Spectral radius conditions for the rigidity of graphs

Dandan Fan*
School of Mathematics
East China University of Science and Technology
Shanghai 200237, China
College of Mathematics and Physics
Xinjiang Agricultural University
Urumqi, Xinjiang 830052, China
ddfan0526@163.com
Xueyi Huang
School of Mathematics
East China University of Science and Technology
Shanghai 200237, China
huangxymath@163.com
Huiqiu Lin^{\dagger}
School of Mathematics
East China University of Science and Technology
Shanghai 200237, China
huiqiulin@126.com

Submitted: Jun 8, 2022; Accepted: Apr 6, 2023; Published: Apr 21, 2023
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Rigidity is the property of a structure that does not flex under an applied force. In the past several decades, the rigidity of graphs has been widely studied in discrete geometry and combinatorics. Laman (1970) obtained a combinatorial characterization of rigid graphs in \mathbb{R}^{2}. Lovász and Yemini (1982) proved that every 6 -connected graph is rigid in \mathbb{R}^{2}. Jackson and Jordán (2005) strengthened this result, and showed that every 6 -connected graph is globally rigid in \mathbb{R}^{2}. Thus every graph with algebraic connectivity greater than 5 is globally rigid in \mathbb{R}^{2}. In 2021, Cioabă, Dewar

[^0]and Gu improved this bound, and proved that every graph with minimum degree at least 6 and algebraic connectivity greater than $2+\frac{1}{\delta-1}$ (resp., $2+\frac{2}{\delta-1}$) is rigid (resp., globally rigid) in \mathbb{R}^{2}. In this paper, we study the rigidity of graphs in \mathbb{R}^{2} from the viewpoint of adjacency eigenvalues. Specifically, we provide a spectral radius condition for the rigidity (resp., globally rigidity) of 2 -connected (resp., 3 -connected) graphs with given minimum degree. Furthermore, we determine the unique graph attaining the maximum spectral radius among all minimally rigid graphs of order n.
Mathematics Subject Classifications: 05C50

1 Introduction

Arising from mechanics, the rigidity of graphs is an important research object in discrete geometry and combinatorics, and has various applications in material science, engineering and biological science [5, 6, 9, 18].

A d-dimensional bar-and-joint framework (G, p) is the combination of an undirected simple graph $G=(V(G), E(G))$ and a map $p: V(G) \rightarrow \mathbb{R}^{d}$ that assigns a point in \mathbb{R}^{d} to each vertex of G. Let $\|\cdot\|$ denote the Euclidean norm in \mathbb{R}^{d}. Two frameworks (G, p) and (G, q) are said to be equivalent (resp., congruent) if $\|p(u)-p(v)\|=\|q(u)-q(v)\|$ holds for all $u v \in E(G)$ (resp., for all $u, v \in V(G)$). A framework (G, p) is generic if the coordinates of its points are algebraically independent over \mathbb{Q}. The framework (G, p) is rigid in \mathbb{R}^{d} if there exists an $\varepsilon>0$ such that every framework (G, q) equivalent to (G, p) satisfying $\|p(u)-q(u)\|<\varepsilon$ for all $u \in V(G)$ is actually congruent to (G, p). According to [1], a generic framework (G, p) is rigid in \mathbb{R}^{d} if and only if every generic framework of G is rigid in \mathbb{R}^{d}. We say that a graph G is rigid in \mathbb{R}^{d} if every/some generic framework of G is rigid in \mathbb{R}^{d}, and is redundantly rigid in \mathbb{R}^{d} if $G-e$ is rigid in \mathbb{R}^{d} for every $e \in E(G)$. The framework (G, p) is globally rigid in \mathbb{R}^{d} if every framework that is equivalent to (G, p) is congruent to (G, p). In [8], it was shown that if there exists a globally rigid generic framework (G, p) in \mathbb{R}^{d}, then any other generic framework (G, q) is also globally rigid in \mathbb{R}^{d}. For this reason, we say that a graph G is globally rigid in \mathbb{R}^{d} if there exists a globally rigid generic framework (G, p) in \mathbb{R}^{d}.

In 1970, Laman [20] provided a combinatorial characterization for rigid graphs in \mathbb{R}^{2}. Since then, some vertex- or edge-connectivity conditions for a graph to be rigid or globally rigid in \mathbb{R}^{2} have been successively discovered. In 1982, Lovász and Yemini [21] constructed some 5 -connected non-rigid graphs, and proved that every 6 -connected graph is rigid. In 1992, Hendrickson [13] proved that every globally rigid graph with at least four vertices is 3 -connected and redundantly rigid. In 2005, Jackson and Jordán [15] proved that every 6 -connected graph is globally rigid. Later, they observed that a 6 -edge-connected graph G is globally rigid in \mathbb{R}^{2}, provided that $G-v$ is 4-edge-connected for all $v \in V(G)$ and $G-\{u, v\}$ is 2-edge-connected for all $u, v \in V(G)$ [16]. In 2007, Jackson, Servatius and Servatius [17] showed that every 4 -connected essentially 6-connected graph (see [19] for the definition) is globally rigid. Very recently, Gu, Meng, Rolek, Wang and Yu[10] proved that every 3 -connected essentially 9 -connected graph is globally rigid. Naturally,
we consider the following problem:
Problem 1. Which spectral conditions can guarantee that a graph is rigid or globally rigid in \mathbb{R}^{2} ?

For a graph G, let $D(G)$ denote the diagonal matrix of vertex degrees of G, and $A(G)$ denote the adjacency matrix of G. The Laplacian matrix of G is defined as $L(G)=$ $D(G)-A(G)$. The second least eigenvalue of $L(G)$, denoted by $\mu(G)$, is known as the algebraic connectivity of G. As the vertex-connectivity of G is not less than $\mu(G)$, the results in [21,15] imply that if $\mu(G)>5$ then G is globally rigid in \mathbb{R}^{2}. Based on some necessary conditions for packing rigid subgraphs, Cioabă, Dewar and Gu [3] strengthened this result, and proved that a graph G with minimum degree $\delta \geqslant 6$ is rigid in \mathbb{R}^{2} if $\mu(G)>2+\frac{1}{\delta-1}$, and is globally rigid in \mathbb{R}^{2} if $\mu(G)>2+\frac{2}{\delta-1}$.

