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Abstract

We construct infinite families of abstract regular polytopes of Schläfli type
{4, p1, . . . , pn−1} from extensions of centrally symmetric spherical abstract regu-
lar n-polytopes. In addition, by applying the halving operation, we obtain infinite
families of both locally spherical and locally toroidal regular hypertopes of type{
p1
p1
, . . . , pn−1

}
.

Mathematics Subject Classifications: 51E24, 52B11, 20F05

1 Introduction

Polytope theory is a well studied area of algebra and geometry. The concept of an ab-
stract polytope was introduced in [11] as a poset whose elements are faces. Another way
of defining an abstract polytope is as an incidence geometry which is thin, residually-
connected, flag-transitive and has a linear Coxeter diagram. This idea of seeing polytopes
as incidence geometries was recently used in [6], in which the authors decided to general-
ize this concept, dropping the linear diagram condition and naming these new structures
hypertopes.

Since the introduction of the concept of a hypertope, many examples have been given
[1, 10], especially locally toroidal families [3, 5, 4]. In [7], the authors classified the
locally spherical regular hypertopes of spherical, euclidean or hyperbolic type, giving new
examples of the hyperbolic ones using MAGMA. During the 9th Slovenian International
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Conference on Graph Theory in Bled (2019), Asia Ivić Weiss posed me the problem of
extending these examples into infinite families of locally spherical regular hypertopes of
hyperbolic type. Since then, in [12], Weiss and Montero have described two proper locally
spherical hypertopes of hyperbolic type for ranks 4 and 5. More recently [13], the same
authors have given a constructive way to obtain families of locally spherical hypertopes
of hyperbolic type using Schreier coset graphs.

The halving operation is quite common in regular polytopes of type {4, p} (p > 3),
where we double the fundamental region of the polytope, resulting in a self-dual polytope
of type {p, p}. This operation was broadened to any non-degenerate abstract regular
n-polytope by Weiss and Montero in [12], in which its use on Danzer’s polytopes 2P [2]
results in the two examples of locally spherical hypertopes of hyperbolic type mentioned
above.

Here, we obtain new families of regular hypertopes, some of which are locally spher-
ical hypertopes of hyperbolic and euclidean type, while others are locally toroidal. To
do so, we extend centrally symmetric polytopes into a family of polytopes denoted as
2P,G(s) with type {4, p1, . . . , pn−1}, where we can obtain regular hypertopes through the
halving operation. The extension of polytopes is not new in polytope theory [14] and the
construction of the 2P,G(s) polytopes is well described in [11, Section 8]. Our families of
extended polytopes 2P,G(s), when we consider s = 2, give duals of the examples of locally
spherical hypertopes of hyperbolic type given by Weiss and Montero in [12]. Moreover,
the automorphism group presentation and its order are given for each of the polytopes
2P,G(s) and respective hypertopes, allowing this work to be extended further, as discussed
in Section 5.

In Section 2, an introduction to abstract regular polytopes, regular hypertopes and
the halving operation is presented. In Section 2.4, we introduce the polytopes 2P,G(s).
In Sections 3 and 4 the families of polytopes and hypertopes are given, as well as their
automorphism group presentation and order. Specifically, in Sections 4.1 and 4.4 we
give two families of locally spherical regular hypertopes of hyperbolic type of rank 4 and
5, respectively. Moreover, in Section 3.2 a family of arbitrary rank of locally spherical
hypertopes of euclidean type is given and in Sections 3.3 and 4.3 two distinct families
of hypertopes of rank 4 and 5 are given from the halving of quotients of locally toroidal
polytopes {4, 4, 3} and {4, 3, 4, 3}, respectively.

2 Background

2.1 C-groups

A C-group of rank n is a pair (G,S), where G is a group and S := {ρ0, . . . , ρn−1} is a
generating set of involutions of G that satisfy the intersection property, i.e.

∀I, J ⊆ {0, . . . , n− 1}, 〈ρi | i ∈ I〉 ∩ 〈ρj | j ∈ J〉 = 〈ρk | k ∈ I ∩ J〉.

A C-group is said to be a string C-group if its generating involutions can be ordered in
such a way that, for all i, j where |i− j| > 2, (ρiρj)

2 = id. A subgroup of G generated by
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all but one involution of S is called a maximal parabolic subgroup and is denoted as

Gi := 〈ρj | j ∈ I\{i}〉,

with I := {0, . . . , n− 1}.
The Coxeter diagram of a C-group (G,S) is the graph whose nodes represent the

elements of S and an edge, called a branch, between the generators i and j has label
pij := o(ρiρj), the order of ρiρj. By convention, branches with label equal to 2 are
improper and are not drawn, and whenever an edge has label 3, its label is omitted. For
string C-groups, this diagram is linear, like the one represented in Figure 1. We say a

• o(ρ0ρ1) • o(ρ1ρ2) • • o(ρj−1ρj)• •o(ρn−2ρn−1)•
ρ0 ρ1 ρ2 ρj−1 ρj ρn−2 ρn−1

Figure 1: Coxeter Diagram of a string C-group.

C-group is a Coxeter group when its group relations are just the ones given by its Coxeter
diagram. As we shall see, the automorphism groups of both abstract regular polytopes
and regular hypertopes are C-groups.

2.2 Regular Hypertopes and Regular Polytopes

The term hypertope was introduced in [6] as a generalization of polytopes whose auto-
morphism group is a C-group, but not necessarily a string C-group. A regular hypertope
is an incidence geometry that is residually-connected, thin and flag-transitive, as defined
in [6]. Here, we focus on its construction from C-groups.

An incidence system is a 4-tuple Γ := (X, ∗, t, I) satisfying the following conditions:

• X is a set with the elements of Γ;

• I is a set with the types of Γ;

• t : X → I is a type function, attributing to each element x ∈ X a type t(x) ∈ I; we
call x an i-element if t(x) = i, for i ∈ I; and

• ∗ is a binary relation in X called incidence, which is reflexive, symmetric and such
that, for all x, y ∈ X, if x ∗ y and t(x) = t(y), then x = y.

The cardinality of I is called the rank of Γ. A flag is a set of pairwise incident elements
of Γ. For a flag F , the set t(F ) := {t(x)|x ∈ F} is called the type of F, and we say F is
a chamber when t(F ) = I. Moreover, the cardinality of t(F ) is said to be the rank of F.
An incidence system Γ is called a geometry or incidence geometry if every flag of Γ is a
subset of a chamber. Consider the following proposition.

Proposition 1 (Tits Algorithm, [16]). Let n be a positive integer and I := {0, . . . , n−1}.
Let G be a group together with a family of subgroups (Gi)i∈I , X the set consisting of all
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cosets Gig with g ∈ G and i ∈ I, and t : X → I defined by t(Gig) = i. Define an
incidence relation ∗ on X ×X by:

Gig1 ∗Gjg2 if and only if Gig1 ∩Gjg2 6= ∅.

