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Abstract

Let Lc,n denote the size of the longest cycle in G(n, c/n), c > 1 constant. We
show that there exists a continuous function f(c) such that Lc,n/n → f(c) a.s. for
c > 20, thus extending a result of Frieze and the author to smaller values of c.
Thereafter, for c > 20, we determine the limit of the probability that G(n, c/n)
contains cycles of every length between the length of its shortest and its longest
cycles as n→∞.

Mathematics Subject Classifications: 05C80, 05C38

1 Introduction

Let Lc,n denote the size of the longest cycle in G(n, p), p = c/n i.e. the random graph
on [n] where each edge appears independently with probability p. Erdős [14] conjectured
that if c > 1 then w.h.p.1 Lc,n > `(c)n where `(c) > 0 is independent of n. This was
proved by Ajtai, Komlós and Szemerédi [1] and in a slightly weaker form by Fernandez
de la Vega [16] who proved that the conjecture is true for c > 4 log 2. 2 Although
this answers Erdős’s question and provides the order of magnitude of Lc,n for c > 1 it
leaves open the question of providing matching upper and lower bounds on Lc,n up to
the linear in n order term. Bollobás [7] realized that for large c one could find a large
path/cycle w.h.p. by concentrating on a large subgraph with large minimum degree and
demonstrating Hamiltonicity. In this way he showed that Lc,n > (1 − c24e−c/2)n w.h.p.
This was then improved by Bollobás, Fenner and Frieze [10] to Lc,n > (1 − c6e−c)n and
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1We say that a sequence of events {En}n>1 holds with high probability (w.h.p. in short) if

limn→∞ Pr(En) = 1− o(1).
2Here and going forward, all logarithms are assumed to be in the natural base.
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then by Frieze [17] to Lc,n > (1− (1+ εc)(1+c)e−c)n w.h.p. where εc → 0 as c→∞. This
last result is optimal up to the value of εc, as there are (1+c)e−cn+o(n) vertices of degree
0 or 1 w.h.p. Finally the scaling limit of Lc,n was determined by Anastos and Frieze [5]
for sufficiently large c. They showed that there exists some absolute constant C0 > 1 and
a function f(·) such that for c > C0, Lc,n/n → f(c) a.s. In addition they gave a way of
computing Lc,n within arbitrary accuracy. In addition they gave a way of computing Lc,n
within arbitrary accuracy. They also proved analogous results for the longest direct cycle
in sparse random digraphs [6].

Denote by LPc,n the length of the longest path in G(n, p). In addition for a graph G
denote by L(G) the size of the longest cycle of G. The main theorem of this paper is the
following one.

Theorem 1. Let G ∼ G(n, c/n).

(a) There exists a continuous function f : [0,∞) → [0, 1] such that Lc,n/n → f(c)
almost surely for c > 20, constant.

(b) W.h.p. G has a cycle of length L(G)−i for 0 6 i 6 0.1c3e−cn, for 20 6 c 6 0.4 log n.

(c) W.h.p. |Lc,n − LPc,n| 6 (2000 log n)/c+ 1 for 20 6 c 6 0.4 log n.

We discuss the case c > 0.4 log n shortly. Part (a) of Theorem 1, except for the
continuity of f , is proven in [5] for sufficiently large c. The proof there relies on identifying
a subgraph H3 of G and showing that after contracting every maximal path whose interior
vertices are of degree 2 into a single edge we get a graph H ′3 of minimum degree 3 with the
property that it has a Hamilton cycle that passes through all the “new” edges. To find the
Hamilton cycle there a version of the coloring argument of Fenner and Frieze [15] is used.
For the corresponding calculations the condition c > 106 is asserted. Our improvement
on c comes from considering a subgraph H4 of G in place of H3. H4 is constructed in
a similar manner as H3. The alterations done to its construction are such that H ′4, the
graph obtained after contracting every maximal path whose interior vertices are of degree
2 into an edge, has minimum degree 4. This enables us to use a different argument to
find a suitable Hamilton cycle in H ′4 and thus extend the range of c for which part (a) of
Theorem 1 is true to c > 20.