In this paper, we focus on giving some answers to Problem 1 in terms of the (adjacency) spectral radius of graphs. The spectral radius of a graph G, denoted by $\rho(G)$, is the largest eigenvalue of its adjacency matrix $A(G)$. A graph is k-connected if removing fewer than k vertices always leaves the remaining graph connected. Let K_{n} denote the complete graph on n vertices, and $B_{n, n_{1}}^{i}$ denote the graph obtained from $K_{n_{1}} \cup K_{n-n_{1}}$ by adding i independent edges (with no common endvertex) between $K_{n_{1}}$ and $K_{n-n_{1}}$. The main results are as follows.

Theorem 2. Let G be a 2-connected graph with minimum degree $\delta \geqslant 6$ and order $n \geqslant$ $2 \delta+4$. If $\rho(G) \geqslant \rho\left(B_{n, \delta+1}^{2}\right)$, then G is rigid unless $G \cong B_{n, \delta+1}^{2}$.

Hendrickson [13] proved that every globally rigid graph in \mathbb{R}^{d} with at least $d+2$ vertices is $(d+1)$-connected and redundantly rigid. Thus it is necessary to assume that G is 3 -connected when we consider the global rigidity of G in \mathbb{R}^{2}.

Theorem 3. Let G be a 3 -connected graph with minimum degree $\delta \geqslant 6$ and order $n \geqslant$ $2 \delta+4$. If $\rho(G) \geqslant \rho\left(B_{n, \delta+1}^{3}\right)$, then G is globally rigid unless $G \cong B_{n, \delta+1}^{3}$.

A graph G is minimally rigid if G is rigid but $G-e$ is not rigid for all $e \in E(G)$. Note that a graph is rigid if and only if it has a minimally rigid spanning subgraph. In 1970, Leman [20] provided a characterization for minimally rigid graphs in \mathbb{R}^{2} by using the edge count property, and proved that a graph G with n vertices and m edges is a minimally rigid if and only if $m=2 n-3$ and $e_{G}(X) \leqslant 2|X|-3$ for all $X \subseteq V(G)$ with $|X| \geqslant 2$, where $e_{G}(X)$ is the number of edges of the subgraph $G[X]$ induced by X in G. Minimally rigid graphs are also called Leman graphs in \mathbb{R}^{2}.

The join of two graphs G and H, denoted by $G \nabla H$, is the graph obtained from $G \cup H$ by adding all possible edges between G and H. Based on Leman's characterization for minimally rigid graphs in \mathbb{R}^{2}, we determine the unique graph attaining the maximum spectral radius among all connected minimally rigid graphs of order n in \mathbb{R}^{2}.

Theorem 4. Let G be a connected minimally rigid graph of order $n \geqslant 3$. Then $\rho(G) \leqslant$ $\rho\left(K_{2} \nabla(n-2) K_{1}\right)$, with equality if and only if $G \cong K_{2} \nabla(n-2) K_{1}$.

2 Preliminaries

In this section, we list some basic concepts and lemmas which will be used later.
Let M be a real $n \times n$ matrix, and let $X=\{1,2, \ldots, n\}$. Given a partition $\pi: X=$ $X_{1} \cup X_{2} \cup \cdots \cup X_{k}$, the matrix M can be correspondingly partitioned as

$$
M=\left(\begin{array}{cccc}
M_{1,1} & M_{1,2} & \cdots & M_{1, k} \\
M_{2,1} & M_{2,2} & \cdots & M_{2, k} \\
\vdots & \vdots & \ddots & \vdots \\
M_{k, 1} & M_{k, 2} & \cdots & M_{k, k}
\end{array}\right)
$$

The quotient matrix of M with respect to π is defined as the $k \times k$ matrix $B_{\pi}=\left(b_{i, j}\right)_{i, j=1}^{k}$ where $b_{i, j}$ is the average value of all row sums of $M_{i, j}$. The partition π is equitable if each block $M_{i, j}$ of M has constant row sum $b_{i, j}$. In this situation, the corresponding quotient matrix B_{π} is also called equitable.

Lemma 5. (Brouwer and Haemers [2]; Godsil and Royle[7]) Let M be a real symmetric matrix, and let $\lambda_{1}(M)$ be the largest eigenvalue of M. If B_{π} is an equitable quotient matrix of M, then the eigenvalues of B_{π} are also eigenvalues of M. Furthermore, if M is nonnegative and irreducible, then $\lambda_{1}(M)=\lambda_{1}\left(B_{\pi}\right)$.

Recall that $B_{n, n_{1}}^{i}$ denotes the graph obtained from $K_{n_{1}} \cup K_{n-n_{1}}$ by adding i independent edges between $K_{n_{1}}$ and $K_{n-n_{1}}$.

Lemma 6. Let $i \geqslant 1, a \geqslant i+1$ and $n \geqslant 2 a+2$. Then

$$
\rho\left(B_{n, a+1}^{i}\right)<\rho\left(B_{n, a}^{i}\right) .
$$

Proof. Since $B_{n, a}^{i}$ contains K_{n-a} as a proper subgraph, we have $\rho\left(B_{n, a}^{i}\right)>\rho\left(K_{n-a}\right)=$ $n-a-1$. Note that $A\left(B_{n, a}^{i}\right)$ has the equitable quotient matrix

$$
C_{\pi}^{a}=\left[\begin{array}{cccc}
i-1 & a-i & 1 & 0 \\
i & a-(i+1) & 0 & 0 \\
1 & 0 & i-1 & n-(a+i) \\
0 & 0 & i & n-(a+i+1)
\end{array}\right]
$$

By a simple calculation, the characteristic polynomial of C_{π}^{a} is

$$
\varphi\left(C_{\pi}^{a}, x\right)=x^{4}+(4-n) x^{3}+\left(a n-a^{2}-3 n+5\right) x^{2}+2\left(a n-a^{2}-i-n+1\right) x-i^{2}+i n-2 i .
$$

Also note that $A\left(B_{n, a+1}^{i}\right)$ has the equitable quotient matrix C_{π}^{a+1}, which is obtained by replacing a with $a+1$ in C_{π}^{a}. As $n \geqslant 2 a+2$, we have

$$
\varphi\left(C_{\pi}^{a+1}, x\right)-\varphi\left(C_{\pi}^{a}, x\right)=x(x+2)(n-(2 a+1))>0
$$

for all $x \geqslant n-a-1$. This implies that $\lambda_{1}\left(C_{\pi}^{a+1}\right)<\lambda_{1}\left(C_{\pi}^{a}\right)$. Therefore, by Lemma 5, we have $\rho\left(B_{n, a+1}^{i}\right)<\rho\left(B_{n, a}^{i}\right)$, and the result follows.