Then the 4-tuple Γ := (X, ∗, t, I) is an incidence system having a chamber. Moreover, the
group G acts by right multiplication as an automorphism group on Γ. Finally, the group
G is transitive on the flags of rank less than 3.

The incidence system constructed using the proposition above is denoted Γ(G; (Gi)i∈I)
and designated as a coset geometry if the incidence system is a geometry. The subgroups
(Gi)i∈I are the maximal parabolic subgroups of G, stabilizers of an element of type i. Let
G be a C-group. We say G is flag-transitive on Γ(G; (Gi)i∈I) if G is transitive on all flags
of a given type J , for each type J ⊆ I. We have the following result, which defines a
regular hypertope from a C-group.

Theorem 2. [6, Theorem 4.6] Let G = 〈ρi | i ∈ I〉 be a C-group and let Γ := Γ(G; (Gi)i∈I)
where Gi := 〈ρj | j 6= i〉 for all i ∈ I. If G is flag-transitive on Γ, then Γ is a regular
hypertope.

A regular hypertope with a string Coxeter diagram is an (abstract) regular polytope;
conversely, if G is a string C-group, the coset incidence system Γ(G; (Gi)i∈I) is a regular
hypertope with string diagram [6, Theorem 5.1 and Theorem 5.2]. Thus, regular polytopes
are particular cases of regular hypertopes. We say a regular hypertope is proper if it
does not have a linear Coxeter diagram. Moreover, regular polytopes are in one-to-one
correspondence with string C-groups.

Let G be a string C-group and let Γ(G; (Gi)i∈I) be the regular polytope built using
Proposition 1. Let G−1 := G =: Gn. Then, since the generators of a string C-group
have a prescribed order, the incidence relation of Proposition 1 is a partial order, where
Gjφ 6 Gkψ if and only if −1 6 j 6 k 6 n and Gjφ ∩Gkψ 6= ∅. This construction results
in a ranked partial ordered set (poset) P which satisfies all axioms of the definition of
an abstract regular polytope given in [11]. From now on, we consider abstract regular
polytopes as posets instead of coset geometries.

The elements of P are called faces and the rank of the faces are induced by the labeling
of the generators of the string C-group. A face F ∈ P of rank(F )= i is called an i-face,
where the 0-faces of P are called vertices, the 1-faces edges and the (n − 1)-faces facets.
Let F0 be a vertex of P stabilized by G0 := 〈ρj|j 6= 0〉. We can identify the vertices of
P by the right cosets of G0. We say a poset is a lattice if, for every two faces F,G ∈ P ,
there is a least upper bound and a greatest lower bound for {F,G}. Whenever the partial
order induces a lattice, we call P non-degenerate, otherwise we call it degenerate [15, 2].

The Schläfli type of a regular polytope P is defined as {p1, . . . , pn−1}, where pi is the
order of two consecutive generators o(ρi−1ρi). If a n-polytope has type {p1, . . . , pn−1}, we
can write its universal automorphism group, a Coxeter group, as [p1, . . . , pn−1]. The dual
polytope of P is obtained by reversing the partial order of the poset, which is equivalent
to reversing the order of the generators of the string C-group.
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Let P be an abstract regular n-polytope and FA, FB ∈ P be distinct vertices of P . The
unordered pair of vertices {FA, FB} is called a diagonal of P . Two diagonals {FA, FB}
and {FC , FD}, with FC , FD ∈ P , are said to be equivalent if there is some σ ∈ G(P) such
that {FC , FD} = {FAσ, FBσ}. Thus, the diagonals of P form equivalence classes, called
diagonal classes. Since these vertices can be represented as right cosets of G0, we can
write a diagonal as {G0φ,G0ψ}, where G0φ = F0φ = FA, G0ψ = F0ψ = FB, FA 6= FB
and φ, ψ ∈ G(P). Moreover, due to the transitivity of G(P), we can think of the diagonal
classes by their representative {G0, G0σ} for σ /∈ G0, where we fix one of the vertices
as G0. In this case, two diagonals {F0, FA} = {G0, G0φ} and {F0, FB} = {G0, G0ψ} are
equivalent under G(P) if and only if

ψ ∈ G0φG0 ∪G0φ
−1G0, (1)

for φ, ψ /∈ G0. If the polytope is realizable in an Euclidean space, the diagonal classes can
be ordered by the distance between their representative vertices. For instance, the edges
of the polytope P form a diagonal class.

An abstract regular polytope P is said to be centrally symmetric if its automorphism
group G(P) has a proper central involution α which is fixed-point free on its vertices. A
pair of vertices of a centrally symmetric polytope is antipodal if they are permuted by
this central involution. In the diagonal classes of a centrally symmetric polytope, there is
a diagonal class of all the pairs of antipodal points, with representative {G0, G0α}.

A regular hypertope is spherical if its Coxeter diagram is a union of diagrams of finite
irreducible Coxeter groups. Moreover, a locally spherical regular hypertope is a hypertope
whose maximal parabolic residues are spherical hypertopes. We say a locally spherical
regular hypertope is of euclidean type if its Coxeter diagram correspondes to an infinite
irreducible Coxeter group of Euclidean type [11, Table 3B2]. A regular toroidal hypertope
is a quotient of a regular universal hypertope of euclidean type by a normal subgroup
of its translational symmetries [7]. A locally spherical regular hypertope is of hyperbolic
type if its type-preserving automorphism group of its universal cover is of an irreducible
compact hyperbolic Coxeter group [7, Table 2]. Lastly, a regular n-polytope or a regular
4-hypertope is said to be locally toroidal if its maximal residues are either spherical or
toroidal, with at least one of them being toroidal [11, 4]. A generalization of this concept
for hypertopes of rank greater than 4 is yet to be established.

In Table 1, we give a list of all centrally symmetric regular non-degenerate polytopes
of spherical type (i.e. finite irreducible Coxeter groups with linear diagram) whose auto-
morphism group is 〈τ0, . . . , τn−1〉 and having central involution α.

The only centrally symmetric polygons have an even number of vertices and their
proper central involution is a 180 degree rotation. For rank 3 and 4, the spherical regular
polytopes that are centrally symmetric can be easily computed. For rank n > 5, the only
spherical regular polytopes are the n-simplex and the n-cube {4, 3n−2} (and its dual).
Since the group of the n-simplex is centerless, only the n-cube {4, 3n−2} (and its dual) are
centrally symmetric, with α = (τ0τ1 · · · τn−1)n [9]. Moreover, all the polytopes of Table 1
are convex polytopes, meaning that their poset form a face-lattice.
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Table 1: The centrally symmetric non-degenerate regular polytopes of spherical type
Rank Schläfli type Number of vertices α |P|
2 {2p}, for 2 6 p <∞ 2p (τ0τ1)

p 4p

3

{3, 4} 6
(τ0τ1τ2)

3 48{4, 3} 8
{3, 5} 12

(τ0τ1τ2)
5 120{5, 3} 20

4

{3, 3, 4} 8
(τ0τ1τ2τ3)

4 384{4, 3, 3} 16
{3, 4, 3} 24 (τ0τ1τ2τ3)

6 1152
{3, 3, 5} 120

(τ0τ1τ2τ3)
15 14400{5, 3, 3} 600

n > 5
{3n−2, 4} 2n

(τ0τ1 · · · τn−1)n 2nn!{4, 3n−2} 2n

2.3 Halving Operation of non-degenerate polytopes

Recently, in [12], the halving operation was revisited and, furthermore, the conditions
under which it gives a regular hypertope from a regular polytope were established. In
what follows we recall important results that can be found in [12].

