Ore- and Pósa-Type Conditions for Partitioning 2-Edge-Coloured Graphs into Monochromatic Cycles

Patrick Arras
Institut für Informatik
Universität Heidelberg Heidelberg, Germany
arras@informatik.uni-heidelberg.de

Submitted: Feb 22, 2022; Accepted: Feb 23, 2023; Published: May 5, 2023
(C) The author. Released under the CC BY-ND license (International 4.0).

Abstract

In 2019, Letzter confirmed a conjecture of Balogh, Barát, Gerbner, Gyárfás, and Sárközy, proving that every large 2-edge-coloured graph G on n vertices with minimum degree at least $3 n / 4$ can be partitioned into two monochromatic cycles of different colours. Here, we propose a weaker condition on the degree sequence of G to also guarantee such a partition and prove an approximate version. This resembles a similar generalisation to an Ore-type condition achieved by Barát and Sárközy.

Continuing work by Allen, Böttcher, Lang, Skokan, and Stein, we also show that if $\operatorname{deg}(u)+\operatorname{deg}(v) \geqslant 4 n / 3+o(n)$ holds for all non-adjacent vertices $u, v \in V(G)$, then all but $o(n)$ vertices can be partitioned into three monochromatic cycles.

Mathematics Subject Classifications: 05C38, 05C70, 05D10

1 Introduction

1.1 Background

The initial spark of what has today become the sizeable field of research into monochromatic cycle covers can be found in a four-page paper by Gerencsér and Gyárfás [21] from 1967: In a seemingly innocent footnote, they mention that every 2-edge-coloured complete graph K_{n} can be covered by two vertex-disjoint paths of different colours. Inspired by this simple observation, Lehel [3] conjectured that the statement would still hold replacing the term path with cycle; provided the latter includes edges, vertices and the empty set. ${ }^{1}$ This

[^0]conjecture remained unsolved for about 20 years, when it was finally confirmed for large n by Luczak, Rödl, and Szemerédi [41]. The restriction to graphs of large order came from the use of Szemerédi's regularity lemma, but could later be relaxed by Allen [1] and then completely removed by Bessy and Thomassé [8], both finding proofs not relying on regularity arguments.

Ensuing research modified the setting above in multiple directions. Firstly, Erdős, Gyárfás, and Pyber [18] varied the number of colours. In particular, they established $\mathcal{O}\left(r^{2} \log r\right)$ as an upper bound for the number of monochromatic cycles needed to partition an r-edge-coloured complete graph K_{n}. Moreover, they conjectured that r colours might even suffice, which follows from Lehel's conjecture for $r=2$, but was later refuted for all $r \geqslant 3$ by Pokrovskiy [43]. So far, the best improvement of the upper bound is due to Gyárfás, Ruszinkó, Sárközy, and Szemerédi [25], who were able to lower it to $\mathcal{O}(r \log r)$, provided n is large in terms of r. According to Conlon and Stein [13], Lang and Stein [36] as well as a recent paper by Sárközy [50], the same can be achieved for local r-edgecolourings, where the colour limit only applies to the incident edges of each vertex. Related areas of research also considered hypergraphs $[10,11,20,26,39,48]$ and infinite graphs $[9$, $17,46,56]$ as host graphs. Alternatively, one may look at not only partitions into cycles, but also into monochromatic paths [21, 43], powers of cycles [49, 51], regular graphs [52, 53], graphs of bounded degree [14, 23, 24], or arbitrary connected graphs [4, 18, 19, 22, 28].

The second main modification was relaxing the completeness requirement on the host graph. Originally suggested in a posthumous paper by Schelp [54], imposing a lower bound on the minimum degree was considered as a replacement, which bears some resemblance to Dirac's theorem [16]. Indeed, Balogh, Barát, Gerbner, Gyárfás, and Sárközy [5] conjectured that for an n-vertex 2-edge-coloured host graph, a minimum degree above $3 n / 4$ would still suffice to guarantee a partition into two monochromatic cycles of different colours. Constructions show that this would be optimal. In support of their conjecture, they proved an approximate version that required minimum degree $3 n / 4+o(n)$ and only guaranteed that all but at most $o(n)$ vertices could be covered. Since then, the two error terms have been gradually eliminated by DeBiasio and Nelsen [15] as well as Letzter [37], both using advanced absorbing techniques. One should note that other density measures for the host graph have also been examined, such as prescribing its independence number $[5,47,53]$ or considering complete multipartite [27,35] as well as random graphs [4, 32, 33].

1.2 Main results

In this work, we continue two developments initiated by [5]. As its natural Ore-type analogue, Barát and Sárközy [7] proved that the following holds for all large 2-edgecoloured graphs G on n vertices: If G satisfies $\operatorname{deg}(u)+\operatorname{deg}(v) \geqslant 3 n / 2+o(n)$ for all $u v \notin E(G)$, then there are two vertex-disjoint and distinctly coloured monochromatic cycles in G, which together cover at least $n-o(n)$ vertices.

We take this one step further and propose a Pósa-type condition, owing its name to a Hamiltonicity condition given by Pósa [45]: Every graph on $n \geqslant 3$ vertices whose degree
sequence $d_{1} \leqslant \cdots \leqslant d_{n}$ satisfies $d_{i}>i$ for all $1 \leqslant i<n / 2$ contains a Hamilton cycle. ${ }^{2}$ We conjecture that the following stronger condition guarantees a partition of any large 2-edge-coloured graph into two monochromatic cycles of different colours.

Conjecture 1.1. There is n_{0} such that the following holds for all 2-edge-coloured graphs G on $n \geqslant n_{0}$ vertices: If the degree sequence $d_{1} \leqslant \cdots \leqslant d_{n}$ of G satisfies $d_{i}>i+n / 2$ for all $1 \leqslant i<n / 4$, then there is a partition of $V(G)$ into two distinctly coloured monochromatic cycles.

Unlike for Hamiltonicity, there is no easy link anymore between this Pósa-type condition and the Ore-type condition in [7]. We address this fact in Section 3, also providing a construction to show that each inequality required here is essentially tight. Our first main result is the following approximate version of Conjecture 1.1.

Theorem 1.2. For every $\beta>0$, there is $n_{0}(\beta)$ such that the following holds for all 2-edge-coloured graphs G on $n \geqslant n_{0}(\beta)$ vertices: If the degree sequence $d_{1} \leqslant \cdots \leqslant d_{n}$ of G satisfies $d_{i}>i+(1 / 2+\beta) n$ for all $1 \leqslant i<n / 4$, then there are two vertex-disjoint and distinctly coloured monochromatic cycles in G, which together cover at least $(1-\beta) n$ vertices.

For our second main result, we want to allow a third monochromatic cycle in the partition, but work with even smaller degrees in the 2-edge-coloured host graph. Here, Pokrovskiy [44] conjectured $2 n / 3$ as a minimum degree threshold to guarantee a partition into three monochromatic cycles. This has recently been confirmed approximately by Allen, Böttcher, Lang, Skokan, and Stein [2]. Recalling the aforementioned results for partitions into two monochromatic cycles, we believe that this minimum degree condition might again be replaceable by its natural Ore-type analogue. We therefore propose the following conjecture, which would be best possible as indicated by the construction of Pokrovskiy [44].

Conjecture 1.3. There is n_{0} such that the following holds for all 2-edge-coloured graphs G on $n \geqslant n_{0}$ vertices: If G satisfies $\operatorname{deg}(u)+\operatorname{deg}(v) \geqslant 4 n / 3$ for all $u v \notin E(G)$, then there is a partition of $V(G)$ into three monochromatic cycles.

Apart from the case of two cycles addressed by Barát and Sárközy [7], such a generalisation from minimum degree to Ore-type conditions has also been achieved by Barát, Gyárfás, Lehel, and Sárközy [6] for finding large monochromatic paths in 2-edge-coloured graphs. In support of Conjecture 1.3, our second main result confirms it approximately.

Theorem 1.4. For every $\beta>0$, there is $n_{0}(\beta)$ such that the following holds for all 2-edge-coloured graphs G on $n \geqslant n_{0}(\beta)$ vertices: If G satisfies $\operatorname{deg}(u)+\operatorname{deg}(v) \geqslant(4 / 3+\beta) n$ for all $u v \notin E(G)$, then there are three pairwise vertex-disjoint monochromatic cycles in G, which together cover at least $(1-\beta) n$ vertices.

[^1]
1.3 Open problems

Having derived a Pósa-type analogue of the Ore-type condition for two cycles with Theorem 1.2, it is only natural to ask whether a similar analogue also exists in the case of three cycles, so for Theorem 1.4. Here, the task of finding the optimal Pósa-type condition can be formulated as follows.

Problem 1.5. Determine the minimum $x, y \in[0,1]$ that satisfy:
For every $\beta>0$, there is $n_{0}(\beta)$ such that the following holds for all 2-edge-coloured graphs G on $n \geqslant n_{0}(\beta)$ vertices: If the degree sequence $d_{1} \leqslant \cdots \leqslant d_{n}$ of G satisfies $d_{i}>i+(x+\beta) n$ for all $1 \leqslant i<y n$, then there are three pairwise vertex-disjoint monochromatic cycles in G, which together cover at least $(1-\beta) n$ vertices.

As any graph G with minimum degree $\delta(G) \geqslant(x+y+\beta) n$ automatically satisfies such a Pósa-type condition, the construction of Pokrovskiy [44] for the sharpness of the minimum degree threshold immediately implies that $x+y \geqslant 2 / 3$ must hold. In fact, any solution of Problem 1.5 with $x+y=2 / 3$ would approximately generalise the result in [2].

Among all such solutions, the stronger statements arise from decreasing x and increasing y. Since any graph satisfying the Ore-type condition of Theorem 1.4 also satisfies the Pósa-condition above with $(x, y)=(1 / 6,1 / 2)^{3}$, the lowest achievable x is $1 / 6$, which would fully generalise Theorem 1.4. As we will discuss in Section 3, however, such a full generalisation is not possible for two cycles, so it seems unlikely that it would hold for three cycles. Considering Theorem 1.2 , we suggest $(x, y)=(1 / 2,1 / 6)$ as a sensible conjecture for further research.

1.4 Methodology

We briefly sketch the proof idea for our main results. As it is the same for Theorem 1.2 and Theorem 1.4, we focus on the former. The main tool is a colour version of Szemerédi's regularity lemma. Starting with a host graph G satisfying the Pósa-type condition, we first apply the regularity lemma (Lemma 4.2) to partition $V(G)$ into a bounded number of clusters. We find that up to a negligible loss, the reduced graph R with these clusters as vertices inherits the Pósa-type condition of G. Using our structural lemma for two cycles (Lemma 5.2), we identify two distinctly coloured monochromatic components of R that are suitable for constructing the desired cycles. More precisely, the union H of these components does not contain a contracting set (for a formal definition, see Section 4.1). By a well-known analogue of Tutte's theorem (Lemma 4.1), this is equivalent to H having a perfect 2-matching. Leveraging regularity, this 2-matching can be used to lift each monochromatic component in H to one monochromatic cycle in G. The technical details are encapsulated in Lemma 4.3 and guarantee that the cycles are vertex-disjoint and approximately cover the same fraction of vertices as the 2-matching, as desired.

The proof of Theorem 1.4 is similar and only requires one minor adjustment. Here, we cannot completely exclude the occurrence of contracting sets, but only limit what we

[^2]call their contraction. However, it turns out that this does not invalidate the approach above, although it complicates the proof of the respective structural lemma (Lemma 5.4). Nevertheless, we are still able to follow the line of argumentation from the proof of the corresponding structural lemma in [2] for the minimum degree case.

1.5 Organisation of the paper

The rest of this paper is organised as follows. The next section introduces some basic notation and definitions. In Section 3, we provide the aforementioned constructions showing that Conjectures 1.1 and 1.3 are essentially tight. Afterwards, Section 4 presents the necessary tools for embedding cycles, which will allow us to prove Theorems 1.2 and 1.4 in Section 5. Each proof relies on a structural lemma that is used as a black box. Finally, Sections 6 and 7 are dedicated to proving these structural lemmas, thereby completing the proofs of our two main results.

2 Notation

We write $[k]=\{1, \ldots, k\}$. For a graph G, a function $c: E(G) \rightarrow[2]$ is called a 2-edgecolouring of G. A 2-edge-coloured graph (G, c) is a pair of a graph G and a 2-edge-colouring c of G although we generally suppress the latter in the notation. For the sake of simplicity, we denote the subgraphs of G retaining only the edges of colour class i as G_{i}, but routinely refer to these colour classes as red and blue. Any connected component of such a G_{i} is called a (red/blue) monochromatic component of G. In particular, isolated vertices of G_{i} form monochromatic components with only one vertex and no edges.

For a subset $U \subseteq V(G)$, we let the neighbourhood $N_{G}(v, U)$ be the set of all vertices in U that are adjacent to v by an edge of G and omit U if $U=V(G)$. This extends to neighbourhoods of subsets $V \subseteq V(G)$ by $N_{G}(V):=\left(\bigcup_{v \in V} N_{G}(v)\right) \backslash V$. Similarly, we use $\operatorname{deg}_{G}(v)$ to refer to the degree of $v \in V(G)$ and $\operatorname{define~}^{\operatorname{deg}_{G}(v, U)}:=\left|N_{G}(v, U)\right|$. We denote by $\delta(G)$ and $\Delta(G)$ the minimum degree and the maximum degree of G, respectively. If G is a graph on n vertices v_{1}, \ldots, v_{n}, ordered such that $\operatorname{deg}_{G}\left(v_{1}\right) \leqslant \cdots \leqslant \operatorname{deg}_{G}\left(v_{n}\right)$, then this non-decreasing sequence is called the degree sequence of G.

The union of two graphs H_{1}, H_{2} has vertex set $V\left(H_{1}\right) \cup V\left(H_{2}\right)$ and edge set $E\left(H_{1}\right) \cup$ $E\left(H_{2}\right)$. For a vertex subset $U \subseteq V(G)$, the complement $\bar{U}:=V(G) \backslash U$ is always understood relative to the largest graph G in the context. We can then remove the vertices of U from G by considering $G \backslash U$, the induced subgraph on \bar{U}. In conjunction with set-theoretical operands such as cardinality, subset, complement, union, intersection or set difference, we also use the symbol of a graph to refer to its vertex set. For example, if H_{1}, H_{2} are subgraphs of some common graph, then $H_{1} \cap H_{2}$ means $V\left(H_{1}\right) \cap V\left(H_{2}\right)$. In particular, this notation allows us to denote the number of vertices of a graph G as $|G|$.

In constant hierarchies, we write $x \ll y$ if for all $y \in(0,1]$, there is some $x_{0} \in(0,1)$ such that the subsequent statement holds for all $x \in\left(0, x_{0}\right]$. Hierarchies with more than two constants are defined similarly and read from right to left. Furthermore, we will assume all constants to be positive real numbers and x to be a natural number if $1 / x$
appears in such a hierarchy.