Lemma 7. (See [14, 22]) Let G be a graph on n vertices and m edges with minimum degree $\delta \geqslant 1$. Then

$$
\rho(G) \leqslant \frac{\delta-1}{2}+\sqrt{2 m-n \delta+\frac{(\delta+1)^{2}}{4}}
$$

with equality if and only if G is either a δ-regular graph or a bidegreed graph in which each vertex is of degree either δ or $n-1$.

Lemma 8. (See [14, 22]) For nonnegative integers p and q with $2 q \leqslant p(p-1)$ and $0 \leqslant x \leqslant p-1$, the function $f(x)=(x-1) / 2+\sqrt{2 q-p x+(1+x)^{2} / 4}$ is decreasing with respect to x.

Lemma 9. Let a and b be two positive integers. If $a \geqslant b$, then

$$
\binom{a}{2}+\binom{b}{2}<\binom{a+1}{2}+\binom{b-1}{2} .
$$

Proof. Note that $a \geqslant b$. Then

$$
\binom{a+1}{2}+\binom{b-1}{2}-\binom{a}{2}-\binom{b}{2}=a-b+1>0 .
$$

Thus the result follows.
For $X \subseteq V(G)$, let $G[X]$ be the subgraph of G induced by X, and let $e_{G}(X)$ be the number of edges in $G[X]$. Particularly, let $e(G)=e_{G}(V(G))$ denote the number of edges of G. For $X, Y \subseteq V(G)$, we denote by $E_{G}(X, Y)$ the set of edges with one endpoint in X and one endpoint in Y, and $e_{G}(X, Y)=\left|E_{G}(X, Y)\right|$. In particular, let $\partial_{G}(X)=E_{G}(X, V(G)-X)$.

Lemma 10. (See [12]) Let G be a graph with minimum degree δ and U be a non-empty proper subset of $V(G)$. If $\left|\partial_{G}(U)\right| \leqslant \delta-1$, then $|U| \geqslant \delta+1$.

For any partition π of $V(G)$, let $E_{G}(\pi)$ denote the set of edges in G whose endpoints lie in different parts of π, and let $e_{G}(\pi)=\left|E_{G}(\pi)\right|$. A part is trivial if it contains a single vertex. Let $Z \subset V(G)$, and let π be a partition of $V(G-Z)$ with n_{0} trivial parts $v_{1}, v_{2}, \ldots, v_{n_{0}}$. Denote by $n_{Z}(\pi)=\sum_{1 \leqslant i \leqslant n_{0}}\left|Z_{i}\right|$, where Z_{i} is the set of vertices in Z that are adjacent to v_{i} for $1 \leqslant i \leqslant n_{0}$.

The following three lemmas about rigid graphs will play crucial roles in the proof of our main theorems.

Lemma 11. (See [11]) A graph G contains k edge-disjoint spanning rigid subgraphs if for every $Z \subset V(G)$ and every partition π of $V(G-Z)$ with n_{0} trivial parts and n_{0}^{\prime} nontrivial parts,

$$
e_{G-Z}(\pi) \geqslant k(3-|Z|) n_{0}^{\prime}+2 k n_{0}-3 k-n_{Z}(\pi) .
$$

Lemma 12. (See [4, 16]) Let G be a graph. Then G is globally rigid if and only if either G is a complete graph on at most three vertices or G is 3 -connected and redundantly rigid.

Lemma 13. (See [20]) A graph G is a minimally rigid on n vertices and m edges if and only if $m=2 n-3$ and

$$
e_{G}(X) \leqslant 2|X|-3
$$

for $X \subseteq V(G)$ with $|X| \geqslant 2$.

3 Proof of the main theorems

In this section, we shall give the proofs of Theorems 2-4.
Proof of Theorem 2. Assume to the contrary that G is not rigid. Then G contains no spanning rigid subgraphs. By Lemma 11, there exist a subset Z of $V(G)$ and a partition π of $V(G-Z)$ with n_{0} trivial parts $v_{1}, v_{2}, \ldots, v_{n_{0}}$ and n_{0}^{\prime} nontrivial parts $V_{1}, V_{2}, \ldots, V_{n_{0}^{\prime}}$ such that

$$
\begin{equation*}
e_{G-Z}(\pi) \leqslant(3-|Z|) n_{0}^{\prime}+2 n_{0}-4-n_{Z}(\pi), \tag{1}
\end{equation*}
$$

where $n_{Z}(\pi)=\sum_{1 \leqslant i \leqslant n_{0}}\left|Z_{i}\right|$, and Z_{i} is the set of vertices in Z that are adjacent to v_{i} for $1 \leqslant i \leqslant n_{0}$. Note that $d_{G-Z}\left(v_{i}\right) \geqslant \delta-\left|Z_{i}\right|$. Then

$$
\begin{align*}
e_{G-Z}(\pi) & =\frac{1}{2}\left(\sum_{1 \leqslant i \leqslant n_{0}^{\prime}}\left|\partial_{G-Z}\left(V_{i}\right)\right|+\sum_{1 \leqslant j \leqslant n_{0}} d_{G-Z}\left(v_{j}\right)\right) \\
& \geqslant \frac{1}{2}\left(\sum_{1 \leqslant i \leqslant n_{0}^{\prime}}\left|\partial_{G-Z}\left(V_{i}\right)\right|+\delta n_{0}-\sum_{1 \leqslant j \leqslant n_{0}}\left|Z_{j}\right|\right) \tag{2}\\
& \geqslant \frac{1}{2}\left(\sum_{1 \leqslant i \leqslant n_{0}^{\prime}}\left|\partial_{G-Z}\left(V_{i}\right)\right|+6 n_{0}-n_{Z}(\pi)\right) \quad(\text { since } \delta \geqslant 6),
\end{align*}
$$

and therefore,

$$
\begin{equation*}
e_{G-Z}(\pi) \geqslant 3 n_{0}-\frac{1}{2} n_{Z}(\pi) \tag{3}
\end{equation*}
$$

We have the following two claims.
Claim 1. $|Z| \leqslant 2$.
Otherwise, $|Z| \geqslant 3$. By (1),

$$
e_{G-Z}(\pi) \leqslant(3-|Z|) n_{0}^{\prime}+2 n_{0}-4-n_{Z}(\pi) \leqslant 2 n_{0}-4-n_{Z}(\pi)
$$

Combining this with (3) yields that $n_{0}+4+\frac{1}{2} n_{Z}(\pi) \leqslant 0$, which is impossible because $n_{0} \geqslant 0$ and $n_{Z}(\pi) \geqslant 0$.