Let n > 3 and let P be a regular non-degenerate n-polytope of type {p1, . . . , pn−1}
with automorphism group G(P) = 〈ρ0, . . . , ρn−1〉.

The halving operation is the map

η : 〈ρ0, ρ1, ρ2, . . . , ρn−1〉 → 〈ρ0ρ1ρ0, ρ1, ρ2, . . . , ρn−1〉 = 〈ρ̃0, ρ1, ρ2, . . . , ρn−1〉.

Here, we are considering the halving operation as the dual of the one described in
[12]. The halving group of P , denoted by H(P), is the image of the halving operation on
G(P). If n > 3 and P is non-degenerate, then H(P) = 〈ρ̃0, ρ1, . . . , ρn−1〉 is a C-group [12,
Theorem 3.1] with the following Coxeter diagram

•ρ1
p2

•ρ2
p3 •ρ3 •ρn−3

pn−2 •ρn−2 ρn−1

pn−1 •

•
ρ̃0

p2

s

where s = p1 if p1 is odd, otherwise s = p1
2

. In this paper, we focus on polytopes of type
{4, p2, . . . , pn−1}, hence the Coxeter diagram is as follows.

•ρ1
p2

•ρ2
p3 •ρ3 •ρn−3

pn−2 •ρn−2 ρn−1

pn−1 •

•
ρ̃0

p2
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Let H(P) denote the coset incidence system Γ(H(P), (Hi)i∈{0,...,n−1}) associated with
the non-degenerate regular polytope P , where Hi are the maximal parabolic subgroups
of H(P). Then, H(P) is flag-transitive [12, Proposition 3.2]. Hence, using Theorem 2,
we have the following corollary.

Corollary 3. [12, Corollary 3.2] Let P be a non-degenerate regular n-polytope and I =
{0, . . . , n− 1}. Let H(P) be the halving group of P. Then the incidence system H(P) =
Γ(H(P), (Hi)i∈I) is a regular hypertope such that AutI(H(P)) = H(P).

If P is a polytope of type {4, p2, p3, . . . , pn−1}, then we denote the type of H(P) as{
p2
p2
, p3, . . . , pn−1

}
, and its universal automorphism group as

[
p2
p2
, p3, . . . , pn−1

]
. Moreover,

as stated in [12], H(P) has index 2 in G(P) if the graph induced by the vertices and
edges P is bipartite, which is only possible if p1 is even. In Sections 3 and 4 the halving
operation is used on polytopes of type {4, p2, . . . , pn−1} factorized by relations with even
number of ρ0. Hence, in all cases that we deal with, |H(P)| = |G(P)|/2.

2.4 The 2P,G(s) polytopes

Consider a Coxeter group W generated by k involutions σ0, . . . , σk−1 with Coxeter diagram
G, and τ0, . . . , τn−1 to be involutory automorphisms of W , permuting its generators. Then
W can be augmented by the group Λ generated by these permutations using a semidirect
product, resulting in a group G = W o Λ. In the case W is a C-group represented by a
Coxeter diagram G, the automorphisms τi can be seen as symmetries of G.

Definition 4. [11] Let G be the Coxeter diagram of a C-group and let P be a regular
n-polytope with automorphism group G(P) = 〈τ0, . . . , τn−1〉. We say G is P-admissible
if:

• The Coxeter diagram G has more than one node;

• G(P) acts transitively on the set of nodes of G, V (G);

• The subgroup 〈τ1, . . . , τn−1〉 of G(P) fixes at least one node of G, which we designate
as F0;

• The action of G(P) on the diagram G, with respect to F0, respects the intersection
property, i.e., for I ⊆ {0, . . . , n − 1} and denoting V (G, I) as the set of nodes of G
that the subgroup 〈τi|i ∈ I〉 maps the node F0 to, then

V (G, I) ∩ V (G, J) = V (G, I ∩ J) if I, J ⊆ {0, . . . , n− 1}

Let us consider the case V (G) = V (P) and let F0 be the vertex in P fixed by
〈τ1, . . . , τn−1〉. Then we have that G(P) acts in the natural way in its vertices (which
we are considering to be the nodes of G) and the intersection property is always satis-
fied. Then G is P-admissible [11, pp. 248], i.e. G(P) acts on G as a group of diagram
automorphisms. Being V (G) = V (P), we have that the number of possible choices for
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the proper branches of the diagram G depends on the number of diagonal classes of P .
When P is centrally symmetric, there is an involution α permuting pairs of antipodal
vertices of P , forming one diagonal class of P . When this diagonal class is the only one
represented in the Coxeter diagram G by proper branches all with the same label s, then
the diagram G =: G(s) is a matching and the corresponding Coxeter group is a direct
product of dihedral groups of degree s, Ds, which is finite if and only if P is finite.

Consider a Coxeter group with diagram G(s),

W := W (G(s)) = 〈σF | F ∈ V (G(s))〉, (2)

and a centrally symmetric regular polytope P where V (G(s)) = V (P). Let F0 be a vertex
of P . Then the (n+ 1)-polytope 2P,G(s) is defined by the group

G(2P,G(s)) := W oG(P) = 〈ρ0, . . . , ρn〉

where

ρi :=

{
σF0 , for i = 0,
τi−1, for i = 1, . . . , n+ 1.

(3)

For each F ∈ V (G), there exists an element τ ∈ G(P) and an involution σF of W such
that

σF = σF0τ = τ−1σF0τ = τ−1ρ0τ. (4)

When P is centrally symmetric, with central involution α, and G(s) is a matching as
before with label s, then (σFσFα)s = id. When s > 3, as all generators σF of W commute

with each other, except with σFα, W ∼= D
|V (G)|/2
s . Also, for each F, F ′, F ′′ ∈ V (G) and

τ, τ ′ ∈ G(P), such that F0τ = F , F0τ
′ = F ′ and F0τ

′τ−1 = F ′′, we have that

σFσFα = τ−1ρ0τα
−1τ−1ρ0τα = τ−1ρ0αρ0ατ. (5)

and
σFσF ′ = τ−1ρ0ττ

′−1ρ0τ
′ = τ−1σF0σF ′′τ. (6)

In particular, for s = 2, the diagram G(2) only has improper branches and 2P,G(2) is the
Danzer polytope 2P [2].

The following theorem gives some properties of 2P,G(s) which is of great importance
for our results.

