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game is the last player to move. Every game must finish after finitely many turns. An
impartial game is essentially an acyclic digraph called the game digraph. The vertices are
the positions of the game and the arrows connect positions to their options. Game play
consists of moving a token along the arrows starting at the initial position until a sink is
reached.

The minimum excludent mex(A) of a set A of nonnegative integers is the smallest
nonnegative integer missing from A. The nim-value nim(P ) := mex(nim(Opt(P ))) of a
position P is defined recursively as the minimum excludent of the nim-values of the options
of P . The nim-value of a game is the nim-value of its starting position. A position P is
losing (P -position) for the player about to move if nim(P ) = 0. A position P is winning
(N -position) for the player about to move if nim(P ) ∕= 0. The winning strategy is to
move into a position with nim-value 0 if possible.

The sum of two impartial games G1 and G2 is an impartial game G1 + G2, where in
each turn the players make a valid move in exactly one of the two games. The positions
of G1 + G2 are of the form (P,Q), where P is a position of G1 and Q is a position of G2,
and Opt(P,Q) = {P}×Opt(Q) ∪Opt(P )× {Q}.

The nimber ∗n is the game with options Opt(∗n) = {∗0, . . . , ∗(n − 1)}. Induction
shows that nim(∗n) = n. The following is a well-known technique for finding nim-values.

Proposition 2.1. For all impartial games G, nim(G) = n if and only if G+ ∗n is won by
the second player.

2.2 Hypergraphs

A hypergraph H = (V,H) consist of a finite set V of vertices and a family H ⊆ 2V of
edges. Our general reference for hypergraphs is [12]. We do allow H to be empty or to
contain the empty set. We say H is simple if H is a Sperner family. That is, no edge is
contained in another edge.

A transversal of H is a subset T of V that intersects every edge. Transversals are
also called hitting sets or vertex covers. The family Tr(H) of minimal transversals of H
is a Sperner family. Finding Tr(H) is an important NP-complete problem [25, 29]. If H
and K are Sperner families, then Tr(H) = K if and only if Tr(K) = H. In particular,
Tr(Tr(H)) = H if H is a Sperner family. The transversal of the hypergraph H is the
hypergraph Tr(H) = (V,Tr(H)).

Example 2.2. If H = {{1}, {1, 2}, {3}} then Tr(H) = {{1, 3}} and Tr(Tr(H)) = {{1},
{3}}.

Example 2.3. If H = {{1, 2}, {1, 3}, {2, 3}} then Tr(H) = H.

Example 2.4. The empty set is a minimal transversal of the empty family, so Tr(∅) =
{∅}. No set intersects the empty set, so Tr({∅}) = ∅.

Example 2.5. [12, Example 2] The complete r-uniform hypergraph Kr
n has vertex set

V = {1, . . . , n} and edge family H =
!
V
r

"
. The minimal transversals of H are the sets

with size n− r + 1. That is Tr(H) =
!

V
n−r+1

"
. Note that Tr(H) = H for n = 2r − 1.
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Proposition 2.6. If H is a Sperner family, then
#

Tr(H) =
#

H.

Proof. It is clear from the definition that
#

Tr(H) ⊆
#

H. Replacing H by Tr(H) gives#
H ⊆

#
Tr(H).

A set S of vertices of H is stable if S contains no edge of H. Stable sets are also
called independent sets. We denote the family of maximal stable sets of H by SH . We
also use the simpler notation S if the hypergraph H is clear from context. The following
well-known fact plays an important role in our development.

Lemma 2.7. A subset P of V is stable in H if and only if P ∁ is a transversal of H.

This implies that P is maximal stable if and only if P ∁ is a minimal transversal of H.
That is,

SH = ∁(Tr(H)).

If H is simple, then we also have H = Tr(∁(SH)), so the relationships can be summarized
with the following diagram:

STr(H)
∁←→ H Tr←→ Tr(H)

∁←→ SH

Note that a subset P of V is stable in H if and only if P is contained in a maximal
stable set, that is, P ⊆ S for some S ∈ SH

Lemma 2.8. Let H be a simple hypergraph. A subset P of V is stable in Tr(H) if and
only if P ∁ contains an edge of H.

Proof. A subset P is stable in Tr(H) if an only if P is contained in a maximal stable set
of Tr(H), that is, P ⊆ S for some S ∈ STr(H) = ∁(H). This happens exactly when P ∁

contains an edge of H.

Example 2.9. If V = {1, 2, 3}, H = (V,H) with H = {{1, 2}, {3}}, then SH =
∁(Tr(H)) = ∁({{1, 3}, {2, 3}}) = {{2}, {1}}.

Example 2.10. The family of maximal stable sets for the complete r-uniform hypergraph
H = Kr

n is SH = ∁
!

V
n−r+1

"
=

!
V

r−1

"
.

2.3 Closure systems

A closure operator on a set S is a function cls : 2S → 2S that satisfies the following
conditions for all subsets P,Q of S:

1. P ⊆ cls(P ) (extensive);

2. P ⊆ Q implies cls(P ) ⊆ cls(Q) (increasing);

3. cls(cls(P )) = cls(P ) (idempotent).
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A pre-closure operator on S is a function cl : 2S → 2S that is extensive and increasing. A
subset P of S is dense or generating under a pre-closure operator cl if cl(P ) = S.

A closure system on a set S is a nonempty collection C of subsets of S that is closed
under intersections. The empty intersection is allowed, so S =

$
∅ ∈ C. We say that

the pair (S, C) or simply S is a closure space. We call the elements of C closed sets. A
comprehensive reference for closure systems is the survey article [16].

Closure operators and closure systems are two sides of a coin. Given a closure operator
cls : 2S → 2S, the range C = {cls(P ) | P ⊆ S} of the closure operator forms a closure
system on S. Given a closure system C, the corresponding closure operator cls : 2S → 2S

is defined by cls(P ) :=
$
{C ∈ C | P ⊆ C}.

Example 2.11. Consider the closure system C = {{1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4, 5}}
on S = {1, 2, 3, 4, 5}. We have cls(∅) = cls({1}) = {1, 2}. The singleton set {5} is dense.

Example 2.12. Let S be a subset of Rn. The collection K containing the intersections
of S with convex subsets of Rn forms a closure system on S. This closure system is called
the affine convex geometry on S. The corresponding closure operator is usually denoted
by τ . For example, if S = {1, 2, 3} ⊆ R then

C = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}.

Note that τ({1, 3}) = {1, 2, 3}, so {1, 3} is a dense subset.

Example 2.13. Let G be a finite group. The collection C of subgroups of G is a closure
system on G. The corresponding closure operator P +→ 〈P 〉 : 2G → 2G outputs the
subgroup 〈P 〉 generated by the subset P .

3 Impartial hypergraph games

Let H = (V,H) be a hypergraph. In an impartial hypergraph game on H, two players
alternately select previously unselected vertices in V until the game ends at a terminal
position. The last player to make a move wins the game. In all games the set P of jointly
selected elements is the current position of the game. Observe that an option of a position
always has the opposite parity.

We consider two building games. The achieve game ACV(H) ends as soon as P
contains one of the edges of H. In the avoid game AVD(H), the players are not allowed
to select an element if the resulting P would contain one of the edges of H.

We also consider two removing games. The destroy game DST(H) ends as soon as P ∁

is a stable set of H. In the preserve game PRV(H), the players are not allowed to select
an element if the resulting P ∁ would be a stable set of H.

The games ACV(H) and DST(H) are called achievement games, while AVD(H) and
PRV(H) are called avoidance games. The terminology is summarized in the following
table:
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achievement avoidance
building achieve ACV avoid AVD
removing destroy DST preserve PRV

For a subset A of 2V we define

Min(A) := {P ∈ A | (∀Q ∈ A)Q ⊆ P ⇒ Q = P}

be the set of minimal elements of A with respect to inclusion. We also define

Upp(A) := {P ∈ 2V | (∃Q ∈ A)Q ⊆ P}.

For a fixed hypergaph game type, the three games played on (V,Min(H)), (V,H), and
(V,Upp(H)) are the same. So we assume that a game is always played on a simple
hypergraph H, so that H = Min(Upp(H)).

Remark 3.1. The positions of AVD(H) are the stable sets of H. The positions of ACV(H)
are harder to describe. The empty set is always the starting position. A nonempty subset
P of V is a position of ACV(H) if and only if P \ {v} is stable for some v.

Example 3.2. Let H = Kr
n be the complete r-uniform hypergraph. The terminal posi-

tions in all four games have the same size. So the outcome only depends on the parity
of the size of the terminal positions. In fact, it is easy to verify using Proposition 2.1
that nim(ACV(H)) = pty(r) and nim(AVD(H)) = pty(r − 1) while nim(DST(H)) =
pty(n− r + 1) and nim(PRV(H)) = pty(n− r). The winning strategy is simply random
play.

Example 3.3. Let H = (V,H) with V = {a, b, c} and H = {{a, b}, {b, c}}. The family
of maximal stable sets is

SH = ∁(Tr(H)) = ∁({{b}, {a, c}}) = {{a, c}, {b}}.