Claim 2. $n_{0}^{\prime} \geqslant 2$.
Otherwise, $n_{0}^{\prime} \leqslant 1$. By Claim $1,0 \leqslant|Z| \leqslant 2$, and it follows from (1) that

$$
e_{G-Z}(\pi) \leqslant(3-|Z|) n_{0}^{\prime}+2 n_{0}-4-n_{Z}(\pi) \leqslant 2 n_{0}-1-n_{Z}(\pi)
$$

Combining this with (3), we have $n_{0}+1+\frac{1}{2} n_{Z}(\pi) \leqslant 0$, which is also impossible.
Note that $\rho(G) \geqslant \rho\left(B_{n, \delta+1}^{2}\right)>\rho\left(K_{n-\delta-1}\right)=n-\delta-2$. By Lemmas 7 and 8 ,

$$
\begin{equation*}
e(G)>\frac{n^{2}}{2}-\frac{(2 \delta+3) n}{2}+(\delta+1)^{2} \tag{4}
\end{equation*}
$$

Since G is 2 -connected,

$$
\begin{equation*}
\left|\partial_{G-Z}\left(V_{i}\right)\right| \geqslant 2-|Z| \tag{5}
\end{equation*}
$$

for $1 \leqslant i \leqslant n_{0}^{\prime}$. Recall that $0 \leqslant|Z| \leqslant 2$ and $n_{0}^{\prime} \geqslant 2$. We consider the following two situations.

Case 1. $0 \leqslant|Z| \leqslant 1$.
First suppose that $n_{0}^{\prime}=2$. Then the partition π consists of two nontrivial parts V_{1}, V_{2} and n_{0} trivial parts. Putting (5) into (2), we get

$$
e_{G-Z}(\pi) \geqslant \frac{1}{2}\left(\left|\partial_{G-Z}\left(V_{1}\right)\right|+\left|\partial_{G-Z}\left(V_{2}\right)\right|+6 n_{0}-n_{Z}(\pi)\right) \geqslant 2-|Z|+3 n_{0}-\frac{1}{2} n_{Z}(\pi) .
$$

Combining this with (1) and $n_{0}^{\prime}=2$, we have

$$
-n_{0}-\frac{1}{2} n_{Z}(\pi)-|Z| \geqslant 0,
$$

and hence $n_{0}=0, n_{Z}(\pi)=0$ and $|Z|=0$ by the facts that $n_{0} \geqslant 0, n_{Z}(\pi) \geqslant 0$ and $|Z| \geqslant 0$. This suggests that the partition π consists of two nontrivial parts V_{1}, V_{2}, and $G-Z=G$. Then $V(G)=V_{1} \cup V_{2}$ and $e_{G}\left(V_{1}, V_{2}\right)=e_{G}(\pi) \leqslant 2$ by (1). Note that $e_{G}\left(V_{1}, V_{2}\right)=$ $\frac{1}{2}\left(\left|\partial_{G}\left(V_{1}\right)\right|+\left|\partial_{G}\left(V_{2}\right)\right|\right) \geqslant 2$ by (5). Thus $e_{G}\left(V_{1}, V_{2}\right)=2$. Let $E_{G}\left(V_{1}, V_{2}\right)=\left\{f_{1}, f_{2}\right\}$. We assert that f_{1} and f_{2} are two independent edges. If not, suppose that $f_{1} \cap f_{2}=\{u\}$. Then it is easy to see that u is a cut vertex of G, which is impossible because G is 2-connected. Clearly, G is a spanning subgraph of $B_{n,\left|V_{1}\right|}^{2}$. Then

$$
\begin{equation*}
\rho(G) \leqslant \rho\left(B_{n,\left|V_{1}\right|}^{2}\right), \tag{6}
\end{equation*}
$$

with equality if and only if $G \cong B_{n,\left|V_{1}\right|}^{2}$. Since $\delta \geqslant 6$ and $\left|\partial_{G}\left(V_{1}\right)\right|=\left|\partial_{G}\left(V_{2}\right)\right|=2<\delta-1$, by Lemma $10, \min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \geqslant \delta+1$. Combining this with Lemma 6 and (6), we conclude that

$$
\rho(G) \leqslant \rho\left(B_{n, \delta+1}^{2}\right),
$$

with equality if and only if $G \cong B_{n, \delta+1}^{2}$. However, this is impossible because $\rho(G) \geqslant$ $\rho\left(B_{n, \delta+1}^{2}\right)$ and $G \nsubseteq B_{n, \delta+1}^{2}$.

Now suppose that $n_{0}^{\prime} \geqslant 3$. Let δ^{\prime} denote the minimum degree of $G-Z$. Then $\delta^{\prime} \geqslant \delta-|Z|$. If the partition π contains at most one nontrivial part, say $V_{j}\left(1 \leqslant j \leqslant n_{0}^{\prime}\right)$, such that $\left|\partial_{G-Z}\left(V_{j}\right)\right| \leqslant \delta^{\prime}-1$, then $\left|\partial_{G-Z}\left(V_{i}\right)\right| \geqslant \delta^{\prime}$ for all $i \in\left\{1, \ldots, n_{0}^{\prime}\right\} \backslash\{j\}$. It follows that

$$
\begin{aligned}
2 e_{G-Z}(\pi) & =\sum_{1 \leqslant i \leqslant n_{0}^{\prime}}\left|\partial_{G-Z}\left(V_{i}\right)\right|+\sum_{1 \leqslant j \leqslant n_{0}} d_{G-Z}\left(v_{j}\right) \\
& \geqslant\left(n_{0}^{\prime}-1\right) \delta^{\prime}+2-|Z|+\delta n_{0}-n_{Z}(\pi)\left(\text { since }\left|\partial_{G-Z}\left(V_{j}\right)\right| \geqslant 2-|Z|\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant\left(n_{0}^{\prime}-1\right)(\delta-|Z|)+2-|Z|+\delta n_{0}-n_{Z}(\pi)\left(\text { since } \delta^{\prime} \geqslant \delta-|Z|\right) \\
& =2(3-|Z|) n_{0}^{\prime}+4 n_{0}-8-2 n_{Z}(\pi)+(\delta-6+|Z|) n_{0}^{\prime}+(\delta-4) n_{0}-\delta+10+n_{Z}(\pi) \\
& \geqslant 2(3-|Z|) n_{0}^{\prime}+4 n_{0}-8-2 n_{Z}(\pi)+2 \delta-8+3|Z|+n_{Z}(\pi)\left(\text { since } n_{0}^{\prime} \geqslant 3 \text { and } n_{0} \geqslant 0\right) \\
& >2(3-|Z|) n_{0}^{\prime}+4 n_{0}-8-2 n_{Z}(\pi)\left(\text { since } \delta \geqslant 6, n_{Z}(\pi) \geqslant 0 \text { and } 0 \leqslant|Z| \leqslant 1\right),
\end{aligned}
$$

