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Abstract

Rigidity is the property of a structure that does not flex under an applied force.
In the past several decades, the rigidity of graphs has been widely studied in discrete
geometry and combinatorics. Laman (1970) obtained a combinatorial characteriza-
tion of rigid graphs in R2. Lovász and Yemini (1982) proved that every 6-connected
graph is rigid in R2. Jackson and Jordán (2005) strengthened this result, and showed
that every 6-connected graph is globally rigid in R2. Thus every graph with alge-
braic connectivity greater than 5 is globally rigid in R2. In 2021, Cioabă, Dewar
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and Gu improved this bound, and proved that every graph with minimum degree at
least 6 and algebraic connectivity greater than 2+ 1

δ−1 (resp., 2+ 2
δ−1) is rigid (resp.,

globally rigid) in R2. In this paper, we study the rigidity of graphs in R2 from the
viewpoint of adjacency eigenvalues. Specifically, we provide a spectral radius con-
dition for the rigidity (resp., globally rigidity) of 2-connected (resp., 3-connected)
graphs with given minimum degree. Furthermore, we determine the unique graph
attaining the maximum spectral radius among all minimally rigid graphs of order
n.

Mathematics Subject Classifications: 05C50

1 Introduction

Arising from mechanics, the rigidity of graphs is an important research object in discrete
geometry and combinatorics, and has various applications in material science, engineering
and biological science [5, 6, 9, 18].

A d-dimensional bar-and-joint framework (G, p) is the combination of an undirected
simple graph G = (V (G), E(G)) and a map p : V (G) → Rd that assigns a point in Rd

to each vertex of G. Let ‖ · ‖ denote the Euclidean norm in Rd. Two frameworks (G, p)
and (G, q) are said to be equivalent (resp., congruent) if ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖
holds for all uv ∈ E(G) (resp., for all u, v ∈ V (G)). A framework (G, p) is generic if the
coordinates of its points are algebraically independent over Q. The framework (G, p) is
rigid in Rd if there exists an ε > 0 such that every framework (G, q) equivalent to (G, p)
satisfying ‖p(u) − q(u)‖ < ε for all u ∈ V (G) is actually congruent to (G, p). According
to [1], a generic framework (G, p) is rigid in Rd if and only if every generic framework of
G is rigid in Rd. We say that a graph G is rigid in Rd if every/some generic framework of
G is rigid in Rd, and is redundantly rigid in Rd if G− e is rigid in Rd for every e ∈ E(G).
The framework (G, p) is globally rigid in Rd if every framework that is equivalent to (G, p)
is congruent to (G, p). In [8], it was shown that if there exists a globally rigid generic
framework (G, p) in Rd, then any other generic framework (G, q) is also globally rigid in
Rd. For this reason, we say that a graph G is globally rigid in Rd if there exists a globally
rigid generic framework (G, p) in Rd.

In 1970, Laman [20] provided a combinatorial characterization for rigid graphs in R2.
Since then, some vertex- or edge-connectivity conditions for a graph to be rigid or globally
rigid in R2 have been successively discovered. In 1982, Lovász and Yemini [21] constructed
some 5-connected non-rigid graphs, and proved that every 6-connected graph is rigid. In
1992, Hendrickson [13] proved that every globally rigid graph with at least four vertices
is 3-connected and redundantly rigid. In 2005, Jackson and Jordán [15] proved that every
6-connected graph is globally rigid. Later, they observed that a 6-edge-connected graph
G is globally rigid in R2, provided that G − v is 4-edge-connected for all v ∈ V (G) and
G − {u, v} is 2-edge-connected for all u, v ∈ V (G) [16]. In 2007, Jackson, Servatius
and Servatius [17] showed that every 4-connected essentially 6-connected graph (see [19]
for the definition) is globally rigid. Very recently, Gu, Meng, Rolek, Wang and Yu[10]
proved that every 3-connected essentially 9-connected graph is globally rigid. Naturally,
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we consider the following problem:

Problem 1. Which spectral conditions can guarantee that a graph is rigid or globally
rigid in R2?