Figure 3.1 shows the game digraphs of all four impartial hypergraph games. The second
player has a winning strategy for ACV(H) since nim(ACV(H)) = 0. The first player has
a winning strategy for the other three games since nim(AVD(H)) = 2 = nim(DST(H))
and nim(PRV(H)) = 1. In fact, the first player wins these three games after one move.
The hypergraph games for Tr(H) are the same. We will see later that this is no accident.

Note that the digraph of an avoidance game is a subdigraph of the corresponding
achievement game. The positions missing from the avoidance game are exactly the ter-
minal positions of the corresponding achievement game.

Also note that the nested sets {a, b} and {a, b, c} are both terminal positions of the
achievement game ACV(H) = DST(Tr(H)). This can never happen for an avoidance
game.

The option relationship for avoidance games is very simple.
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achievement avoidance

ACV(H)
DST(Tr(H))

∅
∗0

{a}
∗2

{b}
∗1

{c}
∗2

{a,b}
∗0

{a,c}
∗1

{b,c}
∗0

{a,b,c}
∗0

∅
∗2

{a}
∗1

{b}
∗0

{c}
∗1

{a,c}
∗0

AVD(H)
PRV(Tr(H))

DST(H)
ACV(Tr(H))

∅
∗2

{a}
∗1

{b}
∗0

{c}
∗1

{a,b}
∗0

{a,c}
∗0

{b,c}
∗0

∅
∗1

{a}
∗0

{c}
∗0

PRV(H)
AVD(Tr(H))

Figure 3.1: Game digraphs for H and Tr(H) with V = {a, b, c} and H = {{a, b}, {b, c}}.
Note that Tr(H) = {{b}, {a, c}}.

Remark 3.4. Let P and Q be positions of an avoidance game. Then Q ∈ Opt(P ) if and
only if Q = P ∪ {v} for some v ∈ Q \ P .

The option relationship is slightly more complicated for the achievement games be-
cause terminal positions can be nested.

Remark 3.5. Let P and Q be positions of an achievement game. Then Q ∈ Opt(P ) if
and only if Q = P ∪ {v} for some v ∈ Q \ P and P is a position of the corresponding
avoidance game. If P is not a terminal position, then P ∪ {v} ∈ Opt(P ) for all v ∈ P ∁.

Now we prove the equality of hypergraph games on H and Tr(H) suggested by Ex-
ample 3.3.

Proposition 3.6. If H is a simple hypergraph, then PRV(H) = AVD(Tr(H)) and
DST(H) = ACV(Tr(H)).

Proof. A subset P of V is a position of PRV(H) if and only if P ∁ contains an edge of H.
Lemma 2.8 implies that this happens exactly when P is stable in Tr(H). So the positions
of PRV(H) and AVD(Tr(H)) are the same. Positions P and Q of any avoidance game
satisfy Q ∈ Opt(P ) if and only Q = P ∪ {v} for some v ∈ Q \ P . So the two games also
have the same option relationships.

A nonempty subset P of V is a position of DST(H) if and only if (P \{v})∁ contains an
edge of H for some v. Lemma 2.8 implies that this happens exactly when P \{v} is stable
in Tr(H). So the positions of DST(H) and ACV(Tr(H)) are the same by Remark 3.1.
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∅

{1} {2} {3}

{1,2}

Figure 3.2: An impartial game that is not a hypergraph game.

The options relations of the two games are also the same by Remark 3.5 since we already
saw that the corresponding avoidance games are the same.

Remark 3.7. The underlying graph of the game digraph of an impartial hypergraph game
is a subgraph of the graph constructed from the Hasse diagram of the Boolean lattice of
subsets of V . The initial position is always the empty set.

Example 3.8. Not every seemingly reasonable subgraph of the Hasse diagram of the
Boolean lattice is a hypergraph game. Figure 3.2 shows such a digraph. It is the digraph
of an impartial game but not of a hypergraph game on the vertex set {1, 2, 3}. Since
{1, 2} /∈ Opt({2}), it is not an avoidance game. To see that it is not an achievement
game, note that {1} is not a terminal position. So {1, 3} should be an option of {1} by
Remark 3.5 but {1, 3} is not a game position.

Example 3.9. Every game must have a starting position. If H = {V, ∅} then ACV(H)
and PRV(H) are not defined since V is a stable set. If H = {V, {∅}} then DST(H) and
AVD(H) are not defined since ∅ is not a stable set.

The next result shows that the game digraphs of ACV(H) and PRV(H) are reversed
complementary.

Proposition 3.10. Let P and Q = P ∪ {v} be subsets of V and H = (V,H). Then
Q ∈ Opt(P ) in ACV(H) if and only if P ∁ ∕∈ Opt(Q∁) in PRV(H).

Proof. First assume Q ∈ Opt(P ) in ACV(H). Then P is not a terminal position of
ACV(H), and so P is a stable set of H. So P ∁ is not a game position of PRV(H). This
means P ∁ cannot be an option of Q∁ in PRV(H).

Now assume P ∁ ∕∈ Opt(Q∁) in PRV(H). Then P is a stable set of H. Hence P is a
position of ACV(H) and P is not a terminal position. Thus Q ∈ Opt(P ) in ACV(H) by
Remark 3.5.

The following is an easy consequence.

Corollary 3.11. The game digraphs of DST(H) and AVD(H) are reversed complemen-
tary.

Proof. Replacing H with Tr(H) in Proposition 3.10 shows that DST(H) = ACV(Tr(H))
and AVD(H) = PRV(Tr(H)) are complementary.
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H {∅} {{1}, {2}} {{2}} {{1}} {{1, 2}}

ACV(H)
digraph

∅

∅

{1} {2}

∅

{1} {2}

{1,2}

∅

{1} {2}

{1,2}

∅

{1} {2}

{1,2}

DST(Tr(H))
digraph

PRV(H)
digraph

∅

{1} {2}

{1,2}

∅

{1}{2}

∅

{1}

∅

{2}

∅ AVD(Tr(H))
digraph

∅ {{1, 2}} {{2}} {{1}} {{1}, {2}} Tr(H)

Figure 3.3: All hypergraph games with vertex set V = {1, 2}.

∅
∗1

{a}
∗0

{b}
∗0

{c}
∗0

Figure 3.4: Game digraph for ACV(H) and AVD(K).

Figure 3.1 demonstrates the complementary nature of the game digraphs of the hy-
pergraph games. We provide another example.

Example 3.12. Figure 3.3 shows all the hypergraph games with vertex set V = {1, 2}.
Each columns shows a pair of complementary digraphs.

The next example shows that a game can be both an achivement and an avoidance
game.

Example 3.13. Let H = (V,H) with V = {a, b, c} and H = {{a}, {b}, {c}}, and K =
(V,K) with K = {{a, b}, {a, c}, {b, c}}. The games ACV(H) and AVD(K) are the same
since they have the same game digraph, as shown in Figure 3.4. The first player has a
winning strategy since the nim-value is 1.

Proposition 3.14. Let H = (V,H) and K = (V,K) be simple hypergraphs. The games
ACV(H) and AVD(K) are the same if and only if H =

!
V
k

"
and K =

!
V

k+1

"
for some

k ∈ {0, |V |}.

Proof. The backward direction clearly holds. Assume ACV(H) = AVD(K) and consider
a nonempty position P of this game. Since P is stable in K, P \ {v} is also stable in
K and hence a game position for all v ∈ P . Since P \ {v} is not a terminal position of
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ACV(H), P \ {v} ∪ {w} is also a game position for all w ∈ P ∁. This shows that if Q is
a subset of V satisfying |Q| " |P |, then Q is a game position. Let k be the size of the
largest game position. Then every subset of V with size at most k is a game position and
the terminal positions are the elements of

!
V
k

"
. Thus H =

!
V
k

"
and K =

!
V

k+1

"
.

The following result often provides a simple way to find the nim-value of an avoidance
game.

Proposition 3.15. If every set in SH has the same parity r, then nim(AVD(H)) = r.

Proof. The sets in SH are the terminal positions of the game. The second player wins
AVD(H) + ∗r using random play.

A version of this result is true for achievement games but it is not very useful since
finding the terminal positions of an achievement game is often difficult.

4 Structure theory for the building games AVD and ACV

In this section we develop structure theory for hypergraph games. This is our main tool
to find the nim-value of a hypergraph game. The idea of structure equivalence originates
in [17]. Structure theory is successfully used in [7, 8, 9, 10, 11, 28] to analyze group and
convex geometry generating games.

4.1 Structure equivalence

Consider a simple hypergraph H = (V,H). For a subset P of V define φH(P ) := {S ∈
SH | P ⊆ S}. We use this to define an equivalence relation on 2V .

Definition 4.1. Two subsets P and Q of V are structure equivalent in H if φH(P ) =
φH(Q). In this case we write P ∼ Q.