which contradicts (1). Therefore, the partition π contains at least two nontrivial parts, say V_{1}, V_{2}, such that $\left|\partial_{G-Z}\left(V_{i}\right)\right| \leqslant \delta^{\prime}-1$ for $i=1,2$. Furthermore, by Lemma 10 , we obtain $\left|V_{i}\right| \geqslant \delta^{\prime}+1$ for $i=1,2$. We first consider $|Z|=0$. Then $\delta^{\prime}=\delta$, and $\left|V_{i}\right| \geqslant \delta+1$ for $i=1,2$. If $\left|V_{1}\right|=\max \left\{\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{n_{0}^{\prime}}\right|\right\}$ or $\left|V_{2}\right|=\max \left\{\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{n_{0}^{\prime}}\right|\right\}$, since $\left|V_{i}\right| \geqslant \delta+1$ and $\left|V_{j}\right| \geqslant 2$ for $i=1,2$ and $3 \leqslant j \leqslant n_{0}^{\prime}$, by Lemma 9 ,

$$
\sum_{1 \leqslant i \leqslant n_{0}^{\prime}} e_{G}\left(V_{i}\right) \leqslant\binom{\delta+1}{2}+\binom{n-\delta-3}{2}+\binom{2}{2} .
$$

If there exists a nontrivial part, say V_{j}, such that $\left|V_{j}\right|=\max \left\{\left|V_{1}\right|,\left|V_{2}\right|, \ldots,\left|V_{n_{0}^{\prime}}\right|\right\}$ for some $3 \leqslant j \leqslant n_{0}^{\prime}$. Similarly,

$$
\sum_{1 \leqslant i \leqslant n_{0}^{\prime}} e_{G}\left(V_{i}\right) \leqslant 2\binom{\delta+1}{2}+\binom{n-2 \delta-2}{2} .
$$

Since $\left|V_{i}\right| \geqslant \delta+1$ for $i=1,2$ and $V_{3} \geqslant 2$, we have $n_{0} \leqslant n-\sum_{1 \leqslant i \leqslant 3}\left|V_{i}\right| \leqslant n-2 \delta-4$ and $n_{0}^{\prime} \leqslant \frac{n-(2 \delta+4)-n_{0}}{2}+3$. Note that $G-Z=G$ and $n_{Z}(\pi)=0$. Then

$$
e_{G}(\pi) \leqslant 3 n_{0}^{\prime}+2 n_{0}-4 \leqslant \frac{3 n}{2}-3 \delta-1+\frac{n_{0}}{2} \leqslant 2 n-4 \delta-3
$$

by (1). Thus,

$$
\begin{aligned}
e(G) & =\sum_{1 \leqslant i \leqslant n_{0}^{\prime}} e_{G}\left(V_{i}\right)+\sum_{1 \leqslant i \leqslant n_{0}} e_{G}\left(v_{i}\right)+e_{G}(\pi) \\
& \leqslant \max \left\{\binom{\delta+1}{2}+\binom{n-\delta-3}{2}+\binom{2}{2}, 2\binom{\delta+1}{2}+\binom{n-2 \delta-2}{2}\right\}+e_{G}(\pi) \\
& \leqslant\binom{\delta+1}{2}+\binom{n-\delta-3}{2}+\binom{2}{2}+e_{G}(\pi)(\text { since } \delta \geqslant 6 \text { and } n \geqslant 2 \delta+4) \\
& \leqslant \frac{n^{2}}{2}-\frac{(2 \delta+3) n}{2}+\delta^{2}+4 .
\end{aligned}
$$

Combining this with (4), we have $\delta<\frac{3}{2}$, which is impossible because $\delta \geqslant 6$. Now assume that $|Z|=1$. Note that $\delta^{\prime} \geqslant \delta-1$. Then $\left|V_{i}\right| \geqslant \delta^{\prime}+1 \geqslant \delta$ for $i=1,2$. Since $\left|V_{3}\right| \geqslant 2$, we have $n_{0}^{\prime} \leqslant \frac{n-|Z|-n_{0}-\sum_{1 \leqslant i \leqslant 3}\left|V_{i}\right|}{2}+3 \leqslant \frac{n-n_{0}-2 \delta+3}{2}$. Let $Z=\{w\}$. Then $d_{G}(w)-n_{Z}(\pi) \leqslant n-n_{0}-1$, and it follows from (1) that

$$
\begin{aligned}
e_{G-Z}(\pi)+d_{G}(w) & \leqslant 2 n_{0}^{\prime}+2 n_{0}-4-n_{Z}(\pi)+d_{G}(w) \\
& \leqslant 2 n_{0}^{\prime}+n_{0}+n-5 \\
& \leqslant 2 n-2 \delta-2
\end{aligned}
$$

Again by Lemma 9, we obtain

$$
\begin{aligned}
e(G) & \leqslant \max \left\{\binom{\delta}{2}+\binom{n-|Z|-\delta-2}{2}+\binom{2}{2}, 2\binom{\delta}{2}+\binom{n-|Z|-2 \delta}{2}\right\}+e_{G-Z}(\pi)+d_{G}(w) \\
& \leqslant\binom{\delta}{2}+\binom{n-|Z|-\delta-2}{2}+\binom{2}{2}+e_{G-Z}(\pi)+d_{G}(w)(\text { since } \delta \geqslant 6 \text { and } n \geqslant 2 \delta+4) \\
& \leqslant \frac{n^{2}}{2}-\frac{(2 \delta+3) n}{2}+\delta^{2}+\delta+5 .
\end{aligned}
$$

Combining this with (4), we have $\delta<4$, which is also impossible.
Case 2. $|Z|=2$.
By (1), we have

$$
\begin{equation*}
e_{G-Z}(\pi) \leqslant n_{0}^{\prime}+2 n_{0}-4-n_{Z}(\pi) \tag{7}
\end{equation*}
$$