For a graph G, let D(G) denote the diagonal matrix of vertex degrees of G, and A(G)
denote the adjacency matrix of G. The Laplacian matrix of G is defined as L(G) =
D(G) − A(G). The second least eigenvalue of L(G), denoted by µ(G), is known as the
algebraic connectivity of G. As the vertex-connectivity of G is not less than µ(G), the
results in [21, 15] imply that if µ(G) > 5 then G is globally rigid in R2. Based on some
necessary conditions for packing rigid subgraphs, Cioabă, Dewar and Gu [3] strengthened
this result, and proved that a graph G with minimum degree δ ! 6 is rigid in R2 if
µ(G) > 2 + 1

δ−1
, and is globally rigid in R2 if µ(G) > 2 + 2

δ−1
.

In this paper, we focus on giving some answers to Problem 1 in terms of the (adjacency)
spectral radius of graphs. The spectral radius of a graph G, denoted by ρ(G), is the largest
eigenvalue of its adjacency matrix A(G). A graph is k-connected if removing fewer than
k vertices always leaves the remaining graph connected. Let Kn denote the complete
graph on n vertices, and Bi

n,n1
denote the graph obtained from Kn1 ∪ Kn−n1 by adding

i independent edges (with no common endvertex) between Kn1 and Kn−n1 . The main
results are as follows.

Theorem 2. Let G be a 2-connected graph with minimum degree δ ! 6 and order n !
2δ + 4. If ρ(G) ! ρ(B2

n,δ+1), then G is rigid unless G ∼= B2
n,δ+1.

Hendrickson [13] proved that every globally rigid graph in Rd with at least d + 2
vertices is (d + 1)-connected and redundantly rigid. Thus it is necessary to assume that
G is 3-connected when we consider the global rigidity of G in R2.

Theorem 3. Let G be a 3-connected graph with minimum degree δ ! 6 and order n !
2δ + 4. If ρ(G) ! ρ(B3

n,δ+1), then G is globally rigid unless G ∼= B3
n,δ+1.

A graph G is minimally rigid if G is rigid but G − e is not rigid for all e ∈ E(G).
Note that a graph is rigid if and only if it has a minimally rigid spanning subgraph. In
1970, Leman [20] provided a characterization for minimally rigid graphs in R2 by using
the edge count property, and proved that a graph G with n vertices and m edges is a
minimally rigid if and only if m = 2n − 3 and eG(X) " 2|X| − 3 for all X ⊆ V (G) with
|X| ! 2, where eG(X) is the number of edges of the subgraph G[X] induced by X in G.
Minimally rigid graphs are also called Leman graphs in R2.

The join of two graphs G and H, denoted by G∇H, is the graph obtained from G∪H
by adding all possible edges between G and H. Based on Leman’s characterization for
minimally rigid graphs in R2, we determine the unique graph attaining the maximum
spectral radius among all connected minimally rigid graphs of order n in R2.

Theorem 4. Let G be a connected minimally rigid graph of order n ! 3. Then ρ(G) "
ρ(K2∇(n− 2)K1), with equality if and only if G ∼= K2∇(n− 2)K1.
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2 Preliminaries

In this section, we list some basic concepts and lemmas which will be used later.
Let M be a real n × n matrix, and let X = {1, 2, . . . , n}. Given a partition π : X =

X1 ∪X2 ∪ · · · ∪Xk, the matrix M can be correspondingly partitioned as

M =

!

"""#

M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k
...

...
. . .

...
Mk,1 Mk,2 · · · Mk,k

$

%%%&
.

The quotient matrix of M with respect to π is defined as the k× k matrix Bπ = (bi,j)
k
i,j=1

where bi,j is the average value of all row sums of Mi,j. The partition π is equitable if each
block Mi,j of M has constant row sum bi,j. In this situation, the corresponding quotient
matrix Bπ is also called equitable.

Lemma 5. (Brouwer and Haemers [2]; Godsil and Royle[7]) Let M be a real symmetric
matrix, and let λ1(M) be the largest eigenvalue of M . If Bπ is an equitable quotient
matrix of M , then the eigenvalues of Bπ are also eigenvalues of M . Furthermore, if M
is nonnegative and irreducible, then λ1(M) = λ1(Bπ).

