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Abstract

In this paper, we study a family of generating functions whose coefficients are
polynomials that enumerate partitions in lower order ideals of Young’s lattice. Our
main result is that this family satisfies a rational recursion and are therefore ra-
tional functions. As an application, we calculate the asymptotic behavior of the
cardinality of a lower order ideals for the “average” partition of fixed length and
give a homological interpretation of this result in relation to Grassmannians and
their Schubert varieties.

Mathematics Subject Classifications: 05A17, 05A15

Young’s lattice is the set of integer partitions partially ordered by containment of
Young diagrams. Let Λ denote the set of integer partitions and for any λ ∈ Λ, consider
the lower order ideal [∅, λ] in Young’s lattice. Lower order ideals have been studied
extensively and are important objects in algebraic combinatorics, representation theory
and algebraic geometry. For example, maximal chains in [∅, λ] correspond to standard
Young tableaux of shape λ. In representation theory of the symmetric group, standard
Young tableaux index a basis for irreducible representations. In algebraic geometry, these
tableaux are used to characterize the irreducible components of Springer fibers in the flag
variety [3]. For more on Young’s lattice, Young tableaux and their applications see [4, 8].

For a partition λ = (λ1 > λ2 > · · · > λk > 0), let |λ| :=
∑

i λi denote its rank and k
denote its length. The rank generating function of the interval [∅, λ] is defined as

Pλ(y) :=
∑
µ∈[∅,λ]

y|µ|.

For example, if λ = (2, 1), then P(2,1)(y) = 1+y+2y2 +y3 as seen from the Hasse diagram
of [∅, (2, 1)]:
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∅

In the case that λ = (n)k (i.e. λ has a Young diagram with rectangular shape), the
corresponding rank generating function is the Gaussian polynomial

P(nk)(y) =

(
n+ k

k

)
y

:=
(1− yn+1) · · · (1− yn+k)

(1− y) · · · (1− yk)
. (1)

Gaussian polynomials are palindromic, unimodal polynomials which generalize binomial
coefficients [1]. Taking the limit as y → 1 yields

P(nk)(1) = #[∅, (nk)] =

(
n+ k

k

)

and hence, asymptotically, we have #[∅, (nk)] ∼ nk

k!
as n → ∞. For arbitrary partitions,

Handa-Mohanty [6] and Ueno [11] showed that Pλ(y) can be calculated as a determinant
of Gaussian polynomials generalizing Equation (1) (see also [5]). We also remark that
size of the interval Pλ(1) = #[∅, λ] can be interpreted as the integral volume of a certain
polytope studied by Stanley-Pitman in [9]. Despite the existence of such nice formulas, the
behavior of Pλ(y) is difficult to predict. If the Young diagram of λ is not rectangular, then
Pλ(y) is not palindromic. In [10], Stanton shows that Pλ(y) is not necessarily unimodal.

The goal of this paper is to study the polynomials Pλ(y) for partitions of a fixed
length by collecting them into a single generating function. We prove that this generating
function is rational and, as an application, we determine the asymptotic behavior of the
cardinality #[∅, λ] for the “average partition” of length k as |λ| → ∞. We also describe
these results in the context of singular homology of the Grassmannian and its Schubert
varieties.

1 Main results

Let Λ(k) denote the set of partitions of length k and define the generating series

Qk(x1, . . . , xk, y) :=
∑
λ∈Λ(k)

Pλ(y) · xλ
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where xλ := xλ11 · · ·x
λk
k . Our first result is that the function Qk satisfies a rational recursion

and hence is a rational function. Define the square-free monomial

pk := x1 · · ·xk

and for a sequence of parameters Z = (z1, . . . , zk+1), let

Qk(Z) := Qk(z1, . . . , zk+1).

If Z = (x1, . . . , xk, y) is the standard set of variables, then we denote Qk = Qk(Z).

Theorem 1. We have Q0 = 1 and for k > 1, we have

(1− pk)Qk = xkQk−1 +
∑

06i<r6k

(
yrpk

1− yrpr

)
Qk−r(Zr) ·Qi, (2)

where Zr := (yrpr+1, xr+2, xr+3, · · · , xk, y) . In particular, Qk is a rational function in the
variables x1, . . . , xk, y.

Example 2. Using Theorem 1, we see that

Q1(x1, y) =
x1 + (x1 − x2

1)y

(1− x1)(1− x1y)

and

Q2(x1, x2, y) =
x1x2 + (x1x2 − x2

1x2 − x2
1x

2
2)y + (x1x2 − x2

1x
2
2)y2 + (x3

1x
3
2 − x2

1x
2
2)y3

(1− x1)(1− x1x2)(1− x1y)(1− x1x2y)(1− x1x2y2)
.

