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Abstract

The paper considers ribbon tilings of large regions and their per-tile entropy (the
logarithm of the number of tilings divided by the number of tiles). For tilings of
general regions by ribbon tiles of length n, we give an upper bound on the per-tile
entropy as n − 1. For growing rectangular regions, we prove the existence of the
asymptotic per-tile entropy and show that it is bounded from below by log2(n/e)
and from above by log2(en). For growing generalized “Aztec Diamond” regions and
for growing “stair” regions, the asymptotic per-tile entropy is calculated exactly as
1/2 and log2(n+ 1)− 1, respectively.

Mathematics Subject Classifications: 52C20, 05B50, 60C05

1 Introduction

Let a region R ∈ R2 be a union of finite number of unit squares [k, k+ 1]× [l, l+ 1], with
k, l ∈ Z. Assume that the interior of R is connected and simply connected. We consider
tilings of such regions by ribbon tiles.

Definition 1.1. A ribbon of length n, or an n-ribbon, is a connected sequence of n unit
squares, each of which (except the first one) comes directly above or to the right of its
predecessor.

These objects are also called border strips or rim hooks in the literature.1 See an
illustration in Figures 1 and 2. Dominoes are a particular case of ribbon tiles with n = 2.
Ribbon tiles with n = 3 are called (right-oriented) 180-trominoes in [AGMSV20].2 The
study of ribbon tilings for n > 3 was initiated in [Pak00], and developed extensively in
[Sheffield02].

1See [Stanley99], Section 7.17, p.345
2However, in [AGMSV20] strictly horizontal or strictly vertical tiles are excluded, so there are four

types of 3-ribbons but only two types of right-oriented 180-trominoes.
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Figure 1: Eight types of 4-ribbons.
Figure 2: A ribbon tiling of a 4× 8 rect-
angle.

Typical questions about tilings are:

1. Is it possible to tile a region R?

2. How many different tilings exist?

3. What is the distribution of tile shapes in a typical tiling?

4. How to sample random tilings efficiently?

The existence question was studied in [Sheffield02], who gave an algorithm for checking
if a simply-connected region is tileable by n-ribbons. The algorithm is linear in the area
of the region. In [AGMSV20], it was shown that for general regions (which are allowed
to be non-simply connected with arbitrary number of holes), the existence of tilings by
180-trominoes is an NP -complete decision problem.

In this paper, we focus on question (2), the question of enumeration. For enumeration
problems, much is known about domino tilings and lozenge tilings in the triangular lattice,
and precious little is known about any other types of tilings. An exception is tilings by
T -tetrominoes, where the enumeration of tilings has been related to the evaluation of
the Tutte graph polynomial at the argument pair (3, 3) (see [KP04] and [Merino08]). In
addition, some numerical results have been obtained in [HW15] for octagonal tilings. The
goal of this paper is to rectify to a certain extent this deplorable scarcity of enumeration
results.

Let us define the per-tile entropy of n-ribbon tilings of a region R as the binary
logarithm of the number of tilings divided by the number of ribbons in each tiling, that
is,

Entn(R) =
log2(|Tn(R)|)

T
,

where Tn is the set of all n-ribbon tilings of the region R, and T is the number of tiles in
each tiling (that is, T = Area(R)/n).
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Suppose we consider a sequence of regions
(
Rt

)∞
t=1

with At = area(Rt)→∞ as t→∞.
Then we are interested in the existence and the value of the limit

µ(n)(Rt) = lim
t→∞

Entn(Rt) = lim
t→∞

log2

∣∣Tn(Rt)
∣∣

At/n
.

For domino tilings of rectangles and of Aztec diamonds, this limit can be calculated
explicitly due to formulas obtained in [Kasteleyn61] and [TF61] in the case of rectangles,
and in [EKLP92] in the case of Aztec diamonds. In particular, for a fixed N , and M →∞,
the formulas for the number of domino tilings imply that

lim
M→∞

log2

∣∣T (RN,M)
∣∣

(NM)/2
=

2

N

bN/2c∑
l=1

log2

(
cos

lπ

N + 1
+

√
1 + cos2

lπ

N + 1

)
If both N and M approach ∞, then the limit is

µ(2)(“Rectangle”) =
2G

π ln 2
= 0.841 266 940 7 . . . ,

where G denotes the Catalan constant (G = 1− 3−2 + 5−2 − 7−2 + . . .).
For the tilings of the “Aztec Diamond”, we have

µ(2)(“AD”) =
1

2
< µ(2)(“Rectangle”).

More generally, let R be a region in R2 bounded by a piecewise smooth, simple closed
curve ∂R, without cusps. Approximate R by a region Rε = R ∩ εZ2. Then, it was shown
in [CKP01] that the asymptotic growth in the number of domino tilings of Rε, ε → 0,
and therefore the entropy of the set of tilings, can be described using a certain functional
on height functions associated with domino tilings.