Recall that Bi
n,n1

denotes the graph obtained fromKn1∪Kn−n1 by adding i independent
edges between Kn1 and Kn−n1 .

Lemma 6. Let i ! 1, a ! i+ 1 and n ! 2a+ 2. Then

ρ(Bi
n,a+1) < ρ(Bi

n,a).

Proof. Since Bi
n,a contains Kn−a as a proper subgraph, we have ρ(Bi

n,a) > ρ(Kn−a) =
n− a− 1. Note that A(Bi

n,a) has the equitable quotient matrix

Ca
π =

'

(()

i− 1 a− i 1 0
i a− (i+ 1) 0 0
1 0 i− 1 n− (a+ i)
0 0 i n− (a+ i+ 1)

*

++, .

By a simple calculation, the characteristic polynomial of Ca
π is

ϕ(Ca
π , x) = x4+(4−n)x3+(an−a2−3n+5)x2+2(an−a2−i−n+1)x−i2+in−2i.

Also note that A(Bi
n,a+1) has the equitable quotient matrix Ca+1

π , which is obtained by
replacing a with a+ 1 in Ca

π . As n ! 2a+ 2, we have

ϕ(Ca+1
π , x)− ϕ(Ca

π , x) = x(x+ 2)(n− (2a+ 1)) > 0

for all x ! n− a− 1. This implies that λ1(C
a+1
π ) < λ1(C

a
π). Therefore, by Lemma 5, we

have ρ(Bi
n,a+1) < ρ(Bi

n,a), and the result follows.
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Lemma 7. (See [14, 22]) Let G be a graph on n vertices and m edges with minimum
degree δ ! 1. Then

ρ(G) " δ − 1

2
+

-
2m− nδ +

(δ + 1)2

4
,

with equality if and only if G is either a δ-regular graph or a bidegreed graph in which each
vertex is of degree either δ or n− 1.

Lemma 8. (See [14, 22]) For nonnegative integers p and q with 2q " p(p − 1) and
0 " x " p− 1, the function f(x) = (x− 1)/2 +

.
2q − px+ (1 + x)2/4 is decreasing with

respect to x.

Lemma 9. Let a and b be two positive integers. If a ! b, then
/
a

2

0
+

/
b

2

0
<

/
a+ 1

2

0
+

/
b− 1

2

0
.

Proof. Note that a ! b. Then
/
a+ 1

2

0
+

/
b− 1

2

0
−
/
a

2

0
−
/
b

2

0
= a− b+ 1 > 0.

Thus the result follows.

For X ⊆ V (G), let G[X] be the subgraph of G induced by X, and let eG(X) be
the number of edges in G[X]. Particularly, let e(G) = eG(V (G)) denote the number
of edges of G. For X, Y ⊆ V (G), we denote by EG(X, Y ) the set of edges with one
endpoint in X and one endpoint in Y , and eG(X, Y ) = |EG(X, Y )|. In particular, let
∂G(X) = EG(X, V (G)−X).

Lemma 10. (See [12]) Let G be a graph with minimum degree δ and U be a non-empty
proper subset of V (G). If |∂G(U)| " δ − 1, then |U | ! δ + 1.

For any partition π of V (G), let EG(π) denote the set of edges in G whose endpoints
lie in different parts of π, and let eG(π) = |EG(π)|. A part is trivial if it contains a
single vertex. Let Z ⊂ V (G), and let π be a partition of V (G− Z) with n0 trivial parts
v1, v2, . . . , vn0 . Denote by nZ(π) =

1
1!i!n0

|Zi|, where Zi is the set of vertices in Z that
are adjacent to vi for 1 " i " n0.

The following three lemmas about rigid graphs will play crucial roles in the proof of
our main theorems.

Lemma 11. (See [11]) A graph G contains k edge-disjoint spanning rigid subgraphs if for
every Z ⊂ V (G) and every partition π of V (G−Z) with n0 trivial parts and n′

0 nontrivial
parts,

eG−Z(π) ! k(3− |Z|)n′
0 + 2kn0 − 3k − nZ(π).