Observe that if we set y = 0, then Equation (2) implies

Qk(x1, . . . , xk, 0) =
∑
λ∈Λ(k)

xλ =
xk

(1− pk)
·Qk−1(x1, . . . , xk−1, 0). (3)

Thus we get the well-known formula

∑
λ∈Λ(k)

xλ = pk ·
k∏

m=1

(1− pm)−1.

Let ck,n denote the number of partitions in Λ(k) of rank n. If we further set x = x1 =
x2 = · · · = xk and y = 0, then

Qk(x, . . . , x, 0) =
∑
λ∈Λ(k)

x|λ| =
∞∑
n=k

ck,n x
n.

Applying Equation (3) recovers the classical formula that

∞∑
n=k

ck,n x
n = xk ·

k∏
m=1

(1− xm)−1.
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We now consider the deformation of Qk where we set x = x1 = x2 = · · · = xk and y = 1.
Define the coefficients Ck,n by

Qk(x, . . . , x, 1) =
∑
n>k

Ck,n x
n.

By definition, the coefficients

Ck,n =
∑
λ∈Λ(k)
|λ|=n

#[∅, λ].

Let

Ak,n :=
Ck,n
ck,n

denote the average cardinality of lower order ideals for partitions of rank n in Λ(k). Our
second main result is on the asymptotic behavior of Ak,n as n→∞. For k > 1, define the
interval

Ik := [(k, k − 1, . . . , 2, 1), (k)k]

and the constant

Gk :=
(k − 1)!

(2k − 1)!
·
∑
λ∈Ik

(
k∏
i=1

λ−1
i

)
.

Theorem 3. Let k > 1. Then Ak,n ∼ Gk · nk as n→∞.

Example 4. For k = 3, we have

G3 =
1

5 · 4 · 3

(
1

3 · 2 · 1
+

1

3 · 2 · 2
+

1

3 · 3 · 1
+

1

3 · 3 · 2
+

1

3 · 3 · 3

)
=

49

6480
.

Table 1 gives the values of Gk for k 6 7.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

1 1
8

49
6480

1597
5806080

104797
15552000000

30867157
258660864000000

8883026474947
5538476941949952000000

Table 1: The first order asymptotic growth constant Gk.

Remark 5. The partitions in Ik are in natural bijection with Dyck paths from (0, 0) to
(k, k). Hence the first order growth constant Gk given in Theorem 3 can be thought of as
a weighted sum over Catalan objects.

Remark 6. Let Λ(6 k) :=
⊔
k′6k

Λ(k′) denote the set of partitions of at most length k and

let

A6k,n :=
C1,n + C2,n + · · ·+ Ck,n
c1,n + c2,n + · · ·+ ck,n

denote the average cardinality of lower order ideals for partitions of rank n in Λ(6 k). It
is easy to see that the asymptotic behavior of Λ(6 k) is dominated by Λ(k) and hence
A6k,n ∼ Gk · nk as in Theorem 3.
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Finally, let

Q :=
∞∑
k=0

Qk =
∑
λ∈Λ

Pλ(y) · xλ.

Note that Q is a generating function in the variable y and the infinite set of variables
x1, x2, . . . Setting y = 0, we recover the formula that∑

λ∈Λ

xλ =
∞∑
k=0

(
pk ·

k∏
m=1

(1− pm)−1

)
=
∞∏
k=1

(1− pk)−1

and further setting xk = x for all k gives∑
λ∈Λ

x|λ| =
∞∑
n=0

cn x
n =

∞∏
k=1

(1− xk)−1

where cn denotes the total number of partitions of rank n. The asymptotic growth of cn
was famously computed by Hardy and Ramanujan in [7]. We do not know if Theorem 1
can be used to compute the asymptotic growth of the average cardinality of lower order
ideals in all of Young’s lattice (with no restrictions on length). We leave this as an open
question.

1.1 Connections with the geometry of Schubert varieties

In this section we give an overview of the connection between lower order ideals in Young’s
lattice with the geometry of Grassmannians and their Schubert subvarieties. For more de-
tails on the combinatorics of Grassmannians see [4]. Let Gr(k,Cn) denote the Grassman-
nian of k dimensional subspaces in Cn. Fix a basis {e1, . . . , en} of Cn and for 1 6 j 6 n,
define the subspace Ej := span{e1, . . . , ej}. For any partition λ whose Young diagram is
contained in the k × (n− k) rectangle, define the Schubert cell

X◦λ := {V ∈ Gr(k, n) | dim(V ∩ Ei+λk+1−i
) = i, for 1 6 i 6 k}.

The union of Schubert cells over all partitions contained in a k × (n− k) rectangle gives
a CW structure of Gr(k,Cn). Since the cell X◦λ is of real dimension 2|λ|, we get that the
Poincaré polynomial of Gr(k,Cn) is the Gaussian polynomial

2k(n−k)∑
i=0

dim(Hi(Gr(k,Cn),Z)) yi = P(k)(n−k)(y2) =

(
n

k

)
y2
.