For ribbon tilings, it is not difficult to calculate that the number of tilings of an n×n
square by n-ribbons is n! (see Lemma 1 below). If we let n grow then we obtain the
entropy of log2(n!)/n ∼ log2(n) − log2(e). However, in this limit we let both the region
size and the ribbon length grow. It would be more natural to have the length of the
ribbons fixed and the size of the region growing to infinity.

A glimpse of what might happen in this case can be obtained from a result in [AL19],
which gives the number of n-ribbon tilings for n×2n rectangle. Let us denote this number
an :=

∣∣Tn(Rn,2n)
∣∣. The formula is

an =
1

2

n∑
i=1

i(n− i+ 1)

n+ 2

(
n− 1

i− 1

)(
n+ 3

i+ 1

)
ai−1an−i,

with the initial condition a0 = 1. For example, a1 = 1, a2 = 5, a3 = 61, a4 = 1379. (This
is sequence A115047 in OEIS.)
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Somewhat mysteriously, these numbers coincide with Weil-Peterson volumes of moduli
spaces of algebraic curves, and for their asymptotic expression we have:

an =
(2n)!

Cn

(
c1 −

c2

n
+ . . .

)
,

where C = 2.496918339 . . . is a constant that can be expressed in terms of Bessel functions
and their derivatives (see formula (0.9) in [KMZ96]).

So, if n→∞, we have

log2 an
2n

∼ log2(2n)− log2 e−
1

2
log2C

= log2 n− log2 e+ 1− 1

2
log2C,

which shows that changing the n× n square to the n× 2n rectangle leads to a significant
increase in the limiting per tile entropy by 1 − 1

2
log2C = 0.339926 . . .. However, in this

example we still have the situation in which both the region size and the ribbon length
grow. In our considerations below, we will focus on the limit in which the ribbon length
is fixed while the region size grows to infinity.

Other enumeration results for ribbon tilings were also obtained in [Stanley99] and
[Stanley02]. These results hold for ribbon tilings that are allowed to have ribbons of
varying length, which is different from the situation we consider here. We explain Stanley’s
results and compare them with our results in Appendix.

Finally, a recent paper [Richter23] considers coverings of rectangles by monotonous
polyominoes which are close relatives of our ribbon tiles. In coverings, as distinct from
tilings, the tiles can overlap and the focus of [Richter23] is on the minimal number of tiles
needed to cover a rectangle rather than on the number of tilings.

In this paper, we prove that for an arbitrary region the per-tile entropy for n-ribbon
tilings is bounded from above by n − 1. For growing rectangular regions, we prove that
the per-tile entropy converges to a finite limit and we bound the limit from below by
log2(n/e) and from above by log2(en). This property, that the per-tile entropy increases
in the length of the ribbon tile is not universal, since we show that for tilings of generalized
Aztec diamonds, the entropy is always 1/2, for all values of n.

Then, in Theorem 2.6 we calculate the exact value of the asymptotic entropy for certain
stair regions provided that ribbon tiles have odd length n. In this case, the asymptotic
entropy equals log2(n + 1)− 1 = log2(n)− 1 + o(1). In another study (which is going to
be published separately), we show that in the case of thin rectangles of height M = n
and growing width N , the asymptotic entropy is bounded from above by log2 n. Together
these results suggest that it would be interesting to calculate

lim
n→∞

[
µ(n)(Rt)− log2(n)

]
exactly for a family of rectangles Rt that grows both in width and length.

The rest of the paper is organized as follows. In Section 2, we explain our results in
more detail. In Section 3, we provide proofs. And in Appendix, we describe Stanley’s
enumeration results for ribbon tilings and compare them with our findings.
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2 Results

First, we establish a simple general upper bound on the number of n-ribbon tilings.

Theorem 2.1. Let R be an arbitrary simply connected region of the square lattice which
is a union of nT squares. Then the number of tilings of R by n-ribbons is bounded from
above by 2(n−1)T . In particular, for arbitrary sequence of regions

(
Rt

)∞
t=1

with growing
area At,

lim sup
t→∞

log2

∣∣Tn(Rt)
∣∣

At/n
6 n− 1

For rectangular regions, the existence result for the entropy was shown by Yinsong
Chen in his Ph.D. thesis ([Chen20]). We provide a proof for the reader’s convenience.

Let RM,N denote a rectangle with M rows and N columns and let
∣∣TM,N

∣∣ be the
number of n-ribbon tilings of this region.

Theorem 2.2. For a sequence of (Rt)
∞
t=1 of Mt×Nt rectangles, assume that both Mt and

Nt → ∞ as t → ∞ and that rectangles RMt,Nt are all tileable. Then the following limit
exists and finite:

µ(n)(Rt) := lim
t→∞

log2

∣∣TMt,Nt

∣∣
Tt

= sup
M,N

log2

∣∣TM,N

∣∣
T

6 n− 1,

where T = MN/n denote the number of ribbons in each tiling of the rectangle RM,N .

