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Abstract

In 2019, Letzter confirmed a conjecture of Balogh, Barát, Gerbner, Gyárfás,
and Sárközy, proving that every large 2-edge-coloured graph G on n vertices with
minimum degree at least 3n/4 can be partitioned into two monochromatic cycles
of different colours. Here, we propose a weaker condition on the degree sequence
of G to also guarantee such a partition and prove an approximate version. This
resembles a similar generalisation to an Ore-type condition achieved by Barát and
Sárközy.

Continuing work by Allen, Böttcher, Lang, Skokan, and Stein, we also show that
if deg(u) + deg(v) > 4n/3 + o(n) holds for all non-adjacent vertices u, v ∈ V (G),
then all but o(n) vertices can be partitioned into three monochromatic cycles.

Mathematics Subject Classifications: 05C38, 05C70, 05D10

1 Introduction

1.1 Background

The initial spark of what has today become the sizeable field of research into monochro-
matic cycle covers can be found in a four-page paper by Gerencsér and Gyárfás [21] from
1967: In a seemingly innocent footnote, they mention that every 2-edge-coloured complete
graph Kn can be covered by two vertex-disjoint paths of different colours. Inspired by this
simple observation, Lehel [3] conjectured that the statement would still hold replacing the
term path with cycle; provided the latter includes edges, vertices and the empty set.1 This

1Throughout this work, we will also use the term cycle this way without any further mention.
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conjecture remained unsolved for about 20 years, when it was finally confirmed for large
n by  Luczak, Rödl, and Szemerédi [41]. The restriction to graphs of large order came
from the use of Szemerédi’s regularity lemma, but could later be relaxed by Allen [1] and
then completely removed by Bessy and Thomassé [8], both finding proofs not relying on
regularity arguments.

Ensuing research modified the setting above in multiple directions. Firstly, Erdős,
Gyárfás, and Pyber [18] varied the number of colours. In particular, they established
O(r2 log r) as an upper bound for the number of monochromatic cycles needed to partition
an r-edge-coloured complete graph Kn. Moreover, they conjectured that r colours might
even suffice, which follows from Lehel’s conjecture for r = 2, but was later refuted for all
r > 3 by Pokrovskiy [43]. So far, the best improvement of the upper bound is due to
Gyárfás, Ruszinkó, Sárközy, and Szemerédi [25], who were able to lower it to O(r log r),
provided n is large in terms of r. According to Conlon and Stein [13], Lang and Stein [36]
as well as a recent paper by Sárközy [50], the same can be achieved for local r-edge-
colourings, where the colour limit only applies to the incident edges of each vertex. Related
areas of research also considered hypergraphs [10, 11, 20, 26, 39, 48] and infinite graphs [9,
17, 46, 56] as host graphs. Alternatively, one may look at not only partitions into cycles,
but also into monochromatic paths [21, 43], powers of cycles [49, 51], regular graphs [52,
53], graphs of bounded degree [14, 23, 24], or arbitrary connected graphs [4, 18, 19, 22, 28].

The second main modification was relaxing the completeness requirement on the host
graph. Originally suggested in a posthumous paper by Schelp [54], imposing a lower bound
on the minimum degree was considered as a replacement, which bears some resemblance
to Dirac’s theorem [16]. Indeed, Balogh, Barát, Gerbner, Gyárfás, and Sárközy [5] con-
jectured that for an n-vertex 2-edge-coloured host graph, a minimum degree above 3n/4
would still suffice to guarantee a partition into two monochromatic cycles of different
colours. Constructions show that this would be optimal. In support of their conjecture,
they proved an approximate version that required minimum degree 3n/4 + o(n) and only
guaranteed that all but at most o(n) vertices could be covered. Since then, the two
error terms have been gradually eliminated by DeBiasio and Nelsen [15] as well as Let-
zter [37], both using advanced absorbing techniques. One should note that other density
measures for the host graph have also been examined, such as prescribing its independ-
ence number [5, 47, 53] or considering complete multipartite [27, 35] as well as random
graphs [4, 32, 33].

1.2 Main results

In this work, we continue two developments initiated by [5]. As its natural Ore-type
analogue, Barát and Sárközy [7] proved that the following holds for all large 2-edge-
coloured graphs G on n vertices: If G satisfies deg(u) + deg(v) > 3n/2 + o(n) for all
uv /∈ E(G), then there are two vertex-disjoint and distinctly coloured monochromatic
cycles in G, which together cover at least n− o(n) vertices.

We take this one step further and propose a Pósa-type condition, owing its name to a
Hamiltonicity condition given by Pósa [45]: Every graph on n > 3 vertices whose degree
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sequence d1 6 · · · 6 dn satisfies di > i for all 1 6 i < n/2 contains a Hamilton cycle.2

We conjecture that the following stronger condition guarantees a partition of any large
2-edge-coloured graph into two monochromatic cycles of different colours.

Conjecture 1.1. There is n0 such that the following holds for all 2-edge-coloured graphs
G on n > n0 vertices: If the degree sequence d1 6 · · · 6 dn of G satisfies di > i+n/2 for all
1 6 i < n/4, then there is a partition of V (G) into two distinctly coloured monochromatic
cycles.

Unlike for Hamiltonicity, there is no easy link anymore between this Pósa-type condi-
tion and the Ore-type condition in [7]. We address this fact in Section 3, also providing
a construction to show that each inequality required here is essentially tight. Our first
main result is the following approximate version of Conjecture 1.1.

Theorem 1.2. For every β > 0, there is n0(β) such that the following holds for all 2-
edge-coloured graphs G on n > n0(β) vertices: If the degree sequence d1 6 · · · 6 dn of
G satisfies di > i + (1/2 + β)n for all 1 6 i < n/4, then there are two vertex-disjoint
and distinctly coloured monochromatic cycles in G, which together cover at least (1− β)n
vertices.

For our second main result, we want to allow a third monochromatic cycle in the
partition, but work with even smaller degrees in the 2-edge-coloured host graph. Here,
Pokrovskiy [44] conjectured 2n/3 as a minimum degree threshold to guarantee a partition
into three monochromatic cycles. This has recently been confirmed approximately by
Allen, Böttcher, Lang, Skokan, and Stein [2]. Recalling the aforementioned results for
partitions into two monochromatic cycles, we believe that this minimum degree condition
might again be replaceable by its natural Ore-type analogue. We therefore propose the
following conjecture, which would be best possible as indicated by the construction of
Pokrovskiy [44].

Conjecture 1.3. There is n0 such that the following holds for all 2-edge-coloured graphs
G on n > n0 vertices: If G satisfies deg(u) + deg(v) > 4n/3 for all uv /∈ E(G), then there
is a partition of V (G) into three monochromatic cycles.

Apart from the case of two cycles addressed by Barát and Sárközy [7], such a gener-
alisation from minimum degree to Ore-type conditions has also been achieved by Barát,
Gyárfás, Lehel, and Sárközy [6] for finding large monochromatic paths in 2-edge-coloured
graphs. In support of Conjecture 1.3, our second main result confirms it approximately.

Theorem 1.4. For every β > 0, there is n0(β) such that the following holds for all 2-
edge-coloured graphs G on n > n0(β) vertices: If G satisfies deg(u)+deg(v) > (4/3+β)n
for all uv /∈ E(G), then there are three pairwise vertex-disjoint monochromatic cycles in
G, which together cover at least (1− β)n vertices.

2Choosing x = 0 in Proposition 3.1, one can see that this already implies Ore’s theorem [42].
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1.3 Open problems

Having derived a Pósa-type analogue of the Ore-type condition for two cycles with The-
orem 1.2, it is only natural to ask whether a similar analogue also exists in the case of
three cycles, so for Theorem 1.4. Here, the task of finding the optimal Pósa-type condition
can be formulated as follows.

Problem 1.5. Determine the minimum x, y ∈ [0, 1] that satisfy:
For every β > 0, there is n0(β) such that the following holds for all 2-edge-coloured

graphs G on n > n0(β) vertices: If the degree sequence d1 6 · · · 6 dn of G satisfies
di > i + (x + β)n for all 1 6 i < yn, then there are three pairwise vertex-disjoint
monochromatic cycles in G, which together cover at least (1− β)n vertices.

As any graph G with minimum degree δ(G) > (x + y + β)n automatically satisfies
such a Pósa-type condition, the construction of Pokrovskiy [44] for the sharpness of the
minimum degree threshold immediately implies that x+ y > 2/3 must hold. In fact, any
solution of Problem 1.5 with x+y = 2/3 would approximately generalise the result in [2].

Among all such solutions, the stronger statements arise from decreasing x and increas-
ing y. Since any graph satisfying the Ore-type condition of Theorem 1.4 also satisfies the
Pósa-condition above with (x, y) = (1/6, 1/2)3, the lowest achievable x is 1/6, which
would fully generalise Theorem 1.4. As we will discuss in Section 3, however, such a
full generalisation is not possible for two cycles, so it seems unlikely that it would hold
for three cycles. Considering Theorem 1.2, we suggest (x, y) = (1/2, 1/6) as a sensible
conjecture for further research.

1.4 Methodology

We briefly sketch the proof idea for our main results. As it is the same for Theorem 1.2
and Theorem 1.4, we focus on the former. The main tool is a colour version of Szemerédi’s
regularity lemma. Starting with a host graph G satisfying the Pósa-type condition, we
first apply the regularity lemma (Lemma 4.2) to partition V (G) into a bounded number
of clusters. We find that up to a negligible loss, the reduced graph R with these clusters
as vertices inherits the Pósa-type condition of G. Using our structural lemma for two
cycles (Lemma 5.2), we identify two distinctly coloured monochromatic components of R
that are suitable for constructing the desired cycles. More precisely, the union H of these
components does not contain a contracting set (for a formal definition, see Section 4.1).
By a well-known analogue of Tutte’s theorem (Lemma 4.1), this is equivalent to H having
a perfect 2-matching. Leveraging regularity, this 2-matching can be used to lift each
monochromatic component in H to one monochromatic cycle in G. The technical details
are encapsulated in Lemma 4.3 and guarantee that the cycles are vertex-disjoint and
approximately cover the same fraction of vertices as the 2-matching, as desired.

The proof of Theorem 1.4 is similar and only requires one minor adjustment. Here,
we cannot completely exclude the occurrence of contracting sets, but only limit what we

3Again, this can easily be seen from choosing x = 1/6 in Proposition 3.1.
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call their contraction. However, it turns out that this does not invalidate the approach
above, although it complicates the proof of the respective structural lemma (Lemma 5.4).
Nevertheless, we are still able to follow the line of argumentation from the proof of the
corresponding structural lemma in [2] for the minimum degree case.

1.5 Organisation of the paper

The rest of this paper is organised as follows. The next section introduces some basic
notation and definitions. In Section 3, we provide the aforementioned constructions show-
ing that Conjectures 1.1 and 1.3 are essentially tight. Afterwards, Section 4 presents the
necessary tools for embedding cycles, which will allow us to prove Theorems 1.2 and 1.4
in Section 5. Each proof relies on a structural lemma that is used as a black box. Finally,
Sections 6 and 7 are dedicated to proving these structural lemmas, thereby completing
the proofs of our two main results.