Let
IH = {

%
T | T ⊆ SH}

be the closure system generated by the family SH of stable sets. The closure of a subset
P of V in this closure system is denoted by ⌈P ⌉ :=

$
φH(P ). Note that ⌈I⌉ = I for all

I ∈ IH . In this closure system, H is the family of minimal generating sets and SH is the
family of maximal non-generating sets.

The smallest set ΦH :=
$

SH in IH is called the Frattini subset. The Frattini subset
is structure equivalent to the empty set. In fact, ⌈∅⌉ = ΦH .

The following is a generalization of [28, Proposition 4.9]. It shows that structure
equivalence is the cospanning relation of the closure operator P +→ ⌈P ⌉ as defined in
[27, 37].

Proposition 4.2. Two subsets P and Q of V are structure equivalent if and only if
⌈P ⌉ = ⌈Q⌉.
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Proof. The forward direction is clear from the definitions. For a contradiction suppose
that ⌈P ⌉ = ⌈Q⌉ but there is an S ∈ SH such that P ⊆ S and Q ∕⊆ S. Then there is a
v ∈ Q \ S. This is impossible since v ∈ Q ⊆ ⌈Q⌉ = ⌈P ⌉ =

$
φH(P ) ⊆ S.

The following result is easy to verify from the definitions but it also follows [37, The-
orem 2.15, Proposition 3.4] from the fact that structure equivalence is the cospanning
relation of a closure operator.

Proposition 4.3. Structure equivalence in H satisfies the following properties
1. P ∼ Q implies P ∼ P ∪Q;

2. P ⊆ Q ⊆ R and P ∼ R imply P ∼ Q;

3. P ∈ IH and P \ {v} ∕∈ IH imply P \ {v} ∼ P ;
for all P,Q,R ⊆ V and v ∈ P .

Consider a building hypergraph game on H = (V,H). We restrict structure equiva-
lence to the set of game positions. The structure class XI for I ∈ IH consists of the game
positions that are structure equivalent to I. Note that I is the largest element of XI for
all I ∈ IH \ {V }. If P is a game position, then P ∼ ⌈P ⌉ and P ∈ X⌈P ⌉.

For ACV(H), the structure class XV contains all the terminal game positions. Note
that V might not be a game position in which case V ∕∈ XV . The mapping I +→ XI is a
bijection from IH to the set of structure classes.

For AVD(H), no game position is structure equivalent to V so XV = ∅. The mapping
I +→ XI is a bijection from IH \ {V } to the set of nonempty structure classes.

A structure class is called terminal if it contains a terminal position. The only terminal
structure class is XV for ACV(H). The terminal structure classes are XI with I ∈ SH for
AVD(H).

Example 4.4. Let H = (V,H) with V = {a, b, c}, H = {{a, b}} so that SH = ∁(Tr(H)) =
∁({{a}, {b}}) = {{a, c}, {b, c}}, IH = {{c}, {a, c}, {b, c}, {a, b, c}}, and ΦH = {c}. The
structure classes for AVD(H) are X{c} = {∅, {c}}, X{a,c} = {{a}, {a, c}}, and X{b,c} =
{{b}, {b, c}}. There is one additional structure class X{a,b,c} = {{a, b}, {a, b, c}} for
ACV(H).

4.2 Compatibility of game options with structure equivalence

Our goal is to show that structure equivalence is compatible with the option structure of
the building hypergraph games. The following is a generalization of [17, Corollary 3.11].

Proposition 4.5. Consider a building hypergraph game G on H = (V,H). Let P and Q
be game positions such that P,Q ∈ XI ∕= XJ . If Opt(P )∩XJ ∕= ∅, then Opt(Q)∩XJ ∕= ∅.

Proof. Assume Opt(P ) ∩ XJ ∕= ∅. Then there is a v ∈ V \ P such that P ∪ {v} ∈
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Opt(P ) ∩XJ . Then Q ∪ {v} ∈ XJ since

φH(Q ∪ {v}) = {S ∈ SH | Q ∪ {v} ⊆ S}
= {S ∈ φH(Q) | v ∈ S}
= {S ∈ φH(P ) | v ∈ S}
= {S ∈ SH | Q ∪ {v} ⊆ S}
= φH(P ∪ {v}).

It remains to show that Q∪ {v} is a game position and an option of Q. First consider
the case when G is an achievement game. Since P is not a terminal position, P must be
stable. So P is contained in a maximal stable set S. Position Q is also contained in S,
and so Q is also stable. Hence Q ∪ {v} must be an option of Q by Remark 3.5.

Now consider the case when G is an avoidance game. Since P ∪ {r} is stable, the
structure equivalent Q∪{r} is also stable. Hence Q∪{r} is an option of Q by Remark 3.4.

Definition 4.6. We say XJ is an option of XI if XJ ∩Opt(I) ∕= ∅. The set of options of
XI is denoted by Opt(XI).

Proposition 4.5 implies that if XJ ∈ Opt(XI) then XJ ∩ Opt(P ) ∕= ∅ for all P ∈ XI .
The following is a generalization of [17, Lemma 3.14].

Lemma 4.7. If A and Bk are sets containing non-negative integers such that mex(A) ∈ Bk

for all k ∈ K, then mex(A ∪ {mex(Bk) | k ∈ K}) = mex(A).

Proof. Since mex(A) ∈ Bk, mex(Bk) ∕= mex(A) for all k ∈ K.

The following is a generalization of [17, Proposition 3.15].

Proposition 4.8. Let P be the set of positions of a building hypergraph game G on
H = (V,H). If P,Q ∈ P such that P ∼ Q and pty(P ) = pty(Q), then nim(P ) = nim(Q).

Proof. Let
Z := {(P,Q) ∈ P × P | P ∼ Q and pty(P ) = pty(Q)}.

We say (P,Q) ≽ (M,N) exactly when P ⊆ M and Q ⊆ N . Then (Z,≽) is a finite
partially ordered set. We proceed by structural induction on Z. Consider a minimal
element (P,Q) of Z. If G = AVD(H), then we must have P = Q. If G = ACV(H) then
P and Q might be different. For both games P and Q are terminal positions and so
nim(P ) = 0 = nim(Q). So the claim holds for these minimal elements.

Now let (P,Q) be an element of Z that is not minimal and let I := ⌈P ⌉ = ⌈Q⌉. Then
I ∕= V . We consider several cases. The claim clearly holds if P = I = Q.

Next, assume P ∕= I ∕= Q. Then both P and Q have options in XI . In fact, P ∪ {u} ∈
Opt(P ) ∩ XI for each u ∈ I \ P and Q ∪ {v} ∈ Opt(Q) ∩ XI for each v ∈ I \ Q. If
M and N are options of P and Q in XI respectively, then pty(M) = pty(N). Hence
nim(M) = nim(N) by induction since (P,Q) ≻ (M,N). If P has an option M in some
XJ ∕= XI , then Q also has an option N in XJ by Proposition 4.5. Since M,N ∈ XJ and
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∅
∗0

{a}
∗2

{b}
∗1

{c}
∗2

{a,b}
∗0

{a,c}
∗1

{b,c}
∗0

{a,b,c}
∗0

0,3

2,1 1,2

0,0

Figure 4.1: Game digraph indicating the structure classes and structure diagram for
ACV(H) with V = {a, b, c} and H = {{a, b}, {b, c}}.

pty(M) = pty(N), we have (P,Q) ≻ (M,N). Hence nim(M) = nim(N) by induction.
This proves that nim(Opt(P )) = nim(Opt(Q)), and so nim(P ) = nim(Q).

Finally, assume P ∕= I = Q. In this case Opt(Q) ∩XI = ∅ but Opt(P ) ∩XI ∕= ∅. For
each M ∈ Opt(P ) ∩XI there is an RM ∈ Opt(M) ∩XI since pty(M) ∕= pty(I). We have
nim(RM) = nim(Q) by induction since (P,Q) ≻ (RM , Q). With A := nim(Opt(Q)) and
BM := nim(Opt(M), we have

mex(A) = nim(Q) = nim(N) ∈ BM .

Just like in the previous case, Proposition 4.5 implies that the options of P and Q outside
of XI have the same set of nim-values. Lemma 4.7 now implies that

nim(P ) = mex(nim(Opt(P )))
= mex(nim(Opt(Q)) ∪ nim(Opt(P ) ∩XI))
= mex(A ∪ {mex(BM) | M ∈ Opt(P ) ∩XI})
= mex(A) = mex(nim(Opt(Q))
= nim(Q).

Example 4.9. Let V = {a, b, c} and H = {{a, b}, {b, c}} as in Example 3.3, so that
SH = {{a, c}, {b}}. Figure 4.1 shows the structure classes of ACV(H). Note that {a}
and {c} are structure equivalent and have the same parity. So they are guaranteed to
have the same nim-value of 2.

4.3 Type calculus

Consider a building game on the simple hypergraph H = (V,H).