We can further give a lower bound on the entropy.

Theorem 2.3. For a sequence of (Rt)
∞
t=1 of Mt×Nt rectangles, assume that both Mt and

Nt →∞ as t→∞ and that rectangles RMt,Nt are all tileable. Then,

µ(n)(Rt) > log2 n− log2 e+ n−1
(1

2
log2 n+ log2

√
2π
)
.

Observe that while the lower bound is growing in n, this bound and the upper bound
in Theorem 2.1 are far apart. However, for rectangular regions we can give a better upper
bound than that in Theorem 2.1.

Theorem 2.4. For a sequence of (Rt)
∞
t=1 of Mt×Nt rectangles, assume that both Mt and

Nt →∞ as t→∞ and that rectangles RMt,Nt are all tileable. Then,

µ(n)(Rt) 6 log2 n+ log2 e.

Besides these results, we also have exact expressions for the tiling entropy of some
non-rectangular regions.

First, note that usual Aztec diamonds are non-tileable by n-ribbons if n > 3. (For
the case n = 3, see Theorem 17 in [AGMSV20].) For this reason, we consider generalized
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Figure 3: A tiling of AD(3, 3, 1) by 3-
ribbons.

Figure 4: A tiling of AD(4, 3, 0) by 3-
ribbons.

Aztec diamonds which are tileable by n-ribbons. We define a generalized Aztec diamond
region AD(N, n, k) as shown in Figure 3. The parameter N measures the size of the
region, – the number of columns equals 2N , and the two longest columns can be covered
by N ribbon tiles. The parameters k and n satisfy inequalities 0 6 k 6 n − 2, and n
corresponds to the length of ribbons which will be used to tile the region, while k is the
“offset” in the diamond shape. That is, k measures the amount by which one of the
largest columns is shifted relative to the other one. The region AD(N, 2, 0) is the usual
Aztec diamond.

Note that AD(N, n, k) can be tiled by N(N + 1) of n-ribbons. Two ribbon tilings of
generalized Aztec diamonds are shown for illustration in the Figures 3 and 4.

Theorem 2.5. The number of tilings of region AD(N, n, k) by n-ribbons equals 2N(N+1)/2,
and as N →∞, the limit per-tile entropy for this sequence of these regions is µ(n) = 1/2.

In particular, the per-tile entropy is not zero but it does not depend on the length of
ribbon tiles, in contrast with results for the rectangular regions.

Remark. The proof of this Theorem in Section 3.6 essentially builds a bijection be-
tween domino tilings of the Aztec Diamond AD(N, 2, 0) and n-ribbon tilings of
AD(N, n, k). Examples suggest that under this bijection vertical dominoes are mapped
to vertical n-ribbons and horizontal dominoes are mapped to ribbon tiles which can have
two possible types. Both of these types are vertical except for exactly one horizontal step.
In particular, one can observe in random tilings of AD(N, n, k) an analogue of the Aztec
circle effect characteristic for domino tilings of the regular Aztec Diamond.

Finally, let us define the stair region St
(n)
M of size M × n as shown in Figures 5 and 6.

That is, a stair St
(n)
M has M rows, the length of each row is n, and each row is offset by 1

square to the right relative to the row below.
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Figure 5: A tiling of a stair St
(3)
7 by 3-

ribbons
Figure 6: A tiling of a stair St

(5)
7 by 5-

ribbons

Theorem 2.6. Let {St(n)
M }
∣∣∣∞
M=1

be a sequence of M ×n stairs. For every odd n, the limit

tiling entropy for this family of regions equals log2(n+ 1)− 1.

In this case the entropy µ(n) is growing with n as log2(n). This is similar to what is
observed in the case of rectangular regions.

3 Proofs

3.1 Preliminaries

First of all, let us introduce some notation. Let sxy denote the square whose south-west
corner has coordinates (x, y). We will say that a level of a square sxy is l(sxy) = x + y.
The root square in a tile is the square with the smallest level. The level of the tile is the
level of its root square.

It was proved in [Sheffield02] that, for a given region R, each tiling has the same
number of tiles in a specific level. In particular, in each level we can enumerate tiles from
left to right (from the tile with the smallest x-coordinate of its root square to the tile with
the largest x-coordinate). Then, let tl,i, i = 1, . . . , kl denote the i-th tile in the level l in
this enumeration. Here kl depends only on R. This enumeration gives us an unambiguous
way to refer to a specific tile in any tiling of region R.

Next, let us describe a couple of constructions from [Sheffield02]. First, every simply
connected region R can be put in correspondence with a graph GR whose vertices are
identified with tiles tl,i and, additionally, with squares on the border of the region. We
will describe below how the edges are defined. Some edges in the graph GR are endowed
with an orientation which depends only on region R but not on the tiling. These edges are
called forced. This construction gives a graph GR with a partial orientation τR. A second
construction shows that each ribbon tiling of R determines a complete acyclic orientation
τ on the edges of this graph which is in agreement with τR.
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One of the central results in [Sheffield02], is that every acyclic orientation τ on the
graph GR that extends the partial orientation τR can be realized by a ribbon tiling of
region R. This gives a bijection between acyclic orientations on GR extending τR and
ribbon tilings of R.