2 Notation

We write [k] = {1, . . . , k}. For a graph G, a function c : E(G) → [2] is called a 2-edge-
colouring ofG. A 2-edge-coloured graph (G, c) is a pair of a graphG and a 2-edge-colouring
c of G although we generally suppress the latter in the notation. For the sake of simplicity,
we denote the subgraphs of G retaining only the edges of colour class i as Gi, but routinely
refer to these colour classes as red and blue. Any connected component of such a Gi is
called a (red/blue) monochromatic component of G. In particular, isolated vertices of Gi

form monochromatic components with only one vertex and no edges.
For a subset U ⊆ V (G), we let the neighbourhood NG(v, U) be the set of all vertices

in U that are adjacent to v by an edge of G and omit U if U = V (G). This extends to
neighbourhoods of subsets V ⊆ V (G) by NG(V ) := (

⋃
v∈V NG(v)) \ V . Similarly, we use

degG(v) to refer to the degree of v ∈ V (G) and define degG(v, U) := |NG(v, U)|. We denote
by δ(G) and ∆(G) the minimum degree and the maximum degree of G, respectively. If
G is a graph on n vertices v1, . . . , vn, ordered such that degG(v1) 6 · · · 6 degG(vn), then
this non-decreasing sequence is called the degree sequence of G.

The union of two graphs H1, H2 has vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪
E(H2). For a vertex subset U ⊆ V (G), the complement U := V (G) \ U is always
understood relative to the largest graph G in the context. We can then remove the
vertices of U from G by considering G \ U , the induced subgraph on U . In conjunction
with set-theoretical operands such as cardinality, subset, complement, union, intersection
or set difference, we also use the symbol of a graph to refer to its vertex set. For example,
if H1, H2 are subgraphs of some common graph, then H1 ∩H2 means V (H1)∩ V (H2). In
particular, this notation allows us to denote the number of vertices of a graph G as |G|.

In constant hierarchies, we write x � y if for all y ∈ (0, 1], there is some x0 ∈ (0, 1)
such that the subsequent statement holds for all x ∈ (0, x0]. Hierarchies with more than
two constants are defined similarly and read from right to left. Furthermore, we will
assume all constants to be positive real numbers and x to be a natural number if 1/x
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appears in such a hierarchy.

3 Constructions

Labeling conditions as Ore- or Pósa-type conditions stems from the well-known Hamilton-
icity conditions given by Ore [42] and Pósa [45]. In fact, the latter generalises the former,
which also carries over to stronger versions of both conditions. For example, the Ore-type
condition conjectured by Barát and Sárközy [7] can be seen a special case of the following
Pósa-type condition with x = 1/4.

Proposition 3.1. Let x ∈ [0, 1/2) and G be a non-complete graph on n vertices such
that degG(u) + degG(v) > (1 + 2x)n holds for all uv 6∈ E(G). Then the degree sequence
d1 6 · · · 6 dn of G satisfies dj > j + xn for all 1 6 j < n/2.

Proof. Assume otherwise, so dj 6 j + xn for some 1 6 j < n/2. Let v1, . . . , vn be an
enumeration of V (G) in order of non-decreasing degree and define U := {v1, . . . , vj}.
As degG(u) + degG(u′) 6 2dj 6 2j + 2xn < (1 + 2x)n for all u, u′ ∈ U , the induced
subgraph G[U ] must be a clique by the Ore-type condition. Therefore, each u ∈ U
satisfies degG(u, U) = |U | − 1 = j − 1 and

degG(u, U) = degG(u)− degG(u, U) 6 dj − (j − 1) 6 xn+ 1 .

So there are at most (xn + 1)|U | edges between U and U . Let v ∈ U be the vertex
incident to the least number of these edges. Then as |U | > |U |, this vertex v must
satisfy degG(v, U) 6 (xn + 1)|U |/|U | < xn + 1. Now if all edges from U to U existed,
δ(G) = d1 = n − 1 would follow and imply that G is complete. As this is not the
case by assumption, we can pick some u ∈ U \ NG(v). Thus, the obvious observation
degG(v, U) 6 |U | − 1 = n− j − 1 implies that

degG(u) + degG(v) 6 dj + degG(v, U) + degG(v, U)

< j + xn+ (xn+ 1) + (n− j − 1) = (1 + 2x)n ,

which contradicts the Ore-type condition.

However, as the following construction shows, this Pósa-type condition is too weak
to guarantee that the graph can be covered by two vertex-disjoint monochromatic cycles.
Indeed, we can show that the stronger Pósa-type condition of Conjecture 1.1 is essentially
tight. This means that up to a constant number of vertices, every inequality required is
necessary in order to ensure the existence of a red and a vertex-disjoint blue cycle covering
the whole graph. In fact, this is still true even if cycles of the same colour are allowed.

Construction 3.2. Let k < m and Gk,m be a 2-edge-coloured graph on 4m vertices as
follows. The vertex set of Gk,m consists of one cluster U of k vertices, two clusters A1 and
A2 of m vertices each, and one cluster B of 2m− k vertices. The only edges missing from
G are edges from U to B and from A1 to A2. The edges inside A1, from A1 to B and
from U to A2 are red. Similarly, the edges inside A2, from A2 to B and from U to A1 are
blue. The edges inside U and B have arbitrary colours (see Figure 1).
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U

A1 A2

B

Figure 1: The 2-edge-coloured graph from Construction 3.2.

Proposition 3.3. For k < m and n = 4m, the 2-edge-coloured graph Gk,m satisfies both
of the following:

(1) The degree sequence d1 6 · · · 6 dn of Gk,m satisfies dj > j + n/2 − 1 for all
1 6 j < n/4 except j = k.

(2) The vertices of Gk,m cannot be covered by two vertex-disjoint monochromatic cycles.

Proof. The vertices with the smallest degree in Gk,m are those in U . So the first k terms in
the degree sequence of Gk,m are d1 = . . . = dk = k+2m−1, and (1) holds for all 1 6 j < k,
but not for j = k. As every vertex v ∈ U satisfies degGk,m

(v) > 3m− 1 > j + 2m− 1 for
all j < m, (1) also holds for k < j < m.

It is easy to see that any monochromatic cycle intersecting U can only intersect either
A1 or A2, but cannot cover this Ai completely. So as no monochromatic cycle can intersect
all three of A1, A2 and B, the graph Gk,m satisfies (2).

Since the Pósa-type condition from Conjecture 1.1 is strictly stronger than the one
obtained from Proposition 3.1, the question whether the former still generalises the Ore-
type condition from Barát and Sárközy [7] arises naturally. The following proposition
answers this in the negative.

Proposition 3.4. Let 0 < β < 1/6. Then there is a graph G on n = 4m vertices such
that:

(1) The degree sequence d1 6 · · · 6 dn of G violates dj > j + n/2 for j = m− 1 < n/4.

(2) degG(u) + degG(v) > (3/2 + β)n holds for all uv 6∈ E(G).

Proof. Consider a graph G consisting of one clique of m − 1 vertices U and another
clique of 3m + 1 vertices U . Moreover, every u ∈ U has degG(u, U) = 2m + 1 with the
endpoints of these edges evenly distributed among U . Note that this implies that the
m − 1 vertices in U have lower degree than the vertices in U . More precisely, we have
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d1 = . . . = dm−1 = 3m− 1, which violates the Pósa-type condition at j = m− 1 and thus
confirms (1).

Now pick u ∈ U and v ∈ U with uv 6∈ E(G). Then degG(u, U) + degG(v, U) = n− 2 =
4m− 2 and, ignoring rounding operations,

degG(u, U) + degG(v, U) = 2m+ 1 +
m− 1

3m+ 1
· (2m+ 1) =

2m+ 1

3m+ 1
· 4m.

Dividing degG(u) + degG(v) by n = 4m now yields (4m− 2)/(4m) + (2m+ 1)/(3m+ 1),
which tends to 5/3 as n and thus m goes to infinity. So for sufficiently large n, the term
degG(u) + degG(v) approaches 5n/3 and in particular, surpasses (3/2 + β)n for every
0 < β < 1/6.

4 Tools for embedding cycles

4.1 Matchings

A 2-matching in a graph G is a function w : E(G) → {0, 1, 2} with
∑

u∈NG(v)w(uv) 6 2

for all v ∈ V (G). It is said to cover |w| :=
∑

e∈E(G)w(e) vertices of G. We call such a

2-matching w in G maximum if |w| > |w′| for every 2-matching w′ in G.
A vertex subset S ⊆ V (G) is called stable in G if there are no edges between the

vertices of S in G. We define its contraction in G to be cG(S) := |S| − |NG(S)|. For any
c > 0, a set S is called c-contracting in G if it is stable in G and satisfies cG(S) > c. Instead
of 0-contracting, we simply say contracting. The following analogue of the Tutte-Berge
formula establishes a connection between the maximum 2-matching and the maximum
contraction among all stable sets in a graph [55, Theorem 30.1].

Lemma 4.1 (Tutte-Berge formula for 2-matchings). The maximum 2-matching in a graph
G covers |G| −max{cG(S) | S ⊆ V (G) stable} vertices.

4.2 Regularity

A connected matching in a graph is a 1-regular subgraph contained in a single connected
component. With the help of Szemerédi’s regularity lemma [57], the task of finding large
cycles in a dense graph G can be relaxed to finding large connected matchings in an
appropriately defined reduced graph R. This idea was first used by Komlós, Sárközy, and
Szemerédi [29] to prove an approximate version of the Pósa-Seymour conjecture and then
transferred to monochromatic cycle covers by  Luczak [40, 41]. Ever since then, the method
has become standard practice and fueled numerous advances [2, 5, 7, 15, 31, 33, 37, 38],
including many of the results mentioned in Section 1. We therefore limit ourselves to
stating the necessary definitions and lemmas, mostly following the notation from Lang
and Sanhueza-Matamala [34].

Let A,B be two non-empty vertex subsets of a graph G and denote the number of
edges of G with one endpoint in A and the other in B as eG(A,B). The density of such a
pair is then defined as dG(A,B) := eG(A,B)/(|A||B|). For ε > 0, the pair (A,B) is called
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ε-regular if |dG(A′, B′)− dG(A,B)| 6 ε for all A′ ⊆ A with |A′| > ε|A| and B′ ⊆ B with
|B′| > ε|B|. Moreover, an ε-regular pair with density at least d is called (ε, d)-regular.

Now let V = {Vj}rj=1 be a family of r disjoint sets and R be a graph on [r]. We
say (G,V) is an R-partition if

⋃r
j=1 Vj = V (G), the induced graph G[Vj] is edgeless for

every j ∈ [r], and jk is an edge of R whenever eG(Vj, Vk) > 0. We call the sets Vj of
the partition its clusters and refer to R as the reduced graph of G or, more precisely,
(G,V). Such an R-partition (G,V) is called balanced if all clusters have the same size.
Furthermore, it is called (ε, d)-regular if (Vj, Vk) is (ε, d)-regular for each jk ∈ E(R).
Finally, we say that G′ ⊆ G is an (ε, d)-approximation of G if |G′| > (1 − ε)|G| and we
have degG′(v) > degG(v)− d|G| for all v ∈ V (G′).