Definition 4.10. The type of the structure class XI is

type(XI) := (pty(I), nim0(XI), nim1(XI)).
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If I = V then nim0(XV ) := 0 and nim1(XV ) := 0. If I ∕= V then

nimpty(I)(XI) := mex(nim1−pty(I)(Opt(XI)),
nim1−pty(I)(XI) := mex(nimpty(I)(Opt(XI)) ∪ {nimpty(I)(XI)}).

We call the recursive computation of types using the options of structure classes type
calculus.

Note that XV is special since it only contains the terminal positions of the achieve
game.

Example 4.11. Assume that Opt(XI) = {XJ , XK} satisfying type(XJ) = (0, 0, 1) and
type(XK) = (1, 1, 0). If pty(I) = 0 then

nim0(XI) = mex({nim1(XJ), nim1(XK)}) = mex({1, 0}) = 2,
nim1(XI) = mex({nim0(XJ), nim0(XK), nim0(XI)}) = mex({0, 1, 2}) = 3

and type(XI) = (0, 2, 3). If pty(I) = 1 then

nim1(XI) = mex({nim0(XJ), nim0(XK)}) = mex({0, 1}) = 2,
nim0(XI) = mex({nim1(XJ), nim1(XK), nim1(XI)}) = mex({1, 0, 2}) = 3

and type(XI) = (1, 3, 2).

The type of a structure class XI encodes the parity of I and the nim numbers of the
positions in XI .

Proposition 4.12. If P ∈ XI then nim(P ) = nimpty(P )(XI).

Proof. We use structural induction on the positions, together with Propositions 4.5 and
4.8. The statement is clearly true for I = V . Now assume that I ∕= V .

Any option Q of position I is in XJ for some XJ ∈ Opt(XI). On the other hand, if
XJ ∈ Opt(XI) then XJ contains an option Q of I. Hence

nim(I) = mex(nim1−pty(I)(Opt(I))) = nimpty(I)(XI)

by induction.
First assume that P is a position in XI such that pty(P ) = pty(I). Then nim(P ) =

nim(I) by Proposition 4.8. Thus nim(P ) = nim(I) = nimpty(I)(XI) = nimpty(P )(XI).
Now assume that P is a position inXI such that pty(P ) = 1−pty(I). Since P is strictly

smaller than I and I ∕= V , P must have an option in XI . Every Q in Opt(P )∩XI satisfies
nim(Q) = nimpty(Q)(XI) = nimpty(I)(XI) by induction. Proposition 4.5 implies that every
option of P that is not in XI must be a position in XJ for some XJ ∈ Opt(XI). On the
other hand, Proposition 4.5 also implies that if XJ ∈ Opt(XI) then XJ contains an option
of P . Every Q in Opt(P ) ∩XJ with XJ ∈ Opt(XI) satisfies nim(Q) = nimpty(Q)(XJ) =
nimpty(I)(XJ) by induction. Thus

nim(P ) = mex(nim(Opt(P )))

= mex(nim((Opt(P ) ∩
&

Opt(XI)) ∪ (Opt(P ) ∩XI))

= mex(nimpty(I)(Opt(XI)) ∪ {nimpty(I)(XI)})
= nim1−pty(I)(XI) = nimpty(P )(XI).
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Note that XI = {I} is possible. In this case XI contains no position with parity
1 − pty(I). Also note that the nim number of the game is the nim number nim(∅) =
mex0(XΦH

) of the starting position ∅.

4.4 Structure diagram

The structure digraph of a building game on the simple hypergraph H has vertex set
{XI | I ∈ IH} and arrow set {(XI , XJ) | XJ ∈ Opt(XI)}. We visualize the structure
digraph with a structure diagram that also shows the type of each structure class. Within a
structure diagram, a vertex XI is represented by a triangle pointing up or down depending
on the parity of I. The triangle points down when pty(I) = 1 and points up when
pty(I) = 0. The numbers within each triangle represent the nim numbers of the positions
within the structure class. The first number is the common nim number nim0(XI) of all
even positions in XI , while the second number is the common nim number nim1(XI) of
all odd positions in XI .

Algorithm 4.13. The structure diagram is our primary tool to find the nim-value of a
building game on the simple hypergraph H. We use the following steps:

1. Compute the family SH = ∁(Tr(H)) of maximal stable sets.

2. Build the structure diagram.

(a) Build the structure digraph.

i. Compute the elements of the closure system IH = {
$

T | T ⊆ SH}. This
provides the vertex set of the structure digraph

ii. Find Opt(XI) for each I ∈ IH by determining the structure classes con-
taining the options of position I. This provides the arrows of the structure
digraph.

(b) Use type calculus to recursively compute type(XI) for each I ∈ IH .

3. The nim-value of the game is the second component mex0(XΦH
) of type(XΦH

).

The algorithm is useful because instead of processing the potentially huge full game
digraph we only need to process the structure digraph which is a hopefully smaller quo-
tient digraph. Of course, the larger the structure equivalence classes are, the better the
algorithm works.

Example 4.14. Figure 4.1 shows the structure diagram of ACV(H) introduced in Ex-
ample 4.9. The game digraph contains 8 vertices, while the structure diagram contains
only 4. Note that the type of the structure class containing the Frattini subset Φ = ∅ is
type(XΦ) = (0, 0, 3). This type indicates that any position in this structure class with odd
parity has a nim-value of 3. Since XΦ = {∅}, there is no such position in this structure
class. Similarly, type(X{b}) = (1, 2, 1) and X{b} = {{b}} contains no position with even
parity and a nim-value of 2.

Example 4.15. Figure 4.2 shows the structure diagram for each building game on the
vertex set V = {1, 2}. Note that the structure classes can be singleton sets, in which case
the structure diagrams has no advantage over the full game digraph. This happens for
example for the achieve game with H = {{1, 2}}.
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H {∅} {{1}, {2}} {{2}} {{1}} {{1, 2}}
Tr(H) ∅ {{1, 2}} {{2}} {{1}} {{1}, {2}}
SH ∅ {∅} {{1}} {{2}} {{1}, {2}}

ACV(H)
structure
diagram

0,0

1,2

0,0

2,1

0,0

2,1

0,0

0,1

2,1 2,1

0,0

game
digraph

∅

∅

{1}

∅

{2}

∅

{1} {2}

∅

{1} {2}

{1,2}

∅

{1} {2}

{1,2}

∅

{1} {2}

{1,2}

AVD(K)
structure
diagram

0,1
1,0 1,0

1,0

1,0 1,0

0,1

SK {∅} {{1}} {{2}} {{1}, {2}} {{1, 2}}
Tr(K) {{1, 2}} {{2}} {{1}} {{1}, {2}} {∅}
K {{1}, {2}} {{2}} {{1}} {{1, 2}} ∅

Figure 4.2: All non-isomorphic building hypergraph games on V = {1, 2}.

5 Structure theory for the removing games PRV and DST

A removing game on a simple hypergraph H is equal to a building game on Tr(H). So
for these games the appropriate structure equivalence is with respect to Tr(H). Note that
STr(H) = ∁(Tr(Tr(H))) = ∁(H).

Example 5.1. Let V = {a, b, c} and H = {{a, b}, {b, c}} as in Example 3.3, so that
STr(H) = ∁(H) = {{c}, {a}} and ITr(H) = {∅, {a}, {c}, {a, b, c}}. Figure 5.1 shows the
structure classes of DST(H) = ACV(Tr(H)).

The following is a generalization of a similar result of [6].

Proposition 5.2. If H is a simple hypergraph, then ΦH = ΦTr(H).

Proof. Propositon 2.6 implies that

ΦH =
%

SH =
%

∁(Tr(H))

= ∁(
&

Tr(H)) = ∁(
&

H)

=
%

∁(H) =
%

STr(H) = ΦTr(H).
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∅
∗2

{a}
∗1

{b}
∗0

{c}
∗1

{a,b}
∗0

{a,c}
∗0

{b,c}
∗0 2,1

2,1 2,1

0,0

Figure 5.1: Game digraph indicating the structure classes and structure diagram for
DST(H) = ACV(Tr(H)) with V = {a, b, c} and H = {{a, b}, {b, c}}.

6 Simplified structure diagram

The structure diagram can be relatively easily found by a computer but it can be too
large to provide any intuition about the game. So it is often useful to make further iden-
tifications in the structure diagram to build a simplified structure diagram. We want to
make enough identifications to create a manageable diagram but too many identifications
results in a simple but meaningless diagram. This is a delicate balance and the best ap-
proach depends on the hypergraph. The automorphism group of the hypergraph or of the
structure diagram provides good opportunities for identifications but these automorphism
groups can be difficult to compute. In this paper we use easy to compute conditions. We
identify XI and XJ if the following conditions hold.

Condition 6.1.
1. pty(I) = pty(J);

2. type(Opt(XI)) = type(Opt(XJ));

3. The lengths of the longest directed paths starting at XI and at XJ are the same.

The first two conditions guarantee that type(XI) = type(XJ). The third condition
avoids vertical collapsing. These conditions rely on the outgoing arrows of the structure
digraph and ignore the incoming arrows. In the simplified structure diagram we use
shaded triangles if they represent several structure classes.