For details of these constructions, see [Sheffield02]. Here we want to briefly explain to
the reader how to build graph GR and partial orientation τR, and how the tilings can be
translated to orientations on GR. We somewhat simplify the definitions keeping in mind
the examples in which we are interested in.

Recall that tile tl,i is the i-th tile in the level l. We use tl,i also as labels for vertices in
the graph GR. In order to handle the border conditions, we assume that there is a fixed
tiling of the region outside of R and include in the graph GR the vertices corresponding
to tiles outside but adjacent to the border of R.3 the border conditions do not matter to
us.) We postulate that there is an edge between two different tl,i and tl′,i′ if and only if
|l − l′| 6 n. This postulate defines graph GR for a region R.

A tiling of R defines an orientation on each edge of this graph in the following way.
Consider two ribbon tiles t and t′ in a tiling, and imagine that every square in these tiles
projects light in the north-west direction. Then if some light from t is absorbed by t′

than we say that t′ is to the left of t, and orient the corresponding edge in the graph GR

from t′ to t. As a result we obtain an orientation of the graph GR and it is clear that this
orientation is acyclic.

Consider the orientation of edges between vertices in the same level. An edge (tl,i, tl,i′)
is oriented from tl,i to tl,i′ if and only if i < i′. These orientations are obviously the same
for every tiling and we include them in the partial orientation τR of the graph GR.

In addition, it was proved in [Sheffield02] that if l − l′ = ±n, then the orientation of
an edge (tl,i, tl′,i′) is always the same for every ribbon tiling of region R. This orientation
is completely determined by the geometry of the region. Therefore, we also include these
orientations in the partial orientation τR, and we say that the edges with orientations in
τR are forced edges. It is easy to build τR by looking at one specific tiling of region R.

The question of enumerating ribbon tilings of R is reduced, therefore, to the questions
of enumerating acyclic orientations of GR, which are in agreement with partial orientation
τR.

3.2 An upper bound on the entropy

Proof of Theorem 2.1. There are 2n−1 different shapes for an n-ribbon, since each type
can be encoded by a sequence of 0s and 1s that has n − 1 elements. In this sequence 0
corresponds to the ribbon continuing to the left and 1 to the continuing up. For example,
sequences 00 . . . 0 and 11 . . . 1 encode the horizontal and vertical n-ribbons, respectively.

Each ribbon tiling of a region R can be mapped to an assignment which says what is
the shape of a tile tl,i.

3As it turns out, in most of our examples, these vertices can be omitted without any change in the
number of admissible acyclic orientations. It is possible to introduce other border conditions and study,
for example, the tilings of a torus instead of a rectangle. However, we will not discuss such extensions in
this paper.
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It is clear that given such an assignment, the tiling can be unambiguously recovered.
Indeed, proceed level by level in the order of increasing i. If all previous tiles have been
already placed in the region, we can determine where the root square of the current tile
tl,i is located, and then the shape of this tile, read from the assignment, determines the
placement of the entire tile in the region.

Therefore, the number of tilings is no greater than the number of possible shape
assignments which is (2n−1)T .

3.3 The existence of the entropy limit for rectangular regions

Proof of Theorem 2.2. Let (M,N) ∈ Ω mean that rectangle RM,N is tileable by ribbon
tiles of length n. It is easy to check that this holds if and only if at least one of M and N
is divisible by n. It is also easy to check that rectangles RM,N and RN,M have the same
number of tilings. Let

S = sup
(M,N)∈Ω

log2

∣∣TM,N

∣∣
MN

,

For any ε > 0, choose (M,N) ∈ Ω, such that log2

∣∣TM,N

∣∣/(MN) > S − ε. Without loss

of generality we can choose the rectangle so that n|M .
We are going to show that for all M and N sufficiently large, log2

∣∣TM,N

∣∣/(MN) >
S − ε. By our observation about transposed rectangles above, it is enough to prove this
claim for the case when n|M .

So, let M = pM + k and N = qN + l, where 1 6 k 6M and 1 6 l 6 N . Note that k
is divisible by n.

Then the rectangle RM,N can be split in pq rectangles congruent to RM,N , and 3 rect-
angles RpM,l, Rk,qN and Rk,l. All of these rectangles are tileable and by super-additivity
of the number of tilings we get:

log2

∣∣TM,N

∣∣
MN

>
pq log2

∣∣TM,N

∣∣
(pM + k)(qN + l)

=
log2

∣∣TM,N

∣∣
(M + k/p)(N + l/q)

> S − ε

for all sufficiently large p and q.
Hence the limit over increasingM andN exists and equals the supremum. By Theorem

2.1 this limit is finite and 6 n− 1.