We will use the degree version of Szemerédi’s regularity lemma, adapted for the use
with 2-edge-coloured graphs [30, Theorems 1.10 and 1.18]. With the notation introduced
above, it can be formulated as follows:

Lemma 4.2 (Regularity lemma). Let 1/n � 1/r1 � 1/r0, ε, d. Let G1, G2 be graphs on
n common vertices. Then there are r0 6 r 6 r1 and a family V of r disjoint subsets of
these vertices with the following properties: For each i ∈ [2], there is G′i ⊆ Gi and a graph
Ri on [r] such that

(1) G′i is an (ε, d+ ε)-approximation of Gi and

(2) (G′i,V) is a balanced (ε, d)-regular Ri-partition.

As already mentioned, the method introduced by  Luczak allows us to lift large con-
nected matchings in a reduced graph Ri to large cycles in the corresponding Gi. In fact,
Christofides, Hladký, and Máthé [12] observed that the same is also true for fractional
matchings and similarly, 2-matchings. Formally, the following statement holds:

Lemma 4.3 (From connected matchings to cycles). Let 1/n� 1/r � ε� d� η � β.
Let G1, G2 be graphs on n common vertices, V be a family of r disjoint subsets of these
vertices, and R1, R2 be graphs on [r]. Suppose that G′i ⊆ Gi is an (ε, d+ ε)-approximation
of Gi and (G′i,V) is a balanced (ε, d)-regular Ri-partition for i ∈ [2].

Let H be the union of m1 components of R1 and m2 components of R2, and suppose
that there is a 2-matching in H that covers at least (1 − η)r vertices of R1 ∪ R2. Then
there are pairwise vertex-disjoint cycles C1

1 , . . . , C
m1
1 ⊆ G1 and C1

2 , . . . , C
m2
2 ⊆ G2, which

together cover at least (1− β)n vertices of G1 ∪G2.

5 Proof of the main results

In this section, we show the main results detailed in Section 1.2.

5.1 A Pósa-type condition for two cycles

Let us start with our first main result, Theorem 1.2. Its proof follows the argument
outlined in Section 1.4 and uses the tools of Section 4 to simplify the problem to find-
ing a large 2-matching in two monochromatic components of the reduced graph. For
convenience, we introduce the following notation to abbreviate the Pósa-type condition.
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Definition 5.1. A graph G on n vertices is called (n, γ)-Pósa if the degree sequence
d1 6 · · · 6 dn of G satisfies dj > j + (1/2 + γ)n for all 1 6 j < n/4.

The structural analysis is then encapsulated in the following lemma, whose proof we
defer to Section 6.

Lemma 5.2 (Structural lemma for two cycles). Let 1/n � γ and G be (n, γ)-Pósa.
Suppose G is 2-edge-coloured. Then there are a red and a blue component of G whose
union H is a spanning subgraph of G without contracting sets.

Proof of Theorem 1.2. Given β > 0, choose 1/n � 1/r1 � 1/r0 � ε � d � δ � η �
γ � β such that Lemmas 4.2, 4.3 and 5.2 are applicable with any r0 6 r 6 r1 playing
the role of r in Lemma 4.3 and the role of n in Lemma 5.2. Additionally assure that
2ε+ δ + γ 6 β as well as d+ ε 6 δ/2 and 1/n 6 ε/r1.

Consider an (n, β)-Pósa 2-edge-coloured graph G and apply Lemma 4.2. This yields
r0 6 r 6 r1 and a family V = {Vj}rj=1 of r disjoint sets, together with (ε, δ/2)-approx-
imations G′i of Gi and graphs Ri on [r] such that (G′i,V) is a balanced (ε, d)-regular
Ri-partition for i ∈ [2]. Each of the r clusters must then contain between (1− ε)n/r and
n/r vertices.

Since we want to apply Lemma 5.2 to the graph R := R1∪R2 on [r], we need to check
that R is (r, γ)-Pósa. For this, we note that as the G′i are (ε, δ/2)-approximations of the
Gi, the graph G′ := G′1 ∪G′2 is an (ε, δ)-approximation of G. Now enumerate the clusters
of V by ascending maximum index of their vertices in the degree sequence d1 6 · · · 6 dn
of G and pick 1 6 j < r/4.

Then for each j 6 k 6 r, the vertex vk ∈ Vk of maximum such index hk must have
a larger index than all vertices in V1, . . . , Vk, so we get hk > k(1 − ε)n/r > j(1 − ε)n/r.
By the choice of constants, we have εn/r > εn/r1 > 1, so there must be some integer j′

with j(1− 2ε)n/r 6 j′ 6 j(1− ε)n/r 6 hk. As j′ < jn/r < n/4 and G is (n, β)-Pósa, it
follows that

degG(vk) = dhk
> dj′ > j′ + (1/2 + β)n > jn/r + (1/2 + β − 2ε)n .

Since G′ is an (ε, δ)-approximation of G, this implies that degG′(vk) > degG(vk) − δn >
jn/r + (1/2 + γ)n. As each cluster of V contains at most n/r vertices, the number of
clusters containing a vertex in NG′(vk) must thus be at least j + (1/2 + γ)r. Due to the
(G′i,V)’s being Ri-partitions, the indices of these clusters are then adjacent to k in R, so
degR(k) > j + (1/2 + γ)r.

Applying this argument to all j 6 k 6 r, we find that the j-th entry of the degree
sequence of R must be at least j+(1/2+γ)r. As this holds for all 1 6 j < r/4, the graph
R is (r, γ)-Pósa and thus satisfies all requirements of Lemma 5.2 with r playing the role of
n. Hence, there are a red component H1 ⊆ R1 and a blue component H2 ⊆ R2 such that
their union H is a spanning subgraph of G without contracting sets. By Lemma 4.1, there
is a 2-matching in H that covers all r > (1− η)r vertices of R. But then all requirements
of Lemma 4.3 are fulfilled, which guarantees the existence of two vertex-disjoint cycles
C1 ⊆ G1 and C2 ⊆ G2 together covering at least (1− β)n vertices of G. As the Gi’s only
contain edges of one colour, these cycles are monochromatic and of different colours, so
we are done.
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5.2 An Ore-type condition for three cycles

Using the same approach, we also want to prove Theorem 1.4. In contrast to minimum
degree or Pósa-type conditions, the Ore-type condition only approximately carries over
to the reduced graph, which motivates the following abbreviation of our setting.

Definition 5.3. A graph G on n vertices is called (n, γ)-Ore if degG(u) + degG(v) >
(4/3 + γ)n holds for all uv /∈ E(G). A pair (G,X) is called (n, δ, γ)-Ore if G and X are
graphs on the same n vertices such that ∆(X) < δn and degG(u) + degG(v) > (4/3 + γ)n
holds for all uv /∈ E(G ∪X).

Excluding these exceptional edges E(X) from the Ore-type condition means that we
cannot exclude the occurrence of contracting sets, but only limit their contraction to a
fraction of the total number of vertices in R. But since we only aim to cover almost
all vertices of G with few monochromatic cycles, this small loss is manageable and the
following lemma suffices together with the tools of Section 4. Its proof is deferred to
Section 7.

Lemma 5.4 (Structural lemma for three cycles). Let 1/n � δ � η � γ and (G,X) be
(n, δ, γ)-Ore. Suppose G is 2-edge-coloured. Then there are three monochromatic compon-
ents of G whose union H contains at least (1 − η)n vertices and has no ηn-contracting
sets.

Proof of Theorem 1.4. Given β > 0, choose 1/n � 1/r1 � 1/r0 � ε � d � δ � η �
γ � β such that Lemmas 4.2, 4.3 and 5.4 are applicable with any r0 6 r 6 r1 playing
the role of r in Lemma 4.3 and the role of n in Lemma 5.4, as well as with 2η playing the
role of η in Lemma 4.3. Additionally assure that δ + γ 6 β as well as d + ε 6 δ/4 and
ε < 1/2.

Consider an (n, β)-Ore 2-edge-coloured graph G and apply Lemma 4.2. This yields
r0 6 r 6 r1 and a family V = {Vj}rj=1 of r disjoint sets, together with (ε, δ/4)-approx-
imations G′i of Gi and graphs Ri on [r] such that (G′i,V) is a balanced (ε, d)-regular
Ri-partition for i ∈ [2]. Each of the r clusters must then contain between (1− ε)n/r and
n/r vertices.

Since we want to apply Lemma 5.4 to the graph R := R1∪R2 on [r], we need to check
that for some appropriately defined graph X on [r], the pair (R,X) is (r, δ, γ)-Ore. For
this, we note that as the G′i are (ε, δ/4)-approximations of the Gi, the graph G′ := G′1∪G′2
is an (ε, δ/2)-approximation of G. We let

E(X) := {jk /∈ E(R) | uv ∈ E(G) \ E(G′) for all u ∈ Vj, v ∈ Vk} .

Observe that every u ∈ Vj loses at most δn/2 incident edges from G to G′. So there can
be at most δn/(2(1 − ε)n/r) < δr clusters Vk in V such that uv ∈ E(G) \ E(G′) for all
v ∈ Vk. This shows that ∆(X) < δr.

Now pick jk /∈ E(R ∪ X). By definition of X, there is u ∈ Vj, v ∈ Vk such that
uv /∈ E(G) \ E(G′). But also uv /∈ E(G′) = E(G′1) ∪ E(G′2) as otherwise jk ∈ E(R) =
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E(R1) ∪ E(R2) would hold because the (G′i,V)’s are Ri-partitions. So uv /∈ E(G). This
together with G′ being an (ε, δ/2)-approximation of the (n, β)-Ore graph G yields

degG′(u) + degG′(v) > degG(u) + degG(v)− δn > (4/3 + β − δ)n > (4/3 + γ)n .

As each cluster of V contains at most n/r vertices, the number of clusters containing a
vertex in NG′(u) plus the number of clusters containing a vertex in NG′(v) must thus be
at least (4/3 + γ)r. Due to the (G′i,V)’s being Ri-partitions, the indices of these clusters
are then adjacent to j or k in R, so degR(j) + degR(k) > (4/3 + γ)r as desired.

This shows that (R,X) is (r, δ, γ)-Ore and thus satisfies all requirements of Lemma 5.4
with r playing the role of n. So there are three monochromatic components H1, H2, H3 ⊆
R such that their union H covers at least (1− η)r vertices of R and every stable set S of
H satisfies cH(S) 6 ηr. By Lemma 4.1, there is a 2-matching in H that covers at least
|H| − ηr > (1− 2η)r vertices of R. But then all requirements of Lemma 4.3 are fulfilled,
which guarantees the existence of three pairwise vertex-disjoint cycles in G1, G2 together
covering at least (1 − β)n vertices of G. As the Gi’s only contain edges of one colour,
these cycles are monochromatic and we are done.

6 Proof of the structural lemma for two cycles

In this section, we show Lemma 5.2, which completes the proof of Theorem 1.2. Recall
from Definition 5.1 that the input graph G is a 2-edge-coloured graph on n vertices with
dj > j+(1/2+γ)n for all 1 6 j < n/4. We have to find a red and a blue component R,B
of G such that their union H := R ∪B is a spanning subgraph of G without contracting
sets. Before we address any details, we collect a few general observations.