3 Constructions

Labeling conditions as Ore- or Pósa-type conditions stems from the well-known Hamiltonicity conditions given by Ore [42] and Pósa [45]. In fact, the latter generalises the former, which also carries over to stronger versions of both conditions. For example, the Ore-type condition conjectured by Barát and Sárközy [7] can be seen a special case of the following Pósa-type condition with $x=1 / 4$.
Proposition 3.1. Let $x \in[0,1 / 2)$ and G be a non-complete graph on n vertices such that $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geqslant(1+2 x) n$ holds for all uv $\notin E(G)$. Then the degree sequence $d_{1} \leqslant \cdots \leqslant d_{n}$ of G satisfies $d_{j}>j+x n$ for all $1 \leqslant j<n / 2$.
Proof. Assume otherwise, so $d_{j} \leqslant j+x n$ for some $1 \leqslant j<n / 2$. Let v_{1}, \ldots, v_{n} be an enumeration of $V(G)$ in order of non-decreasing degree and define $U:=\left\{v_{1}, \ldots, v_{j}\right\}$. As $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}\left(u^{\prime}\right) \leqslant 2 d_{j} \leqslant 2 j+2 x n<(1+2 x) n$ for all $u, u^{\prime} \in U$, the induced subgraph $G[U]$ must be a clique by the Ore-type condition. Therefore, each $u \in U$ satisfies $\operatorname{deg}_{G}(u, U)=|U|-1=j-1$ and

$$
\operatorname{deg}_{G}(u, \bar{U})=\operatorname{deg}_{G}(u)-\operatorname{deg}_{G}(u, U) \leqslant d_{j}-(j-1) \leqslant x n+1
$$

So there are at most $(x n+1)|U|$ edges between U and \bar{U}. Let $v \in \bar{U}$ be the vertex incident to the least number of these edges. Then as $|\bar{U}|>|U|$, this vertex v must satisfy $\operatorname{deg}_{G}(v, U) \leqslant(x n+1)|U| /|\bar{U}|<x n+1$. Now if all edges from U to \bar{U} existed, $\delta(G)=d_{1}=n-1$ would follow and imply that G is complete. As this is not the case by assumption, we can pick some $u \in U \backslash N_{G}(v)$. Thus, the obvious observation $\operatorname{deg}_{G}(v, \bar{U}) \leqslant|\bar{U}|-1=n-j-1$ implies that

$$
\begin{aligned}
\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) & \leqslant d_{j}+\operatorname{deg}_{G}(v, U)+\operatorname{deg}_{G}(v, \bar{U}) \\
& <j+x n+(x n+1)+(n-j-1)=(1+2 x) n
\end{aligned}
$$

which contradicts the Ore-type condition.
However, as the following construction shows, this Pósa-type condition is too weak to guarantee that the graph can be covered by two vertex-disjoint monochromatic cycles. Indeed, we can show that the stronger Pósa-type condition of Conjecture 1.1 is essentially tight. This means that up to a constant number of vertices, every inequality required is necessary in order to ensure the existence of a red and a vertex-disjoint blue cycle covering the whole graph. In fact, this is still true even if cycles of the same colour are allowed.
Construction 3.2. Let $k<m$ and $G_{k, m}$ be a 2-edge-coloured graph on $4 m$ vertices as follows. The vertex set of $G_{k, m}$ consists of one cluster U of k vertices, two clusters A_{1} and A_{2} of m vertices each, and one cluster B of $2 m-k$ vertices. The only edges missing from G are edges from U to B and from A_{1} to A_{2}. The edges inside A_{1}, from A_{1} to B and from U to A_{2} are red. Similarly, the edges inside A_{2}, from A_{2} to B and from U to A_{1} are blue. The edges inside U and B have arbitrary colours (see Figure 1).

Figure 1: The 2-edge-coloured graph from Construction 3.2.
Proposition 3.3. For $k<m$ and $n=4 m$, the 2-edge-coloured graph $G_{k, m}$ satisfies both of the following:
(1) The degree sequence $d_{1} \leqslant \cdots \leqslant d_{n}$ of $G_{k, m}$ satisfies $d_{j}>j+n / 2-1$ for all $1 \leqslant j<n / 4$ except $j=k$.
(2) The vertices of $G_{k, m}$ cannot be covered by two vertex-disjoint monochromatic cycles.

Proof. The vertices with the smallest degree in $G_{k, m}$ are those in U. So the first k terms in the degree sequence of $G_{k, m}$ are $d_{1}=\ldots=d_{k}=k+2 m-1$, and (1) holds for all $1 \leqslant j<k$, but not for $j=k$. As every vertex $v \in \bar{U}$ satisfies $\operatorname{deg}_{G_{k, m}}(v) \geqslant 3 m-1>j+2 m-1$ for all $j<m$, (1) also holds for $k<j<m$.

It is easy to see that any monochromatic cycle intersecting U can only intersect either A_{1} or A_{2}, but cannot cover this A_{i} completely. So as no monochromatic cycle can intersect all three of A_{1}, A_{2} and B, the graph $G_{k, m}$ satisfies (2).

Since the Pósa-type condition from Conjecture 1.1 is strictly stronger than the one obtained from Proposition 3.1, the question whether the former still generalises the Oretype condition from Barát and Sárközy [7] arises naturally. The following proposition answers this in the negative.

Proposition 3.4. Let $0<\beta<1 / 6$. Then there is a graph G on $n=4 m$ vertices such that:
(1) The degree sequence $d_{1} \leqslant \cdots \leqslant d_{n}$ of G violates $d_{j}>j+n / 2$ for $j=m-1<n / 4$.
(2) $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geqslant(3 / 2+\beta) n$ holds for all $u v \notin E(G)$.

Proof. Consider a graph G consisting of one clique of $m-1$ vertices U and another clique of $3 m+1$ vertices \bar{U}. Moreover, every $u \in U$ has $\operatorname{deg}_{G}(u, \bar{U})=2 m+1$ with the endpoints of these edges evenly distributed among \bar{U}. Note that this implies that the $m-1$ vertices in U have lower degree than the vertices in \bar{U}. More precisely, we have
$d_{1}=\ldots=d_{m-1}=3 m-1$, which violates the Pósa-type condition at $j=m-1$ and thus confirms (1).

Now pick $u \in U$ and $v \in \bar{U}$ with $u v \notin E(G)$. Then $\operatorname{deg}_{G}(u, U)+\operatorname{deg}_{G}(v, \bar{U})=n-2=$ $4 m-2$ and, ignoring rounding operations,

$$
\operatorname{deg}_{G}(u, \bar{U})+\operatorname{deg}_{G}(v, U)=2 m+1+\frac{m-1}{3 m+1} \cdot(2 m+1)=\frac{2 m+1}{3 m+1} \cdot 4 m
$$

Dividing $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)$ by $n=4 m$ now yields $(4 m-2) /(4 m)+(2 m+1) /(3 m+1)$, which tends to $5 / 3$ as n and thus m goes to infinity. So for sufficiently large n, the term $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)$ approaches $5 n / 3$ and in particular, surpasses $(3 / 2+\beta) n$ for every $0<\beta<1 / 6$.

4 Tools for embedding cycles

4.1 Matchings

A 2-matching in a graph G is a function $w: E(G) \rightarrow\{0,1,2\}$ with $\sum_{u \in N_{G}(v)} w(u v) \leqslant 2$ for all $v \in V(G)$. It is said to cover $|w|:=\sum_{e \in E(G)} w(e)$ vertices of G. We call such a 2-matching w in G maximum if $|w| \geqslant\left|w^{\prime}\right|$ for every 2-matching w^{\prime} in G.

A vertex subset $S \subseteq V(G)$ is called stable in G if there are no edges between the vertices of S in G. We define its contraction in G to be $c_{G}(S):=|S|-\left|N_{G}(S)\right|$. For any $c \geqslant 0$, a set S is called c-contracting in G if it is stable in G and satisfies $c_{G}(S)>c$. Instead of 0 -contracting, we simply say contracting. The following analogue of the Tutte-Berge formula establishes a connection between the maximum 2-matching and the maximum contraction among all stable sets in a graph [55, Theorem 30.1].

Lemma 4.1 (Tutte-Berge formula for 2-matchings). The maximum 2-matching in a graph G covers $|G|-\max \left\{c_{G}(S) \mid S \subseteq V(G)\right.$ stable $\}$ vertices.

4.2 Regularity

A connected matching in a graph is a 1-regular subgraph contained in a single connected component. With the help of Szemerédi's regularity lemma [57], the task of finding large cycles in a dense graph G can be relaxed to finding large connected matchings in an appropriately defined reduced graph R. This idea was first used by Komlós, Sárközy, and Szemerédi [29] to prove an approximate version of the Pósa-Seymour conjecture and then transferred to monochromatic cycle covers by Łuczak [40, 41]. Ever since then, the method has become standard practice and fueled numerous advances $[2,5,7,15,31,33,37,38]$, including many of the results mentioned in Section 1. We therefore limit ourselves to stating the necessary definitions and lemmas, mostly following the notation from Lang and Sanhueza-Matamala [34].

Let A, B be two non-empty vertex subsets of a graph G and denote the number of edges of G with one endpoint in A and the other in B as $e_{G}(A, B)$. The density of such a pair is then defined as $d_{G}(A, B):=e_{G}(A, B) /(|A||B|)$. For $\varepsilon>0$, the pair (A, B) is called
ε-regular if $\left|d_{G}\left(A^{\prime}, B^{\prime}\right)-d_{G}(A, B)\right| \leqslant \varepsilon$ for all $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geqslant \varepsilon|A|$ and $B^{\prime} \subseteq B$ with $\left|B^{\prime}\right| \geqslant \varepsilon|B|$. Moreover, an ε-regular pair with density at least d is called (ε, d)-regular.

Now let $\mathcal{V}=\left\{V_{j}\right\}_{j=1}^{r}$ be a family of r disjoint sets and R be a graph on $[r]$. We say (G, \mathcal{V}) is an R-partition if $\bigcup_{j=1}^{r} V_{j}=V(G)$, the induced graph $G\left[V_{j}\right]$ is edgeless for every $j \in[r]$, and $j k$ is an edge of R whenever $e_{G}\left(V_{j}, V_{k}\right)>0$. We call the sets V_{j} of the partition its clusters and refer to R as the reduced graph of G or, more precisely, (G, \mathcal{V}). Such an R-partition (G, \mathcal{V}) is called balanced if all clusters have the same size. Furthermore, it is called (ε, d)-regular if $\left(V_{j}, V_{k}\right)$ is (ε, d)-regular for each $j k \in E(R)$. Finally, we say that $G^{\prime} \subseteq G$ is an (ε, d)-approximation of G if $\left|G^{\prime}\right| \geqslant(1-\varepsilon)|G|$ and we have $\operatorname{deg}_{G^{\prime}}(v) \geqslant \operatorname{deg}_{G}(v)-d|G|$ for all $v \in V\left(G^{\prime}\right)$.

We will use the degree version of Szemerédi's regularity lemma, adapted for the use with 2-edge-coloured graphs [30, Theorems 1.10 and 1.18]. With the notation introduced above, it can be formulated as follows:
Lemma 4.2 (Regularity lemma). Let $1 / n \ll 1 / r_{1} \ll 1 / r_{0}, \varepsilon, d$. Let G_{1}, G_{2} be graphs on n common vertices. Then there are $r_{0} \leqslant r \leqslant r_{1}$ and a family \mathcal{V} of r disjoint subsets of these vertices with the following properties: For each $i \in[2]$, there is $G_{i}^{\prime} \subseteq G_{i}$ and a graph R_{i} on $[r]$ such that
(1) G_{i}^{\prime} is an $(\varepsilon, d+\varepsilon)$-approximation of G_{i} and
(2) $\left(G_{i}^{\prime}, \mathcal{V}\right)$ is a balanced (ε, d)-regular R_{i}-partition.

As already mentioned, the method introduced by Luczak allows us to lift large connected matchings in a reduced graph R_{i} to large cycles in the corresponding G_{i}. In fact, Christofides, Hladký, and Máthé [12] observed that the same is also true for fractional matchings and similarly, 2-matchings. Formally, the following statement holds:
Lemma 4.3 (From connected matchings to cycles). Let $1 / n \ll 1 / r \ll \varepsilon \ll d \ll \eta \ll \beta$. Let G_{1}, G_{2} be graphs on n common vertices, \mathcal{V} be a family of r disjoint subsets of these vertices, and R_{1}, R_{2} be graphs on $[r]$. Suppose that $G_{i}^{\prime} \subseteq G_{i}$ is an $(\varepsilon, d+\varepsilon)$-approximation of G_{i} and $\left(G_{i}^{\prime}, \mathcal{V}\right)$ is a balanced (ε, d)-regular R_{i}-partition for $i \in[2]$.

Let H be the union of m_{1} components of R_{1} and m_{2} components of R_{2}, and suppose that there is a 2-matching in H that covers at least $(1-\eta) r$ vertices of $R_{1} \cup R_{2}$. Then there are pairwise vertex-disjoint cycles $C_{1}^{1}, \ldots, C_{1}^{m_{1}} \subseteq G_{1}$ and $C_{2}^{1}, \ldots, C_{2}^{m_{2}} \subseteq G_{2}$, which together cover at least $(1-\beta) n$ vertices of $G_{1} \cup G_{2}$.

5 Proof of the main results

In this section, we show the main results detailed in Section 1.2.

5.1 A Pósa-type condition for two cycles

Let us start with our first main result, Theorem 1.2. Its proof follows the argument outlined in Section 1.4 and uses the tools of Section 4 to simplify the problem to finding a large 2-matching in two monochromatic components of the reduced graph. For convenience, we introduce the following notation to abbreviate the Pósa-type condition.

Definition 5.1. A graph G on n vertices is called (n, γ)-Pósa if the degree sequence $d_{1} \leqslant \cdots \leqslant d_{n}$ of G satisfies $d_{j}>j+(1 / 2+\gamma) n$ for all $1 \leqslant j<n / 4$.

The structural analysis is then encapsulated in the following lemma, whose proof we defer to Section 6.
Lemma 5.2 (Structural lemma for two cycles). Let $1 / n \ll \gamma$ and G be (n, γ)-Pósa. Suppose G is 2-edge-coloured. Then there are a red and a blue component of G whose union H is a spanning subgraph of G without contracting sets.
Proof of Theorem 1.2. Given $\beta>0$, choose $1 / n \ll 1 / r_{1} \ll 1 / r_{0} \ll \varepsilon \ll d \ll \delta \ll \eta \ll$ $\gamma \ll \beta$ such that Lemmas 4.2, 4.3 and 5.2 are applicable with any $r_{0} \leqslant r \leqslant r_{1}$ playing the role of r in Lemma 4.3 and the role of n in Lemma 5.2. Additionally assure that $2 \varepsilon+\delta+\gamma \leqslant \beta$ as well as $d+\varepsilon \leqslant \delta / 2$ and $1 / n \leqslant \varepsilon / r_{1}$.

Consider an (n, β)-Pósa 2-edge-coloured graph G and apply Lemma 4.2. This yields $r_{0} \leqslant r \leqslant r_{1}$ and a family $\mathcal{V}=\left\{V_{j}\right\}_{j=1}^{r}$ of r disjoint sets, together with $(\varepsilon, \delta / 2)$-approximations G_{i}^{\prime} of G_{i} and graphs R_{i} on $[r]$ such that $\left(G_{i}^{\prime}, \mathcal{V}\right)$ is a balanced (ε, d)-regular R_{i}-partition for $i \in[2]$. Each of the r clusters must then contain between $(1-\varepsilon) n / r$ and n / r vertices.

Since we want to apply Lemma 5.2 to the graph $R:=R_{1} \cup R_{2}$ on $[r]$, we need to check that R is (r, γ)-Pósa. For this, we note that as the G_{i}^{\prime} are $(\varepsilon, \delta / 2)$-approximations of the G_{i}, the graph $G^{\prime}:=G_{1}^{\prime} \cup G_{2}^{\prime}$ is an (ε, δ)-approximation of G. Now enumerate the clusters of \mathcal{V} by ascending maximum index of their vertices in the degree sequence $d_{1} \leqslant \cdots \leqslant d_{n}$ of G and pick $1 \leqslant j<r / 4$.

Then for each $j \leqslant k \leqslant r$, the vertex $v_{k} \in V_{k}$ of maximum such index h_{k} must have a larger index than all vertices in V_{1}, \ldots, V_{k}, so we get $h_{k} \geqslant k(1-\varepsilon) n / r \geqslant j(1-\varepsilon) n / r$. By the choice of constants, we have $\varepsilon n / r \geqslant \varepsilon n / r_{1} \geqslant 1$, so there must be some integer j^{\prime} with $j(1-2 \varepsilon) n / r \leqslant j^{\prime} \leqslant j(1-\varepsilon) n / r \leqslant h_{k}$. As $j^{\prime}<j n / r<n / 4$ and G is (n, β)-Pósa, it follows that

$$
\operatorname{deg}_{G}\left(v_{k}\right)=d_{h_{k}} \geqslant d_{j^{\prime}}>j^{\prime}+(1 / 2+\beta) n \geqslant j n / r+(1 / 2+\beta-2 \varepsilon) n
$$

Since G^{\prime} is an (ε, δ)-approximation of G, this implies that $\operatorname{deg}_{G^{\prime}}\left(v_{k}\right) \geqslant \operatorname{deg}_{G}\left(v_{k}\right)-\delta n>$ $j n / r+(1 / 2+\gamma) n$. As each cluster of \mathcal{V} contains at most n / r vertices, the number of clusters containing a vertex in $N_{G^{\prime}}\left(v_{k}\right)$ must thus be at least $j+(1 / 2+\gamma) r$. Due to the $\left(G_{i}^{\prime}, \mathcal{V}\right)$'s being R_{i}-partitions, the indices of these clusters are then adjacent to k in R, so $\operatorname{deg}_{R}(k) \geqslant j+(1 / 2+\gamma) r$.