Lemma 12. (See [4, 16]) Let G be a graph. Then G is globally rigid if and only if either
G is a complete graph on at most three vertices or G is 3-connected and redundantly rigid.
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Lemma 13. (See [20]) A graph G is a minimally rigid on n vertices and m edges if and
only if m = 2n− 3 and

eG(X) " 2|X|− 3

for X ⊆ V (G) with |X| ! 2.

3 Proof of the main theorems

In this section, we shall give the proofs of Theorems 2–4.

Proof of Theorem 2. Assume to the contrary that G is not rigid. Then G contains no
spanning rigid subgraphs. By Lemma 11, there exist a subset Z of V (G) and a partition
π of V (G − Z) with n0 trivial parts v1, v2, . . . , vn0 and n′

0 nontrivial parts V1, V2, . . . , Vn′
0

such that
eG−Z(π) " (3− |Z|)n′

0 + 2n0 − 4− nZ(π), (1)

where nZ(π) =
1

1!i!n0
|Zi|, and Zi is the set of vertices in Z that are adjacent to vi for

1 " i " n0. Note that dG−Z(vi) ! δ − |Zi|. Then

eG−Z(π) =
1

2

!

#
2

1!i!n′
0

|∂G−Z(Vi)|+
2

1!j!n0

dG−Z(vj)

$

&

! 1

2

!

#
2

1!i!n′
0

|∂G−Z(Vi)|+ δn0 −
2

1!j!n0

|Zj|

$

&

! 1

2

!

#
2

1!i!n′
0

|∂G−Z(Vi)|+ 6n0 − nZ(π)

$

& (since δ ! 6),

(2)

and therefore,

eG−Z(π) ! 3n0 −
1

2
nZ(π). (3)

We have the following two claims.

Claim 1. |Z| " 2.
Otherwise, |Z| ! 3. By (1),

eG−Z(π) " (3− |Z|)n′
0 + 2n0 − 4− nZ(π) " 2n0 − 4− nZ(π).

Combining this with (3) yields that n0 + 4 + 1
2
nZ(π) " 0, which is impossible because

n0 ! 0 and nZ(π) ! 0.

Claim 2. n′
0 ! 2.

Otherwise, n′
0 " 1. By Claim 1, 0 " |Z| " 2, and it follows from (1) that

eG−Z(π) " (3− |Z|)n′
0 + 2n0 − 4− nZ(π) " 2n0 − 1− nZ(π).
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Combining this with (3), we have n0 + 1 + 1
2
nZ(π) " 0, which is also impossible.

Note that ρ(G) ! ρ(B2
n,δ+1) > ρ(Kn−δ−1) = n− δ − 2. By Lemmas 7 and 8,

e(G) >
n2

2
− (2δ + 3)n

2
+ (δ + 1)2. (4)

Since G is 2-connected,
|∂G−Z(Vi)| ! 2− |Z| (5)

for 1 " i " n′
0. Recall that 0 " |Z| " 2 and n′

0 ! 2. We consider the following two
situations.

Case 1. 0 " |Z| " 1.
First suppose that n′

0 = 2. Then the partition π consists of two nontrivial parts V1, V2

and n0 trivial parts. Putting (5) into (2), we get

eG−Z(π) !
1

2
(|∂G−Z(V1)|+ |∂G−Z(V2)|+ 6n0 − nZ(π)) ! 2− |Z|+ 3n0 −

1

2
nZ(π).

Combining this with (1) and n′
0 = 2, we have

−n0 −
1

2
nZ(π)− |Z| ! 0,

and hence n0 = 0, nZ(π) = 0 and |Z| = 0 by the facts that n0 ! 0, nZ(π) ! 0 and |Z| ! 0.
This suggests that the partition π consists of two nontrivial parts V1, V2, and G−Z = G.
Then V (G) = V1 ∪ V2 and eG(V1, V2) = eG(π) " 2 by (1). Note that eG(V1, V2) =
1
2
(|∂G(V1)| + |∂G(V2)|) ! 2 by (5). Thus eG(V1, V2) = 2. Let EG(V1, V2) = {f1, f2}. We

assert that f1 and f2 are two independent edges. If not, suppose that f1∩f2 = {u}. Then
it is easy to see that u is a cut vertex of G, which is impossible because G is 2-connected.
Clearly, G is a spanning subgraph of B2

n,|V1|. Then

ρ(G) " ρ(B2
n,|V1|), (6)

with equality if and only if G ∼= B2
n,|V1|. Since δ ! 6 and |∂G(V1)| = |∂G(V2)| = 2 < δ − 1,

by Lemma 10, min{|V1|, |V2|} ! δ+1. Combining this with Lemma 6 and (6), we conclude
that

ρ(G) " ρ(B2
n,δ+1),

with equality if and only if G ∼= B2
n,δ+1. However, this is impossible because ρ(G) !