Observation 6.1. Let 1/n� γ and G be (n, γ)-Pósa. Then all of the following hold:

(1) δ(G) > n/2.

(2) Every set U ⊆ V (G) with |U | > n/4 contains a vertex u ∈ U with degG(u) > 3n/4.

(3) Every set U ⊆ V (G) with 0 < |U | < n/4 contains a vertex u ∈ U with degG(u, U) >
n/2.

Proof. The first statement follows directly from the Pósa-type condition when choosing
j = 1. For (2) and (3), let U be non-empty and u ∈ U the vertex of maximum index in the
degree sequence of G, which implies degG(u) > d|U |. If |U | > n/4, we can require 1/n 6 γ
and apply the Pósa-type condition with j = dn/4−1e to find d|U | > dj > j+(1/2+γ)n >
3n/4. Conversely, |U | < n/4 allows us to apply the Pósa-type condition directly and find
d|U | > |U |+ n/2, so degG(u, U) > degG(u)− |U | > n/2.

6.1 Component structure

We first show that there are a red and a blue component R,B in G such that their union
R ∪B is spanning. Formally, we prove the following intermediate result.
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Lemma 6.2. Let 1/n � γ and G be (n, γ)-Pósa. Suppose G is 2-edge-coloured. Then
there are a red and a blue component of G whose union H is a spanning subgraph of G.

Proof. By Observation 6.1(2), there is a vertex u1 with degG(u1) > 3n/4. Let R and B1

be its red and blue component, respectively. Now if |R ∩ B1| > n/2, Observation 6.1(1)
implies that every vertex of G is adjacent to some vertex in R ∩ B1. Thus, R ∪ B1 is
a spanning subgraph of G and we are done. So we may assume |R ∩ B1| < n/2 for the
remainder of this proof.

In particular, NG(u1) \ (R ∩ B1) contains at least n/4 vertices and can thus play the
role of U in Observation 6.1(2). Hence, there is a vertex u2 ∈ NG(u1) \ (R ∩ B1) with
degG(u2) > 3n/4. Without loss of generality, we can assume the edge u1u2 ∈ E(G) to be
red, otherwise swap colours. This implies u2 ∈ R\B1, and we denote the blue component
of u2 as B2.

If R is spanning already, there is nothing to show. Similarly, if |R| < n/4, we can apply
Observation 6.1(3) with R as U to find v ∈ R with degG(v,R) > n/2. As all these edges
must be blue, the blue component B(v) of v satisfies |R ∩ B(v)| > n/2 and we are again
done by the argument above. So we may assume |R| > n/4. Here, Observation 6.1(2)
applied with R as U guarantees that there is a vertex v1 ∈ R with degG(v1) > 3n/4. We
let B be the blue component of v1 and show that R∪B is the desired spanning subgraph
H.

Assuming otherwise, we will consider R ∪B as U in either Observation 6.1(2) or
6.1(3) and arrive at a contradiction in both cases. For |R ∪B| > n/4, Observation 6.1(2)
guarantees the existence of v2 ∈ R ∪B with degG(v2) > 3n/4. Now u1, u2, v1, v2 all have
degree above 3n/4 in G, so there must be a vertex w that is adjacent to all four of them.
However, at least one of the edges wu1 and wu2 must be red as the blue components of
u1 and u2 differ. Similarly, at least one of wv1 and wv2 must be red. But this would put
some uj ∈ R with j ∈ [2] and some vk ∈ R with k ∈ [2] into the same red component, a
contradiction.

We may therefore assume 0 < |R ∪B| < n/4 and apply Observation 6.1(3) to find
v′ ∈ R ∪B with degG(v′, R ∪ B) > n/2. Denote its red and blue component as R′ and
B′, respectively. We immediately observe that NG(v′, R ∪B) ⊆ (R ∩B′)∪ (R′ ∩B). But
no vertex in R ∩ B′ can be adjacent in G to v1 ∈ R ∩ B with degG(v1) > 3n/4, so we
get |R ∩ B′| < n/4. Similarly, we can choose j ∈ [2] such that B 6= Bj and observe
that no vertex in R′ ∩ B can be adjacent in G to uj ∈ R ∩ Bj with degG(uj) > 3n/4, so
|R′ ∩B| < n/4. Combining these results yields the desired contradiction

n/2 < degG(v′, R ∪B) 6 |R ∩B′|+ |R′ ∩B| < n/2 .

This proves that H := R ∪B must indeed be a spanning subgraph of G.

6.2 Proof of the structural lemma

The only thing missing to complete the proof of Lemma 5.2 and thus, Theorem 1.2 is to
exclude the existence of contracting sets. Having established two suitable monochromatic
components in Lemma 6.2, we can now prove the full statement.
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Proof of Lemma 5.2. By Lemma 6.2, there are a red and a blue component R,B of G
such that R ∪ B is a spanning subgraph of G. If one of R and B is already spanning on
its own, we may freely choose the component of the other colour and do so by picking
the largest one. However, even if neither R nor B is spanning, it is easy to see that they
must be the largest components of their respective colour in G. Indeed, choose u ∈ R \B
and v ∈ B \R. As R ∪B is spanning and there is no edge between R \B and B \R, we
have NG(u) ⊆ R and NG(v) ⊆ B. So both R and B must already contain n/2 vertices by
Observation 6.1(1).

For a proof by contradiction, fix some contracting set S in H := R∪B, which cannot
be empty as cH(∅) = 0. We immediately observe that the stability of S implies NH(s) ⊆
NH(S) for all s ∈ S. By the contraction property, we additionally know that degH(s) 6
|NH(S)| < (|S|+ |NH(S)|)/2 < n/2, which is less than degG(s) by Observation 6.1(1). So
every s ∈ S must lose incident edges from G to H and can therefore not be a vertex of
R ∩B. This implies S ⊆ (R \B) ∪ (B \R).

Now let s1 ∈ S be the vertex of maximum index in the degree sequence of G. Without
loss of generality, we can assume s1 ∈ R \ B, otherwise swap colours. Denote the blue
component of s1 as B1 and recall that the largest blue component of G is B, so |B1| 6 n/2
must hold.

We first want to show that |S| > n/4. Assuming otherwise and using that G is
(n, γ)-Pósa, we find that

degG(s1) > d|S| > |S|+ n/2 > |NH(S)|+ n/2 > degH(s1) + n/2 .

So s1 must lose more than n/2 incident edges from G to H. As all of them are blue,
|B1| > n/2 follows in contradiction to what we have observed above. So |S| > n/4 must
hold. In particular, applying Observation 6.1(2) with S as U yields degG(s1) > 3n/4 by
choice of s1 as the maximum degree vertex in S.

For the remainder of this proof, we partition B1 into S1 := S ∩B1, N1 := NH(S)∩B1,
and W1 := B1\(S1∪N1). Similarly, we also partition its complement B1 into S ′ := S \B1,
N ′ := NH(S) \ B1, and W ′ = B1 \ (S ∪ NH(S)). Obviously, there can be no blue edges
from S1 ⊆ B1 to S ′ ∪W ′ ⊆ B1 in G. But by stability of S in H and choice of W ′, there
can also be no red edges. So degG(s1) > 3n/4 implies that |S ′ ∪W ′| < n/4.

Moreover, S ′ ∪ W ′ cannot be empty as then B1 = N ′ ⊆ NH(S) would imply that
n/2 6 |B1| 6 |NH(S)| or n/2 < |B1| hold, both of which we already know to be false.
This allows us to apply Observation 6.1(3) to S ′ ∪ W ′ as U to find u ∈ S ′ ∪ W ′ with
degG(u, S ′ ∪W ′) > n/2. Additionally, u cannot have an edge to S1 by the argument
above, so we conclude

n/2 < degG(u, S ′ ∪W ′) 6 |N1|+ |W1|+ |N ′| . (6.1)

Using the contraction property of S together with |S1|+ |N1|+ |W1| = |B1| 6 n/2, we get

|S ′| = |S| − |S1| > |N1|+ |N ′| − |S1|
(6.1)
> n/2− |W1| − |S1| > |N1| > 0 .
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Together with |S ′| 6 |S ′ ∪W ′| < n/4, this allows us to apply Observation 6.1(3) to S ′ as
U and obtain a vertex s′ ∈ S ′ with degG(s′, S ′) > n/2. By the same argument as above,
none of these edges may go to S1 ∪W1 and we observe that

n/2 < degG(s′, S ′) 6 |N ′|+ |W ′|+ |N1| < |S|+ |W ′| . (6.2)

But now adding the inequalities (6.1) and (6.2) yields the desired contradiction

n < |N1|+ |W1|+ |N ′|+ |S|+ |W ′| = n .

So H = R ∪B cannot have a contracting set.

7 Proof of the structural lemma for three cycles

In this section, we show Lemma 5.4, which completes the proof of Theorem 1.4. Recall
from Definition 5.3 that G is a 2-edge-coloured graph on n vertices and X is another graph
on the same vertices with bounded maximum degree. We try to find three monochromatic
components of G such that their union H contains almost all vertices and has no stable
sets with large contraction in H.

7.1 Component structure

Let us first shed some light on the structure of the monochromatic components of G. We
find that two of them suffice to cover almost all vertices of G.

Lemma 7.1. Let 1/n � δ � γ and (G,X) be (n, δ, γ)-Ore. Suppose G is 2-edge-
coloured. Then there are two monochromatic components of G whose union contains at
least (1− 6δ)n vertices.

Proof. We will prove this by assuming otherwise and finding three vertices v1, v2, v3 which
are pairwise non-adjacent in X and lie in distinct red and blue components of G. These
are then also non-adjacent in G, so as the graph G ∪X is (n, γ)-Ore, we get degG(vj) +
degG(vk) > 4n/3 for all j, k ∈ [3] with j 6= k. Adding all three inequalities yields
2
∑3

j=1 degG(vj) > 4n. But for each vj in the monochromatic components Rj and Bj, we

have degG(vj) 6 |Rj|+|Bj|. This combines to
∑3

j=1 degG(vj) 6
∑3

j=1|Rj|+
∑3

j=1|Bj| 6 2n

and contradicts 2
∑3

j=1 degG(vj) > 4n from above.
It remains to show that if every pair of monochromatic components of G misses more

than 6δn vertices, then there must be three vertices as described above. For this, let
v1 ∈ V (G) be arbitrary and denote its monochromatic components as R1 and B1. As
together they miss more than 6δn vertices and ∆(X) < δn, we can select v2 ∈ V (G)\(R1∪
B1 ∪NX(v1)). We denote its monochromatic components as R2, B2 and let R′ := V (G) \
(R1 ∪R2) as well as B′ := V (G) \ (B1 ∪B2). Now any v3 ∈ (R′ ∩B′) \ (NX(v1)∪NX(v2))
would complete a triple as described above, so we may assume |R′ ∩ B′| 6 2δn for the
remainder of this proof. As R1, R2 together miss more than 6δn vertices, this implies that
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at least one of R′ ∩ B1 and R′ ∩ B2 must contain more than 2δn vertices. Similarly, at
least one of R1 ∩B′ and R2 ∩B′ must contain more than 2δn vertices.