Applying this argument to all $j \leqslant k \leqslant r$, we find that the j-th entry of the degree sequence of R must be at least $j+(1 / 2+\gamma) r$. As this holds for all $1 \leqslant j<r / 4$, the graph R is (r, γ)-Pósa and thus satisfies all requirements of Lemma 5.2 with r playing the role of n. Hence, there are a red component $H_{1} \subseteq R_{1}$ and a blue component $H_{2} \subseteq R_{2}$ such that their union H is a spanning subgraph of G without contracting sets. By Lemma 4.1, there is a 2 -matching in H that covers all $r \geqslant(1-\eta) r$ vertices of R. But then all requirements of Lemma 4.3 are fulfilled, which guarantees the existence of two vertex-disjoint cycles $C_{1} \subseteq G_{1}$ and $C_{2} \subseteq G_{2}$ together covering at least $(1-\beta) n$ vertices of G. As the G_{i} 's only contain edges of one colour, these cycles are monochromatic and of different colours, so we are done.

5.2 An Ore-type condition for three cycles

Using the same approach, we also want to prove Theorem 1.4. In contrast to minimum degree or Pósa-type conditions, the Ore-type condition only approximately carries over to the reduced graph, which motivates the following abbreviation of our setting.

Definition 5.3. A graph G on n vertices is called (n, γ)-Ore if $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geqslant$ $(4 / 3+\gamma) n$ holds for all $u v \notin E(G)$. A pair (G, X) is called (n, δ, γ)-Ore if G and X are graphs on the same n vertices such that $\Delta(X)<\delta n$ and $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v) \geqslant(4 / 3+\gamma) n$ holds for all $u v \notin E(G \cup X)$.

Excluding these exceptional edges $E(X)$ from the Ore-type condition means that we cannot exclude the occurrence of contracting sets, but only limit their contraction to a fraction of the total number of vertices in R. But since we only aim to cover almost all vertices of G with few monochromatic cycles, this small loss is manageable and the following lemma suffices together with the tools of Section 4. Its proof is deferred to Section 7.

Lemma 5.4 (Structural lemma for three cycles). Let $1 / n \ll \delta \ll \eta \ll \gamma$ and (G, X) be (n, δ, γ)-Ore. Suppose G is 2-edge-coloured. Then there are three monochromatic components of G whose union H contains at least $(1-\eta) n$ vertices and has no ηn-contracting sets.

Proof of Theorem 1.4. Given $\beta>0$, choose $1 / n \ll 1 / r_{1} \ll 1 / r_{0} \ll \varepsilon \ll d \ll \delta \ll \eta \ll$ $\gamma \ll \beta$ such that Lemmas 4.2, 4.3 and 5.4 are applicable with any $r_{0} \leqslant r \leqslant r_{1}$ playing the role of r in Lemma 4.3 and the role of n in Lemma 5.4, as well as with 2η playing the role of η in Lemma 4.3. Additionally assure that $\delta+\gamma \leqslant \beta$ as well as $d+\varepsilon \leqslant \delta / 4$ and $\varepsilon<1 / 2$.

Consider an (n, β)-Ore 2-edge-coloured graph G and apply Lemma 4.2. This yields $r_{0} \leqslant r \leqslant r_{1}$ and a family $\mathcal{V}=\left\{V_{j}\right\}_{j=1}^{r}$ of r disjoint sets, together with ($\varepsilon, \delta / 4$)-approximations G_{i}^{\prime} of G_{i} and graphs R_{i} on $[r]$ such that $\left(G_{i}^{\prime}, \mathcal{V}\right)$ is a balanced (ε, d)-regular R_{i}-partition for $i \in[2]$. Each of the r clusters must then contain between $(1-\varepsilon) n / r$ and n / r vertices.

Since we want to apply Lemma 5.4 to the graph $R:=R_{1} \cup R_{2}$ on $[r]$, we need to check that for some appropriately defined graph X on $[r]$, the pair (R, X) is (r, δ, γ)-Ore. For this, we note that as the G_{i}^{\prime} are $(\varepsilon, \delta / 4)$-approximations of the G_{i}, the graph $G^{\prime}:=G_{1}^{\prime} \cup G_{2}^{\prime}$ is an $(\varepsilon, \delta / 2)$-approximation of G. We let

$$
E(X):=\left\{j k \notin E(R) \mid u v \in E(G) \backslash E\left(G^{\prime}\right) \text { for all } u \in V_{j}, v \in V_{k}\right\}
$$

Observe that every $u \in V_{j}$ loses at most $\delta n / 2$ incident edges from G to G^{\prime}. So there can be at most $\delta n /(2(1-\varepsilon) n / r)<\delta r$ clusters V_{k} in \mathcal{V} such that $u v \in E(G) \backslash E\left(G^{\prime}\right)$ for all $v \in V_{k}$. This shows that $\Delta(X)<\delta r$.

Now pick $j k \notin E(R \cup X)$. By definition of X, there is $u \in V_{j}, v \in V_{k}$ such that $u v \notin E(G) \backslash E\left(G^{\prime}\right)$. But also $u v \notin E\left(G^{\prime}\right)=E\left(G_{1}^{\prime}\right) \cup E\left(G_{2}^{\prime}\right)$ as otherwise $j k \in E(R)=$
$E\left(R_{1}\right) \cup E\left(R_{2}\right)$ would hold because the $\left(G_{i}^{\prime}, \mathcal{V}\right)$'s are R_{i}-partitions. So $u v \notin E(G)$. This together with G^{\prime} being an $(\varepsilon, \delta / 2)$-approximation of the (n, β)-Ore graph G yields

$$
\operatorname{deg}_{G^{\prime}}(u)+\operatorname{deg}_{G^{\prime}}(v) \geqslant \operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)-\delta n \geqslant(4 / 3+\beta-\delta) n \geqslant(4 / 3+\gamma) n
$$

As each cluster of \mathcal{V} contains at most n / r vertices, the number of clusters containing a vertex in $N_{G^{\prime}}(u)$ plus the number of clusters containing a vertex in $N_{G^{\prime}}(v)$ must thus be at least $(4 / 3+\gamma) r$. Due to the $\left(G_{i}^{\prime}, \mathcal{V}\right)$'s being R_{i}-partitions, the indices of these clusters are then adjacent to j or k in R, so $\operatorname{deg}_{R}(j)+\operatorname{deg}_{R}(k) \geqslant(4 / 3+\gamma) r$ as desired.

This shows that (R, X) is (r, δ, γ)-Ore and thus satisfies all requirements of Lemma 5.4 with r playing the role of n. So there are three monochromatic components $H_{1}, H_{2}, H_{3} \subseteq$ R such that their union H covers at least $(1-\eta) r$ vertices of R and every stable set S of H satisfies $c_{H}(S) \leqslant \eta r$. By Lemma 4.1, there is a 2 -matching in H that covers at least $|H|-\eta r \geqslant(1-2 \eta) r$ vertices of R. But then all requirements of Lemma 4.3 are fulfilled, which guarantees the existence of three pairwise vertex-disjoint cycles in G_{1}, G_{2} together covering at least $(1-\beta) n$ vertices of G. As the G_{i} 's only contain edges of one colour, these cycles are monochromatic and we are done.

6 Proof of the structural lemma for two cycles

In this section, we show Lemma 5.2, which completes the proof of Theorem 1.2. Recall from Definition 5.1 that the input graph G is a 2-edge-coloured graph on n vertices with $d_{j}>j+(1 / 2+\gamma) n$ for all $1 \leqslant j<n / 4$. We have to find a red and a blue component R, B of G such that their union $H:=R \cup B$ is a spanning subgraph of G without contracting sets. Before we address any details, we collect a few general observations.

Observation 6.1. Let $1 / n \ll \gamma$ and G be (n, γ)-Pósa. Then all of the following hold:
(1) $\delta(G)>n / 2$.
(2) Every set $U \subseteq V(G)$ with $|U| \geqslant n / 4$ contains a vertex $u \in U$ with $\operatorname{deg}_{G}(u)>3 n / 4$.
(3) Every set $U \subseteq V(G)$ with $0<|U|<n / 4$ contains a vertex $u \in U$ with $\operatorname{deg}_{G}(u, \bar{U})>$ $n / 2$.

Proof. The first statement follows directly from the Pósa-type condition when choosing $j=1$. For (2) and (3), let U be non-empty and $u \in U$ the vertex of maximum index in the degree sequence of G, which implies $\operatorname{deg}_{G}(u) \geqslant d_{|U|}$. If $|U| \geqslant n / 4$, we can require $1 / n \leqslant \gamma$ and apply the Pósa-type condition with $j=\lceil n / 4-1\rceil$ to find $d_{|U|} \geqslant d_{j}>j+(1 / 2+\gamma) n \geqslant$ $3 n / 4$. Conversely, $|U|<n / 4$ allows us to apply the Pósa-type condition directly and find $d_{|U|}>|U|+n / 2$, so $\operatorname{deg}_{G}(u, \bar{U}) \geqslant \operatorname{deg}_{G}(u)-|U|>n / 2$.

6.1 Component structure

We first show that there are a red and a blue component R, B in G such that their union $R \cup B$ is spanning. Formally, we prove the following intermediate result.

Lemma 6.2. Let $1 / n \ll \gamma$ and G be (n, γ)-Pósa. Suppose G is 2 -edge-coloured. Then there are a red and a blue component of G whose union H is a spanning subgraph of G.

Proof. By Observation 6.1(2), there is a vertex $u_{1} \operatorname{with}^{\operatorname{deg}_{G}}\left(u_{1}\right)>3 n / 4$. Let R and B_{1} be its red and blue component, respectively. Now if $\left|R \cap B_{1}\right| \geqslant n / 2$, Observation 6.1(1) implies that every vertex of G is adjacent to some vertex in $R \cap B_{1}$. Thus, $R \cup B_{1}$ is a spanning subgraph of G and we are done. So we may assume $\left|R \cap B_{1}\right|<n / 2$ for the remainder of this proof.

In particular, $N_{G}\left(u_{1}\right) \backslash\left(R \cap B_{1}\right)$ contains at least $n / 4$ vertices and can thus play the role of U in Observation $6.1(2)$. Hence, there is a vertex $u_{2} \in N_{G}\left(u_{1}\right) \backslash\left(R \cap B_{1}\right)$ with $\operatorname{deg}_{G}\left(u_{2}\right)>3 n / 4$. Without loss of generality, we can assume the edge $u_{1} u_{2} \in E(G)$ to be red, otherwise swap colours. This implies $u_{2} \in R \backslash B_{1}$, and we denote the blue component of u_{2} as B_{2}.

If R is spanning already, there is nothing to show. Similarly, if $|\bar{R}|<n / 4$, we can apply Observation $6.1(3)$ with \bar{R} as U to find $v \in \bar{R}$ with $\operatorname{deg}_{G}(v, R)>n / 2$. As all these edges must be blue, the blue component $B(v)$ of v satisfies $|R \cap B(v)|>n / 2$ and we are again done by the argument above. So we may assume $|\bar{R}| \geqslant n / 4$. Here, Observation 6.1(2) applied with \bar{R} as U guarantees that there is a vertex $v_{1} \in \bar{R}$ with $\operatorname{deg}_{G}\left(v_{1}\right)>3 n / 4$. We let B be the blue component of v_{1} and show that $R \cup B$ is the desired spanning subgraph H.

Assuming otherwise, we will consider $\overline{R \cup B}$ as U in either Observation 6.1(2) or 6.1(3) and arrive at a contradiction in both cases. For $|\overline{R \cup B}| \geqslant n / 4$, Observation 6.1(2) guarantees the existence of $v_{2} \in \overline{R \cup B}$ with $\operatorname{deg}_{G}\left(v_{2}\right)>3 n / 4$. Now $u_{1}, u_{2}, v_{1}, v_{2}$ all have degree above $3 n / 4$ in G, so there must be a vertex w that is adjacent to all four of them. However, at least one of the edges $w u_{1}$ and $w u_{2}$ must be red as the blue components of u_{1} and u_{2} differ. Similarly, at least one of $w v_{1}$ and $w v_{2}$ must be red. But this would put some $u_{j} \in R$ with $j \in[2]$ and some $v_{k} \in \bar{R}$ with $k \in[2]$ into the same red component, a contradiction.

We may therefore assume $0<|\overline{R \cup B}|<n / 4$ and apply Observation 6.1(3) to find $v^{\prime} \in \overline{R \cup B}$ with $\operatorname{deg}_{G}\left(v^{\prime}, R \cup B\right)>n / 2$. Denote its red and blue component as R^{\prime} and B^{\prime}, respectively. We immediately observe that $N_{G}\left(v^{\prime}, R \cup B\right) \subseteq\left(R \cap B^{\prime}\right) \cup\left(R^{\prime} \cap B\right)$. But no vertex in $R \cap B^{\prime}$ can be adjacent in G to $v_{1} \in \bar{R} \cap B$ with $\operatorname{deg}_{G}\left(v_{1}\right)>3 n / 4$, so we get $\left|R \cap B^{\prime}\right|<n / 4$. Similarly, we can choose $j \in[2]$ such that $B \neq B_{j}$ and observe that no vertex in $R^{\prime} \cap B$ can be adjacent in G to $u_{j} \in R \cap B_{j}$ with $\operatorname{deg}_{G}\left(u_{j}\right)>3 n / 4$, so $\left|R^{\prime} \cap B\right|<n / 4$. Combining these results yields the desired contradiction

$$
n / 2<\operatorname{deg}_{G}\left(v^{\prime}, R \cup B\right) \leqslant\left|R \cap B^{\prime}\right|+\left|R^{\prime} \cap B\right|<n / 2 .
$$

This proves that $H:=R \cup B$ must indeed be a spanning subgraph of G.

6.2 Proof of the structural lemma

The only thing missing to complete the proof of Lemma 5.2 and thus, Theorem 1.2 is to exclude the existence of contracting sets. Having established two suitable monochromatic components in Lemma 6.2, we can now prove the full statement.

Proof of Lemma 5.2. By Lemma 6.2, there are a red and a blue component R, B of G such that $R \cup B$ is a spanning subgraph of G. If one of R and B is already spanning on its own, we may freely choose the component of the other colour and do so by picking the largest one. However, even if neither R nor B is spanning, it is easy to see that they must be the largest components of their respective colour in G. Indeed, choose $u \in R \backslash B$ and $v \in B \backslash R$. As $R \cup B$ is spanning and there is no edge between $R \backslash B$ and $B \backslash R$, we have $N_{G}(u) \subseteq R$ and $N_{G}(v) \subseteq B$. So both R and B must already contain $n / 2$ vertices by Observation 6.1(1).

For a proof by contradiction, fix some contracting set S in $H:=R \cup B$, which cannot be empty as $c_{H}(\emptyset)=0$. We immediately observe that the stability of S implies $N_{H}(s) \subseteq$ $N_{H}(S)$ for all $s \in S$. By the contraction property, we additionally know that $\operatorname{deg}_{H}(s) \leqslant$ $\left|N_{H}(S)\right|<\left(|S|+\left|N_{H}(S)\right|\right) / 2<n / 2$, which is less than $\operatorname{deg}_{G}(s)$ by Observation 6.1(1). So every $s \in S$ must lose incident edges from G to H and can therefore not be a vertex of $R \cap B$. This implies $S \subseteq(R \backslash B) \cup(B \backslash R)$.

Now let $s_{1} \in S$ be the vertex of maximum index in the degree sequence of G. Without loss of generality, we can assume $s_{1} \in R \backslash B$, otherwise swap colours. Denote the blue component of s_{1} as B_{1} and recall that the largest blue component of G is B, so $\left|B_{1}\right| \leqslant n / 2$ must hold.