Theorem 5. [Theorem 8C5 of [11]] Let n > 1, and let P be a centrally symmetric regular
n-polytope of type {p1, . . . , pn−1} with p1 > 3. Then the regular (n + 1)-polytope 2P,G(s)

has the following properties.

1. 2P,G(s) is of type {4, p1, . . . , pn−1};

2. G(2P,G(s)) = Dq
s o G(P), with q := |V (P)|/2, where the action of G(P) on Dq

s

(= W ) is induced by the action on G(s). In particular, 2P,G(s) is finite if and only
if P is finite, in which case∣∣G(2P,G(s))

∣∣ = |Ds|q · |G(P)| = (2s)|V (P)|/2|G(P)|;
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3. If s is even and P has only finitely many vertices, then 2P,G(s) is also centrally
symmetric.

Corollary 6. Let n > 1, and let P be a centrally symmetric regular n-polytope with
automorphism group the Coxeter group [p1, . . . , pn−1], with p1 > 3, factorized by a set
of relations R. Then the automorphism group of the regular (n + 1)-polytope 2P,G(s) is
a factorization of the Coxeter group [4, p1, . . . , pn−1] by the relations in R and the extra
relations

(ρ0αρ0α)s = id,

where α is the central involution of P, and

(ρ0τ
−1ρ0τ)2 = id

for all τ ∈ G(P) such that τ 6= α and {F0, F0τ} give distinct diagonal classes of P.

Proof. From Theorem 5(1) and (2) we have that G(2P,G(s)) must be a factorization of
the Coxeter group [4, p1, . . . , pn−1] by at least the relations R. Moreover, we know from
Theorem 5(2) that the extra relations added must come from W . We know that G(s) is a
matching with branches of label s between antipodal nodes, being the remaining branches
improper. Hence, we can write the relations between the generators of W considering pairs
of nodes of G(s) which are in distinct diagonal classes (since pairs of nodes in the same
diagonal class give relations which are conjugate by the action of G(P) on G(s)). From
equations 5 and 6, we can fix always vertex F0 as one of the elements of the diagonal.
Based on the diagram of G(s), we have the relations

(ρ0αρ0α)s = id,

where α is the central involution of P (giving the relations of the proper branches of G(s),
unless s = 2 in which these branches are improper), and

(ρ0τ
−1ρ0τ)2 = id

for all τ ∈ G(P) such that τ 6= α and {F0, F0τ} give distinct diagonal classes of P (giving
the relations of the improper branches of G(s)).

When P is non-degenerate, this construction gives a non-degenerate polytope, as ex-
pressed in the next lemma.

Lemma 7. [pp. 264 of [11]] Let P be a centrally symmetric regular n-polytope of type
{p1, . . . , pn−1} with p1 > 3. If the poset of P is a lattice, then the poset of 2P,G(s) is a
lattice.
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3 Polytopes 2P,G(s) and Hypertopes H(2P,G(s)) when P is a 2p-
gon, n-cube or n-orthoplex

In Table 1 we were introduced to the centrally symmetric polytopes P that we consider
in this paper. There are three infinite families of polytopes given in that table: the
2p-gons with type {2p}, the n-cube with type {4, 3n−2} and the n-orthoplex with type
{3n−2, 4}. In the following sections, we construct extensions of these polytopes and then
apply the halving operation as defined in Section 2.3 to obtain families of hypertopes.
Moreover, families of proper regular toroidal hypertopes {3

3
, 3n−3, 4}(2s,0n−1) are given for

an arbitrary rank and s, extending the results of [3] and [12], where the duals of the
hypertopes

{
3
3
, 4
}
(2s,0,0)

and
{

3
3
, 3n−3, 4

}
(4,0n−1)

are presented, respectively.

3.1 The polytope 2{2p},G(s) and hypertope H(2{2p},G(s))

Consider the following polytopes, defined as below.

Definition 8. [11, Section 7B] Let 2 6 j 6 k := b1
2
qc. Then, we define the polytope P :=

{p, q | h2, . . . , hk} such that its automorphism group G(P) has the following presentation

G(P) := 〈 ρ0, ρ1, ρ2 | ρ20 = ρ21 = ρ22 = (ρ0ρ1)
p = (ρ1ρ2)

q = (ρ0ρ2)
2 = id,

{(ρ0ρ1(ρ2ρ1)j−1)hj = id, for 2 6 j 6 k} 〉,

where hj is the length of the j-hole of P .

Let P be the polygons with even number of vertices, i.e. of type {2p}, for p > 2. From
Corollary 8C7 of [11], we have the following result.

Corollary 9. [11, Corollary 8C7] Let 2 6 p < ∞ and 2 6 s < ∞. Then 2{2p},G(s) =
{4, 2p | 4p−2, 2s}, with group Dp

s oD2p, of order (2s)p · 4p. If p = 2, this is the torus map
{4, 4}(2s,0), with group (Ds ×Ds) oD4 of order 32s2.

We write 4p−2 to mean a row of 4’s of size (p− 2). Using this result and Definition 8,
we have the following proposition.

Proposition 10. Let 2 6 p < ∞ and 2 6 s < ∞. Then the group G(2{2p},G(s)) =
[4, 2p | 4p−2, 2s] has the following presentation

G(2{2p},G(s)) := 〈 ρ0, ρ1, ρ2 | ρ20 = ρ21 = ρ22 = (ρ0ρ1)
4 = (ρ1ρ2)

2p = (ρ0ρ2)
2 = id,

{(ρ0ρ1(ρ2ρ1)j−1)4 = id, for 2 6 j 6 p− 1}, (ρ0ρ1(ρ2ρ1)p−1)2s = id 〉.

Proof. The proof follows from Corollary 9 and Definition 8.

From the polytopes of the previous proposition, we derive a family of polytopes using
the halving operation.
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Proposition 11. Let 2 6 p <∞, 2 6 s <∞. The incidence system

H(2{2p},G(s)) = Γ(H(2{2p},G(s)), (Hi)i∈{0,1,2}),

where H(2{2p},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2〉 = 〈ρ̃0, ρ1, ρ2〉, is a regular polytope of type {2p, 2p},
where its automorphism group, of size (2s)p · 2p, is the quotient of the Coxeter group
[2p, 2p] by the relations

((ρ̃0ρ2)
j−1ρ̃0ρ1(ρ2ρ1)

j−1)2 = id,

for 2 6 j 6 p− 1, and
((ρ̃0ρ2)

p−1ρ̃0ρ1(ρ2ρ1)
p−1)s = id.

Proof. Let 2 6 p < ∞, 2 6 s < ∞. The fact that the incidence system of the halving
group H(2{2p},G(s)) is a regular hypertope follows from the fact that 2{2p},G(s) is non-
degenerate (a lattice, by Lemma 7) and from Corollary 3. Moreover, in Section 7B [11], it
is given that the halving operation on regular polytope of type {4, k} results in a regular
polytope of type {k, k}. Let us write the relations that are not of the infinite Coxeter
group [2p, 2p].