Let j ∈ [2] be chosen such that |R′ ∩ Bj| > 2δn. Without loss of generality, assume
j = 1 (otherwise swap indices 1 and 2). If |R1 ∩ B′| > 2δn also holds, we can choose
u1 ∈ (R′ ∩B1) \NX(v2) and v3 ∈ (R1 ∩B′) \ (NX(u1)∪NX(v2)) to obtain a contradiction
from u1, v2, v3. So |R1 ∩ B′| 6 2δn and thus, |R2 ∩ B′| > 2δn must hold. By the
same argument, we get |R′ ∩ B2| 6 2δn. In summary, |R′ ∩ B1|, |R2 ∩ B′| > 2δn and
|R1 ∩B′|, |R′ ∩B2| 6 2δn.

Now consider the two monochromatic components R2 and B1, which by assumption
miss |R′ ∩ B′| + |R1 ∩ B′| + |R′ ∩ B2| + |R1 ∩ B2| = n − |R2 ∪ B1| > 6δn vertices of G.
But as each of the three sets R′ ∩B′, R1 ∩B′, and R′ ∩B2 contains at most 2δn vertices,
the fourth set R1 ∩ B2 must be non-empty. Hence, we can choose the desired vertices as
w1 ∈ R1 ∩B2, w2 ∈ (R′ ∩B1) \NX(w1), and w3 ∈ (R2 ∩B′) \ (NX(w1) ∪NX(w2)).

Lemma 7.1 allows us to split the proof of Lemma 5.4 into three cases depending on
the 2-edge-colouring of G. For convenience of notation, we introduce names for these
three types of 2-edge-colourings (plain, mixed, split) and combine them with the degree
conditions we impose on (G,X). Formally, we define:

Definition 7.2. Let (G,X) be (n, δ, γ)-Ore and suppose G is 2-edge-coloured.

(1) A triple (G,X,R) is called plain (n, δ, γ)-Ore if R is a monochromatic component
of G with |R| > (1− 10δ)n.

(2) A quadruple (G,X,R,B) is called mixed (n, δ, γ)-Ore if (1) does not hold for any
choice of R, and R,B are two monochromatic components of G with different colours
as well as |R ∪B| > (1− 8δ)n.

(3) A quadruple (G,X,R1, R2) is called split (n, δ, γ)-Ore if neither (1) nor (2) holds
for any choice of R,B, and R1, R2 are two monochromatic components of G with
the same colour as well as |R1 ∪R2| > (1− 6δ)n.

The remainder of this chapter is dedicated to three separate proofs of Lemma 5.4, one
for each of these three cases. That is, we show that the following three statements hold:

Lemma 7.3. Let 1/n� δ � η � γ and (G,X,R) be plain (n, δ, γ)-Ore. Then there are
three monochromatic components of G whose union H contains at least (1− η)n vertices
and has no ηn-contracting sets.

Lemma 7.4. Let 1/n � δ � η � γ and (G,X,R,B) be mixed (n, δ, γ)-Ore. Then
there are three monochromatic components of G whose union H contains at least (1−η)n
vertices and has no ηn-contracting sets.

Lemma 7.5. Let 1/n � δ � η � γ and (G,X,R1, R2) be split (n, δ, γ)-Ore. Then
there are three monochromatic components of G whose union H contains at least (1−η)n
vertices and has no ηn-contracting sets.
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With these at hand, the proof of Lemma 5.4 becomes trivial.

Proof of Lemma 5.4. Choosing one or two monochromatic components of G according to
Lemma 7.1, we can extend (G,X) to a triple or quadruple that is either plain, mixed or
split (n, δ, γ)-Ore. Thus, we are done by Lemmas 7.3 to 7.5.

While the first two cases are quite straightforward to solve (see Sections 7.2 and 7.3),
the third one will require a more involved argument (see Sections 7.4 and 7.5). Before we
address any details, we collect a few general observations that hold in all three cases.

Observation 7.6. Let 1/n � δ � γ and (G,X) be (n, δ, γ)-Ore. If S is a contracting
set in the subgraph H of G and S ′ is a subset of S, then all of the following hold:

(1) |S| > cH(S).

(2) |NH(S)| < n/2.

(3) S ′ is stable in H with cH(S ′) > cH(S)− |S \ S ′|.

Furthermore, if u ∈ S does not lose incident edges from G to H, then for every vertex
v ∈ S \ (NX(u) ∪ {u}), both of the following hold:

(4) degG(v) > (4/3 + γ)n− |NH(S)|.

(5) degG(v)− degH(v) > n/3.

Proof. The first three statements follow directly from the definitions of stability and
contraction. For (4), observe that uv 6∈ E(G ∪X) and degG(u) = degH(u) 6 |NH(S)| by
stability of S. The statement then follows from applying the Ore-type condition to u, v.
Similarly, degH(v) 6 |NH(S)| holds, so (5) follows directly from (4) and (2).

7.2 One monochromatic component

We start with plain 2-edge-colourings, so one monochromatic component R already covers
almost all of G on its own. This allows us to prove the corresponding Lemma 7.3 directly.

Proof of Lemma 7.3. Without loss of generality, we can assume R to be red, otherwise
swap colours. Let B,B′ be the two largest blue components of G intersecting R. Then
H := R ∪ B ∪ B′ still covers at least (1 − 10δ)n > (1 − η)n vertices by the choice of
constants. It remains to show that H has no stable sets S with cH(S) > ηn. For a
proof by contradiction, fix such a set and consider the still stable set S ′ := S ∩ R with
cH(S ′) > (η − 10δ)n > 3δn by Observation 7.6(3) and the choice of constants.

We first observe that S ′ is disjoint from B∪B′: Assuming otherwise, there would be a
u ∈ S ′ that belongs to both a red and a blue component kept from G to H and therefore
does not lose incident edges. By Observation 7.6(1) and our choice of constants, we have
|S ′| > cH(S ′) > 3δn and so there is v ∈ S ′ \ (NX(u) ∪ {u}). Moreover, v is incident to
more than n/3 edges lost from G to H by Observation 7.6(5). As v ∈ R and R is kept
from G to H, all of these edges must be blue and belong to the blue component L of v
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with |L| > n/3. But then L is among the two largest blue components B,B′ and thus
also a subgraph of H, a contradiction.

Next, we want to show that there also exist two blue components B1, B2 such that
|S ′ \ (B1 ∪ B2)| 6 2δn. For this, let s1 ∈ S ′ be arbitrary and denote its blue component
as B1. If |S ′ \ B1| 6 2δn, there is nothing to show, so we can assume there is some
s2 ∈ S ′\(B1∪NX(s1)). Denote its blue component as B2. Again, if |S ′\(B1∪B2)| 6 2δn,
there is nothing to show, so assume otherwise and choose s3 ∈ S ′ \ (B1 ∪ B2 ∪NX(s1) ∪
NX(s2)). Let B3 be its blue component. The vertices s1, s2, s3 ∈ S ′ are then pairwise
non-adjacent in X and lie in different blue components of G, meaning there can be no
blue edges between them. By stability of S ′ ⊆ R, there can also be no red edges, so
the vertices are pairwise non-adjacent in G, as well. Thus, the Ore-type condition is
applicable and adding the three inequalities yields 4n < 2

∑3
j=1 degG(sj). Now every

incident edge of sj ∈ S ′ ⊆ R is either kept from G to H and hence an edge to NH(S ′),
or lost and therefore blue. This shows degG(sj) 6 |NH(S ′)| + |Bj \NH(S ′)| and leads to
4n < 6|NH(S ′)|+ 2

∑3
j=1|Bj \NH(S ′)| 6 4|NH(S ′)|+ 2n by the disjointness of B1, B2, B3.

Reordering yields |NH(S ′)| > n/2 in contradiction to Observation 7.6(2). So there must
have been two blue components B1, B2 with |S ′ \ (B1 ∪B2)| 6 2δn.

Finally, we show for s1 ∈ S ′ ∩ B1 that its blue component B1 must be among B,B′:
Trivially, |S ′| 6 |B1| + |B2| + |S ′ \ (B1 ∪ B2)| 6 |B1| + |B2| + 2δn holds, so by choice of
B,B′ as the two largest blue components intersecting R, we get |S ′| 6 |B| + |B′| + 2δn.
By cH(S ′) > 3δn, this implies that |NH(S ′)| < |S ′| − 3δn 6 |B| + |B′| − δn. Hence,
there is a v ∈ (B ∪ B′) \ (NH(S ′) ∪ NX(s1)). As v is not in NH(S ′) and belongs to
a different blue component than all of S ′, there can be no edge from v to S ′ in G.
It follows that degG(v) 6 n − |S ′|. In particular, vs1 /∈ E(G ∪ X) by choice of v.
Since G ∪ X is (n, γ)-Ore, we find 4n/3 < degG(v) + degG(s1). Recall from above that
degG(s1) 6 |NH(S ′)|+ |B1 \NH(S ′)|, which is smaller than |S ′|+ |B1| as S ′ is contracting.
So we can deduce 4n/3 < n + |B1| and obtain |B1| > n/3. But then B1 must be among
the two largest blue components B,B′ intersecting R and s1 ∈ S ′ ∩ B1 contradicts the
disjointness of S ′ from B∪B′ we have shown above. So H cannot have an ηn-contracting
set.

7.3 Two monochromatic components of different colours

In a similar fashion, we can also prove Lemma 7.4. This lemma deals with the mixed case,
that is when there are two monochromatic components R,B of different colours that only
together cover almost all of G.

Proof of Lemma 7.4. We first note that if R and B covered exactly the same set of ver-
tices, then (G,X,R) would be plain (n, δ, γ)-Ore, which is not the case by assumption.
So there must be some vertex in V (R ∪ B) that belongs to only one of R and B. In
particular, there must be a monochromatic component of G intersecting V (R∪B) that is
neither R nor B. Without loss of generality, we can assume the largest such component
to be red (otherwise swap colours) and denote it as R′. Let R be the red component
among R,B. The graph H := R ∪ B ∪ R′ then still covers at least (1− 8δ)n > (1− η)n
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vertices by the choice of constants. It remains to show that H has no stable sets S with
cH(S) > ηn. For a proof by contradiction, fix such a set and consider the still stable set
S ′ := S ∩ (R ∪ B) with cH(S ′) > (η − 10δ)n > 8δn by Observation 7.6(3) and the choice
of constants.

Now as R,B both miss more than 10δn vertices, but together miss at most 8δn vertices,
we observe that |R \B| > 2δn and similarly, |B \R| > 2δn. So we can pick u ∈ R \B and
v ∈ B \ (R ∪NX(u)), which share no monochromatic component. On the one hand, this
implies that they cannot be adjacent, so the Ore-type condition yields degG(u)+degG(v) >
(4/3 + γ)n and thus, |NG(u) ∩ NG(v)| > (1/3 + γ)n. On the other hand, their edges to
some w ∈ NG(u) ∩ NG(v) must have different colours. If uw is red and vw is blue, we
automatically get w ∈ R∩B. If uw is blue and vw is red, then w /∈ R∪B, so there can be
at most 8δn such vertices in NG(u)∩NG(v). This shows that |R ∩B| > (1/3 + γ − 8δ)n.