ρ(B2
n,δ+1) and G ≇ B2

n,δ+1.
Now suppose that n′

0 ! 3. Let δ′ denote the minimum degree of G − Z. Then
δ′ ! δ − |Z|. If the partition π contains at most one nontrivial part, say Vj (1 " j " n′

0),
such that |∂G−Z(Vj)| " δ′ − 1, then |∂G−Z(Vi)| ! δ′ for all i ∈ {1, . . . , n′

0} \ {j}. It follows
that

2eG−Z(π) =
2

1!i!n′
0

|∂G−Z(Vi)|+
2

1!j!n0

dG−Z(vj)

! (n′
0 − 1)δ′ + 2− |Z|+ δn0 − nZ(π) (since |∂G−Z(Vj)| ! 2− |Z|)
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! (n′
0 − 1)(δ − |Z|) + 2− |Z|+ δn0 − nZ(π) (since δ′ ! δ − |Z|)

= 2(3−|Z|)n′
0+4n0−8−2nZ(π)+(δ−6+|Z|)n′

0+(δ−4)n0−δ+10+nZ(π)

! 2(3−|Z|)n′
0+4n0−8−2nZ(π)+2δ−8+3|Z|+nZ(π) (since n′

0 ! 3 and n0 ! 0)

> 2(3−|Z|)n′
0+4n0−8−2nZ(π) (since δ ! 6, nZ(π) ! 0 and 0 " |Z| " 1),

which contradicts (1). Therefore, the partition π contains at least two nontrivial parts,
say V1, V2, such that |∂G−Z(Vi)| " δ′ − 1 for i = 1, 2. Furthermore, by Lemma 10, we
obtain |Vi| ! δ′ + 1 for i = 1, 2. We first consider |Z| = 0. Then δ′ = δ, and |Vi| ! δ + 1
for i = 1, 2. If |V1| = max{|V1|, |V2|, . . . , |Vn′

0
|} or |V2| = max{|V1|, |V2|, . . . , |Vn′

0
|}, since

|Vi| ! δ + 1 and |Vj| ! 2 for i = 1, 2 and 3 " j " n′
0, by Lemma 9,

2

1!i!n′
0

eG(Vi) "
/
δ + 1

2

0
+

/
n− δ − 3

2

0
+

/
2

2

0
.

If there exists a nontrivial part, say Vj, such that |Vj| = max{|V1|, |V2|, . . . , |Vn′
0
|} for some

3 " j " n′
0. Similarly,

2

1!i!n′
0

eG(Vi) " 2

/
δ + 1

2

0
+

/
n− 2δ − 2

2

0
.

Since |Vi| ! δ + 1 for i = 1, 2 and V3 ! 2, we have n0 " n−
1

1!i!3 |Vi| " n− 2δ − 4 and

n′
0 " n−(2δ+4)−n0

2
+ 3. Note that G− Z = G and nZ(π) = 0. Then

eG(π) " 3n′
0 + 2n0 − 4 " 3n

2
− 3δ − 1 +

n0

2
" 2n− 4δ − 3

by (1). Thus,

e(G) =
2

1!i!n′
0

eG(Vi) +
2

1!i!n0

eG(vi) + eG(π)

" max

3/
δ + 1

2

0
+

/
n− δ − 3

2

0
+

/
2

2

0
, 2

/
δ + 1

2

0
+

/
n− 2δ − 2

2

04
+ eG(π)

"
/
δ + 1

2

0
+

/
n− δ − 3

2

0
+

/
2

2

0
+ eG(π) (since δ ! 6 and n ! 2δ + 4)

" n2

2
− (2δ + 3)n

2
+ δ2 + 4.