Example 6.2. Figure 6.1 shows the structure diagram and the simplified structure dia-
gram of ACV(H) for a hypergraph H with vertex set {1, 2, 3, 4} satisfying

SH = {{1, 2}, {1, 3}, {2, 3}, {2, 4}}.

Note that we identified all the structure classes corresponding to the maximal stable sets
even though X{2,4} is the only structure class that is an option of XΦH

.

7 Special hypergraphs

In this section we find criteria for the nim-value of games played on hypergraphs with a
relatively simple structure. We are mainly concerned about the building games but many
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1,0

1,2 1,01,2

1,21,21,2

0,0

1,2

1,0

1,21,0

1,2

0,0

Figure 6.1: Structure diagram and simplified structure diagram.

of our results have versions for the removing games since those are building games on the
transversal hypergraph.

We warm up with a very simple case.

7.1 Single edge

In this subsection we study games played on a hypergraph with a single edge. The
removing games are easy to analyze.

Proposition 7.1. If H = (V,H) is a hypergraph containing only one nonempty edge A,
then nim(PRV(H)) = pty(A∁) and nim(DST(H)) = 1 + pty(A∁).

Proof. Since STr(H) = ∁(H) = {A∁}, nim(PRV(H)) = pty(A∁) by Proposition 3.15. In

fact, there is only one structure classXA∁ whose type is type(XA∁) = (pty(A∁), pty(A∁), 1−
pty(A∁)). The achievement game DST(H) has two structure classes XV and XA∁ . Their
types are type(XV ) = (pty(V ), 0, 0) and type(XA∁) = (pty(A∁), 1 + pty(A∁), 2− pty(A∁))
by type calculus.

The building games require a bit more effort.

Proposition 7.2. If H = (V,H) is a hypergraph containing only one nonempty edge A,
then nim(AVD(H)) = 1− pty(V ) and

nim(ACV(H)) =

'
2, |A| = 1 and pty(V ) = 0

pty(V ), otherwise.

Proof. Since SH = ∁(Tr(H)) = {{a}∁ | a ∈ A}, nim(AVD(H)) = pty(|V | − 1) by Propo-
sition 3.15.

To prove the claim about the achievement game, first note that IH = {B∁ | B ⊆ A}.
It is easy to see that Opt(XB∁) = {X(B\{b})∁ | b ∈ B}. Induction on the size of B together
with type calculus shows that

type(XB∁) =

(
)*

)+

(0, 0, 0), |B| = 0

(1, 2, 1), |B| = 1

(pty(B), 1, 0), |B| # 2
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0,1

0,1

0,1

0,1

1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,2

0,0

0,1

0,1

0,1

2,1

0,0

AVD(H) AVD(H) ACV(H) ACV(H)
pty(V ) = 1 pty(V ) = 0 pty(V ) = 1 pty(V ) = 0
|A| = 4 |A| = 4 |A| = 4 |A| = 4

Figure 7.1: Simplified structure diagrams for the building games on a hypergraph with a
single edge. Note that XΦH

in AVD(H) is not identified with any other structure class
because Condition 6.1(3) is not satisfied.

if pty(V ) = 1, and

type(XB∁) =

(
)*

)+

(1, 0, 0), |B| = 0

(0, 1, 2), |B| = 1

(pty(B), 0, 1), |B| # 2

if pty(V ) = 0. Figure 7.1 provides a visual aid for the induction. Note that the number
of triangles in the simplified structure diagram for the achievement games is |A|+ 1.

7.2 Pairwise disjoint edges

In this subsection we consider hypergraphs for which H contains pairwise disjoint sets.

Proposition 7.3. If the edges of a hypergraph H = (V,H) are pairwise disjoint, then

nim(AVD(H)) = pty(|V |− |H|).

Proof. A minimal transversal of H contains a single vertex from each edge. So every set
in Tr(H) contains |H| elements. Hence every set in SH = ∁(Tr(H)) contains |V | − |H|
elements. The result now follows from Proposition 3.15.

The achieve game can be quite complicated even in this simple case.

7.3 Pairwise disjoint maximal stable sets

In this subsection we consider hypergraphs for which SH contains pairwise disjoint sets.
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0,1

0,1

1,0

1,0

2,3

0,1 1,0

Y = {0} Y = {1} Y = {0, 1}

Figure 7.2: Simplified structure diagrams for AVD(H) for a hypergraph H with pairwise
disjoint maximal stable sets.

Proposition 7.4. If H = (V,H) is a hypergraph such that SH is a family of pairwise
disjoint sets and Y := {pty(A) | A ∈ SH}, then

nim(AVD(H)) =

(
)*

)+

0, Y = {0}
1, Y = {1}
2, Y = {0, 1}.

Proof. The intersection of any two maximal stable set is ΦH = ∅. The simplified structure
diagram for each case is shown in Figure 7.2.

Proposition 7.5. If H = (V,H) is a hypergraph such that SH is a family of pairwise
disjoint sets and Y := {pty(A) | A ∈ SH}, then

nim(ACV(H)) =

(
)))*

)))+

0, SH covers V

1, Y = {0} and SH does not cover V

2, Y = {1} and SH does not cover V

3, Y = {0, 1} and SH does not cover V .

Proof. If SH covers V , then XV ∕∈ Opt(XΦH
). If SH does not cover V , then there is a

v ∈ V \
#

SH . So XV ∈ Opt(XΦH
) since {v} ∈ XV . One can now easily verify the

claim by drawing the simplified structure diagrams. These diagrams are extensions of the
diagrams with the additional structure class XV in Figure 7.2.

7.4 Pairwise disjoint minimal transversals

We saw that if H contains a single edge A, then Tr(H) = ∁(SH) = {{a} | a ∈ A}
contains pairwise disjoint sets. Proposition 7.2 can be generalized for the case when
Tr(H) is a family of pairwise disjoint sets. The nim-values can be easily determined
in terms of the signature σ(H) = (e, o), where e := |{B ∈ Tr(H) | pty(B) = 0}| and
o := |{B ∈ Tr(H) | pty(B) = 1}|.
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. . .

1,0

. . .

0,1

0,1

0,1

0,1

0,1

2,3

1,0

1,0

1,0

1,0

0,1 0,1 1,0 1,0

3,2 1,00,1

0,1 1,0

. . .

0,1

. . .

1,0

1,0

1,0

1,0

1,0

3,2

0,1

0,1

0,1

0,1

1,0 1,0 0,1 0,1

2,3 0,11,0

1,0 0,1

pty(V ) = 0 pty(V ) = 1

Figure 7.3: Type calculus computation for δ(XI) " 5. The pattern of the rows repeat
with a period of 4.

Proposition 7.6. LetH = (V,H) be a hypergraph such that Tr(H) is a family of pairwise
disjoint sets. If the signature is σ(H) = (e, o), then

nim(AVD(H)) =

(
)*

)+

pty(V ), e > o

1− pty(V ), e < o

3− | pty(e)− pty(V )|, e = o.

Proof. Since Tr(H) is a family of pairwise disjoint sets, T +→
$

T : 2SH \ {∅} → IH

is a bijection. For I =
$

T ∈ IH we define the signature of XI to be σ(XI) := (e, o),
where e = |{S ∈ T | pty(S∁) = 0}| and o = |{S ∈ T | pty(S∁) = 1}|. We also define
δ(XI) := |T | = e + o. Note that σ(XΦH

) = σ(H), δ(XΦH
) = |SH |, and δ(S) = 1 for all

S ∈ SH .
Let I =

$
T ∈ IH and σ(XI) = (e, o). If XJ ∈ Opt(XI) then I ∪ {v} ∈ XJ for

some v ∈ J \ I and there is a unique S ∈ SH such that v ∈ S∁. Hence J =
$
(T \ {S})

and δ(XI) = δ(XJ) + 1. If e # 1 then there is an S ∈ T such that pty(S∁) = 0. If
o # 1 then there is an S ∈ T such that pty(S∁) = 1. In either case XJ ∈ Opt(XI) for
J =

$
(T \ {S}). Hence Opt(XI) = {

$
(T \ {S}) | S ∈ T } and

σ(Opt(XI)) =

(
)*

)+

{(e− 1, 0)}, o = 0

{(0, o− 1)}, e = 0

{(e− 1, o), (e, o− 1)}, e, o # 1.

The result now follows from type calculus and structural induction on the structure classes.
The details of the type calculus computation are shown in Figure 7.3. The signature (e, o)
of a structure class becomes (e− 1, o) as we move backwards along a solid arrow, while it
becomes (e, o− 1) as we move backwards along a dotted arrow.
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0,1

0,1

0,1

0,1

0,1

2,3

1,0

1,0

1,0

1,0

1,0

0,1 0,1 1,0 1,0

3,2 1,00,1

0,1 1,0

Figure 7.4: Simplified structure diagram for a hypergraph with pairwise disjoint Tr(H),
pty(V ) = 0, and signature σ(H) = (1, 3).

Example 7.7. Consider the hypergraph H with V = {1, . . . , 6} and

Tr(H) = {{1}, {2}, {3}, {4, 5}}.