We first want to show that $|S| \geqslant n / 4$. Assuming otherwise and using that G is (n, γ)-Pósa, we find that

$$
\operatorname{deg}_{G}\left(s_{1}\right) \geqslant d_{|S|}>|S|+n / 2>\left|N_{H}(S)\right|+n / 2 \geqslant \operatorname{deg}_{H}\left(s_{1}\right)+n / 2 .
$$

So s_{1} must lose more than $n / 2$ incident edges from G to H. As all of them are blue, $\left|B_{1}\right|>n / 2$ follows in contradiction to what we have observed above. So $|S| \geqslant n / 4$ must hold. In particular, applying Observation $6.1(2)$ with S as U yields $\operatorname{deg}_{G}\left(s_{1}\right)>3 n / 4$ by choice of s_{1} as the maximum degree vertex in S.

For the remainder of this proof, we partition B_{1} into $S_{1}:=S \cap B_{1}, N_{1}:=N_{H}(S) \cap B_{1}$, and $W_{1}:=B_{1} \backslash\left(S_{1} \cup N_{1}\right)$. Similarly, we also partition its complement $\overline{B_{1}}$ into $S^{\prime \prime}:=S \backslash B_{1}$, $N^{\prime}:=N_{H}(S) \backslash B_{1}$, and $W^{\prime}=\overline{B_{1}} \backslash\left(S \cup N_{H}(S)\right)$. Obviously, there can be no blue edges from $S_{1} \subseteq B_{1}$ to $S^{\prime} \cup W^{\prime} \subseteq \overline{B_{1}}$ in G. But by stability of S in H and choice of W^{\prime}, there can also be no red edges. So $\operatorname{deg}_{G}\left(s_{1}\right)>3 n / 4$ implies that $\left|S^{\prime} \cup W^{\prime}\right|<n / 4$.

Moreover, $S^{\prime} \cup W^{\prime}$ cannot be empty as then $\overline{B_{1}}=N^{\prime} \subseteq N_{H}(S)$ would imply that $n / 2 \leqslant\left|\overline{B_{1}}\right| \leqslant\left|N_{H}(S)\right|$ or $n / 2<\left|B_{1}\right|$ hold, both of which we already know to be false. This allows us to apply Observation 6.1(3) to $S^{\prime} \cup W^{\prime}$ as U to find $u \in S^{\prime} \cup W^{\prime}$ with $\operatorname{deg}_{G}\left(u, \overline{S^{\prime} \cup W^{\prime}}\right)>n / 2$. Additionally, u cannot have an edge to S_{1} by the argument above, so we conclude

$$
\begin{equation*}
n / 2<\operatorname{deg}_{G}\left(u, \overline{S^{\prime} \cup W^{\prime}}\right) \leqslant\left|N_{1}\right|+\left|W_{1}\right|+\left|N^{\prime}\right| . \tag{6.1}
\end{equation*}
$$

Using the contraction property of S together with $\left|S_{1}\right|+\left|N_{1}\right|+\left|W_{1}\right|=\left|B_{1}\right| \leqslant n / 2$, we get

$$
\left|S^{\prime}\right|=|S|-\left|S_{1}\right|>\left|N_{1}\right|+\left|N^{\prime}\right|-\left|S_{1}\right| \stackrel{(6.1)}{>} n / 2-\left|W_{1}\right|-\left|S_{1}\right| \geqslant\left|N_{1}\right| \geqslant 0 .
$$

Together with $\left|S^{\prime}\right| \leqslant\left|S^{\prime} \cup W^{\prime}\right|<n / 4$, this allows us to apply Observation 6.1(3) to S^{\prime} as U and obtain a vertex $s^{\prime} \in S^{\prime}$ with $\operatorname{deg}_{G}\left(s^{\prime}, \overline{S^{\prime}}\right)>n / 2$. By the same argument as above, none of these edges may go to $S_{1} \cup W_{1}$ and we observe that

$$
\begin{equation*}
n / 2<\operatorname{deg}_{G}\left(s^{\prime}, \overline{S^{\prime}}\right) \leqslant\left|N^{\prime}\right|+\left|W^{\prime}\right|+\left|N_{1}\right|<|S|+\left|W^{\prime}\right| . \tag{6.2}
\end{equation*}
$$

But now adding the inequalities (6.1) and (6.2) yields the desired contradiction

$$
n<\left|N_{1}\right|+\left|W_{1}\right|+\left|N^{\prime}\right|+|S|+\left|W^{\prime}\right|=n .
$$

So $H=R \cup B$ cannot have a contracting set.

7 Proof of the structural lemma for three cycles

In this section, we show Lemma 5.4, which completes the proof of Theorem 1.4. Recall from Definition 5.3 that G is a 2-edge-coloured graph on n vertices and X is another graph on the same vertices with bounded maximum degree. We try to find three monochromatic components of G such that their union H contains almost all vertices and has no stable sets with large contraction in H.

7.1 Component structure

Let us first shed some light on the structure of the monochromatic components of G. We find that two of them suffice to cover almost all vertices of G.

Lemma 7.1. Let $1 / n \ll \delta \ll \gamma$ and (G, X) be (n, δ, γ)-Ore. Suppose G is 2-edgecoloured. Then there are two monochromatic components of G whose union contains at least $(1-6 \delta) n$ vertices.

Proof. We will prove this by assuming otherwise and finding three vertices v_{1}, v_{2}, v_{3} which are pairwise non-adjacent in X and lie in distinct red and blue components of G. These are then also non-adjacent in G, so as the graph $G \cup X$ is (n, γ)-Ore, we get $\operatorname{deg}_{G}\left(v_{j}\right)+$ $\operatorname{deg}_{G}\left(v_{k}\right)>4 n / 3$ for all $j, k \in[3]$ with $j \neq k$. Adding all three inequalities yields $2 \sum_{j=1}^{3} \operatorname{deg}_{G}\left(v_{j}\right)>4 n$. But for each v_{j} in the monochromatic components R_{j} and B_{j}, we have $\operatorname{deg}_{G}\left(v_{j}\right) \leqslant\left|R_{j}\right|+\left|B_{j}\right|$. This combines to $\sum_{j=1}^{3} \operatorname{deg}_{G}\left(v_{j}\right) \leqslant \sum_{j=1}^{3}\left|R_{j}\right|+\sum_{j=1}^{3}\left|B_{j}\right| \leqslant 2 n$ and contradicts $2 \sum_{j=1}^{3} \operatorname{deg}_{G}\left(v_{j}\right)>4 n$ from above.

It remains to show that if every pair of monochromatic components of G misses more than $6 \delta n$ vertices, then there must be three vertices as described above. For this, let $v_{1} \in V(G)$ be arbitrary and denote its monochromatic components as R_{1} and B_{1}. As together they miss more than $6 \delta n$ vertices and $\Delta(X)<\delta n$, we can select $v_{2} \in V(G) \backslash\left(R_{1} \cup\right.$ $\left.B_{1} \cup N_{X}\left(v_{1}\right)\right)$. We denote its monochromatic components as R_{2}, B_{2} and let $R^{\prime}:=V(G) \backslash$ $\left(R_{1} \cup R_{2}\right)$ as well as $B^{\prime}:=V(G) \backslash\left(B_{1} \cup B_{2}\right)$. Now any $v_{3} \in\left(R^{\prime} \cap B^{\prime}\right) \backslash\left(N_{X}\left(v_{1}\right) \cup N_{X}\left(v_{2}\right)\right)$ would complete a triple as described above, so we may assume $\left|R^{\prime} \cap B^{\prime}\right| \leqslant 2 \delta n$ for the remainder of this proof. As R_{1}, R_{2} together miss more than $6 \delta n$ vertices, this implies that
at least one of $R^{\prime} \cap B_{1}$ and $R^{\prime} \cap B_{2}$ must contain more than $2 \delta n$ vertices. Similarly, at least one of $R_{1} \cap B^{\prime}$ and $R_{2} \cap B^{\prime}$ must contain more than $2 \delta n$ vertices.

Let $j \in[2]$ be chosen such that $\left|R^{\prime} \cap B_{j}\right|>2 \delta n$. Without loss of generality, assume $j=1$ (otherwise swap indices 1 and 2). If $\left|R_{1} \cap B^{\prime}\right|>2 \delta n$ also holds, we can choose $u_{1} \in\left(R^{\prime} \cap B_{1}\right) \backslash N_{X}\left(v_{2}\right)$ and $v_{3} \in\left(R_{1} \cap B^{\prime}\right) \backslash\left(N_{X}\left(u_{1}\right) \cup N_{X}\left(v_{2}\right)\right)$ to obtain a contradiction from u_{1}, v_{2}, v_{3}. So $\left|R_{1} \cap B^{\prime}\right| \leqslant 2 \delta n$ and thus, $\left|R_{2} \cap B^{\prime}\right|>2 \delta n$ must hold. By the same argument, we get $\left|R^{\prime} \cap B_{2}\right| \leqslant 2 \delta n$. In summary, $\left|R^{\prime} \cap B_{1}\right|,\left|R_{2} \cap B^{\prime}\right|>2 \delta n$ and $\left|R_{1} \cap B^{\prime}\right|,\left|R^{\prime} \cap B_{2}\right| \leqslant 2 \delta n$.

Now consider the two monochromatic components R_{2} and B_{1}, which by assumption miss $\left|R^{\prime} \cap B^{\prime}\right|+\left|R_{1} \cap B^{\prime}\right|+\left|R^{\prime} \cap B_{2}\right|+\left|R_{1} \cap B_{2}\right|=n-\left|R_{2} \cup B_{1}\right|>6 \delta n$ vertices of G. But as each of the three sets $R^{\prime} \cap B^{\prime}, R_{1} \cap B^{\prime}$, and $R^{\prime} \cap B_{2}$ contains at most $2 \delta n$ vertices, the fourth set $R_{1} \cap B_{2}$ must be non-empty. Hence, we can choose the desired vertices as $w_{1} \in R_{1} \cap B_{2}, w_{2} \in\left(R^{\prime} \cap B_{1}\right) \backslash N_{X}\left(w_{1}\right)$, and $w_{3} \in\left(R_{2} \cap B^{\prime}\right) \backslash\left(N_{X}\left(w_{1}\right) \cup N_{X}\left(w_{2}\right)\right)$.

Lemma 7.1 allows us to split the proof of Lemma 5.4 into three cases depending on the 2 -edge-colouring of G. For convenience of notation, we introduce names for these three types of 2-edge-colourings (plain, mixed, split) and combine them with the degree conditions we impose on (G, X). Formally, we define:

Definition 7.2. Let (G, X) be (n, δ, γ)-Ore and suppose G is 2-edge-coloured.
(1) A triple (G, X, R) is called plain (n, δ, γ)-Ore if R is a monochromatic component of G with $|R| \geqslant(1-10 \delta) n$.
(2) A quadruple (G, X, R, B) is called mixed (n, δ, γ)-Ore if (1) does not hold for any choice of R, and R, B are two monochromatic components of G with different colours as well as $|R \cup B| \geqslant(1-8 \delta) n$.
(3) A quadruple (G, X, R_{1}, R_{2}) is called split (n, δ, γ)-Ore if neither (1) nor (2) holds for any choice of R, B, and R_{1}, R_{2} are two monochromatic components of G with the same colour as well as $\left|R_{1} \cup R_{2}\right| \geqslant(1-6 \delta) n$.

The remainder of this chapter is dedicated to three separate proofs of Lemma 5.4, one for each of these three cases. That is, we show that the following three statements hold:

Lemma 7.3. Let $1 / n \ll \delta \ll \eta \ll \gamma$ and (G, X, R) be plain (n, δ, γ)-Ore. Then there are three monochromatic components of G whose union H contains at least $(1-\eta) n$ vertices and has no η n-contracting sets.

Lemma 7.4. Let $1 / n \ll \delta \ll \eta \ll \gamma$ and (G, X, R, B) be mixed (n, δ, γ)-Ore. Then there are three monochromatic components of G whose union H contains at least $(1-\eta) n$ vertices and has no ηn-contracting sets.

Lemma 7.5. Let $1 / n \ll \delta \ll \eta \ll \gamma$ and $\left(G, X, R_{1}, R_{2}\right)$ be split (n, δ, γ)-Ore. Then there are three monochromatic components of G whose union H contains at least $(1-\eta) n$ vertices and has no ηn-contracting sets.

With these at hand, the proof of Lemma 5.4 becomes trivial.
Proof of Lemma 5.4. Choosing one or two monochromatic components of G according to Lemma 7.1, we can extend (G, X) to a triple or quadruple that is either plain, mixed or split (n, δ, γ)-Ore. Thus, we are done by Lemmas 7.3 to 7.5 .

While the first two cases are quite straightforward to solve (see Sections 7.2 and 7.3), the third one will require a more involved argument (see Sections 7.4 and 7.5). Before we address any details, we collect a few general observations that hold in all three cases.

Observation 7.6. Let $1 / n \ll \delta \ll \gamma$ and (G, X) be (n, δ, γ)-Ore. If S is a contracting set in the subgraph H of G and S^{\prime} is a subset of S, then all of the following hold:
(1) $|S| \geqslant c_{H}(S)$.
(2) $\left|N_{H}(S)\right|<n / 2$.
(3) S^{\prime} is stable in H with $c_{H}\left(S^{\prime}\right) \geqslant c_{H}(S)-\left|S \backslash S^{\prime}\right|$.

Furthermore, if $u \in S$ does not lose incident edges from G to H, then for every vertex $v \in S \backslash\left(N_{X}(u) \cup\{u\}\right)$, both of the following hold:
(4) $\operatorname{deg}_{G}(v) \geqslant(4 / 3+\gamma) n-\left|N_{H}(S)\right|$.
(5) $\operatorname{deg}_{G}(v)-\operatorname{deg}_{H}(v)>n / 3$.

Proof. The first three statements follow directly from the definitions of stability and contraction. For (4), observe that $u v \notin E(G \cup X)$ and $\operatorname{deg}_{G}(u)=\operatorname{deg}_{H}(u) \leqslant\left|N_{H}(S)\right|$ by stability of S. The statement then follows from applying the Ore-type condition to u, v. Similarly, $\operatorname{deg}_{H}(v) \leqslant\left|N_{H}(S)\right|$ holds, so (5) follows directly from (4) and (2).

7.2 One monochromatic component

We start with plain 2-edge-colourings, so one monochromatic component R already covers almost all of G on its own. This allows us to prove the corresponding Lemma 7.3 directly.

Proof of Lemma 7.3. Without loss of generality, we can assume R to be red, otherwise swap colours. Let B, B^{\prime} be the two largest blue components of G intersecting R. Then $H:=R \cup B \cup B^{\prime}$ still covers at least $(1-10 \delta) n \geqslant(1-\eta) n$ vertices by the choice of constants. It remains to show that H has no stable sets S with $c_{H}(S)>\eta n$. For a proof by contradiction, fix such a set and consider the still stable set $S^{\prime}:=S \cap R$ with $c_{H}\left(S^{\prime}\right)>(\eta-10 \delta) n \geqslant 3 \delta n$ by Observation 7.6(3) and the choice of constants.

We first observe that S^{\prime} is disjoint from $B \cup B^{\prime}$: Assuming otherwise, there would be a $u \in S^{\prime}$ that belongs to both a red and a blue component kept from G to H and therefore does not lose incident edges. By Observation 7.6(1) and our choice of constants, we have $\left|S^{\prime}\right| \geqslant c_{H}\left(S^{\prime}\right) \geqslant 3 \delta n$ and so there is $v \in S^{\prime} \backslash\left(N_{X}(u) \cup\{u\}\right)$. Moreover, v is incident to more than $n / 3$ edges lost from G to H by Observation 7.6(5). As $v \in R$ and R is kept from G to H, all of these edges must be blue and belong to the blue component L of v
with $|L|>n / 3$. But then L is among the two largest blue components B, B^{\prime} and thus also a subgraph of H, a contradiction.