Firstly,

id = (ρ0ρ1(ρ2ρ1)
j−1)4

= (ρ0ρ1(ρ2ρ1)
j−1ρ0ρ1(ρ2ρ1)

j−1)2

= (ρ0ρ1(ρ0ρ2ρ0ρ1)
j−1ρ0ρ1(ρ2ρ1)

j−1)2

= ((ρ0ρ1ρ0ρ2)
j−1ρ0ρ1ρ0ρ1(ρ2ρ1)

j−1)2

= ((ρ̃0ρ2)
j−1ρ̃0ρ1(ρ2ρ1)

j−1)2.

For the relation (ρ0ρ1(ρ2ρ1)
p−1)2s = id, similar arguments give

id = (ρ0ρ1(ρ2ρ1)
p−1)2s = ((ρ̃0ρ2)

p−1ρ̃0ρ1(ρ2ρ1)
p−1)s.

Notice that, if p = 2, the regular hypertope obtained from the halving of {4, 4}(2s,0) is
the regular map {4, 4}(s,s).

3.2 The polytope 2{3n−2,4},G(s) and hypertope H(2{3n−2,4},G(s))

Let P be the n-orthoplex, with n > 3. From Corollary 8C6 of [11], we have the following
result.

Corollary 12. [11, Corollary 8C6] Let n > 3 and 2 6 s <∞. The polytope 2{3
n−2,4},G(s)

is the cubical regular (n+ 1)-toroid {4, 3n−2, 4}(2s,0n−1), with group Dn
s o [3n−2, 4] of order

(4s)nn!.

The defining relations of the regular polytope {4, 3n−2, 4}(2s,0n−1) are those given by
its Schläfli type and the extra relation [11, Section 6D]

(ρ0ρ1ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ1)2s = id.

Now, using the halving operation, we get a family of proper regular toroidal hyper-
topes, as shown in the following result.
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Proposition 13. Let n > 3, 2 6 s <∞. The incidence system

H(2{3
n−2,4},G(s)) = Γ(H(2{3

n−2,4},G(s)), (Hi)i∈{0,...,n}),

where H(2{3
n−2,4},G(s)) := 〈ρ0ρ1ρ0, ρ1, . . . , ρn〉 = 〈ρ̃0, ρ1, . . . , ρn〉, is a regular hypertope

whose automorphism group, of size (4s)n−1(2s)n!, is the quotient of the Coxeter group
with diagram

•ρ1

•ρ2 •ρ3 •ρn−2
• 4

ρn−1 ρn
•

•
ρ̃0

factorized by
(ρ̃0ρ2ρ3 · · · ρn−1ρnρn−1 · · · ρ3ρ2ρ1)2s = id.

Proof. The incidence system of the halving group H(2{3
n−2,4},G(s)) is a regular hypertope

since the poset of the polytope {3n−2, 4} is a lattice, making 2{3
n−2,4},G(s) non-degenerate

(by Lemma 7), which is under the conditions of Corollary 3. The relations of the Coxeter
diagram above follow naturally from the definition of the halving operation.

Consider now the extra relation

(ρ0ρ1ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ1)2s = id

of {4, 3n−2, 4}(2s,0n−1). Then,

id = (ρ0ρ1ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ1)2s

= (ρ0ρ1ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ1ρ0ρ1ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ1)s

= (ρ0ρ1ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ0ρ1ρ0ρ1ρ0ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ1)s

= (ρ0ρ1ρ0ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ1ρ0ρ1ρ0ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ1)s

= (ρ̃0ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ1ρ̃0ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ1)s

= (ρ̃0ρ2 · · · ρn−1ρnρn−1 · · · ρ2ρ1)2s

Following the notation of Ens [3] and Weiss and Montero [12], we denote these regular
toroidal hypertopes by

{
3
3
, 3n−3, 4

}
(2s,0n−1)

.

3.3 The polytope 2{4,3n−2},G(s) and hypertope H(2{4,3n−2},G(s))

Consider the n-cube with automorphism group [4, 3n−2] = 〈τ0, . . . , τn−1〉, with n > 3.
Let (v1, v2, . . . , vn) be the coordinates of a vertex of the n-cube in an Euclidean space

and let vi ∈ {±1}. In addition, let

(v1, v2, . . . , vn)τ0 := (−v1, v2, . . . , vn)

(v1, . . . , vj−1, vj, vj+1, vj+2, . . . , vn)τj := (v1, . . . , vj−1, vj+1, vj, vj+2, . . . , vn),
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for j ∈ {1, . . . , n− 1}. Let F0 := (1n) be the vertex having all coordinates equal to 1, and
let β := τ0τ1τ2 · · · τn−2τn−1. Then,

F0β = (1n−1,−1)

where 1n−1 means we have a row of +1’s of size (n− 1). Moreover, it is easily seen that

F0β
i = (1n−i,−1i)

Particularly,
F0β

n = (−1n).

Thus βn is clearly the central involution of the n-cube.

Lemma 14. The n-cube has exactly n diagonal classes which can be represented by
{F0, F0β

i}, for 1 6 i 6 n, where F0 is a vertex, β = τ0τ1τ2 · · · τn−2τn−1, and F0β
i is

the vertex of the action of βi on the vertex F0.

Proof. Consider the construction of the vertices of the cube as above and let F0 := (1n).
Let 1 6 i, j 6 n and consider the vertices F0β

i = (1n−i,−1i) and F0β
j = (1n−j,−1j).

Suppose that the diagonals {F0, F0β
i} and {F0, F0β

j} are in the same diagonal class.
Then, they share the same square length as their diagonal class representative

||F0 − F0β
i||2 = ||F0 − F0β

j||2.

Hence,

||F0 − F0β
i||2 = ||F0 − F0β

j|| ⇔
⇔ ||(0n−i, 2i)||2 = ||(0n−j, 2j)||2 ⇒

⇔ i = j.

Since there are n distinct diagonal classes of the n-cube [11, Section 5B] and we can
represent n distinct diagonal classes as above, we have proven the statement of the
lemma.

With the above lemma, we are able to give the relations of the group of automorphisms
of 2{4,3

n−2},G(s).

Corollary 15. Let n > 3 and 2 6 s < ∞. Then 2{4,3
n−2},G(s) is a (n + 1)-polytope with

type {4, 4, 3n−2} and automorphism group D2n−1

s o [4, 3n−2] of order (2s)2
n−1

2nn! with the
relations given by its Coxeter diagram and the following extra relations

(ρ0β
−iρ0β

i)2 = id for 2 6 i 6 n− 1

(ρ0β
nρ0β

n)s = id,

where β = ρ1ρ2 · · · ρn. Moreover, its toroidal residue is the map {4, 4}(4,0).
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Proof. The polytopes above are obtained by Theorem 5 and, when i = n, βn is the central
involution of the polytope {4, 3n−2}, meaning that

(ρ0β
nρ0β

n)s = id.