Here Hi(Gr(k,Cn),Z) denotes the i-th singular homology group of Gr(k,Cn). The Schu-
bert variety Xλ is defined as the algebraic closure of X◦λ and the closure relations for
Schubert cells are given by containment of Young diagrams. In other words, X◦µ ⊆ Xλ if
and only if µ ∈ [∅, λ]. Since Schubert cells also give a CW structure on Schubert varieties,
homologically we have

2|λ|∑
i=0

dim(Hi(Xλ,Z)) yi = Pλ(y
2).
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Evaluating at y = 1 gives

#[∅, λ] = Pλ(1) =

2|λ|∑
i=0

dim(Hi(Xλ,Z)) = dim(H∗(Xλ,Z))

and hence #[∅, λ] is equal to the rank of H∗(Xλ,Z) as a free Z-module. The following are
geometric and homological interpretations of the numbers A6k,n given in Remark 6 and
asymptotically described in Theorem 3. Let N be an integer such that N > n+ k. Then:

1. A6k,n is the average number of Schubert cells in the closure of a Schubert variety of
complex dimension n in the Grassmannian Gr(k,CN).

2. A6k,n is the average rank of total homology of a Schubert variety of complex dimen-
sion n in the Grassmannian Gr(k,CN).

2 Recursive properties of partitions and the proof of Theorem
1

The goal of this section is to prove Theorem 1. We begin by giving several recursive
properties of rank generating functions. To visualize these properties we will represent
a partition by its Young diagram in English notation. When working with a pair of
partitions (µ, λ) such that µ 6 λ, we represent them by a skew Young diagram by shading
the boxes of µ within the Young diagram of λ.

Example 7. For example, if µ = (3, 2) and λ = (5, 3, 2, 1), then (µ, λ) is represented by
the skew diagram

For any µ 6 λ, define the polynomial

Pµ,λ(y) :=
∑
ν∈[µ,λ]

y|ν|.

If µ = ∅, then P∅,λ(y) = Pλ(y). Note that Pµ,λ(y) is the rank generating function of the
interval [µ, λ] scaled by y|µ|. throughout this paper, we will use the skew Young diagram
of (µ, λ) to also represent the corresponding interval [µ, λ] and polynomial Pµ,λ(y).

Lemma 8. Let λ ∈ Λ(k) and µ 6 λ. Let r > 0 be an index such that λr > λr+1 (here we

set λk+1 = 0) and define the partitions
←−
λ and −→µ by

←−
λ i :=

{
λi if i 6= r

λi − 1 if i = r
and −→µ i :=

{
max(µi, λr) if 1 6 i 6 r

µi if i > r
.

Then
Pµ,λ(y) = P

µ,
←−
λ

(y) + P−→µ ,λ(y).
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Proof. We partition the interval [µ, λ] by whether or not ν ∈ [µ, λ] satisfies νr = λr.
Indeed, if νr = λr, then ν > −→µ which is equivalent to ν ∈ [−→µ , λ]. If νr 6= λr, then

νr 6 λr − 1 which is equivalent to ν ∈ [µ,
←−
λ ]. Thus [µ, λ] = [µ,

←−
λ ] t [−→µ , λ].

Example 9. Let µ = (3, 2, 2, 1), λ = (5, 5, 4, 2, 2) and r = 3. Lemma 8 implies:

P(3,2,2,1),(5,5,4,2,2)(y) = P(3,2,2,1),(5,5,3,2,2)(y) + P(3,3,3,1),(5,5,4,2,2)(y).

Diagrammatically we have,

= +

Here the green box highlights the difference between λ and
←−
λ .

We remark that additive relations similar to Lemma 8 appear in [11, Proposition 1.6
parts 4,5]. Next we give a multiplicative relationship on the polynomials Pµ,λ(y). For any
partition λ = (λ1 > · · · > λk) and r 6 k, define the subpartitions

λ(r) := (λ1 > · · · > λr) and λ(r)c := (λr+1 > · · · > λk).

Lemma 10. Let µ 6 λ and suppose that µr = λr for some index r. Then

Pµ,λ(y) = Pµ(r),λ(r)(y) · Pµ(r)c,λ(r)c(y).

Proof. Consider the poset map

φ : [µ, λ]→ [µ(r), λ(r)]× [µ(r)c, λ(r)c]

given by φ(ν) = (ν(r), ν(r)c). It is easy see that φ is injective. To show that φ is
surjective, let (ν ′, ν ′′) ∈ [µ(r), λ(r)] × [µ(r)c, λ(r)c]. Then ν ′r = µr = λr > λr+1 > ν ′′1 and
hence (ν ′, ν ′′) can be viewed as an element in [µ, λ]. The lemma now follows from the fact
that y|µ| = y|µ(r)| · y|µ(r)c|.