Combining this with (4), we have δ < 3
2
, which is impossible because δ ! 6. Now

assume that |Z| = 1. Note that δ′ ! δ − 1. Then |Vi| ! δ′ + 1 ! δ for i = 1, 2.

Since |V3| ! 2, we have n′
0 " n−|Z|−n0−

!
1!i!3 |Vi|

2
+ 3 " n−n0−2δ+3

2
. Let Z = {w}. Then

dG(w)− nZ(π) " n− n0 − 1, and it follows from (1) that

eG−Z(π) + dG(w) " 2n′
0 + 2n0 − 4− nZ(π) + dG(w)

" 2n′
0 + n0 + n− 5

" 2n− 2δ − 2.
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Again by Lemma 9, we obtain

e(G) " max

3/
δ

2

0
+

/
n−|Z|−δ−2

2

0
+

/
2

2

0
, 2

/
δ

2

0
+

/
n−|Z|−2δ

2

04
+eG−Z(π)+dG(w)

"
/
δ

2

0
+

/
n−|Z|−δ−2

2

0
+

/
2

2

0
+ eG−Z(π) + dG(w) (since δ ! 6 and n ! 2δ+4)

" n2

2
− (2δ + 3)n

2
+ δ2 + δ + 5.

Combining this with (4), we have δ < 4, which is also impossible.

Case 2. |Z| = 2.
By (1), we have

eG−Z(π) " n′
0 + 2n0 − 4− nZ(π). (7)

If 2 " n′
0 " 3, combining (2), (5) and (7), we have

0 "
2

1!i!n′
0

|∂G−Z(Vi)| " 2n′
0 − 8− 2n0 − nZ(π) " −2,

a contradiction. Thus n′
0 ! 4. Let δ′ denote the minimum degree of G − Z. Then

δ′ ! δ − 2. If the partition π contains at most one nontrivial part, say Vj (1 " j " n′
0),

such that |∂G−Z(Vj)| " δ′ − 1, then |∂G−Z(Vi)| ! δ′ for all i ∈ {1, . . . , n′
0} \ {j}. It follows

that

2eG−Z(π) =
2

1!i!n′
0

|∂G−Z(Vi)|+
2

1!j!n0

dG−Z(vj)

! (n′
0 − 1)δ′ + δn0 − nZ(π)

! (n′
0 − 1)(δ − 2) + δn0 − nZ(π) (since δ′ ! δ − 2)

= (2n′
0 + 4n0 − 8− 2nZ(π)) + (δ − 4)n′

0 − δ + (δ − 4)n0 + nZ(π) + 10

! 2n′
0 + 4n0 − 8− 2nZ(π) + 3δ − 6 (since n′

0 ! 4, n0 ! 0 and nZ(π) ! 0)

> 2n′
0 + 4n0 − 8− 2nZ(π) (since δ ! 6),

contrary to (7). Therefore, the partition π contains at least two nontrivial parts, say V1, V2,
such that |∂G−Z(Vi)| " δ′−1 for i = 1, 2. Furthermore, by Lemma 10, |Vi| ! δ′+1 ! δ−1

for i = 1, 2, and hence n′
0 " n−|Z|−2(δ−1)

2
+ 2 = n

2
− δ + 2. Since |Z| = 2, we have

|∂G(Z)|+ eG(Z)− nZ(π) " 2(n− 2− n0) + 1, and it follows from (7) that

eG−Z(π)+|∂G(Z)|+eG(Z) " n′
0 + 2n− 7 " 5n

2
− δ − 5.

Recall that δ ! 6 and n ! 2δ + 4. By Lemma 9,

e(G) " max

3/
δ−1

2

0
+2

/
2

2

0
+

/
n−|Z|−δ−3

2

0
, 2

/
δ−1

2

0
+

/
2

2

0
+

/
n−|Z|−2δ

2

04

+eG−Z(π)+|∂G(Z)|+eG(Z)
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"
/
δ−1

2

0
+2

/
2

2

0
+

/
n−|Z|−δ−3

2

0
+ eG−Z(π)+|∂G(Z)|+eG(Z)

" n2

2
− (2δ + 6)n

2
+ δ2 + 3δ + 13.