The signature is σ(H) = (1, 3). Figure 7.4 shows the simplified structure diagram of
AVD(H) as a subdiagram of the infinite diagram of Figure 7.3. The nim-value of the
game is 1 as guaranteed by Proposition 7.6.

The ACV(H) can be handled similarly. The proof of the next result is essentially that
of [28, Proposition 6.5].

Proposition 7.8. LetH = (V,H) be a hypergraph such that Tr(H) is a family of pairwise
disjoint sets. If the signature is σ(H) = (e, o), then

nim(ACV(S,W )) =

(
)))*

)))+

1, (e, o) = (1, 0)

2, (e, o) ∈ {(0, 1), (1, 2)}
3, (e, o) ∈ {(1, 1), (2, 1)}
0, otherwise

when pty(V ) = 0, and

nim(ACV(S,W )) =

(
)*

)+

0, (e, o) ∈ {(0, 0), (1, 1)}
2, (e, o) ∈ {(1, 0), (2, 0)}
1, otherwise

when pty(V ) = 1.
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8 Examples

There is an extensive literature about games that are impartial hypergraph games. Many
of these games [35] start with an empty graph on a set of vertices and the players build
a graph by adding edges until the graph has a certain property. These include diame-
ter avoidance games [13], triangle avoidance games [15, 31], saturation games [33], path
achievement games [36], connect-it games [23], minimum degree games [19], and degree
games [22].

Other games start with a graph and the players select vertices until the set of selected
vertices has a certain property. These include geodetic closure games [6, 14, 24, 30] and
general position games [26, 34].

Games on other mathematical objects like groups [3, 4, 7, 8, 9, 10, 17], matroids [1],
convex geometries [28], and Cayley graphs [18] are also studied.

In this section we provide some detailed examples to show how these games can be
considered as hypergraph games.

8.1 Generate and do not generate games

Some examples in this section rely on the notion of a generating set with respect to a
pre-closure operator. Given a pre-closure operator cl : 2S → 2S and a subset W of 2S of
winning sets. Let H := Min({P ⊆ S | W ⊆ cl(P ) for some W ∈ W}). The achievement
game ACV(H) and avoidance game AVD(H) on the hypergraph H := (S,H) are often
called generate and do not generate and denoted by GEN(cls,W) and DNG(cls,W). We
can think of the elements of H as the minimal generating sets while the stable sets as
maximal non-generating sets.

The family W of winning sets is most often only contains S. In this case H is the set
of dense subsets of S and the simplified notations GEN(cl) and DNG(cl) can be used. We
even use the notations GEN(S) and DNG(S) if S has a default standard closure operator.
We call removing games in this context terminate TER(cl) and do not terminate DNT(cl).
They are studied in [6] and in [23] under the name disconnect-it games.

8.2 Group generating games

The generate and do not generate games on groups are studied in [3, 4, 17, 8, 9, 10, 7, 11].
The closure operator is P +→ 〈P 〉 : 2G → 2G is the generated subgroup operator on a finite
group G. The family of winning sets is W = {G}.

Example 8.1. Let G = Z4 be the cyclic group with elements {0, 1, 2, 3}. Consider the
hypergraph H = (G,H) with the family H = {{1}, {3}} of minimal generating sets.
Then GEN(G) = ACV(H) and DNG(G) = AVD(H). The maximal stable sets are the
maximal subgroups of G, so SH = {{0, 2}}. We can also analyze the removing games as
building games on Tr(H). We have Tr(H) = {{1, 3}} and STr(H) = {{0, 1, 2}, {0, 2, 3}}.
So TER(G) = ACV(Tr(H)) and DNT(G) = AVD(Tr(H)). Note that H has pairwise
disjoint edges and the families SH and Tr(H) are singletons, so several results in Section 7
can be applied. The structure diagrams are shown in Figure 8.1.
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0,1

1,2

0,0

1,0

1,0

0,1

2,1

0,0

DNG(Z4) GEN(Z4) DNT(Z4) TER(Z4)
AVD(H) ACV(H) PRV(H) DST(H)

Figure 8.1: Simplified structure diagrams for the group generating games on Z4.

2,3

0,1 1,0

0,1

0,3

1,2

2,11,2

0,0

0,1

0,1

0,1

1,0

1,21,0

1,2

0,0

DNG(S,W) GEN(S,W) DNT(S,W) TER(S,W)
AVD(H) ACV(H) PRV(H) DST(H)

Figure 8.2: Simplified structure diagrams for convex closure games.

8.3 Convex closure games

The generate game on convex geometries is studied in [28] using the abstract convex
closure operator τ : 2S → 2S on a finite point set S.

Example 8.2. Consider the affine convex geometry of S = {1, 2, 3, 4} ⊆ R with W =
{{1, 2, 3}, {3, 4}}. Let H = (G,H) be the hypergraph with the family

H = {{1, 3}, {1, 4}, {2, 4}, {3, 4}}

of minimal sets whose convex closure contain one of the winning sets. Then DNG(S,W) =
AVD(H), GEN(S,W) = ACV(H), DNT(S,W) = PRV(H), and TER(S,W) = DST(H).
We have

Tr(H) = {{1, 2, 3}, {1, 4}, {3, 4}},
SH = {{1, 2}, {2, 3}, {4}},

STr(H) = {{1, 2}, {1, 3}, {2, 3}, {2, 4}}.
The structure diagrams are shown in Figure 8.2.

the electronic journal of combinatorics 30(2) (2023), #P2.13 24



1,0

1,0

1,0

1,0

2,0

2,12,0

2,1

0,0

2,1 2,3

0,1 1,0

0,3

1,2 2,1

0,0

AVD(H) ACV(H) PRV(H) DST(H)

Figure 8.3: Simplified structure diagrams for the geodetic games on the graph K2,3.

8.4 Geodetic closure games

Let G = (V,E) be a connected graph. A geodesic is a shortest path between two vertices.
The geodetic closure of a subset P of V is the set (P ) of vertices that are contained on
a geodesic between two vertices of P . The mapping P +→ (P ) : 2V → 2V is a pre-closure
operator. A set P of vertices is called a geodetic cover if (P ) = V . A geodetic basis is a
geodetic cover with minimum size.

The outcome for the achievement and avoidance games for this pre-closure operator
are studied in [14, 24, 30].

Example 8.3. Consider the complete bipartite graph G = K2,3 with bipartition V =
{1, 2} ∪ {3, 4, 5}. The family of minimal generating sets is H = {{1, 2}, {3, 4, 5}}. So the
avoidance game is AVD(H) and the achievement game is ACV(H) on the hypergraph
H = (V,H) with

SH = {{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}}.

Since every maximal non-generating set has an odd size, nim(AVD(H)) = 1 by Proposi-
tion 3.15. The structure diagram in Figure 8.3 shows that nim(ACV(H)) = 2. So both
building games are won by the first player as proved in [14, Theorems 9 and 5].

We can also analyze the removing games as building games on Tr(H). We have
STr(H) = ∁(H) = H. The structure diagrams in Figure 8.3 show that nim(PRV(H)) = 2
and nim(DST(H)) = 0.

We can easily recover the following results of [24].

Proposition 8.4. [24, Proposition 6 and 14] Let G be a graph of order n. Assume G has
a unique geodetic basis S such that |S| # 2 and for every geodetic cover S ′, S ⊆ S ′. The
geodetic achievement game is won by the first player if and only if n is odd. The geodetic
avoidance game is won by the first player if and only if n is even.
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2

3

4

1

1,0

3,2 1,0

0,1 1,0

2,1

3,0 0,1

1,2 2,1

0,0

1,0

1,0

2,1

2,1

0,0

paw graph AVD(H) ACV(H) PRV(H) DST(H)

Figure 8.4: Simplified structure diagrams for the general position games on the paw graph.

Proof. The conditions imply that there is a unique minimal geodetic cover S. So we are
playing building games on the hypergraph H = (V,H) satisfying |V | = n and H = {S}.
So the results are special cases of Proposition 7.2.

8.5 General position games on graphs

Let G = (V,E) be a connected graph. A set of vertices is in general position if no three
elements of the set lie on a shortest path of G. The general position achievement game
studied in [26, 34] requires the players to keep the set of jointly chosen vertices in general
position. This is actually an avoidance game in our setting on the hypergraph H = (V,H)
with H consisting of the minimal sets of vertices that are not in general position.

Example 8.5. Let G be the paw graph shown in Figure 8.4 so that V = {1, 2, 3, 4} and
H = {{1, 2, 3}, {1, 2, 4}}. Then Tr(H) = {{1}, {2}, {3, 4}}, and

SH = {{1, 2}, {1, 3, 4}, {2, 3, 4}}, STr(H) = {{3}, {4}}.