3.4 A lower bound on the entropy for rectangular regions

Lemma 1. The number of tilings of an n × N rectangle by n-ribbons is equal to N ! for
N 6 n and to 1

2
N ! for N = n+ 1.

Proof. For N 6 n, every tiling of an n×N rectangle by n-ribbons has one tile in each of
the levels 0, . . . n− 1. The Sheffield graph GR of this region is the complete graph on N
vertices that correspond to the tiles of the tiling and all its edges are free. (For rectangular
regions, the vertices corresponding to border squares do not impose additional restrictions
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for acyclic orientations and can be safely ignored.) Hence the number of tilings of this
region equals the number of acyclic orientations on the complete graph KN , which equals
N ! (the number of vertex orderings).

If N = n+1, then the graph is again a complete graph on N vertices but the orientation
on one edge is forced (the vertices in levels 0 and n, t0 and tn, are comparable but t0 must
be to the left of tn). That means that exactly half of all N ! possible orientations of the
graph have the correct orientation on this edge. It follows that there are (n+ 1)!/2 tilings
of the n× (n+ 1) rectangle by n-ribbons.

Lemma 2. We have the following lower bound for the limit per-tile entropy of tilings of
an n×N rectangles by n-ribbons:

µ(n)
n >

log2(n!)

n
> log2 n− log2 e+ n−1

(1

2
log2 n+ log2

√
2π
)
,

Proof. The claim follows from Lemma 1 and the super-additivity for the logarithm of the
number of tilings. For a large N we split the n×N strip in t = bN/nc of n×n squares and
a remainder region. By the previous lemma and super-additivity, the number of tilings is
greater than (n!)t. Hence, the logarithm of the number of tilings divided by the number
of tiles N ,

log2

∣∣Tn,N ∣∣
N

>
log2(n!)bN/nc

N

By taking the limit N → ∞ we demonstrate the first inequality in the corollary. The
second inequality follows from a well-known lower estimate on log(n!), see, for example,
formula (1.53) on p. 17 in [SF14)].

Proof of Theorem 2.3. As in the proof of the previous lemma, the claim of the theorem
follows from the super-additivity of the logarithm of the number of tilings. In this case
we divide the rectangle in bM/nc strips of the size n×N , plus a remaining strip, and use
the estimate in the proof of the previous lemma to bound the logarithm of the number of
tilings of each strip from below by bN/nc log2(n!). Then the logarithm of the total number
of tilings is bounded from below by

bN/nc × bM/nc log2(n!)

After dividing by the number of tiles NM/n and taking the limit, we find the claimed
inequality for the entropy.

3.5 An upper bound on the entropy for rectangular regions

If H is a subgraph of GR, let A(H) be the set of all acyclic orientations on H which
agree with the partial orientation τR. Also for shortness, we will write a.o. for acyclic
orientations that agree with the partial orientation τR.
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Figure 7: A tiling of a 6×9 rectangle by
3-ribbons, with ribbons labeled by the
level. The subscript is the order number
of the ribbon in the level.

Figure 8: The edges of the Sheffield
graph of the 6 × 9 rectangle incident
to the vertex 71. The forced edges are
shown in solid, the other edges are dou-
bled by a dashed line, with the orienta-
tion induced by the tiling in Figure 7.

Consider an M × N rectangle R. It can be shown that it is tileable by n-ribbons if
and only if either M or N is divisible by n. Assume without loss of generality that n|M .
An illustration of a 3-ribbon tiling for a rectangle is shown in Figure 7.

Let Hl denote the subgraph of GR induced by vertices v with l(v) 6 l, where 0 6 l 6
lmax and lmax = M + N − n − 1 is the maximum possible level of a tile in an n-ribbon
tiling of R. (For example, lmax = 11 in Figures 7 and 8.)

Define growth factor

gl :=
|A(Hl)|
|A(Hl−1)|

for 1 6 l 6 lmax, with the convention that |A(H0)| = 1, so that g1 = |A(H1)| = 2.
Let Tl := |{v : l(v) = l}, the number of vertices at level l, and Sl :=

∑l
k=l−n+1 Tl, the

number of vertices at levels between l − n+ 1 and l, inclusive.

Lemma 3. For all 1 6 l 6 lmax,

gl 6

(
Sl

Tl

)
.

Before proof, let us introduce some additional notation. If β is an a.o. on a graph G
and H ⊂ G is a subgraph of G, then we write β|H to denote the restriction of β to H.
Obviously, β|H is an a.o. on H.

If α ∈ A(H) and H ⊂ G, then we call orientation β on G an extension of α if β ∈ A(G)
and α = β|H . Clearly, an extension is determined by α and the orientations on edges in
E(G)KE(H), where E(G) and E(H) denote the sets of edges of G and H, respectively.
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These orientations must be such that no directed cycle is created in β. We denote the set
of all extensions of α ∈ A(H) from H to G as Ext(α;H,G).