The remaining extra relations of the statement of this corollary come from diagonal classes
of improper branches of the diagram G(s). Particularly, when i = 1, we have

id = (ρ0β
−1ρ0β)2 = (ρ0ρn−1 · · · ρ2ρ1ρ0ρ1ρ2 · · · ρn)2

which implies that
id = (ρ0ρ1ρ0ρ1)

2 = (ρ0ρ1)
4,

a relation given by the type of the polytope. Hence, (ρ0β
nρ0β

n)s = id and (ρ0β
−iρ0β

i)2 =
id, for 2 6 i 6 n − 1, are the only extra relations needed to define the automorphism
group of 2{4,3

n−2},G(s).
To prove that the toroidal residue is the map {4, 4}(4,0), observe that from id =

(ρ0β
−2ρ0β

2)2 we have

id = (ρ0ρ1ρn−1 · · · ρ2ρ1ρ0ρ1ρ2 · · · ρnρ1)2

which implies
id = (ρ0ρ1ρ2ρ1ρ0ρ1ρ2ρ1)

2 = (ρ0ρ1ρ2ρ1)
4,

showing that the toroidal residue is the map {4, 4}(4,0).

If n = 3, the resulting abstract polytopes are quotients of the locally toroidal polytope
of type {4, 4, 3}, satisfying the following relations

(ρ0ρ1ρ2ρ1)
4 = (ρ0(ρ1ρ2ρ3)

3)2s = id,

which do not give an universal locally toroidal polytope. Therefore, these polytopes do
not appear in [11].

Let us construct the regular hypertopes corresponding to this family. As before, we
use the halving operation.

Proposition 16. Let n > 3 and 2 6 s <∞. The incidence system

H(2{4,3
n−2},G(s)) = Γ(H(2{4,3

n−2},G(s)), (Hi)i∈{0,...,n}),

where H(2{4,3
n−2},G(s)) := 〈ρ0ρ1ρ0, ρ1, . . . , ρn〉 = 〈ρ̃0, ρ1, . . . , ρn〉, is a regular hypertope and

its automorphism group, of size (2s)2
n−1

2n−1n!, has the relations given by its Coxeter
diagram

•ρ1
4

•ρ2 •ρ3 •ρn−2
•ρn−1 ρn

•

•
ρ̃0

4

and the extra relations (β̃−iβi)2 = id, for 2 6 i 6 n − 1, and (β̃nβn)s = id, where
β = ρ1ρ2 · · · ρn and β̃ = ρ̃0ρ2 · · · ρn. Moreover the toroidal residue is the map {4, 4}(2,2).
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Proof. Let n > 3 and 2 6 s < ∞. The incidence system of the halving group of
2{4,3

n−2},G(s), H(2{4,3
n−2},G(s)), is a regular hypertope by Corollary 3 since the poset of

the polytope {4, 3n−2} is a lattice, making 2{4,3
n−2},G(s) non-degenerate, by Lemma 7.

Then, if we denote β = ρ1ρ2 · · · ρn and β̃ = ρ̃0ρ2 · · · ρn, we have

id = (ρ0β
−iρ0β

i)k

= (ρ0(ρn−1 · · · ρ2ρ1)iρ0(ρ1ρ2 · · · ρn)i)k

= ((ρn−1 · · · ρ2ρ0ρ1ρ0)i(ρ1ρ2 · · · ρn)i)k

= ((ρn−1 · · · ρ2ρ̃0)i(ρ1ρ2 · · · ρin)k

= (β̃−iβi)k,

where k = 2 if 2 6 i 6 n − 1, and k = s if i = n. Moreover, we have that β̃n = β̃−n,
meaning that

(β̃−nβn)s = (β̃nβn)s.

Let us prove that the toroidal residue is the map {4, 4}(2,2). Consider the translations
u := ρ̃0ρ2ρ1ρ2 and g := (ρ̃0ρ2ρ1)

2 of the toroidal map residue {4, 4} of the above hypertope.
Then, we have that

u = ρ̃0ρ2ρ1ρ2 = ρ0ρ1ρ0ρ2ρ1ρ2 = ρ0ρ1ρ2ρ0ρ1ρ2 = (ρ0ρ1ρ2)
2,

which is a translation of order 4 of the toroidal residue {4, 4}(4,0) of 2{4,3
n−2},G(s). Further-

more, we have that

g = (ρ̃0ρ2ρ1)
2 = (ρ0ρ1ρ0ρ2ρ1)

2 = ρ0ρ1ρ2ρ0ρ1ρ0ρ1ρ0ρ2ρ1 = ρ0ρ1ρ2ρ1ρ0ρ1ρ2ρ1,

which is a conjugate of ρ0β
−2ρ0β

2, meaning o(g) = 2. Since o(u) = 4 and o(g) = 2, then
the toroidal residue of our regular hypertope is the map {4, 4}(2,2).

Particularly, when n = 3, the regular hypertope of type
{

4
4
, 3
}

given by Propo-
sition 16 is locally toroidal, with toroidal residue {4, 4}(2,2), and satisfies the relation
((ρ̃0ρ2ρ3)

3(ρ1ρ2ρ3)
3)s = id.

4 Polytopes 2P,G(s) and Hypertopes H(2P,G(s)) when P has rank
3 or 4

In this section we consider that P is one of the remaining regular polytopes of Table 1: the
icosahedron, the dodecahedron, the 24-cell, the 600-cell and the 120-cell. In what follows,
similar to the previous section, we construct extensions of these polytopes and then we
apply the halving operation to obtain regular hypertopes. In [12], two locally spherical
regular hypertopes of hyperbolic type are given:

{
3
3
, 5
}

, with automorphism group of order

60·212, and
{

3
3
, 3, 5

}
, with automophism group of order 7200×2120. These two hypertopes

correspond to our hypertopes H(2{3,5},G(2)) and H(2{3,3,5},G(2)), respectively. Here, we give
an infinite family of these hypertopes. In addition, we give a family of hypertopes of type{

3
3
, 4, 3

}
with toroidal residue

{
3
3
, 4
}
(4,0,0)

. Most proofs of the following results are omitted

as they follow the same ideas present in the proofs of Corollary 15 and Proposition 16.
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4.1 The polytope 2{3,5},G(s) and hypertope H(2{3,5},G(s))

Let P be the icosahedron with automorphism group G := 〈τ0, τ1, τ2〉. The icosahedron has
three distinct diagonal classes, which can be determined computationally with GAP[8]:
{F0, F0β}, {F0, F0β

3} and {F0, F0β
5}, where β := τ0τ1τ2. The vertices of the latter

diagonal class are antipodal. In fact, the diagonals {F0, F0β} and {F0, F0β
2} are in the

same diagonal class, since the double G0-cosets coincide, that is,

G0β
2G0 = G0(τ0τ1τ2)

2G0 = G0τ0τ1τ2τ0G0

= G0τ0τ1τ0τ2G0 = G0τ1τ0τ1τ2G0 = G0βG0.

The same can be proven for the diagonals {F0, F0β
3} and {F0, F0β

4}. With this, we can
provide the polytope 2{3,5},G(s) and the hypertope H(2{3,5},G(s)).