The structure diagrams for the general position games are also shown in Figure 8.4. Note
that Tr(H) contains pairwise disjoint subsets, so nim(AVD(H)) = 1 Proposition 7.6 and
nim(ACV(H)) = 2 by Proposition 7.8 since σ(H) = (1, 2) and pty(V ) = 0. Also note
that STr(H) contains pairwise disjoint sets, so nim(PRV(H)) = 1 by Proposition 7.4 and
nim(DST(H)) = 2 by Proposition 7.5 since {pty(A) | A ∈ STr(H)} = {1} and STr(H) does
not cover V .

Proposition 8.6. If G = (V,E) is a graph such that V is in not in general position, then
the nim number of the general position preserve game is 1− pty(V ).

Proof. The minimal sets that are not in general position contain 3 vertices. So every edge
in H has size 3 and the sets in STr(H) have size |V |− 3. Thus nim(PRV(H)) = 1−pty(V )
by Proposition 3.15.
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d

c

a

0,1

0,1 3,2

0,1 1,0

1,0

1,0 3,0

1,2 2,1

0,0

1,0

1,0

2,1

2,1

0,0

paw graph AVD(H) ACV(H) PRV(H) DST(H)

Figure 8.5: Simplified structure diagrams for the connect-it games on the paw graph.

8.6 Connect-it games

Let G = (V,E) be a connected graph. Consider the hypergraph H = (E,H), where
H is the family consisting of the edge sets of the spanning trees of G. The hypergraph
games AVD(H), ACV(H), PRV(H), DST(H) are studied in [23] under the names DON’T
Connect-it, DO Connect-it, DON’T Disconnect-it, DO Disconnect-it.

Example 8.7. Let G be the paw graph shown in Figure 8.5 so that

H = {{a, b, c}, {a, b, d}, {a, c, d}}.

Then SH = {{a, b}, {a, c}, {a, d}, {b, c, d}} and STr(H) = {{b}, {c}, {d}}. The structure
diagrams for the connect-it games are also shown in Figure 8.5. Note that STr(H) contains
pairwise disjoint sets, so Propositions 7.4 and 7.5 apply for the removing games.

8.7 Minimum degree games for graphs

Avoidance and achievement games with the purpose of making a graph with n vertices
and a minimum degree δ are studied in [19]. We can generalize these games for a given
connected graph G = (V,E). Consider the hypergraph H = (E,H) where H is the family
consisting of each minimal set A of edges of G for which each vertex of G is incident to
at least δ edges in A.

Example 8.8. Let G be the paw graph shown in Figure 8.6 and δ = 1, so that

H = {{a, b, c}, {a, d}}.

Then SH = {{a, b}, {a, c}, {b, c, d}} and STr(H) = {{b, c}, {d}}. The structure diagrams
for the connect-it games are also shown in Figure 8.6.

8.8 Degree achievement and avoidance games for graphs

Avoidance and achievement games with the purpose of making a graph with n vertices
and a vertex with a given degree d are studied in [22]. We demonstrate these games on
an example.

the electronic journal of combinatorics 30(2) (2023), #P2.13 27



b
d

c

a

3,2

0,1 3,2

1,00,1

3,0

1,2 3,0

2,11,2

0,0

2,3

1,0 0,1

3,4

2,1 1,2

0,0

paw graph AVD(H) ACV(H) PRV(H) DST(H)

Figure 8.6: Simplified structure diagrams for the minimum degree games on the paw
graph with δ = 1.

e f

d

a

b

c

Figure 8.7: Edge labeling for the graph K4.

Example 8.9. We consider the n = 4 and d = 3 case. Let H = (E,H) where E is the
edge set of the complete graph K4 shown in Figure 8.7 and

H = {{a, d, e}, {a, b, f}, {b, c, e}, {c, d, f}}.

Easy computation of the structure diagrams show that the nim numbers of ACV(H),
AVD(H), and DST(H) are 0 and nim(PRV(H)) = 1.

9 Spectrum of nim-values

Our goal in this section is to show that the nim-value of AVD(H) and ACV(H) can be
any nonnegative integer. To do this, we need to develop some tools to construct structure
diagrams for games created from simpler games. These tools are interesting in their own
right.

9.1 Nim-values of AVD

For H,K ⊆ 2V we define H∨K := {A∪B | A ∈ H and B ∈ K}. For S, T ⊆ 2N, we define
the extension S∨ := S ∨ {{w + 1}} and disjoint union S ⊎ T := S ∪ {A + w | A ∈ T },
where w := max(

#
S) and A+ w := {a+ w | a ∈ A}.

Example 9.1. If S = {{1}, {2, 3}} and T = {{1, 2}, {3}}, then w = 3 with S∨ =
{{1, 4}, {2, 3, 4}} and S ⊎ T = {{1}, {2, 3}, {4, 5}, {6}}.
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3,2

0,1 3,2

0,1 1,00,1

2,3

1,0 2,3

1,0 0,11,0

AVD(H) AVD(K)

Figure 9.1: Structure diagrams for AVD(H) and AVD(K) with H = (V,H) and K =
(V ∪ {w},H).

Since we need to deal with games on several hypergraphs, We will use the notations
OptH , typeH , X

H
I to indicate the hypergraph H.

Proposition 9.2. Consider the avoid game on the simple hypergraphs H = (V,H) and
K = (V ∪ {w},H) satisfying w ∕∈ V . Then

1. SK = SH ∨ {{w}};
2. IK = IH ∨ {{w}};
3. φK(P ) = φH ∨ {{w}};
4. XK

J∪{w} ∈ OptK(X
K
I∪{w}) if and only if XH

J ∈ OptH(X
H
I );

5. typeH(I) = (p, a, b) implies typeK(I ∪ {w}) = (1− p, b, a).

Proof. Part (1) follows from the computation

SK = {V ∪ {w} \ A | A ∈ Tr(H)} = {(V \ A) ∪ {w} | A ∈ Tr(H)} = SH ∨ {{w}}.

Parts (2–4) are immediate consequences. It is clear that pty(I ∪ {w}) = 1− pty(I). The
rest of Part (5) follows by structural induction on the structure classes.

The result tells us how to construct the structure diagram of AVD(K) from the struc-
ture diagram of AVD(H). We need to flip the parity and swap the nim-values for each
structure class. We demonstrate this on an example.

Example 9.3. Let H = (V,H) with V = {1, . . . , 5} and

H = {{1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}}.

Figure 9.1 shows the structure diagrams for AVD(H) and AVD(K) with and K = (V ∪
{6},H). Note that SH = {{1, 2}, {2, 3}, {3, 4, 5} and

SK = S∨
H = {{1, 2, 6}, {2, 3, 6}, {3, 4, 5, 6}}.

Proposition 9.4. Consider the avoid games on the hypergraphs H = (V,H) and K =
(W,K) satisfying V ∩W = ∅ and ΦH ∕= ∅ ∕= ΦK . If G = (U,G) is a hypergraph satisfying
U = V ∪W and SG = SH ∪ SK , then
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2,3

1,0 2,3

1,0 0,11,0

3,2

0,1 1,0

4,5

2,3 3,2

1,0 2,3 0,1

1,0

1,0

0,11,0

AVD(H) AVD(K) AVD(G)

Figure 9.2: Structure diagrams for AVD(H), AVD(K), and AVD(G) with SG = SH ∪SK .

1. IG = IH ∪ IK ∪ {∅};
2. XG

I = XH
I for I ∈ IH \ {ΦH};

3. XG
I = XK

I for I ∈ IK \ {ΦK};
4. XG

ΦH
= XH

ΦH
\ {∅};

5. XG
ΦK

= XK
ΦK

\ {∅};
6. XG

ΦG
= {∅} and ΦG = ∅;

7. OptG(X
G
I ) = OptH(X

H
I ) for I ∈ IH ;

8. OptG(X
G
I ) = OptK(X

K
I ) for I ∈ IK ;

9. OptG(X
G
∅ ) = {XG

ΦH
, XG

ΦK
} ∪OptH(X

H
ΦH

) ∪OptK(X
K
ΦK

).

Proof. Parts (1–6) are clear from the definitions. Parts (7,8) follow from the fact that a
subset P of V ∪W is not stable in G unless P ⊆ V or P ⊆ W .

Now we show Part (9). Let v ∈ ΦH . Then {v} ∈ OptG(∅) ∩ XG
ΦH

, and so XG
ΦH

∈
OptG(X∅). If J ∈ IH \ {ΦH} then

XH
J ∈ OptH(X

H
ΦH

) ⇔ ΦH ∪ {v} ∈ XH
J for some v ∈ V

⇔ ∅ ∪ {v} ∈ XH
J for some v ∈ V

⇔ XG
J = XH

J ∈ OptH(X
G
∅ )

since ∅ ∈ XH
ΦH

. Similar argument work for K.

The result tells us how to construct the structure diagram of AVD(G) from the struc-
ture diagrams of AVD(H) and AVD(K). Roughly speaking, we need to add the structure
class XG

∅ and connect this class to the Frattini structure classes XΦH
and XΦK

of AVD(H)
and AVD(K) and to the options of these Frattini structure classes. We demonstrate this
on an example.