Proof of Lemma 3. By restriction, every a.o. β in A(Hl) corresponds to an a.o. α in
A(Hl−1), α = β|Hl−1

. To prove the lemma, it is enough to show that for every α ∈ A(Hl−1)

there are no more than
(
Sl

Tl

)
extensions of α in Ext(α,Hl−1, Hl).

Let

Vl = {v ∈ GR : l(v) = l},
Ul = {v ∈ GR : l(v) ∈ [l − n+ 1, l)},
U l = Ul ∪ Vl.

By abusing notation, we will also use Vl, Ul, U l to denote the subgraphs of GR induced
by respective sets of vertices.

Now, if α ∈ A(Hl−1) and β ∈ Ext(α,Hl−1, Hl), then

β|U l
∈ Ext(α|Ul

, Ul, U l).

Moreover,

E(Hl)KE(Hl−1) =
(
E(U l)KE(Ul)

)
∪ F,

where F is the set of edges between vertices in Vl and vertices in Vl−n. Since the orien-
tations on F are forced by partial orientation τR, the orientations assigned by extension
β|U l

of α|Ul
to edges in E(U l)KE(Ul) also completely determine the extension β of α. It

follows that

|Ext(α,Hl−1, Hl)| 6 |Ext(α|Ul
, Ul, U l)|.

In particular, in order to prove the lemma, it is enough to show that |Ext(α, Ul, U l)| 6
(
Sl

Tl

)
for every α ∈ A(Ul).

Next, note that Ul and U l are complete graphs. (Indeed, the levels of any two vertices
in U l differ by no more than n− 1, hence they are comparable with respect to the left-of
relation, and therefore connected by an edge.) Also, note that the only edges with forced
orientation in U l are the edges between vertices in Vl.

On a complete graph, acyclic orientations are in one-to-one correspondence with linear
orders on vertices. Now, an a.o. α on Ul determines a linear order on vertices of Ul and
the forced orientations on Vl determine a linear order on vertices of Vl. Then, the number
of linear orders on U l consistent with given linear orders on Ul and Vl equals the number
of ways to insert ordered vertices of Vl between ordered vertices of Ul. By an elementary
combinatorial formula, this number equals(

|Ul|+ |Vl|
|Vl|

)
=

(
Sl

Tl

)
.

We showed that for every α ∈ A(Ul), |Ext(α, Ul, U l)| =
(
Sl

Tl

)
and by observations above,

this completes the proof of the lemma.

the electronic journal of combinatorics 30(2) (2023), #P2.15 12



Let Tmax = max{Tl, 0 6 l 6 lmax} and

L = max{l : Tl = Tmax}. (1)

In other words, L is the highest level among those that have the most vertices. For
example, in Figure 8, Tmax = 2 and L = 8.

Lemma 4. If l 6 L, then gl 6 (en)Tl.

Here e is the base of the natural logarithm.

Proof. By a well-known property of binomial coefficients (see, for example, inequality
(5.14) on p. 59 in [SF14)]), (

Sl

Tl

)
6
(
e
Sl

Tl

)Tl

.

Observe that (Tl) is a non-decreasing sequence for 0 6 l 6 L, and therefore Sl 6 nTl in
this range. Then, the conclusion of the lemma follows from Lemma 3.

Proof of Theorem 2.4. Let H and H ′ be subgraphs of GR induced by vertices with l(v) 6
L and vertices with l(v) > L − n, respectively, where L is as defined in (1). Then, it is
clear that E(GR) ⊂ E(H) ∪ E(H ′).

For α ∈ A(GR), we can define the map α 7→ (α|H , α|H′). This is an injective map
from A(GR) to A(H) × A(H ′) (since α can be recovered unambiguously from α|H and
α|H′), and therefore

|A(GR)| 6 |A(H)||A(H ′)|.

Then, by using Lemma 4, we have

|A(H)| =
L∏
l=1

gl 6
L∏
l=1

(en)Tl = (en)
∑L

l=1 Tl = (en)|H|.

Similarly, by using the fact that graph GR is symmetric, we can obtain the estimate
|A(H ′)| 6 (en)|H

′|, and therefore,

|A(GR)| 6 (en)|H|+|H
′|.

Then,

|H|+ |H ′| = |GR|+ |H ∩H ′| 6 |GR|+ (n+ 1)Tmax

6 |GR|+ (n+ 1)
M

n
6 |GR|+ 2M.

Note that |GR| = MN/n. Then, we have:

µ(n)(Rt) = lim
M,N→∞

log2(|A(GR)|)
MN/n

6 lim
M,N→∞

log2(en)(MN/n+ 2M)

MN/n
= log2(en).
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3.6 Number of tilings of a generalized Aztec Diamond

Proof of Theorem 2.5. It is easy to check that the Sheffield graph GR and the partial
orientation τR of the generalized Aztec diamond AD(N, n, k) for n-ribbon tilings are
isomorphic to the Sheffield graph and the partial orientation of AD(N, 2, 0) for 2-ribbon
tilings, that is, with that of domino tilings of the standard Aztec diamond. This implies
that these graphs have the same number of acyclic orientations that agree with the partial
orientation. Hence, the number of n-ribbon tilings of AD(N, n, k) equals the number of
domino tilings of the standard Aztec diamond, and this number was computed in the
celebrated result in [EKLP92].