If $2 \leqslant n_{0}^{\prime} \leqslant 3$, combining (2), (5) and (7), we have

$$
0 \leqslant \sum_{1 \leqslant i \leqslant n_{0}^{\prime}}\left|\partial_{G-Z}\left(V_{i}\right)\right| \leqslant 2 n_{0}^{\prime}-8-2 n_{0}-n_{Z}(\pi) \leqslant-2,
$$

a contradiction. Thus $n_{0}^{\prime} \geqslant 4$. Let δ^{\prime} denote the minimum degree of $G-Z$. Then $\delta^{\prime} \geqslant \delta-2$. If the partition π contains at most one nontrivial part, say $V_{j}\left(1 \leqslant j \leqslant n_{0}^{\prime}\right)$, such that $\left|\partial_{G-Z}\left(V_{j}\right)\right| \leqslant \delta^{\prime}-1$, then $\left|\partial_{G-Z}\left(V_{i}\right)\right| \geqslant \delta^{\prime}$ for all $i \in\left\{1, \ldots, n_{0}^{\prime}\right\} \backslash\{j\}$. It follows that

$$
\begin{aligned}
2 e_{G-Z}(\pi) & =\sum_{1 \leqslant i \leqslant n_{0}^{\prime}}\left|\partial_{G-Z}\left(V_{i}\right)\right|+\sum_{1 \leqslant j \leqslant n_{0}} d_{G-Z}\left(v_{j}\right) \\
& \geqslant\left(n_{0}^{\prime}-1\right) \delta^{\prime}+\delta n_{0}-n_{Z}(\pi) \\
& \geqslant\left(n_{0}^{\prime}-1\right)(\delta-2)+\delta n_{0}-n_{Z}(\pi)\left(\text { since } \delta^{\prime} \geqslant \delta-2\right) \\
& =\left(2 n_{0}^{\prime}+4 n_{0}-8-2 n_{Z}(\pi)\right)+(\delta-4) n_{0}^{\prime}-\delta+(\delta-4) n_{0}+n_{Z}(\pi)+10 \\
& \geqslant 2 n_{0}^{\prime}+4 n_{0}-8-2 n_{Z}(\pi)+3 \delta-6\left(\text { since } n_{0}^{\prime} \geqslant 4, n_{0} \geqslant 0 \text { and } n_{Z}(\pi) \geqslant 0\right) \\
& >2 n_{0}^{\prime}+4 n_{0}-8-2 n_{Z}(\pi)(\text { since } \delta \geqslant 6),
\end{aligned}
$$

contrary to (7). Therefore, the partition π contains at least two nontrivial parts, say V_{1}, V_{2}, such that $\left|\partial_{G-Z}\left(V_{i}\right)\right| \leqslant \delta^{\prime}-1$ for $i=1,2$. Furthermore, by Lemma $10,\left|V_{i}\right| \geqslant \delta^{\prime}+1 \geqslant \delta-1$ for $i=1,2$, and hence $n_{0}^{\prime} \leqslant \frac{n-|Z|-2(\delta-1)}{2}+2=\frac{n}{2}-\delta+2$. Since $|Z|=2$, we have $\left|\partial_{G}(Z)\right|+e_{G}(Z)-n_{Z}(\pi) \leqslant 2\left(n-2-n_{0}\right)+1$, and it follows from (7) that

$$
e_{G-Z}(\pi)+\left|\partial_{G}(Z)\right|+e_{G}(Z) \leqslant n_{0}^{\prime}+2 n-7 \leqslant \frac{5 n}{2}-\delta-5 .
$$

Recall that $\delta \geqslant 6$ and $n \geqslant 2 \delta+4$. By Lemma 9 ,

$$
\begin{aligned}
e(G) & \leqslant \max \left\{\binom{\delta-1}{2}+2\binom{2}{2}+\binom{n-|Z|-\delta-3}{2}, 2\binom{\delta-1}{2}+\binom{2}{2}+\binom{n-|Z|-2 \delta}{2}\right\} \\
& +e_{G-Z}(\pi)+\left|\partial_{G}(Z)\right|+e_{G}(Z)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant\binom{\delta-1}{2}+2\binom{2}{2}+\binom{n-|Z|-\delta-3}{2}+e_{G-Z}(\pi)+\left|\partial_{G}(Z)\right|+e_{G}(Z) \\
& \leqslant \frac{n^{2}}{2}-\frac{(2 \delta+6) n}{2}+\delta^{2}+3 \delta+13
\end{aligned}
$$

Combining this with (4), we obtain $n<\frac{2}{3} \delta+8$, which is impossible because $n \geqslant 2 \delta+4$ and $\delta \geqslant 6$.

This completes the proof.
Recall that, for any partition π of $V(G), E_{G}(\pi)$ denotes the set of edges in G whose ends lie in different parts of π, and $e_{G}(\pi)=\left|E_{G}(\pi)\right|$.

Proof of Theorem 3. Assume to the contrary that G is not globally rigid. Since G is a 3 -connected graph with minimum degree $\delta \geqslant 6$ and order $n \geqslant 2 \delta+4$, by Lemma 12 , we see that G is not redundantly rigid. This suggests that there exists an edge f of G such that $G-f$ is not rigid. Furthermore, by Lemma 11, there exist a subset Z of $V(G)$ and a partition π of $V(G-f-Z)$ with n_{0} trivial parts $v_{1}, v_{2}, \ldots, v_{n_{0}}$ and n_{0}^{\prime} nontrivial parts $V_{1}, V_{2}, \ldots, V_{n_{0}^{\prime}}$ such that

$$
\begin{equation*}
e_{G-f-Z}(\pi) \leqslant(3-|Z|) n_{0}^{\prime}+2 n_{0}-4-n_{Z}(\pi) \tag{8}
\end{equation*}
$$

First we assume that $f \in E_{G-Z}(\pi)$. Then $e_{G-f-Z}(\pi)=e_{G-Z}(\pi)-1$. By (8),

$$
\begin{equation*}
e_{G-Z}(\pi) \leqslant(3-|Z|) n_{0}^{\prime}+2 n_{0}-3-n_{Z}(\pi) . \tag{9}
\end{equation*}
$$

Recall that $n_{Z}(\pi)=\sum_{1 \leqslant i \leqslant n_{0}}\left|Z_{i}\right|$, where Z_{i} is the set of vertices in Z that are adjacent to v_{i} for $1 \leqslant i \leqslant n_{0}$. Note that $d_{G-Z}\left(v_{i}\right) \geqslant \delta-\left|Z_{i}\right|$. Then

$$
\begin{align*}
e_{G-Z}(\pi) & =\frac{1}{2}\left(\sum_{1 \leqslant i \leqslant n_{0}^{\prime}}\left|\partial_{G-Z}\left(V_{i}\right)\right|+\sum_{1 \leqslant j \leqslant n_{0}} d_{G-Z}\left(v_{j}\right)\right) \\
& \geqslant \frac{1}{2}\left(\sum_{1 \leqslant i \leqslant n_{0}^{\prime}}\left|\partial_{G-Z}\left(V_{i}\right)\right|+6 n_{0}-n_{Z}(\pi)\right) \quad(\text { since } \delta \geqslant 6), \tag{10}
\end{align*}
$$

and hence

$$
\begin{equation*}
e_{G-Z}(\pi) \geqslant 3 n_{0}-\frac{1}{2} n_{Z}(\pi) . \tag{11}
\end{equation*}
$$

We have the following two claims.
Claim 1. $|Z| \leqslant 2$.
Otherwise, $|Z| \geqslant 3$. By (9),

$$
e_{G-Z}(\pi) \leqslant(3-|Z|) n_{0}^{\prime}+2 n_{0}-3-n_{Z}(\pi) \leqslant 2 n_{0}-3-n_{Z}(\pi) .
$$

Combining this with (11), we have $n_{0}+\frac{1}{2} n_{Z}(\pi)+3 \leqslant 0$, which is impossible because $n_{0} \geqslant 0$ and $n_{Z}(\pi) \geqslant 0$.