Example 11. Let µ = (4, 3, 3, 2, 1) and λ = (5, 4, 3, 3, 2, 2). Then µ3 = λ3 and Lemma
10 implies

P(4,3,3,2,1),(5,4,3,3,2,2)(y) = P(4,3,3),(5,4,3)(y) · P(2,1),(3,2,2)(y).

= ×
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Observe that Lemmas 8 and 10, along with the fact that Pλ,λ(y) = y|λ|, can be used
to recursively compute any polynomial Pµ,λ(y).

To prove Theorem 1, we refine the generating function Qk into partial sums over
partitions whose last part has a fixed value. For m > 1, define the set

Λ(k,m) := {λ ∈ Λ(k) | λk = m}

and the function
Qk,m :=

∑
λ∈Λ(k,m)

Pλ(y) · xλ.

It is easy to see that Qk =
∑
m>1

Qk,m. For any partition λ = (λ1 > · · · > λk), define

ρ(λ) := (λ1 − 1, λ2 − 1, . . . , λk − 1).

For m > 2, the map ρ is gives a bijection

ρ : Λ(k,m)→ Λ(k,m− 1),

and for m > 1, the composition ρm gives a bijection

ρm : Λ(k,m)→
⊔
k′<k

Λ(k′).

We now give a recursive formula for Qk,1.

Proposition 12. Let k > 1. Then Qk,1 = xk ·Qk−1 + ykpk ·

(
k−1∑
j=0

Qj

)
.

Proof. Let λ ∈ Λ(k, 1). By Lemma 8 and by the definition of ρ(λ), we have

Pλ(y) = Pλ(k−1)(y) + P(1)k,λ(y) = Pλ(k−1)(y) + yk · Pρ(λ)(y).

Moreover, the maps

Λ(k, 1)→ Λ(k − 1) and Λ(k, 1)→
⊔
k′<k

Λ(k′)

given respectively by λ 7→ λ(k − 1) and λ 7→ ρ(λ) are bijections. Hence

Qk,1 =
∑

λ∈Λ(k,1)

Pλ(y)xλ

=
∑

λ∈Λ(k,1)

Pλ(k−1)(y)xλ +
∑

λ∈Λ(k,1)

yk · Pρ(λ)(y)xλ

=
∑

λ′∈Λ(k−1)

xk · Pλ′(y)xλ
′
+

k−1∑
j=0

 ∑
λ′′∈Λ(j)

ykpk · Pλ′′(y)xλ
′′


= xk ·Qk−1 + ykpk

(
k−1∑
j=0

Qj

)
.
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We now consider Qk,m for m > 2.

Lemma 13. If λ ∈ Λ(k), then

Pλ(y) = Pρ(λ)(y) + P(λk)k,λ(y) +
k−1∑
r=1

P(λr)r,λ(r)(y) · Pρ(λ(r)c)(y).

Proof. For any 0 6 r 6 k, define the partition µr = (µr1 > · · · > µrk) by

µri :=

{
λi if i 6 r

λi − 1 if i > r.

Note that for the extreme values of k, we have µk = λ and µ0 = ρ(λ). By construction,
µrr > µrr+1 and hence Lemma 8 gives the recursive formula

Pµr(y) = Pµr−1(y) + P(λr)r,µr(y).

Since λ = µk, we have

Pλ(y) =
k∑
r=0

P(λr)r,µr(y) = Pρ(λ)(y) + P(λk)k,λ(y) +
k−1∑
r=1

P(λr)r,µr(y).

For each 0 < r < k, we have µrr = λr. Applying Lemma 10 gives

P(λr)r,µr(y) = P(λr)r,µr(r)(y) · Pµr(r)c(y) = P(λr)r,λ(r)(y) · Pρ(λ(r)c)(y).

This proves the lemma.

Lemma 13 implies

Qk,m =
∑

λ∈Λ(k,m)

Pλ(y) · xλ

=
∑

λ∈Λ(k,m)

Pρ(λ)(y) · xλ

+
∑

λ∈Λ(k,m)

P(λk)k,λ(y) · xλ

+
∑

λ∈Λ(k,m)

(
k−1∑
r=1

P(λr)r,λ(r)(y) · Pρ(λ(r)c)(y)

)
· xλ

We consider the three summands above separately. For the first summand, recall that for
m > 2, the map ρ : Λ(k,m)→ Λ(k,m− 1) is a bijection and xλ = pk · xρ(λ). Hence∑

λ∈Λ(k,m)

Pρ(λ)(y) · xλ =
∑

λ∈Λ(k,m)

Pρ(λ)(y) · pk · xρ(λ) = pk ·Qk,m−1. (4)
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For the second summand, recall that ρm : Λ(k,m) →
⊔
i<k Λ(i) is also a bijection and

xλ = pmk · xρ
m(λ). Moreover, by the definition of ρ, P(λk)k,λ(y) = ymk · Pρm(λ)(y) and hence

∑
λ∈Λ(k,m)

P(λk)k,λ(y) · xλ =
∑

λ∈Λ(k,m)

(
ymk · Pρm(λ)(y)

)
·
(
pmk · xρ

m(λ)
)

= (ykpk)
m

k−1∑
i=0

Qi. (5)

Finally, for the third summand, we switch the order of summation and focus on expressions
of the form ∑

λ∈Λ(k,m)

P(λr)r,λ(r)(y) · Pρ(λ(r)c)(y) · xλ

for fixed values of r.