Next, we want to show that there also exist two blue components B_{1}, B_{2} such that $\left|S^{\prime} \backslash\left(B_{1} \cup B_{2}\right)\right| \leqslant 2 \delta n$. For this, let $s_{1} \in S^{\prime}$ be arbitrary and denote its blue component as B_{1}. If $\left|S^{\prime} \backslash B_{1}\right| \leqslant 2 \delta n$, there is nothing to show, so we can assume there is some $s_{2} \in S^{\prime} \backslash\left(B_{1} \cup N_{X}\left(s_{1}\right)\right)$. Denote its blue component as B_{2}. Again, if $\left|S^{\prime} \backslash\left(B_{1} \cup B_{2}\right)\right| \leqslant 2 \delta n$, there is nothing to show, so assume otherwise and choose $s_{3} \in S^{\prime} \backslash\left(B_{1} \cup B_{2} \cup N_{X}\left(s_{1}\right) \cup\right.$ $\left.N_{X}\left(s_{2}\right)\right)$. Let B_{3} be its blue component. The vertices $s_{1}, s_{2}, s_{3} \in S^{\prime}$ are then pairwise non-adjacent in X and lie in different blue components of G, meaning there can be no blue edges between them. By stability of $S^{\prime} \subseteq R$, there can also be no red edges, so the vertices are pairwise non-adjacent in G, as well. Thus, the Ore-type condition is applicable and adding the three inequalities yields $4 n<2 \sum_{j=1}^{3} \operatorname{deg}_{G}\left(s_{j}\right)$. Now every incident edge of $s_{j} \in S^{\prime} \subseteq R$ is either kept from G to H and hence an edge to $N_{H}\left(S^{\prime}\right)$, or lost and therefore blue. This shows $\operatorname{deg}_{G}\left(s_{j}\right) \leqslant\left|N_{H}\left(S^{\prime}\right)\right|+\left|B_{j} \backslash N_{H}\left(S^{\prime}\right)\right|$ and leads to $4 n<6\left|N_{H}\left(S^{\prime}\right)\right|+2 \sum_{j=1}^{3}\left|B_{j} \backslash N_{H}\left(S^{\prime}\right)\right| \leqslant 4\left|N_{H}\left(S^{\prime}\right)\right|+2 n$ by the disjointness of B_{1}, B_{2}, B_{3}. Reordering yields $\left|N_{H}\left(S^{\prime}\right)\right|>n / 2$ in contradiction to Observation 7.6(2). So there must have been two blue components B_{1}, B_{2} with $\left|S^{\prime} \backslash\left(B_{1} \cup B_{2}\right)\right| \leqslant 2 \delta n$.

Finally, we show for $s_{1} \in S^{\prime} \cap B_{1}$ that its blue component B_{1} must be among B, B^{\prime} : Trivially, $\left|S^{\prime}\right| \leqslant\left|B_{1}\right|+\left|B_{2}\right|+\left|S^{\prime} \backslash\left(B_{1} \cup B_{2}\right)\right| \leqslant\left|B_{1}\right|+\left|B_{2}\right|+2 \delta n$ holds, so by choice of B, B^{\prime} as the two largest blue components intersecting R, we get $\left|S^{\prime}\right| \leqslant|B|+\left|B^{\prime}\right|+2 \delta n$. By $c_{H}\left(S^{\prime}\right)>3 \delta n$, this implies that $\left|N_{H}\left(S^{\prime}\right)\right|<\left|S^{\prime}\right|-3 \delta n \leqslant|B|+\left|B^{\prime}\right|-\delta n$. Hence, there is a $v \in\left(B \cup B^{\prime}\right) \backslash\left(N_{H}\left(S^{\prime}\right) \cup N_{X}\left(s_{1}\right)\right)$. As v is not in $N_{H}\left(S^{\prime}\right)$ and belongs to a different blue component than all of S^{\prime}, there can be no edge from v to S^{\prime} in G. It follows that $\operatorname{deg}_{G}(v) \leqslant n-\left|S^{\prime}\right|$. In particular, $v s_{1} \notin E(G \cup X)$ by choice of v. Since $G \cup X$ is (n, γ)-Ore, we find $4 n / 3<\operatorname{deg}_{G}(v)+\operatorname{deg}_{G}\left(s_{1}\right)$. Recall from above that $\operatorname{deg}_{G}\left(s_{1}\right) \leqslant\left|N_{H}\left(S^{\prime}\right)\right|+\left|B_{1} \backslash N_{H}\left(S^{\prime}\right)\right|$, which is smaller than $\left|S^{\prime}\right|+\left|B_{1}\right|$ as S^{\prime} is contracting. So we can deduce $4 n / 3<n+\left|B_{1}\right|$ and obtain $\left|B_{1}\right|>n / 3$. But then B_{1} must be among the two largest blue components B, B^{\prime} intersecting R and $s_{1} \in S^{\prime} \cap B_{1}$ contradicts the disjointness of S^{\prime} from $B \cup B^{\prime}$ we have shown above. So H cannot have an ηn-contracting set.

7.3 Two monochromatic components of different colours

In a similar fashion, we can also prove Lemma 7.4. This lemma deals with the mixed case, that is when there are two monochromatic components R, B of different colours that only together cover almost all of G.

Proof of Lemma 7.4. We first note that if R and B covered exactly the same set of vertices, then (G, X, R) would be plain (n, δ, γ)-Ore, which is not the case by assumption. So there must be some vertex in $V(R \cup B)$ that belongs to only one of R and B. In particular, there must be a monochromatic component of G intersecting $V(R \cup B)$ that is neither R nor B. Without loss of generality, we can assume the largest such component to be red (otherwise swap colours) and denote it as R^{\prime}. Let R be the red component among R, B. The graph $H:=R \cup B \cup R^{\prime}$ then still covers at least $(1-8 \delta) n \geqslant(1-\eta) n$
vertices by the choice of constants. It remains to show that H has no stable sets S with $c_{H}(S)>\eta n$. For a proof by contradiction, fix such a set and consider the still stable set $S^{\prime}:=S \cap(R \cup B)$ with $c_{H}\left(S^{\prime}\right)>(\eta-10 \delta) n \geqslant 8 \delta n$ by Observation 7.6(3) and the choice of constants.

Now as R, B both miss more than $10 \delta n$ vertices, but together miss at most $8 \delta n$ vertices, we observe that $|R \backslash B|>2 \delta n$ and similarly, $|B \backslash R|>2 \delta n$. So we can pick $u \in R \backslash B$ and $v \in B \backslash\left(R \cup N_{X}(u)\right)$, which share no monochromatic component. On the one hand, this implies that they cannot be adjacent, so the Ore-type condition yields $\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)>$ $(4 / 3+\gamma) n$ and thus, $\left|N_{G}(u) \cap N_{G}(v)\right|>(1 / 3+\gamma) n$. On the other hand, their edges to some $w \in N_{G}(u) \cap N_{G}(v)$ must have different colours. If $u w$ is red and $v w$ is blue, we automatically get $w \in R \cap B$. If $u w$ is blue and $v w$ is red, then $w \notin R \cup B$, so there can be at most $8 \delta n$ such vertices in $N_{G}(u) \cap N_{G}(v)$. This shows that $|R \cap B|>(1 / 3+\gamma-8 \delta) n$.

Similar to the proof of Lemma 7.3, we can now observe that $S^{\prime} \subseteq R \cup B$ is disjoint from $R \cap B$ and R^{\prime} : Assuming otherwise, there would be some $u \in S^{\prime}$ that belongs to both a red and a blue component kept from G to H and therefore does not lose incident edges. By Observation 7.6(1), we can select some $v \in S^{\prime} \backslash\left(N_{X}(u) \cup\{u\}\right)$, which is incident to at least $n / 3$ lost edges by Observation 7.6(5). As one of its monochromatic components is kept from G to H, this implies that all of these lost edges go to the same monochromatic component L with $|L|>n / 3$. But this contradicts the choice of R^{\prime} : Obviously, R^{\prime} and L are disjoint from $R \cap B$. The intersection $R^{\prime} \cap L$ can only exist if L is blue and must then lie outside of $R \cup B$, so it can contain at most $8 \delta n$ vertices. Hence, we find that $\left|R^{\prime}\right| \leqslant n-|R \cap B|-|L|+\left|R^{\prime} \cap L\right|<(1 / 3-\gamma+16 \delta) n<n / 3<|L|$ by the choice of constants, although R^{\prime} is supposed to be the largest such component. This contradiction proves that S^{\prime} must indeed be disjoint from $R \cap B$ and R^{\prime}.

The next step is a general observation we will use multiple times in the following arguments.

Claim 7.7. Let $u \in R \backslash B$ and $v \in B \backslash R$ such that $u v \notin E(X)$ and S^{\prime} contains at least one of u, v. Then $n / 3<\left|N_{G}(u) \cap S^{\prime}\right|+\left|N_{G}(v) \cap S^{\prime}\right|$.

Proof of the claim. We can apply the Ore-type condition to find that

$$
\begin{equation*}
4 n / 3<\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)=\left|N_{G}(u) \cup N_{G}(v)\right|+\left|N_{G}(u) \cap N_{G}(v)\right| . \tag{7.1}
\end{equation*}
$$

Recall from above that apart from at most $8 \delta n$ vertices missed by $R \cup B$, all common neighbours w of u and v in G must belong to $R \cap B$, so the connecting edges $u w, v w$ are kept from G to H. As at least one of u, v belongs to S^{\prime}, this puts w into $N_{H}\left(S^{\prime}\right)$. So $\left|N_{G}(u) \cap N_{G}(v)\right| \leqslant\left|N_{H}\left(S^{\prime}\right)\right|+8 \delta n<\left|S^{\prime}\right|$ by $c_{H}\left(S^{\prime}\right)>8 \delta n$. Plugging both this and $\left|N_{G}(u) \cup N_{G}(v)\right| \leqslant\left|N_{G}(u) \cap S^{\prime}\right|+\left|N_{G}(v) \cap S^{\prime}\right|+\left|\overline{S^{\prime}}\right|$ into inequality (7.1) and subtracting $n=\left|S^{\prime}\right|+\left|\overline{S^{\prime}}\right|$ yields $n / 3<\left|N_{G}(u) \cap S^{\prime}\right|+\left|N_{G}(v) \cap S^{\prime}\right|$.

Now it is easy to see that S^{\prime} must intersect with both $R \backslash B$ and $B \backslash R$: If S^{\prime} were disjoint from $B \backslash R$, then $S^{\prime} \subseteq R \backslash B$ as S^{\prime} is also disjoint from $R \cap B$. Choosing $u \in S^{\prime} \cap R \backslash B$ and $v \in B \backslash\left(R \cup N_{X}(u)\right)$, we observe $n / 3<\left|N_{G}(u) \cap S^{\prime}\right|+\left|N_{G}(v) \cap S^{\prime}\right|$ by Claim 7.7. But as $v \in B \backslash R$ and $S^{\prime} \subseteq R \backslash B$, the neighbourhood of v cannot intersect with S^{\prime} and
$n / 3<\left|N_{G}(u) \cap S^{\prime}\right|$ follows. By stability of S^{\prime}, all these edges incident to $u \in S^{\prime} \subseteq R$ must be lost from G to H and therefore be blue. So the blue component L of $u \in R \backslash B$ contradicts the choice of R^{\prime}, exactly as above. Similarly, if S^{\prime} were disjoint from $R \backslash B$, then $S^{\prime} \subseteq B \backslash R$ follows and we can choose $v \in S^{\prime} \cap B \backslash R$ as well as $u \in R \backslash\left(B \cup N_{X}(v)\right)$. Here, the neighbours of u cannot belong to S^{\prime}, so Claim 7.7 implies $n / 3<\left|N_{G}(v) \cap S^{\prime}\right|$ with all these neighbours of v belonging to the red component L of $v \in B \backslash R$. However, as L contains $v \in S^{\prime}$ and R^{\prime} is disjoint from S^{\prime}, these two must be different red components and L being larger yields the same contradiction as above. So indeed, both intersections $S^{\prime} \cap(R \backslash B)$ and $S^{\prime} \cap(B \backslash R)$ must be non-empty.

According to Observation 7.6(1), there are more than $2 \delta n$ vertices in S^{\prime}. So we can choose s_{1} in the smaller and $s_{2} \notin N_{X}\left(s_{1}\right)$ in the larger set of $S^{\prime} \cap(R \backslash B)$ and $S^{\prime} \cap(B \backslash R)$. Using s_{1}, s_{2} as u, v in Claim 7.7, we obtain $n / 3<\left|N_{G}\left(s_{1}\right) \cap S^{\prime}\right|+\left|N_{G}\left(s_{2}\right) \cap S^{\prime}\right|$. So for some $j \in[2]$, we have $n / 6<\left|N_{G}\left(s_{j}\right) \cap S^{\prime}\right|$. By the stability of S^{\prime}, all these vertices must belong to the lost component L of s_{j}, which thereby contains more than $n / 6$ vertices.

But then this component L is again larger than R^{\prime}. Indeed, we already know that the sets $S^{\prime}, R \cap B$ and $R^{\prime} \cap B$ are pairwise disjoint. By definition, S^{\prime} is also disjoint from $N_{G}\left(S^{\prime}\right) \backslash N_{H}\left(S^{\prime}\right)$. The same holds for the other two sets because vertices in $R \cap B$ or $R^{\prime} \cap B$ do not lose incident edges from G to H. This shows that

$$
\left|R^{\prime} \cap B\right| \leqslant n-\left|S^{\prime}\right|-|R \cap B|-\left|N_{G}\left(S^{\prime}\right)\right|+\left|N_{H}\left(S^{\prime}\right)\right|<3 n / 2-\left|S^{\prime}\right|-|R \cap B|-\left|N_{G}\left(S^{\prime}\right)\right|
$$

by Observation 7.6(2). Together with $\left|R^{\prime} \cap \bar{B}\right| \leqslant n-|R \cup B| \leqslant 8 \delta n$, we get

$$
\begin{equation*}
\left|R^{\prime}\right|=\left|R^{\prime} \cap B\right|+\left|R^{\prime} \cap \bar{B}\right| \leqslant(3 / 2+8 \delta) n-\left|S^{\prime}\right|-|R \cap B|-\left|N_{G}\left(S^{\prime}\right)\right| . \tag{7.2}
\end{equation*}
$$

The fact that $G \cup X$ is (n, γ)-Ore now yields $(4 / 3+\gamma) n \leqslant \operatorname{deg}_{G}\left(s_{1}\right)+\operatorname{deg}_{G}\left(s_{2}\right)$. The right side $\operatorname{deg}_{G}\left(s_{1}\right)+\operatorname{deg}_{G}\left(s_{2}\right)$ can be expressed as the sum of $\left|N_{G}\left(s_{1}\right) \cup N_{G}\left(s_{2}\right)\right| \leqslant\left|S^{\prime}\right|+\left|N_{G}\left(S^{\prime}\right)\right|$ and $\left|N_{G}\left(s_{1}\right) \cap N_{G}\left(s_{2}\right)\right|$. Again recall that apart from at most $8 \delta n$ vertices outside of $R \cup B$, all vertices in $N_{G}\left(s_{1}\right) \cap N_{G}\left(s_{2}\right)$ must belong to $R \cap B$. Taken together, we get

$$
\begin{equation*}
(4 / 3+\gamma) n \leqslant \operatorname{deg}_{G}\left(s_{1}\right)+\operatorname{deg}_{G}\left(s_{2}\right) \leqslant\left|S^{\prime}\right|+\left|N_{G}\left(S^{\prime}\right)\right|+|R \cap B|+8 \delta n \tag{7.3}
\end{equation*}
$$

Now adding the inequalities (7.2) and (7.3) yields $\left|R^{\prime}\right| \leqslant(1 / 6-\gamma+16 \delta) n$ after simplification, which is less than $n / 6$ by the choice of constants. As there is a larger monochromatic component L that intersects $R \cup B$ in s_{j}, this contradicts the choice of R^{\prime}. So H cannot have an ηn-contracting set.

7.4 Component structure (continued)

To address the third and last case, we make a few intermediate observations about the relationship between the monochromatic components of the underlying 2-edge-coloured graph and the existence of contracting sets.

Definition 7.8. Let G be a 2 -edge-coloured graph on n vertices. Then a family \mathcal{H} of monochromatic components of G is said to double-cover G if for at least $2 n / 3$ vertices of G, both of their monochromatic components are in \mathcal{H}.