Claim 2. $n_{0}^{\prime} \geqslant 2$.
Otherwise, $n_{0}^{\prime} \leqslant 1$. By Claim $1,0 \leqslant|Z| \leqslant 2$, and it follows from (9) that

$$
\begin{equation*}
e_{G-Z}(\pi) \leqslant(3-|Z|) n_{0}^{\prime}+2 n_{0}-3-n_{Z}(\pi) \leqslant 2 n_{0}-n_{Z}(\pi) . \tag{12}
\end{equation*}
$$

Combining this with (11), we have

$$
n_{0}+\frac{1}{2} n_{Z}(\pi) \leqslant 0
$$

This implies that all equalities hold in (11) and (12), and hence $n_{0}^{\prime}=1, n_{0}=0, n_{Z}(\pi)=0$ and $|Z|=0$. Then from (8) we deduce that $e_{G-f-Z}(\pi) \leqslant-1$, a contradiction.

Note that $\rho(G) \geqslant \rho\left(B_{n, \delta+1}^{3}\right)>\rho\left(K_{n-\delta-1}\right)=n-\delta-2$. By Lemmas 7 and 8 ,

$$
\begin{equation*}
e(G)>\frac{n^{2}}{2}-\frac{(2 \delta+3) n}{2}+(\delta+1)^{2} \tag{13}
\end{equation*}
$$

Since G is 3 -connected,

$$
\begin{equation*}
\left|\partial_{G-Z}\left(V_{i}\right)\right| \geqslant 3-|Z| . \tag{14}
\end{equation*}
$$

Recall that $0 \leqslant|Z| \leqslant 2$ and $n_{0}^{\prime} \geqslant 2$. We consider the following two situations.
Case 1. $0 \leqslant|Z| \leqslant 1$.
First suppose that $n_{0}^{\prime}=2$. Then the partition π consists of two nontrivial parts V_{1}, V_{2} and n_{0} trivial parts. Putting (14) into (10), we get

$$
e_{G-Z}(\pi) \geqslant \frac{1}{2}\left(\left|\partial_{G-Z}\left(V_{1}\right)\right|+\left|\partial_{G-Z}\left(V_{2}\right)\right|+6 n_{0}-n_{Z}(\pi)\right) \geqslant 3-|Z|+3 n_{0}-\frac{1}{2} n_{Z}(\pi) .
$$

Combining this with (9) and $n_{0}^{\prime}=2$, we have

$$
-n_{0}-\frac{1}{2} n_{Z}(\pi)-|Z| \geqslant 0
$$

and hence $n_{0}=0, n_{Z}(\pi)=0$ and $|Z|=0$ by the facts $n_{0} \geqslant 0, n_{Z}(\pi) \geqslant 0$ and $|Z| \geqslant 0$. This suggests that the partition π consists of two nontrivial parts V_{1}, V_{2}, and $G-Z=G$. Then $V(G)=V_{1} \cup V_{2}$ and $e_{G}\left(V_{1}, V_{2}\right)=e_{G}(\pi) \leqslant 3$ by (9). Note that $e_{G}\left(V_{1}, V_{2}\right)=$ $\frac{1}{2}\left(\left|\partial_{G}\left(V_{1}\right)\right|+\left|\partial_{G}\left(V_{2}\right)\right|\right) \geqslant 3$ by (14). Thus $e_{G}\left(V_{1}, V_{2}\right)=3$. Let $E_{G}\left(V_{1}, V_{2}\right)=\left\{f_{1}, f_{2}, f\right\}$. We assert that f_{1}, f_{2}, f are three independent edges. If not, then G cannot be 3-connected, a contradiction. Observe that G is a spanning subgraph of $B_{n,\left|V_{1}\right|}^{3}$. Then

$$
\begin{equation*}
\rho(G) \leqslant \rho\left(B_{n,\left|V_{1}\right|}^{3}\right), \tag{15}
\end{equation*}
$$

with equality if and only if $G \cong B_{n,\left|V_{1}\right|}^{3}$. Since $\delta \geqslant 6$ and $\left|\partial_{G}\left(V_{1}\right)\right|=\left|\partial_{G}\left(V_{2}\right)\right|=3<\delta-1$, by Lemma 10, $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \geqslant \delta+1$. Combining this with Lemma 6 and (15), we have

$$
\rho(G) \leqslant \rho\left(B_{n, \delta+1}^{3}\right),
$$

with equality if and only if $G \cong B_{n, \delta+1}^{3}$. However, this is impossible because $\rho(G) \geqslant$ $\rho\left(B_{n, \delta+1}^{3}\right)$ and $G \not \not B_{n, \delta+1}^{3}$. If $n_{0}^{\prime} \geqslant 3$, by using (13) and a similar analysis as in Case 1 of Theorem 2, we also can deduce a contradiction.

Case 2. $|Z|=2$.
In this case, the proof is similar as in Case 2 of Theorem 2, and we omit it.
Now we assume that $f \notin E_{G-Z}(\pi)$. Then

$$
e_{G-Z}(\pi)=e_{G-f-Z}(\pi) \leqslant(3-|Z|) n_{0}^{\prime}+2 n_{0}-4-n_{Z}(\pi) .
$$

By similar arguments as above, we also can deduce a contradiction.
This completes the proof.
Proof of Theorem 4. Suppose that G has the maximum spectral radius among all minimally rigid graphs of order $n \geqslant 3$. By Lemma 13, we have $e(G)=2 n-3$ and $e_{G}(X) \leqslant 2|X|-3$ for all $X \subseteq V(G)$ with $|X| \geqslant 2$. Note that $K_{2} \nabla(n-2) K_{1}$ is a minimally rigid graph. Then

$$
\begin{equation*}
\rho(G) \geqslant \rho\left(K_{2} \nabla(n-2) K_{1}\right)=\frac{1+\sqrt{8 n-15}}{2} . \tag{16}
\end{equation*}
$$