Note that this proof provides a bijection between domino tilings of AD(N, 2, 0) and n-
ribbon tilings of AD(N, n, k). In this bijection, two tilings correspond to each other if they
induce the same acyclic orientation on the isomorphic Sheffield graphs of AD(N, 2, 0) and
AD(N, n, k). Intuitively, one can think about this bijection as that one can judiciously
add n − 2 squares to each domino tile of the domino tiling so as to lengthen the shape
AD(N, 2, 0) vertically and make it coincide with AD(N, n, k).

3.7 Exact value for the limit entropy of a stair region

The proof is based on the exact enumeration of the number of ribbon tilings for these
regions.

Theorem 3.1. The number of tilings of the stair region St
(n)
M by n-ribbons is given by the

following formulas. If n is odd, then

|Tn(St
(n)
M )| =

{
M ! for M 6 n+1

2
,

Γ
(
n+1

2

)(
n+1

2

)M−(n−1)/2
, for M > n+1

2
.

If n is even, then |Tn(St
(n)
M )| equals the number of tiling of an n/2 × M rectangle by

n/2-tiles, namely

|Tn(St
(n)
M )| = |Tn/2(Rn/2,M)|.

Proof. Consider the case when n is odd. Every tiling of the region St
(n)
M by n-ribbons has

M tiles, one tile in each level 0, 2, . . ., 2(M − 1). We denote these tiles t0, t2, . . . , t2(M−1).
Then, the Sheffield graph G

St
(n)
M )

that corresponds to this region has edges in the following

list, (
t2k, t2(k+i)

)
, where k = 0, . . . ,M − 2 and i = 0, . . . ,

n− 1

2
,

provided that both end-points are well defined. (See an example for n = 5 in Figures 9
and 10).
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Figure 9: A tiling of St
(5)
9 by 5-ribbons,

with ribbons labeled by the ribbon level.

Figure 10: The Sheffield graph of St
(5)
9

with the orientation induced by the
tiling in Figure 9.

Crucially, this graph does not have any edges with forced orientation, since (i) the
differences between levels of tiles are even and therefore are different from n, and (ii) every
level has no more than one tile.

By Sheffield’s theorem, the number of tilings of the region St
(n)
M is equal to the total

number of acyclic orientations of the graph G
St

(n)
M

, since the partial orientation of G
St

(n)
M

is empty. If M 6 (n + 1)/2, then the graph G
St

(n)
M

is the complete graph KM and the

number of acyclic orientations is M !.
If M > (n + 1)/2, then we use Stanley’s theorem ([Stanley73]) that the number of

acyclic orientations of a graph G equals to |χG(−1)|, where χG(t) denotes the chromatic
polynomial of the graph G. The chromatic polynomial for the graph G

St
(n)
M )

is calculated

in Lemma 5, and we get the following formula for the number of acyclic orientations:∣∣∣(−1)(−2) . . . (−m)
(
− (m+ 1)

)M−m∣∣∣,
where m = (n− 1)/2. This proves the theorem for the odd n.

For the case when n is even, it is easy to check that the graph of the St
(n)
M for n-ribbon

tilings coincide with the graph of Rn/2,M for n/2-ribbon tilings. This implies that the
number of tilings is the same.

Lemma 5. Let n be odd, let m = (n − 1)/2, and let graph ΓM = G
St

(n)
M

be as defined in

the proof of Theorem 3.1, with M > (n+ 1)/2 = m+ 1. Then, the chromatic polynomial
of the graph ΓM is

χΓM
(λ) = λ(λ− 1) · · · (λ−m+ 1)(λ−m)M−m. (2)

Proof. We use induction on M and Read’s theorem from [Read68] that says that if a
graph G is a union of two subgraphs X and Y , which overlap in a complete graph Ks on

the electronic journal of combinatorics 30(2) (2023), #P2.15 15



s nodes, then the chromatic polynomial of the graph G is

χG(λ) =
χX(λ)χY (λ)

χKs(λ)
=
χX(λ)χY (λ)

λ(s)
, (3)

where λ(s) is the factorial monomial:

λ(s) = λ(λ− 1) · · · (λ− s+ 1)

In our case the graph X is the restriction of graph ΓM to vertices t0, t2, . . . , t2(m+1), and
the graph Y is the restriction of graph ΓM to vertices t2, . . . , t2(M−1). They intersect in
complete graph Km+1. (In the example in Figure 10, m = 2, X = ΓM |{0, 2, 4, 6} and
Y = ΓM |{2, 4, 6, 8, 10, 12, 14, 16}.)