Lemma 7.9. Let $1 / n \ll \delta \ll \eta \ll \gamma$ and (G, X) be (n, δ, γ)-Ore. Suppose G is 2 -edgecoloured such that a family $\mathcal{H}=\left\{H_{j}\right\}_{j}$ of monochromatic components double-covers G. Then the union $H=\bigcup_{j} H_{j}$ has no ηn-contracting sets.

Proof. For a proof by contradiction, let S be such a stable set with $c_{H}(S)>\eta n$. We first show that S must be disjoint from the set T of all vertices for which both monochromatic components are in \mathcal{H}. Assuming otherwise, there is a vertex $u \in S \cap T$ not losing incident edges from G to H, so by Observation 7.6(1) and the choice of constants, there is a $v \in S \backslash\left(N_{X}(u) \cup\{u\}\right)$. The vertex v loses more than $n / 3$ incident edges from G to H by Observation 7.6(5). But these lost edges cannot go to T, which contradicts $|T| \geqslant 2 n / 3$. So S and T are indeed disjoint.

Next, we let $W:=V(G) \backslash\left(S \cup N_{H}(S)\right)$ and partition $V(G)$ into $S, N_{H}(S), W \cap T$ and $W \backslash T$. Since S and $W \backslash T$ are disjoint subsets of \bar{T} and S is contracting, we get $|S|+\left|N_{H}(S)\right|+|W \backslash T|<2|\bar{T}| \leqslant 2 n / 3$. This implies that the fourth set $W \cap T$ contains at least $n / 3>\delta n$ vertices, so we can select some $u \in S$ and $v \in(W \cap T) \backslash N_{X}(u)$. As vertices in T do not lose incident edges from G to H, every edge from S to T must go to $N_{H}(S)$. Consequently, there can be no edge between S and $W \cap T$. So the Ore-type condition yields $\left|N_{G}(u) \cap N_{G}(v)\right|>n / 3$. But by the same argument, none of these joint neighbours can belong to S or $W \cap T$. Hence, $\left|N_{G}(u) \cap N_{G}(v)\right| \leqslant\left|N_{H}(S)\right|+|W \backslash T|<$ $|S|+|W \backslash T| \leqslant|\bar{T}| \leqslant n / 3$ follows. This contradicts the previous inequality and we conclude that H cannot have an ηn-contracting set.

This means that if three monochromatic components double-cover G and already contain almost all vertices, we can immediately deduce Lemma 7.5 from Lemma 7.9. If that is not the case, however, we will show in Lemma 7.11 that we may assume the following setting.

Definition 7.10. A sextuple ($G, X, R_{1}, R_{2}, B_{1}, B_{2}$) is called evenly split (n, δ, γ)-Ore if both (G, X, R_{1}, R_{2}) and (G, X, B_{1}, B_{2}) are split (n, δ, γ)-Ore, the colour of R_{1}, R_{2} is different from the colour of B_{1}, B_{2}, and no three components among $R_{1}, R_{2}, B_{1}, B_{2}$ double-cover G.

Lemma 7.11. Let $1 / n \ll \delta \ll \gamma$ and $\left(G, X, R_{1}, R_{2}\right)$ be split (n, δ, γ)-Ore. Then at least one of the following two statements holds:
(1) G is double-covered by three monochromatic components whose union contains at least $(1-7 \delta) n$ vertices.
(2) There are two monochromatic components B_{1}, B_{2} of G such that the sextuple ($G, X, R_{1}, R_{2}, B_{1}, B_{2}$) is evenly split (n, δ, γ)-Ore.

Proof. Without loss of generality, we can assume R_{1}, R_{2} to be red. We distinguish between two cases.

Case 1. Assume that $\left|R_{k} \backslash\left(B \cup B^{\prime}\right)\right| \geqslant \delta n$ for every choice of blue components B, B^{\prime} and $k \in[2]$. We show that this leads to a contradiction.

Claim 7.12. There are six vertices $u_{1}, u_{2}, u_{3} \in R_{1}$ and $v_{1}, v_{2}, v_{3} \in R_{2}$ such that none of the u_{j} 's and none of the v_{j} 's share their blue component, and $u_{1} v_{1}, u_{2} v_{2}, u_{3} v_{3} \notin E(G \cup X)$.

Proof of the claim. We distinguish two subcases: For the first subcase, assume that there is a blue component B_{3} that intersects with R_{1}, but not with R_{2}. As no two blue components completely cover R_{1}, we can pick two vertices $u_{1}, u_{2} \in R_{1}$ that lie in distinct blue components B_{1}, B_{2} other than B_{3}. By assumption, $\left|R_{2} \backslash B_{1}\right| \geqslant \delta n$. Hence, we can select $v_{1} \in R_{2} \backslash\left(B_{1} \cup N_{X}\left(u_{1}\right)\right)$ with blue component $B\left(v_{1}\right)$. Similarly, we use the assumption $\left|R_{2} \backslash\left(B_{2} \cup B\left(v_{1}\right)\right)\right| \geqslant \delta n$ to find $v_{2} \in R_{2} \backslash\left(B_{2} \cup B\left(v_{1}\right) \cup N_{X}\left(u_{2}\right)\right)$ with blue component $B\left(v_{2}\right)$. Finally, let $u_{3} \in R_{1} \cap B_{3}$ and select $v_{3} \in R_{2} \backslash\left(B\left(v_{1}\right) \cup B\left(v_{2}\right) \cup N_{X}\left(u_{3}\right)\right)$ with blue component $B\left(v_{3}\right)$, using the assumption $\left|R_{2} \backslash\left(B\left(v_{1}\right) \cup B\left(v_{2}\right)\right)\right| \geqslant \delta n$. Note that $B\left(v_{3}\right) \neq B_{3}$ because we assumed R_{2} and B_{3} to be disjoint.

For the second subcase, assume that every blue component intersecting with R_{1} also intersects with R_{2}. We start with any blue component B_{1} that intersects R_{1} in $u_{1} \in$ $R_{1} \cap B_{1}$. Let $v_{2} \in R_{2} \cap B_{1}$ and use the assumption $\left|R_{1} \backslash B_{1}\right| \geqslant \delta n$ to select $u_{2} \in$ $R_{1} \backslash\left(B_{1} \cup N_{X}\left(v_{2}\right)\right)$. Let B_{2} be its blue component, pick any $v_{3} \in R_{2} \cap B_{2}$ and again use the assumption $\left|R_{1} \backslash\left(B_{1} \cup B_{2}\right)\right| \geqslant \delta n$ to select $u_{3} \in R_{1} \backslash\left(B_{1} \cup B_{2} \cup N_{X}\left(v_{3}\right)\right)$. Finally, use the assumption $\left|R_{2} \backslash\left(B_{1} \cup B_{2}\right)\right| \geqslant \delta n$ to select $v_{1} \in R_{2} \backslash\left(B_{1} \cup B_{2} \cup N_{X}\left(u_{1}\right)\right)$.

Now $G \cup X$ is (n, γ)-Ore, which can be applied to the pairs u_{j}, v_{j} found by Claim 7.12. The three resulting inequalities add up to $\sum_{j=1}^{3}\left|N_{G}\left(u_{j}\right) \cap N_{G}\left(v_{j}\right)\right|>n$. Next, we show that the three sets on the left are pairwise disjoint. For this, consider some $w \in N_{G}\left(u_{j}\right) \cap$ $N_{G}\left(v_{j}\right) \cap N_{G}\left(u_{k}\right) \cap N_{G}\left(v_{k}\right)$ for $j, k \in[3]$. The edges $u_{j} w$ and $u_{k} w$ cannot both be blue as u_{j} and u_{k} lie in different blue components. The same is true for $v_{j} w$ and $v_{k} w$. So w must be adjacent to some $u \in R_{1}$ and some $v \in R_{2}$ by red edges, which is obviously false. Hence, the sets on the left-hand side of the inequality above must indeed be pairwise disjoint. This yields the desired contradiction and concludes Case 1.

Case 2. Assume that $\left|R_{k} \backslash\left(B_{1} \cup B_{2}\right)\right|<\delta n$ for some $k \in[2]$ and two blue components B_{1}, B_{2}.
Claim 7.13. If $R_{3-k} \subseteq B_{1} \cup B_{2}$ does not hold, then R_{3-k}, B_{1}, B_{2} satisfy (1).
Proof of the claim. Let $j \in[2]$ be arbitrary and observe that as $\left(G, X, R_{3-k}, B_{3-j}\right)$ is not mixed (n, δ, γ)-Ore, we must have $\left|R_{k} \backslash B_{3-j}\right| \geqslant 2 \delta n$. This implies $\left|R_{k} \cap B_{j}\right| \geqslant \delta n$ as $\left|R_{k} \backslash\left(B_{1} \cup B_{2}\right)\right|<\delta n$. Now if $R_{3-k} \nsubseteq B_{1} \cup B_{2}$, there is a $v \in R_{3-k} \backslash\left(B_{1} \cup B_{2}\right)$. We use the observation above to choose $u_{j} \in\left(R_{k} \cap B_{j}\right) \backslash N_{X}(v)$ for $j \in[2]$, which shares neither monochromatic component with v. Hence, $u_{j} v \notin E(G \cup X)$ and $G \cup X$ being (n, γ)-Ore yields $\left|N_{G}\left(u_{j}\right) \cap N_{G}(v)\right|>(1 / 3+\gamma) n$. It is not hard to see that most of this intersection belongs to $R_{3-k} \cap B_{j}$. Indeed, as u_{j} and v do not share monochromatic components, their edges to some $w \in N_{G}\left(u_{j}\right) \cap N_{G}(v)$ must have different colours. If $u_{j} w$ is red and $v w$ is blue, then $w \in R_{k} \backslash\left(B_{1} \cup B_{2}\right)$, of which there are less than δn vertices. So the remaining at least $(1 / 3+\gamma-\delta) n>n / 3$ vertices w must have a blue edge to $u_{j} \in B_{j}$ and a red edge to $v \in R_{3-k}$, putting them into $R_{3-k} \cap B_{j}$. But then R_{3-k}, B_{1}, B_{2} double-cover G. Moreover, R_{3-k}, B_{1}, B_{2} contain all of $R_{1} \cup R_{2}$ except for the fewer than δn vertices in
$R_{k} \backslash\left(B_{1} \cup B_{2}\right)$, so in total at least $\left|R_{1} \cup R_{2}\right|-\delta n \geqslant(1-7 \delta) n$ vertices. Thus, R_{3-k}, B_{1}, B_{2} satisfy (1).

So if (1) does not hold, we may assume $R_{3-k} \subseteq B_{1} \cup B_{2}$. But then $\left|R_{3-k} \backslash\left(B_{1} \cup B_{2}\right)\right|=$ $0<\delta n$, so we can also apply Claim 7.13 to find $R_{k} \subseteq B_{1} \cup B_{2}$. In total, we observe $R_{1} \cup R_{2} \subseteq B_{1} \cup B_{2}$ and (G, X, B_{1}, B_{2}) is split (n, δ, γ)-Ore, thus proving (2).

7.5 Two monochromatic components of the same colour

The remainder of the proof now deals with the setting of Definition 7.10. Here, both two red components R_{1}, R_{2} and two blue components B_{1}, B_{2} of G together cover almost all vertices of G. This means that for each monochromatic component L among $R_{1}, R_{2}, B_{1}, B_{2}$, the union H_{L} of the other three contains enough vertices to satisfy Lemma 7.5. So its statement can only be wrong if each of these H_{L} 's contains a stable set S_{L} of sufficient contraction in H_{L}. Our first task will be to locate these sets with Lemmas 7.14, 7.15 and 7.17. We start by showing that accepting negligible losses in contraction, we may assume S_{L} to belong to the intersection of L with only one component of the other colour. The proof is in two steps (Lemmas 7.14 and 7.15).

Lemma 7.14. Let $1 / n \ll \delta \ll \eta^{\prime} \ll \eta \ll \gamma$ and $\left(G, X, R_{1}, R_{2}, B_{1}, B_{2}\right)$ be evenly split (n, δ, γ)-Ore. Suppose $H:=R_{1} \cup B_{1} \cup B_{2}$ has an ηn-contracting set S. Then there also is a ($2 \eta^{\prime} n$)-contracting set $S^{\prime} \subseteq R_{2} \cap\left(B_{1} \cup B_{2}\right)$ in H.

Proof. Without loss of generality, we can assume R_{1}, R_{2} to be red. Define the set $V:=$ $V\left(R_{1} \cup R_{2}\right) \cap V\left(B_{1} \cup B_{2}\right)$, which contains $|V| \geqslant(1-12 \delta) n$ vertices as both $\left(G, X, R_{1}, R_{2}\right)$ and $\left(G, X, B_{1}, B_{2}\right)$ are split (n, δ, γ)-Ore. Note that $S^{\prime \prime}:=S \cap V$ is still stable with $c_{H}\left(S^{\prime}\right)>(\eta-12 \delta) n \geqslant 2 \eta^{\prime} n$ by Observation 7.6(3) and the choice of constants. Our goal is to show that S^{\prime} is indeed a subset of R_{2}.

For a proof by contradiction, assume that there is some $u \in S^{\prime} \cap R_{1}$. Then by Observation 7.6(5), every vertex in $S^{\prime \prime}:=S^{\prime} \backslash\left(N_{X}(u) \cup\{u\}\right)$ loses some incident edges from G to H and must therefore belong to R_{2}, so $S^{\prime \prime} \subseteq R_{2}$. Furthermore, each such vertex $v \in S^{\prime \prime}$ has $\operatorname{deg}_{G}(v) \geqslant(4 / 3+\gamma) n-\left|N_{H}\left(S^{\prime}\right)\right|>(5 / 6+\gamma) n$ by Observation 7.6(4) and 7.6(2). Combining this for any pair of vertices $v_{1}, v_{2} \in S^{\prime \prime}$, we get $\left|N_{G}\left(v_{1}\right) \cap N_{G}\left(v_{2}\right)\right|>$ $(2 / 3+2 \gamma) n \geqslant(2 / 3+12 \delta) n$ by the choice of constants. Now as R_{2}, B_{1}, B_{2} do not doublecover G, we have $\left|R_{2}\right|<(2 / 3+6 \delta) n$ and thus $\left|R_{1}\right|>(1 / 3-12 \delta) n$, so there is some $w \in N_{G}\left(v_{1}\right) \cap N_{G}\left(v_{2}\right) \cap R_{1}$. The edges of w to $v_{1}, v_{2} \in S^{\prime \prime} \subseteq R_{2}$ must then be blue. As $v_{1}, v_{2} \in S^{\prime \prime}$ were chosen arbitrarily, this proves that all of $S^{\prime \prime}$ belongs to the same blue component B_{j} with $j \in[2]$.

Being a subset of the $\left(2 \eta^{\prime} n\right)$-contracting set S^{\prime}, the set $S^{\prime \prime}$ is still stable with $c_{H}\left(S^{\prime \prime}\right)>$ $\left(2 \eta^{\prime}-2 \delta\right) n \geqslant \eta^{\prime} n$ by Observation 7.6(3) and the choice of constants. In particular, this implies that $S^{\prime \prime}$ contains at least one vertex v by Observation 7.6(1). As $S^{\prime \prime} \subseteq$ $R_{2} \cap B_{j}$, all of v 's edges to R_{1} must be blue and therefore go to $R_{1} \cap B_{j}$. This shows that $\operatorname{deg}_{G}\left(v, R_{1}\right)+\left|S^{\prime \prime}\right| \leqslant\left|R_{1} \cap B_{j}\right|+\left|R_{2} \cap B_{j}\right| \leqslant\left|B_{j}\right|$. Now Observation 7.6(4) yields $4 n / 3 \leqslant \operatorname{deg}_{G}(v)+\left|N_{H}\left(S^{\prime \prime}\right)\right|<\left|\overline{R_{1}}\right|+\operatorname{deg}_{G}\left(v, R_{1}\right)+\left|S^{\prime \prime}\right|-\eta^{\prime} n$ by $c_{H}\left(S^{\prime \prime}\right)>\eta^{\prime} n$. Using $\left|\overline{R_{1}}\right| \leqslant\left|R_{2}\right|+6 \delta n$ and assuring $\delta \leqslant \eta / 18$ when choosing the constants, we get $4 n / 3<$
$\left|R_{2}\right|+\left|B_{j}\right|-12 \delta n$. But then at least one of R_{2} and B_{j} would contain more than $(2 / 3+6 \delta) n$ vertices and thus double-cover G together with the two components of the other colour. As this is not the case by assumption, there can be no $u \in S^{\prime} \cap R_{1}$ and $S^{\prime} \subseteq R_{2}$ holds as claimed.