Proposition 14. Let m > 2. If 1 6 r < k, then

∑
λ∈Λ(k,m)

P(λr)r,λ(r)(y) · Pρ(λ(r)c)(y) · xλ =

(
yrpk

1− yrpr

)( r−1∑
i=0

Qi

)
Qk−r,m−1(Zr)

where Zr := (yrpr+1, xr+2, . . . , xk, y) .

Proof. First, note that

∑
λ∈Λ(k,m)

P(λr)r,λ(r)(y) · Pρ(λ(r)c)(y) · xλ =
∑
t>m

 ∑
λ∈Λ(k,m)
λr=t

P(t)r,λ(r)(y) · Pρ(λ(r)c)(y) · xλ


For t > m, define the sets

Λ(r, k; t,m) := {λ ∈ Λ(k,m) | λr = t},

Λ̄(r) := {λ ∈ Λ(r′) | r′ < r}, and Λt(k,m) := {λ ∈ Λ(k,m) | λ1 < t}.
Consider the map given by Λ(r, k; t,m)→ Λ̄(r)× Λt(k − r,m− 1) given by

λ 7→ (ρt(λ(r)), ρ(λ(r)c)).

In other words,

ρt(λ(r)) = (λ1 − t, λ2 − t, . . . , λr − t) and ρ(λ(r)c) = (λr+1 − 1, . . . , λk − 1).

For example, if λ = (10, 8, 7, 5, 4) and r = 3, then t = 7 and

(10, 8, 7, 5, 4) 7→ ((3, 1, 0), (4, 3))

7−→
(

,

)
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It is easy to see that this map is a bijection and for notational simplicity, define λ′ :=
ρt(λ(r)) and λ′′ := ρ(λ(r)c) for λ ∈ Λ(r, k; t,m). Observe that the monomial xλ factors as

xλ = xλ
′ · (pr)t · (xλr+1

r+1 · · ·x
λk
k ).

We now have∑
λ∈Λ(r,k;t,m)

P(t)r,λ(r)(y) · Pρ(λ(r)c)(y) · xλ

=
∑

(λ′,λ′′)∈Λ̄(r)×Λt(k−r,m−1)

yrt · Pλ′(y) · Pλ′′(y) · xλ′ · (pr)t · (xλr+1

r+1 · · ·x
λk
k )

=
∑

λ′∈Λ̄(r)

Pλ′(y) · xλ′ ·

 ∑
λ′′∈Λt(k−r,m−1)

(yrpr)
t · Pλ′′(y) · (xλr+1

r+1 · · ·x
λk
k )


=

(
r−1∑
i=0

Qi

)
·

 ∑
λ′′∈Λt(k−r,m−1)

(yrpr)
t · Pλ′′(y) · (xλr+1

r+1 · · ·x
λk
k )

 .

Summing the second factor above over t > m gives:

∑
t>m

( ∑
λ′′∈Λt(k−r,m−1)

(yrpr)
t · Pλ′′(y) · (xλr+1

r+1 · · ·x
λk
k )

)

=
∑

λ′′∈Λ(k−r,m−1)

∑
t>λ′′1

(yrpr)
t · Pλ′′(y) · (xλr+1

r+1 · · ·x
λk
k )


=

(
1

1− yrpr

) ∑
λ′′∈Λ(k−r,m−1)

(yrpr)
λ′′1+1 · Pλ′′(y) · (xλr+1

r+1 · · ·x
λk
k )

=

(
yrpk

1− yrpr

) ∑
λ′′∈Λ(k−r,m−1)

Pλ′′(y) · (yrpr+1)λ
′′
1 · xλ

′′
2
r+2 · · ·x

λ′′k−r

k

=

(
yrpk

1− yrpr

)
Qk−r,m−1(Zr)

where Zr = (yrpr+1, xr+2, . . . , xk, y). Combining the two calculations above proves the
lemma.

We now prove our first main theorem.

Proof of Theorem 1. By Proposition 12, we have

Qk,1 = xk ·Qk−1 + ykpk

(
k−1∑
i=0

Qi

)
.
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For m > 2, Equations (4) and (5) and Proposition 14 imply

Qk,m = pk ·Qk,m−1 + (ykpk)
m

(
k−1∑
i=0

Qi

)
+

k−1∑
r=1

(
yrpk

1− yrpr

)( r−1∑
i=0

Qi

)
Qk−r,m−1(Zr).