Combining this with (4), we obtain n < 2
3
δ + 8, which is impossible because n ! 2δ + 4

and δ ! 6.
This completes the proof.

Recall that, for any partition π of V (G), EG(π) denotes the set of edges in G whose
ends lie in different parts of π, and eG(π) = |EG(π)|.

Proof of Theorem 3. Assume to the contrary that G is not globally rigid. Since G is a
3-connected graph with minimum degree δ ! 6 and order n ! 2δ + 4, by Lemma 12, we
see that G is not redundantly rigid. This suggests that there exists an edge f of G such
that G− f is not rigid. Furthermore, by Lemma 11, there exist a subset Z of V (G) and
a partition π of V (G− f − Z) with n0 trivial parts v1, v2, . . . , vn0 and n′

0 nontrivial parts
V1, V2, . . . , Vn′

0
such that

eG−f−Z(π) " (3− |Z|)n′
0 + 2n0 − 4− nZ(π). (8)

First we assume that f ∈ EG−Z(π). Then eG−f−Z(π) = eG−Z(π)− 1. By (8),

eG−Z(π) " (3− |Z|)n′
0 + 2n0 − 3− nZ(π). (9)

Recall that nZ(π) =
1

1!i!n0
|Zi|, where Zi is the set of vertices in Z that are adjacent to

vi for 1 " i " n0. Note that dG−Z(vi) ! δ − |Zi|. Then

eG−Z(π) =
1

2

!

#
2

1!i!n′
0

|∂G−Z(Vi)|+
2

1!j!n0

dG−Z(vj)

$

&

! 1

2

!

#
2

1!i!n′
0

|∂G−Z(Vi)|+ 6n0 − nZ(π)

$

& (since δ ! 6),

(10)

and hence

eG−Z(π) ! 3n0 −
1

2
nZ(π). (11)

We have the following two claims.

Claim 1. |Z| " 2.
Otherwise, |Z| ! 3. By (9),

eG−Z(π) " (3− |Z|)n′
0 + 2n0 − 3− nZ(π) " 2n0 − 3− nZ(π).

Combining this with (11), we have n0 +
1
2
nZ(π) + 3 " 0, which is impossible because

n0 ! 0 and nZ(π) ! 0.
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Claim 2. n′
0 ! 2.

Otherwise, n′
0 " 1. By Claim 1, 0 " |Z| " 2, and it follows from (9) that

eG−Z(π) " (3− |Z|)n′
0 + 2n0 − 3− nZ(π) " 2n0 − nZ(π). (12)

Combining this with (11), we have

n0 +
1

2
nZ(π) " 0.

This implies that all equalities hold in (11) and (12), and hence n′
0 = 1, n0 = 0, nZ(π) = 0

and |Z| = 0. Then from (8) we deduce that eG−f−Z(π) " −1, a contradiction.
Note that ρ(G) ! ρ(B3

n,δ+1) > ρ(Kn−δ−1) = n− δ − 2. By Lemmas 7 and 8,

e(G) >
n2

2
− (2δ + 3)n

2
+ (δ + 1)2. (13)

Since G is 3-connected,
|∂G−Z(Vi)| ! 3− |Z|. (14)

Recall that 0 " |Z| " 2 and n′
0 ! 2. We consider the following two situations.

Case 1. 0 " |Z| " 1.
First suppose that n′

0 = 2. Then the partition π consists of two nontrivial parts V1, V2

and n0 trivial parts. Putting (14) into (10), we get

eG−Z(π) !
1

2
(|∂G−Z(V1)|+ |∂G−Z(V2)|+ 6n0 − nZ(π)) ! 3− |Z|+ 3n0 −

1

2
nZ(π).