Corollary 17. Let 2 6 s < ∞. Then 2{3,5},G(s) is a 4-polytope of type {4, 3, 5} with
automophism group D6

s o [3, 5] of order 120 · (2s)6. Moreover, the automorphism group
G(2{3,5},G(s)) := 〈ρ0, ρ1, ρ2, ρ3〉 is the quotient of the Coxeter group [4, 3, 5] by the relations
(ρ0β

−3ρ0β
3)2 = id and (ρ0β

5ρ0β
5)s = id, where β = ρ1ρ2ρ3.

Proposition 18. Let 2 6 s <∞. The incidence system

H(2{3,5},G(s)) = Γ(H(2{3,5},G(s)), (Hi)i∈{0,...,3}),

where H(2{3,5},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2, ρ3〉 = 〈ρ̃0, ρ1, ρ2, ρ3〉, is a regular hypertope and its
automorphism group, of size 60 · (2s)6, is the quotient of the Coxeter group with diagram

•ρ1

•ρ2 ρ3

5 •

•
ρ̃0

factorized by (β̃−3β3)2 = id and (β̃5β5)s = id, where β := ρ1ρ2ρ3 and β̃ := ρ̃0ρ2ρ3.

4.2 The polytope 2{5,3},G(s) and hypertope H(2{5,3},G(s))

Let P be the dual of the icosahedron, the dodecahedron. Using GAP[8] and the dou-
ble coset action described in equation 1, we can determine the diagonal classes of the
dodecahedron: {F0, F0β

i}, for 1 6 i 6 5, where β = τ0τ1τ2 is an element of the
group [5, 3] = 〈τ0, τ1, τ2〉. As before, we give the polytope 2{5,3},G(s) and the hypertope
H(2{5,3},G(s)).

Corollary 19. Let 2 6 s <∞. Then 2{5,3},G(s) is a family of 4-polytopes with type {4, 5, 3}
and automorphism group D10

s o [5, 3] of order 120 · (2s)10. Moreover, the automorphism
group G(2{5,3},G(s)) := 〈ρ0, ρ1, ρ2, ρ3〉 is the quotient of the Coxeter group [4, 5, 3] by the
relations (ρ0β

−iρ0β
i)2 = id, for 2 6 i 6 4, and (ρ0β

5ρ0β
5)s = id, where β = ρ1ρ2ρ3.
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Proposition 20. Let 2 6 s <∞. The incidence system

H(2{5,3},G(s)) = Γ(H(2{5,3},G(s)), (Hi)i∈{0,...,3}),

where H(2{5,3},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2, ρ3〉 = 〈ρ̃0, ρ1, ρ2, ρ3〉, is a regular hypertope and its
automorphism group, of size 60 · (2s)10, has the relations given by its Coxeter diagram

•ρ1
5

•ρ2 ρ3
•

•
ρ̃0

5

and the extra relations (β̃−iβi)2 = id, for 2 6 i 6 4, and (β̃5β5)s = id, where β := ρ1ρ2ρ3
and β̃ := ρ̃0ρ2ρ3.

4.3 The polytope 2{3,4,3},G(s) and hypertope H(2{3,4,3},G(s))

Let P be the self-dual polytope of type {3, 4, 3}. Using GAP[8] we have that the 24-cell
has 4 distinct diagonal classes: {F0, F0β

i}, for i ∈ {1, 3, 4, 6}, where β = τ0τ1τ2τ3 is an
element of the group [3, 4, 3] = 〈τ0, τ1, τ2, τ3〉. We will determine the polytope 2{3,4,3},G(s)

and regular hypertope H(2{3,4,3},G(s)).

Corollary 21. Let 2 6 s < ∞. Then 2{3,4,3},G(s) is a 5-polytope of type {4, 3, 4, 3}
and automorphism group D12

s o [3, 4, 3] of order 1152 · (2s)12. Moreover, the automor-
phism group G(2{3,4,3},G(s)) := 〈ρ0, ρ1, ρ2, ρ3, ρ4〉 is the quotient of the locally toroidal Cox-
eter group [4, 3, 4, 3] factorized by the relations (ρ0β

−iρ0β
i)2 = id, for i ∈ {3, 4}, and

(ρ0β
6ρ0β

6)s = id, where β = ρ1ρ2ρ3ρ4 and its toroidal residue is a quotient of the cubic
toroid {4, 3, 4}(4,0,0).

Proof. The proof follows the same idea as in Corollary 15. To prove that the toroidal
residue is a quotient of the cubic toroid {4, 3, 4}(4,0,0), observe that the relation

(ρ0β
−3ρ0β

3)2 = id

implies that (ρ0ρ1ρ2ρ3ρ2ρ1)
4 = id.

Proposition 22. Let 2 6 s <∞. The incidence system

H(2{3,4,3},G(s)) = Γ(H(2{3,4,3},G(s)), (Hi)i∈{0,...,4}),

where H(2{3,4,3},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2, ρ3, ρ4〉 = 〈ρ̃0, ρ1, ρ2, ρ3, ρ4〉, is a regular hypertope
and its automorphism group, of size 576 · (2s)12, has the relations given by its Coxeter
diagram

•ρ1

• 4
ρ2

•ρ3 ρ4
•

•
ρ̃0

the electronic journal of combinatorics 30(2) (2023), #P2.20 17



and the extra relations (β̃−iβi)2 = id, for i ∈ {3, 4}, and (β̃6β6)s = id, where β :=
ρ1ρ2ρ3ρ4 and β̃ := ρ̃0ρ2ρ3ρ4. Moreover, its toroidal residue is a quotient of

{
3
3
, 4
}
(4,0,0)

.

Proof. The proof follows the same idea as in Proposition 16. Moreover, as seen in the proof
of Proposition 13, we can rewrite the relation (ρ0ρ1ρ2ρ3ρ2ρ1)

4 = id, given in Corollary 21,
as (ρ̃0ρ2ρ3ρ2ρ1)

4 = id, which is the factorizing relation of the hypertope
{

3
3
, 4
}
(4,0,0)

.

4.4 The polytope 2{3,3,5},G(s) and hypertope H(2{3,3,5},G(s))

Let P be the 600-cell. The 600-cell has 8 distinct diagonal classes, which can be obtained
with GAP[8] and can be represented by {F0, F0β

i}, for i ∈ {1, 4, 6, 7, 9, 10, 12, 15}, where
β = τ0τ1τ2τ3 is an element of the group [3, 3, 5] = 〈τ0, τ1, τ2, τ3〉. Let us determine the
polytope 2{3,3,5},G(s) and the hypertope H(2{3,3,5},G(s)).