Combining these results we get

Qk =
∞∑
m=1

Qk,m = Qk,1 +
∞∑
m=2

Qk,m

= xk ·Qk−1 + pk

∞∑
m=2

Qk,m−1 + (ykpk)

(
k−1∑
i=0

Qi

)
+
∞∑
m=2

(ykpk)
m

(
k−1∑
i=0

Qi

)

+
∞∑
m=2

k−1∑
r=1

(
yrpk

1− yrpr

)( r−1∑
i=0

Qi

)
Qk−r,m−1(Zr)

= xk ·Qk−1 + pk ·Qk +

(
ykpk

1− ykpk

)( r−1∑
i=0

Qi

)

+
k−1∑
r=1

(
yrpk

1− yrpr

)( r−1∑
i=0

Qi

)(
∞∑
m=2

Qk−r,m−1(Zr)

)

= xk ·Qk−1 + pk ·Qk +
k∑
r=1

(
yrpk

1− yrpr

)( r−1∑
i=0

Qi

)
Qk−r(Zr).

3 Asymptotics of partition intervals

In this section we study the asymptotic behavior of various degenerations of the generating
series Qk and prove Theorem 3. For any i < r, define

Ri,r = Ri,r(x1, . . . , xk, y) :=
(yrpk) ·Qi ·Qk−r(Zr)

(1− pk)(1− yrpr)
,

where Zr = (pr+1y
r, xr+2, . . . , xk, y). Theorem 1 states that

Qk =
xkQk−1

(1− pk)
+

∑
06i<r6k

Ri,r. (6)

We first study the singularities of Qk. Define the polynomial

Dk = Dk(x1, . . . , xk, y) :=
k∏

m=1

m∏
j=0

(1− yjpm).

Proposition 15. The product Qk ·Dk is a polynomial.
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Proof. We prove the proposition by induction on k. When k = 1, we have

Q1(x1, y) =
x1 + (x1 − x2

1)y

(1− x1)(1− x1y)
=
x1 + (x1 − x2

1)y

D1(x1, y)
.

Suppose the lemma is true for all i < k. We study the summands given in Equation (6).
First note that

Dk = Dk−1 ·
k∏
j=0

(1− yjpk).

By induction,
xkQk−1

1− pk
·Dk is a polynomial. For the summand Ri,r, we write

Di =
i∏

m=1

m∏
j=0

(1− yjpm) and Dk−r(Zr) =
k∏

m=r+1

m∏
j=r

(1− yjpm).

Hence for any i < r 6 k, we have

Dk = Di ·Dk−r(Zr)

(
r∏

m=i+1

m∏
j=0

(1− yjpm)

)(
k∏

m=r+1

r−1∏
j=0

(1− yjpm)

)
.

In particular, the product Di ·Dk−r(Zr) · (1 − pk) · (1 − yrpr) divides Dk. By induction,
Ri,r ·Dk is a polynomial for all i < r 6 k. Thus Qk ·Dk is also a polynomial.

The following lemma is an elementary fact about rational functions in one variable
and we leave the proof as an exercise.

Lemma 16. Let f1(x), . . . , fs(x) be a collection of rational functions with poles of order
p1, . . . , ps at x = a respectively. Let gi(x) := (a− x)pi · fi(x) for each 1 6 i 6 s. Define

F (x) :=
s∑
i=1

fi(x) and P := max{p1, . . . , ps}.

Then the following are true:

1. F (x) has a pole of order at most P at x = a.

2. If gi(a) > 0 for all i, then F (x) has a pole of exactly order P at x = a. Furthermore,
if G(x) = (a− x)P · F (x), then G(a) > 0.

For any m > 0, define the set of variables Xm := (xm+1, x . . . , x, 1) and consider the
single variable function

Qk(Xm) = Qk(x
m+1, x, . . . , x, 1).

Proposition 15 implies that the singularities of Qk(Xm) are roots of unity and by Theorem
1, the functions Qk(Xm) satisfy the relation:

Qk(Xm) =
x ·Qk−1(Xm)

(1− xk+m)
+

∑
06i<r6k

(
xk+m ·Qk−r(Xr+m) ·Qi(Xm)

(1− xk+m)(1− xr+m)

)
. (7)
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We denote the summands in the later part of Equation (7) by

Ri,r(Xm) = Ri,r(x
m+1, x, . . . , x, 1) =

xk+m ·Qk−r(Xr+m) ·Qi(Xm)

(1− xk+m)(1− xr+m)
.