Example 9.5. Let H = ({1, . . . , 6},H), K = ({7, . . . , 10},K), and G = ({1, . . . , 10},G)
such that SH = {{1, 2, 6}, {2, 3, 6}, {3, 4, 5, 6}}, SK = {{7, 8}, {8, 9, 10}}, and SG = SH ∪
SK . Figure 9.2 shows the structure diagrams for AVD(H), AVD(K), and AVD(G).
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0,1
1,0

2,3

1,0 0,1

3,2

0,1 1,0

AVD(H0) AVD(H1) AVD(H2) AVD(H3)

4,5

3,2

0,1

2,3

1,0 1,0 0,1

5,4

2,3

1,0

3,2

0,1 0,1 1,0

AVD(H4) AVD(H5)

Figure 9.3: Structure diagrams for AVD(Hk).

We are now ready to construct a familyHk of hypergraphs satisfying nim(AVD(HK)) =
k for each nonnegative integer k. The construction is done through the family of maximal
stable sets.

Definition 9.6. We define S0 := {∅} and

Sk :=

'
S∨
k−1, k is odd

S∨
k−2 ⊎ S∨

k−1, k is even

recursively. We also let Hk := (Vk,Hk) with Vk :=
#

Sk and Hk := Tr(∁Vk
(Sk)).

Example 9.7. The table shows the construction of the first few Hk:

k Sk Vk Hk

0 {∅} ∅ ∅
1 {{1}} {1} ∅
2 {{1}, {2, 3}} {1, 2, 3} {{1, 2}, {1, 3}}
3 {{1, 4}, {2, 3, 4}} {1, 2, 3, 4} {{1, 2}, {1, 3}}
4 {{1, 4}, {2, 3, 4}, {5, 8, 9}, {6, 7, 8, 9}} {1, . . . , 9} {{1, 2}, . . . , {5, 7}}

Note 9.8. We construct H2l+1 as the extension of H2l. These two hypergraphs satisfy the
assumptions of Proposition 9.2. To constructH2l+2, we use the extension ofH2l and a shift
of the extension of H2l+1. These hypergraphs satisfy the assumptions of Proposition 9.4.

Example 9.9. Figure 9.3 shows the structure diagrams of AVD(Hk) for k ∈ {0, . . . , 5}.
Note that in every structure diagram XΦ has every other structure class as an option.
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Proposition 9.10. If k is a nonnegative integer, then nim(AVD(HK)) = k.

Proof. We are going to use induction on k to show the following:
1. XHk

ΦHk
has every other structure class as an option;

2.
{type(XHk

I ) | I ∈ IHk
} = {(0, 2l, 2l + 1) | 0 " 2l " k − 2 pty(k)}∪

{(1, 2l + 1, 2l) | 0 " 2l " k − 1 + pty(k)};
3. type(XHk

ΦHk
) = (pty(k), k, k + 1− 2 pty(k))

All claims are true for k ∈ {0, 1} by Figure 9.3. For the inductive step we consider two
cases based on the parity of k.

First assume that k is even. Then Hk+1 is constructed from Hk by an extension. We
use Proposition 9.2 to verify all three claims for Hk+1. Claim (1) is true for Hk+1 since it
is true for Hk by induction and the construction does not change the option structure of
the diagram. Claim (2) follows from the computation

{type(XHk+1

I ) | I ∈ IHk+1
} = {(1, 2l + 1, 2l) | 0 " 2l " k}∪

{(0, 2l, 2l + 1) | 0 " 2l " k − 1}
= {(0, 2l, 2l + 1) | 0 " 2l " (k + 1)− 2 pty(k + 1)}∪

{(1, 2l + 1, 2l) | 0 " 2l " k − 1 + pty(k + 1)}

using Proposition 9.2(5). Claim (3) also follows from Proposition 9.2(5) since

type(X
Hk+1

ΦHk+1
) = (1, k + 1, k)

by flipping and swapping type(XHk
ΦHk

) = (0, k, k + 1).

Now assume that k is odd. Then Hk+1 is constructed from Hk−1 and Hk by extensions
and a disjoint union. We use Propositions 9.2 and 9.4 to verify all three claims for Hk+1.
Claim (1) is true for Hk+1 by Proposition 9.4(9) since it is true for both Hk−1 and Hk by

induction. To verify Claim (3) let (0, a, b) := type(X
Hk+1

ΦHk+1
). Then a and b can be computed

from {type(XHk−1

I ) | I ∈ IHk−1
} and {type(XHk

I ) | I ∈ IHk
} using Proposition 9.4(9) and

type calculus:

a = mex({2l | 0 " 2l " k − 1} ∪ {2l + 1 | 0 " 2l " k − 2}∪
{2l | 0 " 2l " k − 2} ∪ {2l + 1 | 0 " 2l " k})

= mex({0, . . . , k}) = k + 1,

b = mex({2l + 1 | 0 " 2l " k − 1} ∪ {2l | 0 " 2l " k − 2}∪
{2l + 1 | 0 " 2l " k − 2} ∪ {2l | 0 " 2l " k} ∪ {a})

= mex({0, . . . , k + 1}) = k + 2.
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4,3
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AVD(H) ACV(H)

Figure 9.4: Structure diagrams for AVD(H) and ACV(H).

Claim (2) follows from the computation

{type(XHk+1

I ) | I ∈ IHk+1
} = {(0, 2l, 2l + 1) | 0 " 2l " k − 1}∪

{(1, 2l + 1, 2l) | 0 " 2l " k − 2}∪
{(0, 2l, 2l + 1) | 0 " 2l " k − 2}∪
{(1, 2l + 1, 2l) | 0 " 2l " k}∪
{(0, k + 1, k + 2)}

= {(0, 2l, 2l + 1) | 0 " 2l " k + 1}∪
{(1, 2l + 1, 2l) | 0 " 2l " (k + 1)− 1}.

Corollary 9.11. The nim-value of AVD(H) can be any nonnegative integer.

9.2 Nim-values of ACV

Our goal in this section is to show that the nim-value of ACV(H) can also be any non-
negative integer.

Example 9.12. Let H = (V,H) with V = {1, . . . , 6} and SH = {{1, 2}, {2, 3}, {3, 4, 5}}.
Figure 9.4 shows the structure diagrams for AVD(H) and ACV(H). Since 6 /∈

#
SH ,

{6} ∈ H. So XV ∈ Opt(XI) for all I ∈ IH \ V . If type(XI) = (p, a, b) in AVD(H), then
type(XI) = (p, a+ 1, b+ 1) in ACV(H).

The following result is a generalization of [17, Proposition 6.8].

Proposition 9.13. If H = (V,H) is a hypergraph such that V \
#

SH ∕= ∅, then
nim(ACV(H)) = nim(AVD(H)) + 1.

Proof. Let w ∈ V \
#

SH . Then {w} ∈ XV for ACV(H). Hence XV ∈ Opt(XI) for
all I ∈ IH \ V since I ∪ {w} ∈ XV . Thus the structure digraph of ACV(H) can be
constructed from the structure digraph of AVD(H) by connecting every structure class to
the additional structure class XV . Structural induction on the structure classes combined
with type calculus shows that the nim-values in type(XI) are one larger for ACV(H) than
they were for AVD(H).
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Corollary 9.14. The nim-value of ACV(H) can be any nonnegative integer.

Proof. Figure 4.1 shows that the nim-value of ACV(H) can be 0. We insert an additional
vertex w into Vk without altering Sk in Definition 9.6. This creates the hypergraph H̃k =
(Ṽk,Tr(∁Ṽk

(Sk))) with Ṽk = Vk∪{w}. The avoidance game remains the same since marking

this vertex is never allowed in AVD(H̃k). Thus nim(ACV(H̃k)) = nim(AVD(H̃k)) + 1 =
k + 1.

9.3 Nim-values of PRV and DST

Since the removing games are actually building games in disguise, we have the following.

Corollary 9.15. The nim-value of PRV(H) and the nim-value of DST(H) can be any
non-negative integer.

10 Further questions

We finish with a few unresolved questions for further study.
1. We saw in Example 3.8 that not every impartial game can be realized as a hyper-

graph game. What properties must a digraph have to be the game digraph of a
hypergraph game?

2. How to use information about the automorphism group of the hypergraph together
with the structure diagram? A simplified structure diagram takes advantage of
certain symmetries of the hypergraph but only after the structure diagram is built.
Using the automorphism group in Algorithm 4.13 might speed up the computations.

3. Proposition 3.10 shows that the digraphs of ACV(H) and PRV(H) are complemen-
tary. Does this connection force any restriction on the nim-values of these games?

4. Hypergraphs can have many interesting properties. How do these properties trans-
late into results about the nim-value of the corresponding hypergraph games?

5. The nim-value of a group generating game cannot be an arbitrary nonnegative
integer [11]. This is a consequence of Lagrange’s Theorem, which restricts the
allowed families of maximal subgroups. Can we determine the spectrum of nim-
values for the other games mentioned in Section 8.
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[30] Milena Nečásková. A note on the achievement geodetic games. Quaest. Math.,
12(1):115–119, 1989.
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