Lemma 7.15. Let $1 / n \ll \delta \ll \gamma$ and $\left(G, X, R_{1}, R_{2}, B_{1}, B_{2}\right)$ be evenly split (n, δ, γ)-Ore. Suppose $H:=R_{1} \cup B_{1} \cup B_{2}$ has a stable set $S \subseteq R_{2} \cap\left(B_{1} \cup B_{2}\right)$. Then there is $j \in[2]$ such that $S \cap B_{j} \subseteq R_{2} \cap B_{j}$ is a stable set in H with $c_{H}\left(S \cap B_{j}\right) \geqslant c_{H}(S) / 2$.

Proof. Without loss of generality, we assume R_{1}, R_{2} to be red. Note that since S is stable, $N_{H}\left(S \cap B_{1}\right)$ and $N_{H}\left(S \cap B_{2}\right)$ partition $N_{H}(S)$. Indeed, all $s \in S \subseteq R_{2}$ lose their incident red edges from G to $H=R_{1} \cup B_{1} \cup B_{2}$. So any vertex in $N_{H}\left(S \cap B_{1}\right) \cap N_{H}\left(S \cap B_{2}\right)$ would be adjacent to vertices in both $S \cap B_{1}$ and $S \cap B_{2}$ by blue edges, which is obviously impossible. This implies that $\sum_{j=1}^{2}\left|N_{H}\left(S \cap B_{j}\right)\right|=\left|N_{H}(S)\right|=\sum_{j=1}^{2}\left|S \cap B_{j}\right|-c_{H}(S)$. Then at least one of the still stable sets $S \cap B_{j} \subseteq S$ must satisfy $\left|N_{H}\left(S \cap B_{j}\right)\right| \leqslant\left|S \cap B_{j}\right|-c_{H}(S) / 2$, so $c_{H}\left(S \cap B_{j}\right) \geqslant c_{H}(S) / 2$.

Before we combine the results of Lemmas 7.14 and 7.15 to obtain Lemma 7.17, we note another general observation in Lemma 7.16. It will be used both to obtain additional information on the locations of the contracting sets in Lemma 7.17 as well as multiple times in the remainder of this third case.

Lemma 7.16. Let $1 / n \ll \delta \ll \eta \ll \gamma$ and $\left(G, X, R_{1}, R_{2}, B_{1}, B_{2}\right)$ be evenly split (n, δ, γ) Ore. Suppose $H:=R_{1} \cup B_{1} \cup B_{2}$ has an ηn-contracting set $S \subseteq R_{2} \cap B_{j}$ with $j \in$ [2]. Then at least one of $\left|\left(R_{1} \cap B_{j}\right) \backslash N_{H}(S)\right|<\delta n$ and $\left|R_{2} \cap B_{j}\right|>n / 3$ hold, both of which imply $\left|R_{1} \cap B_{j}\right|<\left|R_{2} \cap B_{j}\right|$.

Proof. Without loss of generality, we can assume $j=1$, otherwise exchange the labels of B_{1}, B_{2}. Assume that $\left|\left(R_{1} \cap B_{1}\right) \backslash N_{H}(S)\right| \geqslant \delta n$. So picking any $v \in S$, there must be some $u \in\left(R_{1} \cap B_{1}\right) \backslash\left(N_{H}(S) \cup N_{X}(v)\right)$. Then u has no edge to S or $R_{2} \cap B_{2}$ in H and furthermore does not lose incident edges from G to H, so $\operatorname{deg}_{G}(u)=\operatorname{deg}_{H}(u) \leqslant$ $n-|S|-\left|R_{2} \cap B_{2}\right|$. In particular, the Ore-type condition is applicable to u, v and yields $\operatorname{deg}_{G}(v)>4 n / 3-\operatorname{deg}_{G}(u) \geqslant n / 3+|S|+\left|R_{2} \cap B_{2}\right|$. However, we also know that $\operatorname{deg}_{H}(v) \leqslant$ $\left|N_{H}(S)\right|<|S|-\eta n$, so

$$
\left|R_{2}\right| \geqslant \operatorname{deg}_{R_{2}}(v)=\operatorname{deg}_{G}(v)-\operatorname{deg}_{H}(v)>(1 / 3+\eta) n+\left|R_{2} \cap B_{2}\right| .
$$

As at most $6 \delta n$ vertices do not belong to $B_{1} \cup B_{2}$, this immediately implies the desired $\left|R_{2} \cap B_{1}\right| \geqslant\left|R_{2}\right|-\left|R_{2} \cap B_{2}\right|-6 \delta n>n / 3$ by the choice of constants.

The second statement is an easy observation: If $\left|\left(R_{1} \cap B_{1}\right) \backslash N_{H}(S)\right|<\delta n$ holds, then $\left|R_{1} \cap B_{1}\right|<\left|N_{H}(S)\right|+\delta n<|S|-(\eta-\delta) n<\left|R_{2} \cap B_{1}\right|$ by the ηn-contracting property of $S \subseteq R_{2} \cap B_{1}$ and the choice of constants. On the other hand, $\left|R_{2} \cap B_{1}\right|>n / 3$ and $\left|R_{1} \cap B_{1}\right| \geqslant\left|R_{2} \cap B_{1}\right|$ would immediately combine to R_{1}, R_{2}, B_{1} double-covering G, which is not the case by assumption.

Lemma 7.17. Let $1 / n \ll \delta \ll \eta^{\prime} \ll \eta \ll \gamma$ and $\left(G, X, R_{1}, R_{2}, B_{1}, B_{2}\right)$ be evenly split (n, δ, γ)-Ore. For each choice of $L \in\left\{R_{1}, R_{2}, B_{1}, B_{2}\right\}$, denote the union of the other three as H_{L}. Suppose all of these H_{L} 's have an ηn-contracting set S_{L}. Then for each L, there also is an $\eta^{\prime} n$-contracting set S_{L}^{\prime} in H_{L} such that $S_{R_{1}}^{\prime}, S_{B_{j}}^{\prime} \subseteq R_{1} \cap B_{j}$ and $S_{R_{2}}^{\prime}, S_{B_{3-j}}^{\prime} \subseteq$ $R_{2} \cap B_{3-j}$ for some $j \in[2]$.

Proof. For each lost component $L \in\left\{R_{1}, R_{2}, B_{1}, B_{2}\right\}$, Lemma 7.14 guarantees the existence of a $\left(2 \eta^{\prime} n\right)$-contracting set S_{L}^{\prime} in H_{L} that only intersects with L and the two components C_{1}, C_{2} of the other colour. By Lemma 7.15 , we may additionally assume S_{L}^{\prime} to only intersect with one of the C_{j} 's, while at worst cutting its contraction in half to $c_{H_{L}}\left(S_{L}^{\prime}\right)>\eta^{\prime} n$. Now Lemma 7.16 applied with η^{\prime} and S_{L}^{\prime} playing the roles of η and S implies that $L \cap C_{j}$ contains more vertices than $K \cap C_{j}$, with K being the other component among $R_{1}, R_{2}, B_{1}, B_{2}$ that has the same colour as L and is therefore kept from G to H_{L}. Using this multiple times yields the desired locations of the contracting sets.

Firstly, there is some $j \in[2]$ such that $S_{R_{1}}^{\prime} \subseteq R_{1} \cap B_{j}$, which implies

$$
\begin{equation*}
\left|R_{2} \cap B_{j}\right|<\left|R_{1} \cap B_{j}\right| . \tag{7.4}
\end{equation*}
$$

Now $S_{R_{2}}^{\prime} \subseteq R_{2} \cap B_{j}$ would yield the contradiction $\left|R_{1} \cap B_{j}\right|<\left|R_{2} \cap B_{j}\right|$, so we must have $S_{R_{2}}^{\prime} \subseteq R_{2} \cap B_{3-j}$ and

$$
\begin{equation*}
\left|R_{1} \cap B_{3-j}\right|<\left|R_{2} \cap B_{3-j}\right| \tag{7.5}
\end{equation*}
$$

holds. Similarly, there is some $k \in[2]$ such that $S_{B_{j}}^{\prime} \subseteq R_{k} \cap B_{j}$, which implies

$$
\begin{equation*}
\left|R_{k} \cap B_{3-j}\right|<\left|R_{k} \cap B_{j}\right| \tag{7.6}
\end{equation*}
$$

and thereby enforces $S_{B_{3-j}}^{\prime} \subseteq R_{3-k} \cap B_{3-j}$ as well as

$$
\begin{equation*}
\left|R_{3-k} \cap B_{j}\right|<\left|R_{3-k} \cap B_{3-j}\right| . \tag{7.7}
\end{equation*}
$$

Assuming $k=2$ and combining these four inequalities then leads to the contradiction

$$
\left|R_{2} \cap B_{j}\right| \stackrel{(7.4)}{<}\left|R_{1} \cap B_{j}\right| \stackrel{(7.7)}{<}\left|R_{1} \cap B_{3-j}\right| \stackrel{(7.5)}{<}\left|R_{2} \cap B_{3-j}\right| \stackrel{(7.6)}{<}\left|R_{2} \cap B_{j}\right| .
$$

So we must have $k=1$ as claimed.
The remainder is a two-step argument about these diagonal intersections $R_{1} \cap B_{j}$ and $R_{2} \cap B_{3-j}$ that contain two contracting sets each. We first bound the number of vertices in these intersections from above and then find vertices of small degree in them, which will later contradict the Ore-type condition.

Lemma 7.18. Let $1 / n \ll \delta \ll \eta \ll \gamma$ and $\left(G, X, R_{1}, R_{2}, B_{1}, B_{2}\right)$ be evenly split (n, δ, γ) Ore. For each choice of $L \in\left\{R_{1}, R_{2}, B_{1}, B_{2}\right\}$, denote the union of the other three as H_{L}. Suppose all of these H_{L} 's have an ηn-contracting set S_{L} such that $S_{R_{1}}, S_{B_{j}} \subseteq R_{1} \cap B_{j}$ and $S_{R_{2}}, S_{B_{3-j}} \subseteq R_{2} \cap B_{3-j}$ for some $j \in[2]$. Then both $\left|R_{1} \cap B_{j}\right|<n / 3$ and $\left|R_{2} \cap B_{3-j}\right|<n / 3$ hold.

Proof. Without loss of generality, we can assume R_{1}, R_{2} to be red and $j=1$. We first observe that vertices of $R_{1} \cap B_{1}$ cannot be adjacent to vertices of $R_{2} \cap B_{2}$ in G. However, both intersections contain sets of contraction above ηn, so more than δn vertices by Observation 7.6(1) and the choice of constants. Thus picking $u \in R_{1} \cap B_{1}$ and $v \in$ $\left(R_{2} \cap B_{2}\right) \backslash N_{X}(u)$, we can use that $G \cup X$ is (n, γ)-Ore to find that at least one of these intersections has a vertex of degree greater than $2 n / 3$ in G. But then the other intersection must contain less than $n / 3$ vertices. Again without loss of generality, we can assume $\left|R_{1} \cap B_{1}\right|<n / 3$, otherwise exchange the labels of all four components.

In particular, this assumption excludes the possibility of $\left|B_{1} \cap R_{1}\right|>n / 3$ when applying Lemma 7.16 to $S_{B_{1}} \subseteq B_{1} \cap R_{1}$. So $\left|B_{2} \cap R_{1}\right|<\left|N_{H_{B_{1}}}\left(S_{B_{1}}\right)\right|+\delta n<\left|S_{B_{1}}\right|-(\eta-\delta) n<$ $\left|S_{B_{1}}\right|-\delta n$ must hold by the choice of constants. Similarly, $S_{R_{1}} \subseteq R_{1} \cap B_{1}$ guarantees $\left|R_{2} \cap B_{1}\right|<\left|S_{R_{1}}\right|-\delta n$. Moreover, the Ore-type condition implies that $n / 3 \leqslant \mid N_{G}(u) \cap$ $N_{G}(v) \mid$. So as each common neighbour of u and v in G must either belong to $B_{2} \cap R_{1}$ or $R_{2} \cap B_{1}$, we get

$$
\begin{aligned}
\left|R_{1} \cap B_{1}\right|<n / 3 & \leqslant\left|N_{G}(u) \cap N_{G}(v)\right| \\
& \leqslant\left|B_{2} \cap R_{1}\right|+\left|R_{2} \cap B_{1}\right| \\
& <\left|S_{B_{1}}\right|+\left|S_{R_{1}}\right|-2 \delta n .
\end{aligned}
$$

Now recall that $S_{R_{1}}, S_{B_{1}} \subseteq R_{1} \cap B_{1}$, so these two must intersect in at least $2 \delta n$ vertices. This allows us to pick $u_{1} \in S_{R_{1}} \cap S_{B_{1}}$ and $u_{2} \in\left(S_{R_{1}} \cap S_{B_{1}}\right) \backslash N_{X}\left(u_{1}\right)$. By stability of $S_{R_{1}}$ in $H_{R_{1}}$, the edge $u_{1} u_{2}$ cannot be blue and similarly by stability of $S_{B_{1}}$ in $H_{B_{1}}$, it also cannot be red. So $u_{1} u_{2} \notin E(G \cup X)$ and as $G \cup X$ is (n, γ)-Ore, at least one of the $u_{k} \in R_{1} \cap B_{1}$ with $k \in[2]$ has degree $\operatorname{deg}_{G}\left(u_{k}\right)>2 n / 3$. But then $\left|R_{2} \cap B_{2}\right|<n / 3$ follows by the initial argument.

Lemma 7.19. Let $1 / n \ll \delta \ll \eta \ll \gamma$ and $\left(G, X, R_{1}, R_{2}, B_{1}, B_{2}\right)$ be evenly split (n, δ, γ) Ore. For each choice of $L \in\left\{R_{1}, R_{2}, B_{1}, B_{2}\right\}$, denote the union of the other three as H_{L}. Suppose there is $k, j \in[2]$ such that $R_{k} \cap B_{j}$ contains an ηn-contracting set $S_{R_{k}}$ in $H_{R_{k}}$ and an ηn-contracting set $S_{B_{j}}$ in $H_{B_{j}}$, but satisfies $\left|R_{k} \cap B_{j}\right|<n / 3$. Then there are at least δn vertices $v \in R_{k} \cap B_{j}$ with $\operatorname{deg}_{G}(v)<2 n / 3$.