Proposition 17. The following are true:

1. The function Qk(Xm) has a pole of order 2k at x = 1.

2. If k > 2 and x0 6= 1 is a singularity of Qk(Xm), then the order of x0 is strictly less
than 2k.

Proof. We prove both parts of the proposition by induction on k. For k = 1, we have

Q1(Xm) =
2xm+1 − x2m+2

(1− xm+1)2

which has a pole of order 2 at x = 1 (the order is 2 at all (m + 1)-th roots of unity).
Define gk,m(x) := (1 − x)2k · Qk(Xm). Note for k = 1, we have g1,m(1) > 0. Suppose for
the sake of induction that Ql(Xm) has a pole of order 2l at x = 1 and gl,m(1) > 0 for
all l < k and m > 0. By induction, Ri,r(Xm) has a pole of order 2k − 2r + 2i + 2 at
x = 1. Lemma 16 part (2) and Equation (7) imply that Qk(Xm) has a pole of order
2k = max{2k− 1, 2k− 2r+ 2i+ 2 | 0 6 i < r 6 k} at x = 1. In particular, the maximum
is achieved whenever i = r−1. Lemma 16 part (2) further implies that gk,m(1) > 0 which
proves the first part of the proposition.

To prove part (2) of the proposition, note that for k = 2,

Q2(Xm) =
3xm+2 − 2x2m+3 − 2x2m+4 + x3m+6

(1− x)2(1− xm+2)3

which has singularities of at most order 3 away from x = 1. Let x0 6= 1 be a singularity of
Qk(Xm). For the sake of induction, suppose that for all 2 6 l < k and m > 0, the order
of x0 for Ql,m is strictly less than 2l. We now look at the summands given in Equation

(7). By induction, the first summand
x ·Qk−1(Xm)

(1− xk+m)
has a pole of order at most 2k− 1 at

x0. For the summands Ri,r(Xm), we consider two cases. First suppose that k− r > 2. By
induction, the order of x0 for Ri,r(Xm) is at most (2k − 2r − 1) + 2i + 2 6 2k − 1. Now
suppose that k−r = 1 and hence k+m, r+m are relatively prime. In this case, the factors
(1 − xk+m) and (1 − xr+m) appearing in the denominator of Ri,r(Xm) share no common
roots except x = 1. Since x0 6= 1, the order of x0 is at most (2k − 2r) + 2i+ 1 6 2k − 1.
By Lemma 16 part (1) and Equation (7), the order of x0 for Qk(Xm) is strictly less than
2k. This proves part two of the proposition.

Define the coefficients Cm
k,n by the expansion

Qk(Xm) =
∞∑
n=k

Cm
k,n x

n.
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When m = 0, the coefficient is

Ck,n := C0
k,n =

∑
λ∈Λ(k)
|λ|=n

#[∅, λ].

Proposition 17 and [2, Theorem IV.9 and Exercise IV.26] imply that the asymptotic
growth of the coefficients Cm

k,n, as n→∞, is controlled by the singularity of Qm
k (Xm) at

x = 1. In particular, we have

Cm
k,n ∼

B(k,m) · n2k−1

(2k − 1)!
where B(k,m) := lim

x→1
(1− x)2k ·Qk(Xm).

The constants B(k,m) can be computed recursively using the following proposition.

Proposition 18. The constants B(k,m) satisfy the recursion

B(k,m) =
k∑
r=1

B(k − r, r +m)B(r − 1,m)

(m+ k)(m+ r)
(8)

where B(0,m) = 1 for all m > 0.

Proof. For k = 0, we have Q0(Xm) = 1 and hence B(0,m) = 1. For k > 1, we consider

the recursive formula for Qk(Xm) given in Equation (7). The summand
x ·Qk−1(Xm)

(1− xk+m)
has

a pole of order 2k − 1 at x = 1 and hence

lim
x→1

(1− x)2k · x · Q̃k−1(Xm)

(1− xk+m)
= 0.

Proposition 17 part (1) implies the summands Ri,r(Xm) have a pole of order at most 2k
at x = 1, with equality if and only if r = i+ 1. Thus

lim
x→1

(1− x)2k ·Rr−1,r(Xm) = lim
x→1

(1− x)2k ·Qk−r(Xr+m) ·Qr−1(Xm)

(1− xk+m)(1− xr+m)

= lim
x→1

(1− x)2 ·B(k − r, r +m)B(r − 1,m)

(1− xk+m)(1− xr+m)

=
B(k − r, r +m)B(r − 1,m)

(k +m)(r +m)

and

lim
x→1

(1− x)2k ·Rm
i,r(Xm) =


B(k − r, r +m)B(r − 1,m)

(k +m)(r +m)
if r = i+ 1

0 if r > i+ 1.

Applying Equation (7) proves the proposition.
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Recall from Section 1 that we define

Ak,n :=
Ck,n
ck,n

where ck,n denotes the number of partitions in Λ(k) of rank n. Applying [2, Theorem IV.9
and Example IV.6] to the generating function for ck,n, we get

ck,n ∼
nk−1

k!(k − 1)!
.