Let δ denote the minimum degree of G. We assert that $\delta \geqslant 2$. In fact, if there exists some vertex $u \in V(G)$ such that $d_{G}(u)=1$, then $e_{G}(V(G) \backslash\{u\})=2 n-4$. However, since $V(G) \backslash\{u\}=n-1 \geqslant 2$, we have $e_{G}(V(G) \backslash\{u\}) \leqslant 2|V(G) \backslash\{u\}|-3=2 n-5$ by the above argument, a contradiction. Then, by Lemmas 7 and 8 ,

$$
\begin{equation*}
\rho(G) \leqslant \frac{1}{2}+\sqrt{2 e(G)-2 n+\frac{9}{4}}=\frac{1+\sqrt{8 n-15}}{2} . \tag{17}
\end{equation*}
$$

Thus the equalities hold in (16) and (17). It follows that $\delta=2$ and G is either a 2-regular graph, or a bidegreed graph in which each vertex is of degree 2 or $n-1$ by Lemma 7. If $n=3$, then $G \cong K_{3}$, as required. Now suppose that $n \geqslant 4$. Let $t=\mid\left\{v \in V(G) \mid d_{G}(v)=\right.$ $n-1\} \mid$. If $0 \leqslant t \leqslant 1$, then $e(G)<2 n-3$, and if $t \geqslant 3$ then $e(G)>2 n-3$, both are impossible. Thus $t=2$, and $G \cong K_{2} \nabla(n-2) K_{1}$.

This completes the proof.

4 Concluding remarks

In this paper, we provide a spectral radius condition for the rigidity (resp., globally rigidity) of 2 -connected (resp., 3 -connected) graphs with given minimum degree in \mathbb{R}^{2}. In particular, we give the answers to Problem 1 for $k=2$, 3 . Note that every 6 -connected graph is rigid (resp., globally rigid). Thus, the Problem 1 becomes more involved for $k=4,5$. When $k=4,5$, by using similar analysis as Theorems 2 and 3 , we can obtain that a k-connected graph G is rigid (resp., globally rigid) if $\rho(G)>\rho\left(B_{n, \delta+1}^{k}\right)$. As $B_{n, \delta+1}^{k}$ is both rigid and globally rigid for $k=4,5$, we end the paper by proposing the following problem for further research.

Problem 14. Let $k \in\{4,5\}$, and let G be a k-connected graph with minimum degree $\delta \geqslant 6$ and order $n \geqslant 2 \delta+4$. Is it true that G is rigid (resp. globally rigid) when $\rho(G) \geqslant$ $\rho\left(B_{n, \delta+1}^{k}\right)$?

Acknowledgments

The authors would like to thank the anonymous referee for his/her valuable comments and helpful suggestions.

References

[1] L. Asimow, B. Roth. The rigidity of graphs. Trans. Amer. Math. Soc., 245:279-289, 1978.
[2] A. E. Brouwer, W. H. Haemers. Spectra of Graphs. Springer, Berlin, 2011.
[3] S. M. Cioabă, S. Dewar, X. Gu. Spectral conditions for graph rigidity in the Euclidean plane. Discrete Math., 344(10):112527, 2021.
[4] R. Connelly. Generic global rigidity. Discrete Comput. Geom., 33(4):549-563, 2005.
[5] M. Cucuringu, A. Singer, D. Cowburn. Eigenvector synchronization, graph rigidity and the molecule problem. Inf. Inference, 1(1):21-67, 2012.
[6] M. Gáspár, P. Csermely. Rigidity and flexibility of biological networks. Brief. Funct. Genomics, 11(6):443-456, 2012.
[7] C. Godsil, G. Royle. Algebraic Graph Theory. Graduate Texts in Mathematices, 207, Springer-Verlag, New York, 2001.
[8] S. J. Gortler, A. Healy, D. Thurston. Characterizing generic global rigidity. Am. J. Math., 132(4):897-939, 2010.
[9] J. Graver, B. Servatius, H. Servatius. Combinatorial Rigidity. Graduate Studies in Mathematics, vol. 2, American Mathematical Society, 1993.
[10] X. Gu, W. Meng, M. Rolek, Y. Wang, G. Yu. Sufficient conditions for 2-dimensional global rigidity. SIAM J. Discrete Math., 35(4):2520-2534, 2021.
[11] X. Gu. Spanning rigid subgraph packing and sparse subgraph covering. SIAM J. Discrete Math., 32(2):1305-1313, 2018.
[12] X. Gu, H. Lai, P. Li, S. Yao. Edge-disjoint spanning trees, edge connectivity, and eigenvalues in graphs. J. Graph Theory, 81(1):16-29, 2016.
[13] B. Hendrickson. Conditions for unique graph realizations. SIAM J. Comput., 21(1): 65-84, 1992.
[14] Y. Hong, J. Shu, K. Fang. A sharp upper bound of the spectral radius of graphs. J. Combin. Theory Ser. B, 81:177-183, 2001.
[15] B. Jackson, T. Jordán. Connected rigidity matroids and unique realizations of graphs. J. Combin. Theory Ser. B, 94(1):1-29, 2005.
[16] B. Jackson, T. Jordán. A sufficient connectivity condition for generic rigidity in the plane. Discrete Appl. Math., 157(8):1965-1968, 2009.
[17] B. Jackson, B. Servatius, H. Servatius. The 2-dimensional rigidity of certain families of graphs. J. Graph Theory, 54(2):154-166, 2007.
[18] T. Jordán. Combinatorial Rigidity: Graphs and Matroids in the Theory of Rigid Frameworks. Discrete Geometric Analysis, 34:33-112, 2016.
[19] H. Lai, Y. Shao, H. Wu, J. Zhou. Every 3-connected, essentially 11-connected line graph is Hamiltonian. J. Combin. Theory Ser. B, 96(4):571-576, 2006.
[20] G. Laman. On graphs and rigidity of plane skeletal structures. J. Engrg. Math., 4:331-340, 1970.
[21] L. Lovász, Y. Yemini. On generic rigidity in the plane. SIAM J. Algebraic Discrete Methods, 3(1):91-98, 1982.
[22] V. Nikiforov. Some inequalities for the largest eigenvalue of a graph. Combin. Probab. Comput., 11(2):179-189, 2002.

[^0]: *Sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant Nos. 2022D01B103).
 ${ }^{\dagger}$ Corresponding author. Supported by the National Natural Science Foundation of China (Grant Nos. 12271162), Natural Science Foundation of Shanghai (No. 22ZR1416300).