Similar to the proof of Lemma 7.3, we can now observe that S ′ ⊆ R ∪ B is disjoint
from R∩B and R′: Assuming otherwise, there would be some u ∈ S ′ that belongs to both
a red and a blue component kept from G to H and therefore does not lose incident edges.
By Observation 7.6(1), we can select some v ∈ S ′ \ (NX(u)∪{u}), which is incident to at
least n/3 lost edges by Observation 7.6(5). As one of its monochromatic components is
kept from G to H, this implies that all of these lost edges go to the same monochromatic
component L with |L| > n/3. But this contradicts the choice of R′: Obviously, R′ and
L are disjoint from R ∩ B. The intersection R′ ∩ L can only exist if L is blue and must
then lie outside of R ∪ B, so it can contain at most 8δn vertices. Hence, we find that
|R′| 6 n − |R ∩ B| − |L| + |R′ ∩ L| < (1/3 − γ + 16δ)n < n/3 < |L| by the choice of
constants, although R′ is supposed to be the largest such component. This contradiction
proves that S ′ must indeed be disjoint from R ∩B and R′.

The next step is a general observation we will use multiple times in the following
arguments.

Claim 7.7. Let u ∈ R \ B and v ∈ B \ R such that uv /∈ E(X) and S ′ contains at least
one of u, v. Then n/3 < |NG(u) ∩ S ′|+ |NG(v) ∩ S ′|.

Proof of the claim. We can apply the Ore-type condition to find that

4n/3 < degG(u) + degG(v) = |NG(u) ∪NG(v)|+ |NG(u) ∩NG(v)| . (7.1)

Recall from above that apart from at most 8δn vertices missed by R ∪ B, all common
neighbours w of u and v in G must belong to R ∩ B, so the connecting edges uw, vw
are kept from G to H. As at least one of u, v belongs to S ′, this puts w into NH(S ′).
So |NG(u) ∩ NG(v)| 6 |NH(S ′)| + 8δn < |S ′| by cH(S ′) > 8δn. Plugging both this and
|NG(u)∪NG(v)| 6 |NG(u)∩S ′|+ |NG(v)∩S ′|+ |S ′| into inequality (7.1) and subtracting
n = |S ′|+ |S ′| yields n/3 < |NG(u) ∩ S ′|+ |NG(v) ∩ S ′|. �

Now it is easy to see that S ′ must intersect with both R\B and B\R: If S ′ were disjoint
from B \ R, then S ′ ⊆ R \ B as S ′ is also disjoint from R ∩ B. Choosing u ∈ S ′ ∩ R \ B
and v ∈ B \ (R ∪ NX(u)), we observe n/3 < |NG(u) ∩ S ′| + |NG(v) ∩ S ′| by Claim 7.7.
But as v ∈ B \ R and S ′ ⊆ R \ B, the neighbourhood of v cannot intersect with S ′ and
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n/3 < |NG(u) ∩ S ′| follows. By stability of S ′, all these edges incident to u ∈ S ′ ⊆ R
must be lost from G to H and therefore be blue. So the blue component L of u ∈ R \ B
contradicts the choice of R′, exactly as above. Similarly, if S ′ were disjoint from R \ B,
then S ′ ⊆ B \R follows and we can choose v ∈ S ′ ∩B \R as well as u ∈ R \ (B ∪NX(v)).
Here, the neighbours of u cannot belong to S ′, so Claim 7.7 implies n/3 < |NG(v) ∩ S ′|
with all these neighbours of v belonging to the red component L of v ∈ B\R. However, as
L contains v ∈ S ′ and R′ is disjoint from S ′, these two must be different red components
and L being larger yields the same contradiction as above. So indeed, both intersections
S ′ ∩ (R \B) and S ′ ∩ (B \R) must be non-empty.

According to Observation 7.6(1), there are more than 2δn vertices in S ′. So we can
choose s1 in the smaller and s2 /∈ NX(s1) in the larger set of S ′∩ (R\B) and S ′∩ (B \R).
Using s1, s2 as u, v in Claim 7.7, we obtain n/3 < |NG(s1) ∩ S ′| + |NG(s2) ∩ S ′|. So for
some j ∈ [2], we have n/6 < |NG(sj) ∩ S ′|. By the stability of S ′, all these vertices must
belong to the lost component L of sj, which thereby contains more than n/6 vertices.

But then this component L is again larger than R′. Indeed, we already know that the
sets S ′, R ∩ B and R′ ∩ B are pairwise disjoint. By definition, S ′ is also disjoint from
NG(S ′) \ NH(S ′). The same holds for the other two sets because vertices in R ∩ B or
R′ ∩B do not lose incident edges from G to H. This shows that

|R′ ∩B| 6 n− |S ′| − |R ∩B| − |NG(S ′)|+ |NH(S ′)| < 3n/2− |S ′| − |R ∩B| − |NG(S ′)|

by Observation 7.6(2). Together with |R′ ∩B| 6 n− |R ∪B| 6 8δn, we get

|R′| = |R′ ∩B|+ |R′ ∩B| 6 (3/2 + 8δ)n− |S ′| − |R ∩B| − |NG(S ′)| . (7.2)

The fact that G∪X is (n, γ)-Ore now yields (4/3 +γ)n 6 degG(s1) + degG(s2). The right
side degG(s1)+degG(s2) can be expressed as the sum of |NG(s1)∪NG(s2)| 6 |S ′|+|NG(S ′)|
and |NG(s1)∩NG(s2)|. Again recall that apart from at most 8δn vertices outside of R∪B,
all vertices in NG(s1) ∩NG(s2) must belong to R ∩B. Taken together, we get

(4/3 + γ)n 6 degG(s1) + degG(s2) 6 |S ′|+ |NG(S ′)|+ |R ∩B|+ 8δn . (7.3)

Now adding the inequalities (7.2) and (7.3) yields |R′| 6 (1/6−γ+16δ)n after simplifica-
tion, which is less than n/6 by the choice of constants. As there is a larger monochromatic
component L that intersects R ∪ B in sj, this contradicts the choice of R′. So H cannot
have an ηn-contracting set.

7.4 Component structure (continued)

To address the third and last case, we make a few intermediate observations about the
relationship between the monochromatic components of the underlying 2-edge-coloured
graph and the existence of contracting sets.

Definition 7.8. Let G be a 2-edge-coloured graph on n vertices. Then a family H of
monochromatic components of G is said to double-cover G if for at least 2n/3 vertices of
G, both of their monochromatic components are in H.
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Lemma 7.9. Let 1/n � δ � η � γ and (G,X) be (n, δ, γ)-Ore. Suppose G is 2-edge-
coloured such that a family H = {Hj}j of monochromatic components double-covers G.
Then the union H =

⋃
j Hj has no ηn-contracting sets.

Proof. For a proof by contradiction, let S be such a stable set with cH(S) > ηn. We first
show that S must be disjoint from the set T of all vertices for which both monochromatic
components are in H. Assuming otherwise, there is a vertex u ∈ S∩T not losing incident
edges from G to H, so by Observation 7.6(1) and the choice of constants, there is a
v ∈ S \ (NX(u)∪ {u}). The vertex v loses more than n/3 incident edges from G to H by
Observation 7.6(5). But these lost edges cannot go to T , which contradicts |T | > 2n/3.
So S and T are indeed disjoint.

Next, we let W := V (G) \ (S ∪ NH(S)) and partition V (G) into S, NH(S), W ∩ T
and W \ T . Since S and W \ T are disjoint subsets of T and S is contracting, we get
|S|+ |NH(S)|+ |W \ T | < 2|T | 6 2n/3. This implies that the fourth set W ∩ T contains
at least n/3 > δn vertices, so we can select some u ∈ S and v ∈ (W ∩ T ) \ NX(u). As
vertices in T do not lose incident edges from G to H, every edge from S to T must go
to NH(S). Consequently, there can be no edge between S and W ∩ T . So the Ore-type
condition yields |NG(u) ∩NG(v)| > n/3. But by the same argument, none of these joint
neighbours can belong to S or W ∩ T . Hence, |NG(u) ∩ NG(v)| 6 |NH(S)| + |W \ T | <
|S| + |W \ T | 6 |T | 6 n/3 follows. This contradicts the previous inequality and we
conclude that H cannot have an ηn-contracting set.

This means that if three monochromatic components double-cover G and already
contain almost all vertices, we can immediately deduce Lemma 7.5 from Lemma 7.9. If
that is not the case, however, we will show in Lemma 7.11 that we may assume the
following setting.

Definition 7.10. A sextuple (G,X,R1, R2, B1, B2) is called evenly split (n, δ, γ)-Ore if
both (G,X,R1, R2) and (G,X,B1, B2) are split (n, δ, γ)-Ore, the colour of R1, R2 is differ-
ent from the colour of B1, B2, and no three components among R1, R2, B1, B2 double-cover
G.

Lemma 7.11. Let 1/n � δ � γ and (G,X,R1, R2) be split (n, δ, γ)-Ore. Then at least
one of the following two statements holds:

(1) G is double-covered by three monochromatic components whose union contains at
least (1− 7δ)n vertices.

(2) There are two monochromatic components B1, B2 of G such that the sextuple
(G,X,R1, R2, B1, B2) is evenly split (n, δ, γ)-Ore.

Proof. Without loss of generality, we can assume R1, R2 to be red. We distinguish between
two cases.

Case 1. Assume that |Rk \ (B ∪ B′)| > δn for every choice of blue components B,B′

and k ∈ [2]. We show that this leads to a contradiction.
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Claim 7.12. There are six vertices u1, u2, u3 ∈ R1 and v1, v2, v3 ∈ R2 such that none of
the uj’s and none of the vj’s share their blue component, and u1v1, u2v2, u3v3 /∈ E(G∪X).

Proof of the claim. We distinguish two subcases: For the first subcase, assume that there
is a blue component B3 that intersects with R1, but not with R2. As no two blue com-
ponents completely cover R1, we can pick two vertices u1, u2 ∈ R1 that lie in distinct blue
components B1, B2 other than B3. By assumption, |R2 \ B1| > δn. Hence, we can select
v1 ∈ R2 \ (B1 ∪ NX(u1)) with blue component B(v1). Similarly, we use the assumption
|R2 \ (B2 ∪ B(v1))| > δn to find v2 ∈ R2 \ (B2 ∪ B(v1) ∪ NX(u2)) with blue component
B(v2). Finally, let u3 ∈ R1 ∩ B3 and select v3 ∈ R2 \ (B(v1) ∪ B(v2) ∪ NX(u3)) with
blue component B(v3), using the assumption |R2 \ (B(v1) ∪ B(v2))| > δn. Note that
B(v3) 6= B3 because we assumed R2 and B3 to be disjoint.