Corollary 23. Let 2 6 s < ∞. Then 2{3,3,5},G(s) is a 5-polytope of type {4, 3, 3, 5} and
automophism group D60

s o [3, 3, 5] of order 14400 · (2s)60. Moreover, the automorphism
group G(2{3,3,5},G(s)) := 〈ρ0, ρ1, ρ2, ρ3, ρ4〉 is the quotient of the Coxeter group [4, 3, 3, 5] by
the relations (ρ0β

−iρ0β
i)2 = id, for i ∈ {4, 6, 7, 9, 10, 12}, and (ρ0β

15ρ0β
15)s = id, where

β = ρ1ρ2ρ3ρ4.

Proposition 24. Let 2 6 s <∞. The incidence system

H(2{3,3,5},G(s)) = Γ(H(2{3,3,5},G(s)), (Hi)i∈{0,...,4}),

where H(2{3,3,5},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2, ρ3, ρ4〉 = 〈ρ̃0, ρ1, ρ2, ρ3, ρ4〉, is a regular hypertope
and its automorphism group, of size 7200 · (2s)60, has the relations given by its Coxeter
diagram

•ρ1

•ρ2 • 5
ρ3 ρ4

•

•
ρ̃0

and the extra relations (β̃−iβi)2 = id, for i ∈ {4, 6, 7, 9, 10, 12}, and (β̃15β15)s = id, where
β := ρ1ρ2ρ3ρ4 and β̃ := ρ̃0ρ2ρ3ρ4.

4.5 The polytope 2{5,3,3},G(s) and hypertope H(2{5,3,3},G(s))

Lastly, let P be the 120-cell polytope. As previously, we can determine with the help of
GAP[8] that the 120-cell has 15 distinct diagonal classes, using the double coset action
described in equation 1. These diagonal classes can be represented by {F0, F0β

i}, for
1 6 i 6 15, where β = τ0τ1τ2τ3 is an element of the group [5, 3, 3] = 〈τ0, τ1, τ2, τ3〉. Let us
determine the polytope 2{5,3,3},G(s) and hypertope H(2{5,3,3},G(s)).

Corollary 25. Let 2 6 s < ∞. Then 2{5,3,3},G(s) is a 5-polytope of type {4, 5, 3, 3} and
automophism group D300

s o [5, 3, 3] of order 14400 · (2s)300. Moreover, the automorphism
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group G(2{3,3,5},G(s)) := 〈ρ0, ρ1, ρ2, ρ3, ρ4〉 is the quotient of the Coxeter group [4, 5, 3, 3]
by the relations (ρ0β

−iρ0β
i)2 = id, for 2 6 i 6 14, and (ρ0β

15ρ0β
15)s = id, where

β = ρ1ρ2ρ3ρ4.

Proposition 26. Let 2 6 s <∞. The incidence system

H(2{5,3,3},G(s)) = Γ(H(2{5,3,3},G(s)), (Hi)i∈{0,...,4}),

where H(2{5,3,3},G(s)) := 〈ρ0ρ1ρ0, ρ1, ρ2, ρ3, ρ4〉 = 〈ρ̃0, ρ1, ρ2, ρ3, ρ4〉, is a regular hypertope
and its automorphism group, of size 7200 · (2s)300, has the relations given by its Coxeter
diagram

•ρ1
5

•ρ2 •ρ3 ρ4
•

•
ρ̃0

5

and the extra relations (β̃−iβi)2 = id, for 2 6 i 6 14, and (β̃15β15)s = id, where β :=
ρ1ρ2ρ3ρ4 and β̃ := ρ̃0ρ2ρ3ρ4.

5 Final Remarks

This work gives a list of infinite families of regular hypertopes of arbitrary rank, con-
structed from finite centrally symmetric non-degenerate spherical polytopes P , which is
summarised in the following Table 2.

We notice that Theorem 5 establishes the following:

• If s is even and P has only finitely many vertices, then 2P,G(s) is also centrally
symmetric.

This implies that if s is even, all the polytopes determined in Sections 3 and 4 are centrally
symmetric, being eligible to be used in Theorem 5, giving other families of polytopes of
type {4, 4, p1, . . . , pn−1}. Moreover, since we know that these polytopes 2P,G(s) are also
non-degenerate, these new families would also be eligible for the halving operation, giving
families of hypertopes.

Here the focus was on spherical polytopes but the same idea can be applied to centrally
symmetric toroidal polytopes. Indeed, from Corollary 9 and the point above, it follows
that the toroidal maps {4, 4}(2s,0) are centrally symmetric and non-degenerate (for s > 4
and even), and therefore extendable by the same process that was used in this paper.
Moreover, the toroidal map {4, 4}(2s,0) is just a case of the toroidal (n+1)-cubic tesselation
{4, 3n−2, 4}(2s,0n−1) for n = 2. We can repeat the process to this more general case and
extend further this cubic tesselation.
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Table 2: Families of proper regular hypertopes of rank r from centrally symmetric poly-
topes

Rank Coxeter Diagram Size Extra Relations

4

•ρ1
•
ρ2 ρ3

5 •
•̃
ρ0

60 · (2s)6 (β̃−3β3)2 = (β̃5β5)s = id,

for β := ρ1ρ2ρ3 and β̃ := ρ̃0ρ2ρ3

•ρ1 5

•
ρ2 ρ3

•
•̃
ρ0

5
60 · (2s)10 (β̃−iβi)2 = (β̃5β5)s = id, for 2 6 i 6 4,

β := ρ1ρ2ρ3 and β̃ := ρ̃0ρ2ρ3

5

•ρ1
•
ρ2

4 •
ρ3 ρ4

•
•̃
ρ0

576 · (2s)12 (β̃−iβi)2 = (β̃6β15)s = id, for i ∈ {3, 4},
β := ρ1ρ2ρ3ρ4 and β̃ := ρ̃0ρ2ρ3ρ4

•ρ1
•
ρ2

• 5

ρ3 ρ4
•

•̃
ρ0

7200 · (2s)60
(β̃−iβi)2 = (β̃15β15)s = id,
for i ∈ {4, 6, 7, 9, 10, 12}, β := ρ1ρ2ρ3ρ4
and β̃ := ρ̃0ρ2ρ3ρ4

•ρ1 5

•
ρ2

•
ρ3 ρ4

•
•̃
ρ0

5

7200 · (2s)300 (β̃−iβi)2(β̃15β15)s = id, for 2 6 i 6 14,

β := ρ1ρ2ρ3ρ4 and β̃ := ρ̃0ρ2ρ3ρ4

r > 4

•ρ1
•
ρ2

•
ρ3

•
ρr−3

• 4

ρr−2 ρr−1
•

•̃
ρ0

(4s)r−2(2s)(r − 1)! (ρ̃0ρ2ρ3 · · · ρr−2ρr−1ρr−2 · · · ρ3ρ2ρ1)2s = id

•ρ1 4

•
ρ2

•
ρ3

•
ρr−3

•
ρr−2 ρr−1

•
•̃
ρ0

4

(2s)2
r−2

2r−2(r − 1)!
(β̃−iβi)2 = (β̃r−1βr−1)s = id,
for 2 6 i 6 r − 2, β = ρ1ρ2 · · · ρr−1

and β̃ = ρ̃0ρ2 · · · ρr−1
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