The graph X equals the complete graph on m+2 vertices with the edge e = (t0, t2(m+1))
removed. A well known property of chromatic polynomials relates the polynomial of a
graph to the polynomials of the graphs obtained by a contraction and a removal of an
edge, respectively. Namely, for every simple graph G and for all e ∈ E(G),

χG(λ) = χGKe(λ)− χG/e(λ),

where GKe denotes G with the edge e deleted, and G/e denotes G with the edge e con-
tracted to a point.

By applying this property to the complete graph Km+2, note that the removal of an
edge e leads to the graph X and a contraction of e leads to Km+1. Hence,

χX(λ) = χKm+2(λ) + χKm+1(λ)

= λ · · · (λ−m)(λ−m− 1) + λ · · · (λ−m)

= λ · · · (λ−m+ 1)(λ−m)2.

For the base of the induction, we note that if M = m+ 2, then ΓM = X and the formula
(2) is valid by what we just proved.

If M > m + 2, we note that Y = ΓM−1 and that the intersection of graphs X and Y
is the complete graph Km+1. Then by formula (3), we have

χΓM
=
χX(λ)χΓM−1

(λ)

λ(m+1)

=
λ · · · (λ−m+ 1)(λ−m)2χΓM−1

(λ)

λ · · · (λ−m)

= (λ−m)χΓM−1
(λ),

which proves formula (2) by induction supposition.

Proof of Theorem 2.6. For large M , we have from Theorem 3.1,

log2(|T (St
(n)
M )|)

M
=

log2 Γ
(
n+1

2

)
M

+
(M − (n+ 1)/2) log2

(
n+1

2

)
M

−→ log2(n+ 1)− 1, as M →∞.
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A Stanley’s results about the number of ribbon tilings

Figure 11: A ribbon tiling of
8877/211

Figure 12: A minimal ribbon tiling of
8874/411

Stanley considers the ribbon tilings of connected skew shapes. (He uses the name
border strip decompositions for these tilings, see an example in Figure 11.) A skew shape
λ/µ is the difference of two Young diagrams λ and µ, such that µ is inside of λ. In
particular, skew shapes include all Young diagrams, and in particular, all rectangles.
Stanley works under assumption that lengths of ribbons in such a tiling can be arbitrary,
which is different from our assumption of fixed length.

In Exercise 7.66 (p. 470, with a solution on p. 521) in [Stanley99], it is shown that
the number of ribbon tilings can be written as a product of certain Fibonacci numbers.

Here is a summary of Stanley’s result applied to an M -by-N rectangle with N > M .
The number of tilings of the rectangle is given by the product:

fM,N =

(M−1∏
k=1

F 2
2k+2

)(
F2M+1

)N−M
,

where Fk are Fibonacci numbers, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, . . .. (For
example, for the 1 × 2 rectangle and the 2 × 2 square we have f1,2 = F3 = 2 and
f2,2 = F 2

4 = 9, respectively.)
In particular, for squares, N = M , we can write the entropy per unit area as

N−2 log2(fN,N) = 2N−2

N−1∑
k=1

log2(F2k+2).

By using the asymptotic approximation for Fibonacci numbers, the asymptotic expression
for the entropy per unit area is

N−2 log2(fN,N) ∼ 2N−2 log2(φ)
N−1∑
k=1

(2k + 2) ∼ 2 log2(φ) ≈ 1.3885 . . . ,
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where φ = (1 +
√

5)/2 is the golden ratio. It is somewhat difficult to compare this result
with our findings, since it not clear what is the average entropy per tile. The number of
tiles T is different in different Stanley’s tilings of an N ×N rectangle and we do not know
how the expectation of T in a random ribbon tiling depends on N .

The second result was obtained in [Stanley02]. It is still assumed that the lengths of
ribbons in a ribbon tiling are arbitrary. A ribbon tiling is called minimal if there is no
other tiling with a smaller number of ribbons (see an example in Figure 12). For skew
shapes, Stanley determined the number of tiles in a minimal tiling and the number of
minimal ribbon tilings. If we specialize his results to M -by-N rectangles with M 6 N ,
then the number of ribbons in a minimal tiling always equals M . (So, for large rectangles,
most of the tiles in a minimal tiling are long, with the average length equal N .) In the
case of M × N rectangles with M 6 N , Stanley’s formula for the number of minimal
tilings reduces to

hM,N = (M !)2.

In particular, the per-tile entropy is

M−1 log2(hM,N) = 2M−1 log2M ! ∼ 2 log2(M/e).

As a consequence, if M is fixed and N is growing then the asymptotic per-tile entropy
does not depend on the average length of the tile N . This is in contrast to our results,
where the per-tile entropy grows at the logarithmic rate in the length of the tile.

If M = N and both are growing, then the per-tile entropy grows at the logarithmic
rate in the average length of the tile N , similar to our results.
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