Combining this with (9) and n′
0 = 2, we have

−n0 −
1

2
nZ(π)− |Z| ! 0,

and hence n0 = 0, nZ(π) = 0 and |Z| = 0 by the facts n0 ! 0, nZ(π) ! 0 and |Z| ! 0.
This suggests that the partition π consists of two nontrivial parts V1, V2, and G−Z = G.
Then V (G) = V1 ∪ V2 and eG(V1, V2) = eG(π) " 3 by (9). Note that eG(V1, V2) =
1
2
(|∂G(V1)|+ |∂G(V2)|) ! 3 by (14). Thus eG(V1, V2) = 3. Let EG(V1, V2) = {f1, f2, f}. We

assert that f1, f2, f are three independent edges. If not, then G cannot be 3-connected, a
contradiction. Observe that G is a spanning subgraph of B3

n,|V1|. Then

ρ(G) " ρ(B3
n,|V1|), (15)

with equality if and only if G ∼= B3
n,|V1|. Since δ ! 6 and |∂G(V1)| = |∂G(V2)| = 3 < δ − 1,

by Lemma 10, min{|V1|, |V2|} ! δ + 1. Combining this with Lemma 6 and (15), we have

ρ(G) " ρ(B3
n,δ+1),

with equality if and only if G ∼= B3
n,δ+1. However, this is impossible because ρ(G) !

ρ(B3
n,δ+1) and G ≇ B3

n,δ+1. If n
′
0 ! 3, by using (13) and a similar analysis as in Case 1 of

Theorem 2, we also can deduce a contradiction.
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Case 2. |Z| = 2.
In this case, the proof is similar as in Case 2 of Theorem 2, and we omit it.
Now we assume that f /∈ EG−Z(π). Then

eG−Z(π) = eG−f−Z(π) " (3− |Z|)n′
0 + 2n0 − 4− nZ(π).

By similar arguments as above, we also can deduce a contradiction.
This completes the proof.

Proof of Theorem 4. Suppose that G has the maximum spectral radius among all min-
imally rigid graphs of order n ! 3. By Lemma 13, we have e(G) = 2n − 3 and
eG(X) " 2|X| − 3 for all X ⊆ V (G) with |X| ! 2. Note that K2∇(n − 2)K1 is a
minimally rigid graph. Then

ρ(G) ! ρ(K2∇(n− 2)K1) =
1 +

√
8n− 15

2
. (16)

Let δ denote the minimum degree of G. We assert that δ ! 2. In fact, if there exists some
vertex u ∈ V (G) such that dG(u) = 1, then eG(V (G) \ {u}) = 2n − 4. However, since
V (G) \ {u} = n − 1 ! 2, we have eG(V (G) \ {u}) " 2|V (G) \ {u}| − 3 = 2n − 5 by the
above argument, a contradiction. Then, by Lemmas 7 and 8,

ρ(G) " 1

2
+

-
2e(G)− 2n+

9

4
=

1 +
√
8n− 15

2
. (17)

Thus the equalities hold in (16) and (17). It follows that δ = 2 and G is either a 2-regular
graph, or a bidegreed graph in which each vertex is of degree 2 or n− 1 by Lemma 7. If
n = 3, then G ∼= K3, as required. Now suppose that n ! 4. Let t = |{v∈V (G)| dG(v) =
n−1}|. If 0 " t " 1, then e(G) < 2n − 3, and if t ! 3 then e(G) > 2n − 3, both are
impossible. Thus t = 2, and G ∼= K2∇(n− 2)K1.

This completes the proof.

4 Concluding remarks

In this paper, we provide a spectral radius condition for the rigidity (resp., globally
rigidity) of 2-connected (resp., 3-connected) graphs with given minimum degree in R2. In
particular, we give the answers to Problem 1 for k = 2, 3. Note that every 6-connected
graph is rigid (resp., globally rigid). Thus, the Problem 1 becomes more involved for
k = 4, 5. When k = 4, 5, by using similar analysis as Theorems 2 and 3, we can obtain
that a k-connected graph G is rigid (resp., globally rigid) if ρ(G) > ρ(Bk

n,δ+1). As B
k
n,δ+1

is both rigid and globally rigid for k = 4, 5, we end the paper by proposing the following
problem for further research.

Problem 14. Let k ∈ {4, 5}, and let G be a k-connected graph with minimum degree
δ ! 6 and order n ! 2δ + 4. Is it true that G is rigid (resp. globally rigid) when ρ(G) !
ρ(Bk

n,δ+1)?
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