Proof. Without loss of generality, we can assume R_{1}, R_{2} to be red. Consider the following two subsets of $R_{k} \cap B_{j}$:
$T_{B}:=\left\{v \in R_{k} \cap B_{j} \mid v\right.$ has more than $\left|\left(R_{k} \cap B_{j}\right) \backslash S_{R_{k}}\right|$ blue edges to $\left.R_{k} \cap B_{j}\right\}$,
$T_{R}:=\left\{v \in R_{k} \cap B_{j} \mid v\right.$ has more than $\left|\left(R_{k} \cap B_{j}\right) \backslash S_{B_{j}}\right|$ red edges to $\left.R_{k} \cap B_{j}\right\}$.
Taken together, T_{B} and T_{R} cover all vertices in $R_{k} \cap B_{j}$ with degree at least $2 n / 3$ in G. Indeed, fix $v \in\left(R_{k} \cap B_{j}\right) \backslash\left(T_{B} \cup T_{R}\right)$ and note that

$$
\begin{equation*}
\operatorname{deg}_{G}\left(v, R_{k} \cap B_{j}\right) \leqslant 2\left|R_{k} \cap B_{j}\right|-\left|S_{R_{k}}\right|-\left|S_{B_{j}}\right| \tag{7.8}
\end{equation*}
$$

Applying Lemma 7.16 with $S_{R_{k}} \subseteq R_{k} \cap B_{j}$ or $S_{B_{j}} \subseteq B_{j} \cap R_{k}$ playing the role of S and using our assumption of $\left|R_{k} \cap B_{j}\right|<n / 3$ to exclude the possibility of $\left|R_{k} \cap B_{j}\right|>n / 3$, we
get

$$
\begin{align*}
& \operatorname{deg}_{G}\left(v, R_{3-k} \cap B_{j}\right) \leqslant\left|R_{3-k} \cap B_{j}\right|<\left|N_{H_{R_{k}}}\left(S_{R_{k}}\right)\right|+\delta n, \tag{7.9}\\
& \operatorname{deg}_{G}\left(v, R_{k} \cap B_{3-j}\right) \leqslant\left|R_{k} \cap B_{3-j}\right|<\left|N_{H_{B_{j}}}\left(S_{B_{j}}\right)\right|+\delta n . \tag{7.10}
\end{align*}
$$

Outside of $\left(R_{1} \cup R_{2}\right) \cap\left(B_{1} \cup B_{2}\right)$, the vertex v may have at most $12 \delta n$ neighbours, so the three inequalities (7.8), (7.9) and (7.10) combine to

$$
\begin{aligned}
\operatorname{deg}_{G}(v) & <2\left|R_{k} \cap B_{j}\right|-\left|S_{R_{k}}\right|-\left|S_{B_{j}}\right|+\left|N_{H_{B_{j}}}\left(S_{B_{j}}\right)\right|+\left|N_{H_{B_{j}}}\left(S_{B_{j}}\right)\right|+14 \delta n \\
& =2\left|R_{k} \cap B_{j}\right|-c_{H_{R_{k}}}\left(S_{R_{k}}\right)-c_{H_{B_{j}}}\left(S_{B_{j}}\right)+14 \delta n
\end{aligned}
$$

Using $\left|R_{k} \cap B_{j}\right|<n / 3$ again, we observe that $\operatorname{deg}_{G}(v)<2 n / 3$ by the contraction property of $S_{R_{k}}$ and $S_{B_{j}}$ as well as the choice of constants. This means that $T_{B} \cup T_{R}$ can only miss vertices in $R_{k} \cap B_{j}$ with degree below $2 n / 3$ in G.

It remains to show that there are at least δn such vertices $v \in R_{k} \cap B_{j}$ that have $\operatorname{deg}_{G}(v)<2 n / 3$. For a proof by contradiction, we assume otherwise and observe that every subset $S \subseteq R_{k} \cap B_{j}$ must satisfy $\left|S \backslash\left(T_{B} \cup T_{R}\right)\right|<\delta n$. Now every vertex of T_{B} must have a blue edge to $S_{R_{k}} \subseteq R_{k} \cap B_{j}$ by construction, and therefore cannot itself belong to $S_{R_{k}}$ by stability of $S_{R_{k}}$ in $H_{R_{k}}$. This shows that $T_{B} \subseteq N_{H_{R_{k}}}\left(S_{R_{k}}\right)$. In particular, $\left|S_{R_{k}} \backslash T_{R}\right|=\left|S_{R_{k}} \backslash\left(T_{B} \cup T_{R}\right)\right|<\delta n$ holds by the disjointness of $S_{R_{k}}$ and T_{B}. Similarly, we also find $T_{R} \subseteq N_{H_{B_{j}}}\left(S_{B_{j}}\right)$ and $\left|S_{B_{j}} \backslash T_{B}\right|<\delta n$. Using $c_{H_{B_{j}}}\left(S_{B_{j}}\right)>\eta n$, this combines to

$$
\left|S_{R_{k}}\right|<\left|T_{R}\right|+\delta n \leqslant\left|N_{H_{B_{j}}}\left(S_{B_{j}}\right)\right|+\delta n<\left|S_{B_{j}}\right|-(\eta-\delta) n<\left|S_{B_{j}}\right|
$$

by the choice of constants. But the same way, we can also deduce $\left|S_{B_{j}}\right|<\left|S_{R_{k}}\right|$ from $c_{H_{R_{k}}}\left(S_{R_{k}}\right)>\eta n$ and obtain the desired contradiction. So there must indeed be at least δn vertices $v \in R_{k} \cap B_{j}$ with $\operatorname{deg}_{G}(v)<2 n / 3$.

The outcome of Lemma 7.19 will of course contradict the Ore-type condition, so we are finally able to prove Lemma 7.5, which is the last missing piece in the proof of Theorem 1.4.

Proof of Lemma 7.5. We choose the constants such that $1 / n \ll \delta \ll \eta^{\prime} \ll \eta \ll \gamma$ satisfies the requirements of Lemmas 7.9, 7.11 and 7.17 to 7.19, in the last two cases with η^{\prime} playing the role of η. Assuring $\delta \leqslant \eta / 7$, it suffices to prove the statement of Lemma 7.5 with $(1-7 \delta) n$ instead of $(1-\eta) n$. Whenever G is double-covered by three monochromatic components together containing at least $(1-7 \delta) n$ vertices, there is nothing to show as their union cannot contain ηn-contracting bad sets by Lemma 7.9. So by Lemma 7.11, we may assume the existence of two components B_{1}, B_{2} such that ($G, X, R_{1}, R_{2}, B_{1}, B_{2}$) is evenly split (n, δ, γ)-Ore.

For a proof by contradiction, we assume that for every choice of $L \in\left\{R_{1}, R_{2}, B_{1}, B_{2}\right\}$, the union H_{L} of the other three contains an ηn-contracting set S_{L}. Then Lemma 7.17 yields $\eta^{\prime} n$-contracting sets S_{L}^{\prime} in H_{L} such that $S_{R_{1}}^{\prime}, S_{B_{j}}^{\prime} \subseteq R_{1} \cap B_{j}$ and $S_{R_{2}}^{\prime}, S_{B_{3-j}}^{\prime} \subseteq$ $R_{2} \cap B_{3-j}$ for some $j \in[2]$. Applying Lemma 7.18 with η^{\prime} and S_{*}^{\prime} playing the roles of η and S_{*}, these intersections $R_{1} \cap B_{j}$ and $R_{2} \cap B_{3-j}$ have fewer than $n / 3$ vertices. Again
using η^{\prime} and S_{*}^{\prime} in place of η and S_{*}, Lemma 7.19 guarantees that both intersections contain at least δn vertices of degree below $2 n / 3$ in G. We can thus pick $u \in R_{1} \cap B_{j}$ with $\operatorname{deg}_{G}(u)<2 n / 3$ and $v \in\left(R_{2} \cap B_{3-j}\right) \backslash N_{X}(u)$ with $\operatorname{deg}_{G}(v)<2 n / 3$. However, this obviously contradicts the fact that $G \cup X$ is (n, γ)-Ore, thereby proving the lemma.

Acknowledgements

I would like to thank Richard Lang for suggesting this topic, many valuable discussions, and his guidance. I am also grateful to the referees for their suggestions.

References

[1] P. Allen, Covering two-edge-coloured complete graphs with two disjoint monochromatic cycles, Combin. Probab. Comput. 17 (2008), 471-486.
[2] P. Allen, J. Böttcher, R. Lang, J. Skokan, and M. Stein, Partitioning a 2-edgecoloured graph of minimum degree $2 n / 3+o(n)$ into three monochromatic cycles, arXiv:2204. 00496 (2022).
[3] J. Ayel, Sur l'existence de deux cycles supplémentaires unicolorés, disjoints et de couleurs différentes dans un graphe complet bicolore, Ph.D. thesis, L'université de Grenoble, 1979.
[4] D. Bal and L. DeBiasio, Partitioning random graphs into monochromatic components, Electron. J. Combin. 24 (2017), \#P1.18, 25 pages.
[5] J. Balogh, J. Barát, D. Gerbner, A. Gyárfás, and G. N. Sárközy, Partitioning 2-edge-colored graphs by monochromatic paths and cycles, Combinatorica 34 (2014), 507-526.
[6] J. Barát, A. Gyárfás, J. Lehel, and G. N. Sárközy, Ramsey number of paths and connected matchings in Ore-type host graphs, Discrete Math. 339 (2016), 1690-1698.
[7] J. Barát and G. N. Sárközy, Partitioning 2-edge-colored Ore-type graphs by monochromatic cycles, J. Graph Theory 81 (2016), 317-328.
[8] S. Bessy and S. Thomassé, Partitioning a graph into a cycle and an anticycle, a proof of Lehel's conjecture, J. Combin. Theory Ser. B 100 (2010), 176-180.
[9] C. Bürger and M. Pitz, Partitioning edge-coloured infinite complete bipartite graphs into monochromatic paths, Israel J. Math. 238 (2020), 479-500.
[10] S. Bustamante, J. Corsten, N. Frankl, A. Pokrovskiy, and J. Skokan, Partitioning edge-colored hypergraphs into few monochromatic tight cycles, SIAM J. Discrete Math. 34 (2020), 1460-1471.
[11] S. Bustamante, H. Hàn, and M. Stein, Almost partitioning 2-colored complete 3uniform hypergraphs into two monochromatic tight or loose cycles, J. Graph Theory 91 (2019), 5-15.
[12] D. Christofides, J. Hladký, and A. Máthé, Hamilton cycles in dense vertex-transitive graphs, J. Combin. Theory Ser. B 109 (2014), 34-72.
[13] D. Conlon and M. Stein, Monochromatic cycle partitions in local edge colorings, J. Graph Theory 81 (2016), 134-145.
[14] J. Corsten and W. Mendonça, Tiling edge-coloured graphs with few monochromatic bounded-degree graphs, arXiv:2103.16535 (2021).
[15] L. DeBiasio and L. L. Nelsen, Monochromatic cycle partitions of graphs with large minimum degree, J. Combin. Theory Ser. B 122 (2017), 634-667.
[16] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69-81.
[17] M. Elekes, D. T. Soukup, L. Soukup, and Z. Szentmiklóssy, Decompositions of edge-colored infinite complete graphs into monochromatic paths, Discrete Math. 340 (2017), 2053-2069.
[18] P. Erdős, A. Gyárfás, and L. Pyber, Vertex coverings by monochromatic cycles and trees, J. Combin. Theory Ser. B 51 (1991), 90-95.
[19] S. Fujita, M. Furuya, A. Gyárfás, and Á. Tóth, Partition of graphs and hypergraphs into monochromatic connected parts, Electron. J. Combin. 19 (2012), \#P27, 10 pages.
[20] F. Garbe, R. Lang, A. Lo, R. Mycroft, and N. Sanhueza-Matamala, Lehel's conjecture for 3-graphs, in preparation.
[21] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), 167-170.
[22] A. Girão, S. Letzter, and J. Sahasrabudhe, Partitioning a graph into monochromatic connected subgraphs, J. Graph Theory 91 (2019), 353-364.
[23] A. Girão and O. Janzer, Tiling with monochromatic bipartite graphs of bounded maximum degree, arXiv:2109. 09642 (2021).
[24] A. Grinshpun and G. N. Sárközy, Monochromatic bounded degree subgraph partitions, Discrete Math. 339 (2016), 46-53.
[25] A. Gyárfás, M. Ruszinkó, G. N. Sárközy, and E. Szemerédi, An improved bound for the monochromatic cycle partition number, J. Combin. Theory Ser. B 96 (2006), 855-873.
[26] A. Gyárfás and G. N. Sárközy, Monochromatic path and cycle partitions in hypergraphs, Electron. J. Combin. 20 (2013), \#P18, 8 pages.
[27] P. E. Haxell, Partitioning complete bipartite graphs by monochromatic cycles, J. Combin. Theory Ser. B 69 (1997), 210-218.
[28] P. E. Haxell and Y. Kohayakawa, Partitioning by monochromatic trees, J. Combin. Theory Ser. B 68 (1996), 218-222.
[29] J. Komlós, G. N. Sárközy, and E. Szemerédi, On the Pósa-Seymour conjecture, J. Graph Theory 29 (1998), 167-176.
[30] J. Komlós and M. Simonovits, Szemerédi's regularity lemma and its applications in graph theory, Combinatorics, Paul Erdős is eighty (Keszthely, 1993), Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math. Soc., Budapest, 1996, pp. 295-352.
[31] D. Korándi, R. Lang, S. Letzter, and A. Pokrovskiy, Minimum degree conditions for monochromatic cycle partitioning, J. Combin. Theory Ser. B 146 (2021), 96-123.
[32] D. Korándi, F. Mousset, R. Nenadov, N. Škorić, and B. Sudakov, Monochromatic cycle covers in random graphs, Random Structures Algorithms 53 (2018), 667-691.
[33] R. Lang and A. Lo, Monochromatic cycle partitions in random graphs, Combin. Probab. Comput. 30 (2021), 136-152.
[34] R. Lang and N. Sanhueza-Matamala, On sufficient conditions for Hamiltonicity in dense graphs, arXiv:2110. 14547 (2021).
[35] R. Lang, O. Schaudt, and M. Stein, Almost partitioning a 3-edge-colored $K_{n, n}$ into five monochromatic cycles, SIAM J. Discrete Math. 31 (2017), 1374-1402.
[36] R. Lang and M. Stein, Local colourings and monochromatic partitions in complete bipartite graphs, European J. Combin. 60 (2017), 42-54.
[37] S. Letzter, Monochromatic cycle partitions of 2-coloured graphs with minimum degree 3n/4, Electron. J. Combin. 26 (2019), \#P1.19, 67 pages.
[38] , An improvement on Euczak's connected matchings method, Bull. Lond. Math. Soc. 54 (2022), 609-623.
[39] A. Lo and V. Pfenninger, Towards Lehel's Conjecture for 4-Uniform Tight Cycles, Electron. J. Combin. 30 (2023), \#P1.13, 36 pages.
[40] T. Łuczak, $R\left(C_{n}, C_{n}, C_{n}\right) \leqslant(4+o(1)) n$, J. Combin. Theory Ser. B 75 (1999), 174187.
[41] T. Łuczak, V. Rödl, and E. Szemerédi, Partitioning two-coloured complete graphs into two monochromatic cycles, Combin. Probab. Comput. 7 (1998), 423-436.
[42] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.
[43] Alexey Pokrovskiy, Partitioning edge-coloured complete graphs into monochromatic cycles and paths, J. Combin. Theory Ser. B 106 (2014), 70-97.
[44] _, Partitioning a graph into a cycle and a sparse graph, Discrete Math. 346 (2023), Paper No. 113161, 21 pages.
[45] L. Pósa, A theorem concerning Hamilton lines, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 225-226.
[46] R. Rado, Monochromatic paths in graphs, Ann. Discrete Math. 3 (1978), 191-194.
[47] G. N. Sárközy, Monochromatic cycle partitions of edge-colored graphs, J. Graph Theory 66 (2011), 57-64.
[48] _, Improved monochromatic loose cycle partitions in hypergraphs, Discrete Math. 334 (2014), 52-62.
[49] , Monochromatic cycle power partitions, Discrete Math. 340 (2017), 72-80.
[50] , Monochromatic partitions in local edge colorings, Acta Math. Hungar. 161 (2020), 412-426.
[51] , Monochromatic square-cycle and square-path partitions, Discrete Math. 345 (2022), Paper No. 112712, 10 pages.
[52] G. N. Sárközy and S. M. Selkow, Vertex partitions by connected monochromatic k regular graphs, J. Combin. Theory Ser. B 78 (2000), 115-122.
[53] G. N. Sárközy, S. M. Selkow, and F. Song, Vertex partitions of non-complete graphs into connected monochromatic k-regular graphs, Discrete Math. 311 (2011), 20792084.
[54] R. H. Schelp, Some Ramsey-Turán type problems and related questions, Discrete Math. 312 (2012), 2158-2161.
[55] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, vol. 24, Springer Science \& Business Media, 2003.
[56] D. T. Soukup, Decompositions of edge-coloured infinite complete graphs into monochromatic paths II, Israel J. Math. 221 (2017), 235-273.
[57] Endre Szemerédi, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 399-401.

[^0]: ${ }^{1}$ Throughout this work, we will also use the term cycle this way without any further mention.

[^1]: ${ }^{2}$ Choosing $x=0$ in Proposition 3.1, one can see that this already implies Ore's theorem [42].

[^2]: ${ }^{3}$ Again, this can easily be seen from choosing $x=1 / 6$ in Proposition 3.1.