For the second subcase, assume that every blue component intersecting with R1 also
intersects with R2. We start with any blue component B1 that intersects R1 in u1 ∈
R1 ∩ B1. Let v2 ∈ R2 ∩ B1 and use the assumption |R1 \ B1| > δn to select u2 ∈
R1 \ (B1 ∪NX(v2)). Let B2 be its blue component, pick any v3 ∈ R2 ∩ B2 and again use
the assumption |R1 \ (B1 ∪B2)| > δn to select u3 ∈ R1 \ (B1 ∪B2 ∪NX(v3)). Finally, use
the assumption |R2 \ (B1 ∪B2)| > δn to select v1 ∈ R2 \ (B1 ∪B2 ∪NX(u1)). �

Now G∪X is (n, γ)-Ore, which can be applied to the pairs uj, vj found by Claim 7.12.
The three resulting inequalities add up to

∑3
j=1|NG(uj) ∩ NG(vj)| > n. Next, we show

that the three sets on the left are pairwise disjoint. For this, consider some w ∈ NG(uj)∩
NG(vj)∩NG(uk)∩NG(vk) for j, k ∈ [3]. The edges ujw and ukw cannot both be blue as uj
and uk lie in different blue components. The same is true for vjw and vkw. So w must be
adjacent to some u ∈ R1 and some v ∈ R2 by red edges, which is obviously false. Hence,
the sets on the left-hand side of the inequality above must indeed be pairwise disjoint.
This yields the desired contradiction and concludes Case 1.

Case 2. Assume that |Rk \ (B1 ∪B2)| < δn for some k ∈ [2] and two blue components
B1, B2.

Claim 7.13. If R3−k ⊆ B1 ∪B2 does not hold, then R3−k, B1, B2 satisfy (1).

Proof of the claim. Let j ∈ [2] be arbitrary and observe that as (G,X,R3−k, B3−j) is not
mixed (n, δ, γ)-Ore, we must have |Rk \ B3−j| > 2δn. This implies |Rk ∩ Bj| > δn as
|Rk \ (B1 ∪ B2)| < δn. Now if R3−k 6⊆ B1 ∪ B2, there is a v ∈ R3−k \ (B1 ∪ B2). We use
the observation above to choose uj ∈ (Rk ∩ Bj) \NX(v) for j ∈ [2], which shares neither
monochromatic component with v. Hence, ujv 6∈ E(G ∪X) and G ∪X being (n, γ)-Ore
yields |NG(uj) ∩NG(v)| > (1/3 + γ)n. It is not hard to see that most of this intersection
belongs to R3−k∩Bj. Indeed, as uj and v do not share monochromatic components, their
edges to some w ∈ NG(uj) ∩ NG(v) must have different colours. If ujw is red and vw is
blue, then w ∈ Rk \ (B1 ∪B2), of which there are less than δn vertices. So the remaining
at least (1/3 + γ − δ)n > n/3 vertices w must have a blue edge to uj ∈ Bj and a red
edge to v ∈ R3−k, putting them into R3−k ∩ Bj. But then R3−k, B1, B2 double-cover G.
Moreover, R3−k, B1, B2 contain all of R1 ∪ R2 except for the fewer than δn vertices in
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Rk \ (B1∪B2), so in total at least |R1∪R2|− δn > (1− 7δ)n vertices. Thus, R3−k, B1, B2

satisfy (1). �

So if (1) does not hold, we may assume R3−k ⊆ B1∪B2. But then |R3−k \ (B1∪B2)| =
0 < δn, so we can also apply Claim 7.13 to find Rk ⊆ B1 ∪ B2. In total, we observe
R1 ∪R2 ⊆ B1 ∪B2 and (G,X,B1, B2) is split (n, δ, γ)-Ore, thus proving (2).

7.5 Two monochromatic components of the same colour

The remainder of the proof now deals with the setting of Definition 7.10. Here, both two
red components R1, R2 and two blue components B1, B2 of G together cover almost all ver-
tices of G. This means that for each monochromatic component L among R1, R2, B1, B2,
the union HL of the other three contains enough vertices to satisfy Lemma 7.5. So its
statement can only be wrong if each of these HL’s contains a stable set SL of sufficient
contraction in HL. Our first task will be to locate these sets with Lemmas 7.14, 7.15
and 7.17. We start by showing that accepting negligible losses in contraction, we may
assume SL to belong to the intersection of L with only one component of the other colour.
The proof is in two steps (Lemmas 7.14 and 7.15).

Lemma 7.14. Let 1/n � δ � η′ � η � γ and (G,X,R1, R2, B1, B2) be evenly split
(n, δ, γ)-Ore. Suppose H := R1 ∪B1 ∪B2 has an ηn-contracting set S. Then there also is
a (2η′n)-contracting set S ′ ⊆ R2 ∩ (B1 ∪B2) in H.

Proof. Without loss of generality, we can assume R1, R2 to be red. Define the set V :=
V (R1∪R2)∩V (B1∪B2), which contains |V | > (1− 12δ)n vertices as both (G,X,R1, R2)
and (G,X,B1, B2) are split (n, δ, γ)-Ore. Note that S ′ := S ∩ V is still stable with
cH(S ′) > (η − 12δ)n > 2η′n by Observation 7.6(3) and the choice of constants. Our goal
is to show that S ′ is indeed a subset of R2.

For a proof by contradiction, assume that there is some u ∈ S ′ ∩ R1. Then by
Observation 7.6(5), every vertex in S ′′ := S ′ \ (NX(u) ∪ {u}) loses some incident edges
from G to H and must therefore belong to R2, so S ′′ ⊆ R2. Furthermore, each such vertex
v ∈ S ′′ has degG(v) > (4/3 + γ)n − |NH(S ′)| > (5/6 + γ)n by Observation 7.6(4) and
7.6(2). Combining this for any pair of vertices v1, v2 ∈ S ′′, we get |NG(v1) ∩ NG(v2)| >
(2/3 + 2γ)n > (2/3 + 12δ)n by the choice of constants. Now as R2, B1, B2 do not double-
cover G, we have |R2| < (2/3 + 6δ)n and thus |R1| > (1/3 − 12δ)n, so there is some
w ∈ NG(v1) ∩ NG(v2) ∩ R1. The edges of w to v1, v2 ∈ S ′′ ⊆ R2 must then be blue. As
v1, v2 ∈ S ′′ were chosen arbitrarily, this proves that all of S ′′ belongs to the same blue
component Bj with j ∈ [2].

Being a subset of the (2η′n)-contracting set S ′, the set S ′′ is still stable with cH(S ′′) >
(2η′ − 2δ)n > η′n by Observation 7.6(3) and the choice of constants. In particular,
this implies that S ′′ contains at least one vertex v by Observation 7.6(1). As S ′′ ⊆
R2 ∩ Bj, all of v’s edges to R1 must be blue and therefore go to R1 ∩ Bj. This shows
that degG(v,R1) + |S ′′| 6 |R1 ∩ Bj| + |R2 ∩ Bj| 6 |Bj|. Now Observation 7.6(4) yields
4n/3 6 degG(v) + |NH(S ′′)| < |R1| + degG(v,R1) + |S ′′| − η′n by cH(S ′′) > η′n. Using
|R1| 6 |R2| + 6δn and assuring δ 6 η/18 when choosing the constants, we get 4n/3 <
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|R2|+|Bj|−12δn. But then at least one of R2 and Bj would contain more than (2/3+6δ)n
vertices and thus double-cover G together with the two components of the other colour.
As this is not the case by assumption, there can be no u ∈ S ′ ∩R1 and S ′ ⊆ R2 holds as
claimed.

Lemma 7.15. Let 1/n � δ � γ and (G,X,R1, R2, B1, B2) be evenly split (n, δ, γ)-Ore.
Suppose H := R1 ∪ B1 ∪ B2 has a stable set S ⊆ R2 ∩ (B1 ∪ B2). Then there is j ∈ [2]
such that S ∩Bj ⊆ R2 ∩Bj is a stable set in H with cH(S ∩Bj) > cH(S)/2.

Proof. Without loss of generality, we assume R1, R2 to be red. Note that since S is stable,
NH(S ∩B1) and NH(S ∩B2) partition NH(S). Indeed, all s ∈ S ⊆ R2 lose their incident
red edges from G to H = R1∪B1∪B2. So any vertex in NH(S∩B1)∩NH(S∩B2) would be
adjacent to vertices in both S∩B1 and S∩B2 by blue edges, which is obviously impossible.
This implies that

∑2
j=1|NH(S ∩ Bj)| = |NH(S)| =

∑2
j=1|S ∩ Bj| − cH(S). Then at least

one of the still stable sets S ∩ Bj ⊆ S must satisfy |NH(S ∩ Bj)| 6 |S ∩ Bj| − cH(S)/2,
so cH(S ∩Bj) > cH(S)/2.

Before we combine the results of Lemmas 7.14 and 7.15 to obtain Lemma 7.17, we
note another general observation in Lemma 7.16. It will be used both to obtain additional
information on the locations of the contracting sets in Lemma 7.17 as well as multiple
times in the remainder of this third case.

Lemma 7.16. Let 1/n� δ � η � γ and (G,X,R1, R2, B1, B2) be evenly split (n, δ, γ)-
Ore. Suppose H := R1 ∪ B1 ∪ B2 has an ηn-contracting set S ⊆ R2 ∩ Bj with j ∈ [2].
Then at least one of |(R1 ∩ Bj) \ NH(S)| < δn and |R2 ∩ Bj| > n/3 hold, both of which
imply |R1 ∩Bj| < |R2 ∩Bj|.

Proof. Without loss of generality, we can assume j = 1, otherwise exchange the labels
of B1, B2. Assume that |(R1 ∩ B1) \ NH(S)| > δn. So picking any v ∈ S, there must
be some u ∈ (R1 ∩ B1) \ (NH(S) ∪ NX(v)). Then u has no edge to S or R2 ∩ B2 in
H and furthermore does not lose incident edges from G to H, so degG(u) = degH(u) 6
n− |S| − |R2 ∩B2|. In particular, the Ore-type condition is applicable to u, v and yields
degG(v) > 4n/3−degG(u) > n/3+ |S|+ |R2∩B2|. However, we also know that degH(v) 6
|NH(S)| < |S| − ηn, so

|R2| > degR2
(v) = degG(v)− degH(v) > (1/3 + η)n+ |R2 ∩B2| .

As at most 6δn vertices do not belong to B1 ∪ B2, this immediately implies the desired
|R2 ∩B1| > |R2| − |R2 ∩B2| − 6δn > n/3 by the choice of constants.

The second statement is an easy observation: If |(R1 ∩B1) \NH(S)| < δn holds, then
|R1 ∩ B1| < |NH(S)| + δn < |S| − (η − δ)n < |R2 ∩ B1| by the ηn-contracting property
of S ⊆ R2 ∩ B1 and the choice of constants. On the other hand, |R2 ∩ B1| > n/3 and
|R1∩B1| > |R2∩B1| would immediately combine to R1, R2, B1 double-covering G, which
is not the case by assumption.

the electronic journal of combinatorics 30(2) (2023), #P2.18 24



Lemma 7.17. Let 1/n � δ � η′ � η � γ and (G,X,R1, R2, B1, B2) be evenly split
(n, δ, γ)-Ore. For each choice of L ∈ {R1, R2, B1, B2}, denote the union of the other three
as HL. Suppose all of these HL’s have an ηn-contracting set SL. Then for each L, there
also is an η′n-contracting set S ′L in HL such that S ′R1

, S ′Bj
⊆ R1 ∩ Bj and S ′R2

, S ′B3−j
⊆

R2 ∩B3−j for some j ∈ [2].