Thus

Ak,n =
Ck,n
ck,n
∼
(
B(k, 0) · n2k−1

(2k − 1)!

)
·
(
k!(k − 1)!

nk−1

)
=
k!(k − 1)!

(2k − 1)!
·B(k, 0) · nk. (9)

To prove Theorem 3, we need to show that Equation (9) is consistent with the growth
constant Gk defined in Section 1. For any p, q ∈ Z, let

(p)q := p(p− 1) · · · (p− q + 1)

denote the corresponding falling factorial. For k > 1 and m > 0, define

B̃(k,m) :=
1

(m+ k)k
·
∑
λ∈Ik,m

(
k∏
i=1

λ−1
i

)

where the interval

Ik,m := [(m+ k,m+ k − 1,m+ k − 2, . . . ,m+ 1), (m+ k)k].

m k

k

When k = 0, we set B̃(0,m) := 1. We prove Theorem 3 by showing B(k, 0) = B̃(k, 0)
using the recursive formula in Proposition 18. The following lemma is analogous to Lemma
8, only we add a box to µ, instead of deleting a box from λ.

Lemma 19. Let λ ∈ Λ(k) and µ 6 λ. Let r > 0 be an index such that µr < µr−1 and
µr < λr. Define the partitions µ̄ and λ̄ by

µ̄i :=

{
µi if i 6= r

µi + 1 if i = r
and λ̄i :=

{
λi if 1 6 i < r

µr if r 6 i 6 k
.

Then we have
[µ, λ] = [µ̄, λ] t [µ, λ̄].
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Proof. Let ν ∈ [µ, λ]. If νr > µr, then ν > µ̄ and hence ν ∈ [µ̄, λ]. Otherwise, νr = µr
and ν 6 λ̄. In this case, ν ∈ [µ, λ̄].

Next, we apply repeated applications of Lemma 19 to the interval Ik,m. For r 6 k and
m > 0, define the partitions αk,m(r), βk,m(r) ∈ Λ(k) by

αk,m(r)i :=


m+ k if i = 1

m+ k + 1− i if i > k − r + 1

m+ k + 2− i if 2 6 i 6 k − r + 1

and

βk,m(r)i :=

{
m+ k if i 6 k − r + 1

m+ r − 1 if i > k − r + 1
.

By definition, we have Ik,m = [αk,m(k), βk,m(1)] and by Lemma 19,

[αk,m(r), βk,m(1)] = [αk,m(r − 1), βk,m(1)] t [αk,m(r), βk,m(r)].

This implies

Ik,m =
⊔

16r6k

[αk,m(r), βk,m(r)]. (10)

For example, when k = 5 and m = 1, diagrammatically applying Lemma 19 to I5,1 gives

= t

= t t

= t t t

= t t t t

Lemma 20. Let k > r > 1 and m > 0. The concatenation map

(λ, λ′) 7→ (k +m,λ1, . . . , λk−r, λ
′
1, . . . , λ

′
r−1)

gives a bijection
Ik−r,r+m × Ir−1,m → [αk,m(r), βk,m(r)].
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Proof. This can been seen immediately from the stacking of skew Young diagrams.

Ik−r,r+m

Ir−1,m

m r k − r

Proposition 21. B̃(k,m) = B(k,m) for all k > 0 and m > 0.

Proof. First note that B̃(0,m) = B(0,m) = 1 by definition. When k = 1, then I1,m =

{(m+ 1)} and B̃(1,m) = B(1,m) =
1

(m+ 1)2
.

For k > 1, we show that B̃(k,m) satisfies the same recursion as B(k,m) given in
Equation (8). For notational simplicity, for λ ∈ Λ(k), let

π(λ) :=
k∏
i=1

λ−1
i .

Observe that we can factor

(m+ k)k = (m+ r) · (m+ k)k−r · (m+ r − 1)r−1

and hence Lemma 20 implies

B̃(k − r, r +m)B̃(r − 1,m)

(m+ k)(m+ r)
=

1

(m+ k)k
·

∑
λ∈Ik−r,r+m

 ∑
λ′∈Ir−1,m

π(λ) · π(λ′)

(m+ k)


=

1

(m+ k)k
·

∑
λ∈[αk,m(r),βk,m(r)]

π(λ).

Applying Equation (10) gives

k∑
r=1

B̃(k − r, r +m)B̃(r − 1,m)

(m+ k)(m+ r)
=

1

(m+ k)k
·

k∑
r=1

 ∑
λ∈[αk,m(r),βk,m(r)]

π(λ)


=

1

(m+ k)k
·
∑
λ∈Ik,m

π(λ)

= B̃(k,m).

Proposition 18 completes the proof.
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Proof of Theorem 3. Proposition 21 implies that

B(k, 0) =
1

k!
·
∑
λ∈Ik,0

(
k∏
i=1

λ−1
i

)
.

The theorem follows from Equation (9).
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