Proof. For each lost component L ∈ {R1, R2, B1, B2}, Lemma 7.14 guarantees the ex-
istence of a (2η′n)-contracting set S ′L in HL that only intersects with L and the two
components C1, C2 of the other colour. By Lemma 7.15, we may additionally assume S ′L
to only intersect with one of the Cj’s, while at worst cutting its contraction in half to
cHL

(S ′L) > η′n. Now Lemma 7.16 applied with η′ and S ′L playing the roles of η and S
implies that L∩Cj contains more vertices than K∩Cj, with K being the other component
among R1, R2, B1, B2 that has the same colour as L and is therefore kept from G to HL.
Using this multiple times yields the desired locations of the contracting sets.

Firstly, there is some j ∈ [2] such that S ′R1
⊆ R1 ∩Bj, which implies

|R2 ∩Bj| < |R1 ∩Bj| . (7.4)

Now S ′R2
⊆ R2 ∩Bj would yield the contradiction |R1 ∩Bj| < |R2 ∩Bj|, so we must have

S ′R2
⊆ R2 ∩B3−j and

|R1 ∩B3−j| < |R2 ∩B3−j| (7.5)

holds. Similarly, there is some k ∈ [2] such that S ′Bj
⊆ Rk ∩Bj, which implies

|Rk ∩B3−j| < |Rk ∩Bj| (7.6)

and thereby enforces S ′B3−j
⊆ R3−k ∩B3−j as well as

|R3−k ∩Bj| < |R3−k ∩B3−j| . (7.7)

Assuming k = 2 and combining these four inequalities then leads to the contradiction

|R2 ∩Bj|
(7.4)
< |R1 ∩Bj|

(7.7)
< |R1 ∩B3−j|

(7.5)
< |R2 ∩B3−j|

(7.6)
< |R2 ∩Bj| .

So we must have k = 1 as claimed.

The remainder is a two-step argument about these diagonal intersections R1 ∩Bj and
R2 ∩B3−j that contain two contracting sets each. We first bound the number of vertices
in these intersections from above and then find vertices of small degree in them, which
will later contradict the Ore-type condition.

Lemma 7.18. Let 1/n� δ � η � γ and (G,X,R1, R2, B1, B2) be evenly split (n, δ, γ)-
Ore. For each choice of L ∈ {R1, R2, B1, B2}, denote the union of the other three as HL.
Suppose all of these HL’s have an ηn-contracting set SL such that SR1 , SBj

⊆ R1∩Bj and
SR2 , SB3−j

⊆ R2∩B3−j for some j ∈ [2]. Then both |R1∩Bj| < n/3 and |R2∩B3−j| < n/3
hold.
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Proof. Without loss of generality, we can assume R1, R2 to be red and j = 1. We first
observe that vertices of R1 ∩B1 cannot be adjacent to vertices of R2 ∩B2 in G. However,
both intersections contain sets of contraction above ηn, so more than δn vertices by
Observation 7.6(1) and the choice of constants. Thus picking u ∈ R1 ∩ B1 and v ∈
(R2 ∩ B2) \ NX(u), we can use that G ∪ X is (n, γ)-Ore to find that at least one of
these intersections has a vertex of degree greater than 2n/3 in G. But then the other
intersection must contain less than n/3 vertices. Again without loss of generality, we can
assume |R1 ∩B1| < n/3, otherwise exchange the labels of all four components.

In particular, this assumption excludes the possibility of |B1∩R1| > n/3 when applying
Lemma 7.16 to SB1 ⊆ B1 ∩ R1. So |B2 ∩ R1| < |NHB1

(SB1)| + δn < |SB1| − (η − δ)n <
|SB1 | − δn must hold by the choice of constants. Similarly, SR1 ⊆ R1 ∩ B1 guarantees
|R2 ∩ B1| < |SR1| − δn. Moreover, the Ore-type condition implies that n/3 6 |NG(u) ∩
NG(v)|. So as each common neighbour of u and v in G must either belong to B2 ∩R1 or
R2 ∩B1, we get

|R1 ∩B1| < n/3 6 |NG(u) ∩NG(v)|
6 |B2 ∩R1|+ |R2 ∩B1|
< |SB1|+ |SR1| − 2δn .

Now recall that SR1 , SB1 ⊆ R1∩B1, so these two must intersect in at least 2δn vertices.
This allows us to pick u1 ∈ SR1∩SB1 and u2 ∈ (SR1∩SB1)\NX(u1). By stability of SR1 in
HR1 , the edge u1u2 cannot be blue and similarly by stability of SB1 in HB1 , it also cannot
be red. So u1u2 6∈ E(G∪X) and as G∪X is (n, γ)-Ore, at least one of the uk ∈ R1 ∩B1

with k ∈ [2] has degree degG(uk) > 2n/3. But then |R2 ∩B2| < n/3 follows by the initial
argument.

Lemma 7.19. Let 1/n� δ � η � γ and (G,X,R1, R2, B1, B2) be evenly split (n, δ, γ)-
Ore. For each choice of L ∈ {R1, R2, B1, B2}, denote the union of the other three as HL.
Suppose there is k, j ∈ [2] such that Rk ∩ Bj contains an ηn-contracting set SRk

in HRk

and an ηn-contracting set SBj
in HBj

, but satisfies |Rk ∩ Bj| < n/3. Then there are at
least δn vertices v ∈ Rk ∩Bj with degG(v) < 2n/3.

Proof. Without loss of generality, we can assume R1, R2 to be red. Consider the following
two subsets of Rk ∩Bj:

TB := {v ∈ Rk ∩Bj | v has more than |(Rk ∩Bj) \ SRk
| blue edges to Rk ∩Bj} ,

TR := {v ∈ Rk ∩Bj | v has more than |(Rk ∩Bj) \ SBj
| red edges to Rk ∩Bj} .

Taken together, TB and TR cover all vertices in Rk ∩ Bj with degree at least 2n/3 in G.
Indeed, fix v ∈ (Rk ∩Bj) \ (TB ∪ TR) and note that

degG(v,Rk ∩Bj) 6 2|Rk ∩Bj| − |SRk
| − |SBj

| . (7.8)

Applying Lemma 7.16 with SRk
⊆ Rk ∩ Bj or SBj

⊆ Bj ∩ Rk playing the role of S and
using our assumption of |Rk ∩Bj| < n/3 to exclude the possibility of |Rk ∩Bj| > n/3, we
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get

degG(v,R3−k ∩Bj) 6 |R3−k ∩Bj| < |NHRk
(SRk

)|+ δn , (7.9)

degG(v,Rk ∩B3−j) 6 |Rk ∩B3−j| < |NHBj
(SBj

)|+ δn . (7.10)

Outside of (R1 ∪R2)∩ (B1 ∪B2), the vertex v may have at most 12δn neighbours, so the
three inequalities (7.8), (7.9) and (7.10) combine to

degG(v) < 2|Rk ∩Bj| − |SRk
| − |SBj

|+ |NHBj
(SBj

)|+ |NHBj
(SBj

)|+ 14δn

= 2|Rk ∩Bj| − cHRk
(SRk

)− cHBj
(SBj

) + 14δn .

Using |Rk∩Bj| < n/3 again, we observe that degG(v) < 2n/3 by the contraction property
of SRk

and SBj
as well as the choice of constants. This means that TB ∪TR can only miss

vertices in Rk ∩Bj with degree below 2n/3 in G.
It remains to show that there are at least δn such vertices v ∈ Rk ∩ Bj that have

degG(v) < 2n/3. For a proof by contradiction, we assume otherwise and observe that
every subset S ⊆ Rk ∩Bj must satisfy |S \ (TB ∪TR)| < δn. Now every vertex of TB must
have a blue edge to SRk

⊆ Rk ∩ Bj by construction, and therefore cannot itself belong
to SRk

by stability of SRk
in HRk

. This shows that TB ⊆ NHRk
(SRk

). In particular,
|SRk
\TR| = |SRk

\ (TB ∪TR)| < δn holds by the disjointness of SRk
and TB. Similarly, we

also find TR ⊆ NHBj
(SBj

) and |SBj
\ TB| < δn. Using cHBj

(SBj
) > ηn, this combines to

|SRk
| < |TR|+ δn 6 |NHBj

(SBj
)|+ δn < |SBj

| − (η − δ)n < |SBj
|

by the choice of constants. But the same way, we can also deduce |SBj
| < |SRk

| from
cHRk

(SRk
) > ηn and obtain the desired contradiction. So there must indeed be at least

δn vertices v ∈ Rk ∩Bj with degG(v) < 2n/3.

The outcome of Lemma 7.19 will of course contradict the Ore-type condition, so we are
finally able to prove Lemma 7.5, which is the last missing piece in the proof of Theorem 1.4.

Proof of Lemma 7.5. We choose the constants such that 1/n� δ � η′ � η � γ satisfies
the requirements of Lemmas 7.9, 7.11 and 7.17 to 7.19, in the last two cases with η′ playing
the role of η. Assuring δ 6 η/7, it suffices to prove the statement of Lemma 7.5 with
(1 − 7δ)n instead of (1 − η)n. Whenever G is double-covered by three monochromatic
components together containing at least (1 − 7δ)n vertices, there is nothing to show as
their union cannot contain ηn-contracting bad sets by Lemma 7.9. So by Lemma 7.11,
we may assume the existence of two components B1, B2 such that (G,X,R1, R2, B1, B2)
is evenly split (n, δ, γ)-Ore.

For a proof by contradiction, we assume that for every choice of L ∈ {R1, R2, B1, B2},
the union HL of the other three contains an ηn-contracting set SL. Then Lemma 7.17
yields η′n-contracting sets S ′L in HL such that S ′R1

, S ′Bj
⊆ R1 ∩ Bj and S ′R2

, S ′B3−j
⊆

R2 ∩ B3−j for some j ∈ [2]. Applying Lemma 7.18 with η′ and S ′∗ playing the roles of η
and S∗, these intersections R1 ∩ Bj and R2 ∩ B3−j have fewer than n/3 vertices. Again
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using η′ and S ′∗ in place of η and S∗, Lemma 7.19 guarantees that both intersections
contain at least δn vertices of degree below 2n/3 in G. We can thus pick u ∈ R1 ∩ Bj

with degG(u) < 2n/3 and v ∈ (R2 ∩ B3−j) \ NX(u) with degG(v) < 2n/3. However, this
obviously contradicts the fact that G ∪X is (n, γ)-Ore, thereby proving the lemma.
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[18] P. Erdős, A. Gyárfás, and L. Pyber, Vertex coverings by monochromatic cycles and
trees, J. Combin. Theory Ser. B 51 (1991), 90–95.
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[47] G. N. Sárközy, Monochromatic cycle partitions of edge-colored graphs, J. Graph The-
ory 66 (2011), 57–64.

[48] , Improved monochromatic loose cycle partitions in hypergraphs, Discrete
Math. 334 (2014), 52–62.

[49] , Monochromatic cycle power partitions, Discrete Math. 340 (2017), 72–80.

[50] , Monochromatic partitions in local edge colorings, Acta Math. Hungar. 161
(2020), 412–426.

[51] , Monochromatic square-cycle and square-path partitions, Discrete Math. 345
(2022), Paper No. 112712, 10 pages.

the electronic journal of combinatorics 30(2) (2023), #P2.18 30

https://arxiv.org/abs/2110.14547
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