A graph G is called pancyclic if it contains a cycle of length ` for every ` ∈ [3, |V (G)|].
The study of pancyclic graphs was initiated by Bondy [11]. Cooper and Frieze [13] proved
that the threshold for G(n, p) being pancyclic is the same as being hamiltonian which is
pH = (log n+ log log n)/n. Their methods can be extended to prove that the probability
of the 2-core of G(n, p) being pancyclic is the same as being hamiltonian which is 1−o(1)
for p > (1 + ε) log n/3n for any constant ε > 0. Thus for c > 0.4 log n the size of the
longest cycle in G(n, p) equals to the size of its 2-core, say n′, and there exists a cycle of
length ` in G for every ` ∈ [3, n′] w.h.p.

For a fixed set S ⊂ N \ {1, 2} the probability that G(n, c/n) contains a cycle of length
l for l ∈ S is given by a result of Bollobás (see [9], §4.1) and separately by a result of
Karoński and Ruciński [20]. For l > 3 let Zc,l be the number of cycles of length l in
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G(n, c/n). They proved that for every finite set S ⊂ N \ {1, 2} the joint distribution of
{Zc,l : l ∈ S} converges in distribution to the joint distribution of {Poisson(cl/2l) : l ∈ S}.
Recently, Alon, Krivelevich and Lubetzky [2] studied the set of cycle lengths of randomly
augmented graphs and showed that if one sprinkles εn random edges on top of some graph
G on [n] then, in addition to L(G), the new graph w.h.p. contains a cycle of length ` for
every ` such that both `, L(G)− ` tend to infinity with n. For graphs G,F on the same
vertex set denote by G⊕ F the graph (V (G), E(G) ∪ E(F )).

Theorem 2 (Theorem 3.1 of [2]). Fix δ > 0, let H be a graph on [n] with a longest cycle
of size L(H), F ∼ G(n, δ/n) and G = H ⊕ F . There exist absolute constants C1, C2 > 0
such that, for any 3 6 ` 6 |V (H)|/2, we have that G contains a cycle of length l for every
l ∈ [`, L(H)− `+ 4] with probability at least 1− C1e

−C2(δ2∧1)`.

To generalize the notion of pancyclic graphs Brandt [12] introduced the notion of
weakly pancyclic graphs. A graph G is weakly pancyclic if it contains cycles of every
length between the lengths of its shortest and longest cycles. In the following theorem we
study the distribution of the set of cycles lengths of G(n, p) and determine the limit of
the probability that it is weakly pancyclic as n→∞.

Theorem 3. Let G ∼ G(n, c/n), c > 20. Then for every S ⊆ [L(G)] \ {1, 2},

lim
n→∞

Pr(G contains a cycle of length l for l ∈ S) =
∏
k∈S

(
1− e−

ck

2k

)
. (1)

In particular,

lim
n→∞

Pr(G is weakly pancyclic ) =
∑
k>3

k−1∏
`=3

e−
c`

2`

∞∏
`=k

(
1− e−

c`

2`

)
. (2)

Observe that (1) is given by Bollobás and by Karoński and Ruciński in the case
maxS = O(1). In the proof of Theorem 3 we make use of a weak lower bound on Lc,n
given by the following Lemma. Its proof is located at the end of Section 4.

Lemma 4. W.h.p. n− 0.04c3e−cn 6 Lc,n for 20 6 c 6 0.4 log n.

Proof of Theorem 3: For c > 0.4 log n Theorem 3 follows from the fact that the
2-core of G(n, p) is pancyclic w.h.p. thus we may assume that 20 6 c < 0.4 log n. Let d be
such that n−0.05d3e−dn = n−0.1c3e−cn. Then d < c, in particular c−d = Ω(1). We may
generate G by letting G1 ∼ G(n, d/n), G2 ∼ G(n, p′) and G = G1⊕G2 where (1− c/n) =
(1−p′)(1−d/n). Let ε > 0 and ` be the minimum positive integer such that C1e

−C2(δ2∧1)` <

ε and
∏∞

k=`+1(1 − e−
ck

2k ) > 1 − ε where the constants C1, C2 are as in the statement of
Theorem 2. Also denote by L(G) the set {l ∈ [n] : G spans a cycle of length l}.

Lemma 4 applied to G1 and Theorem 2 applied to G1 ⊕ G2 give that G contains
a cycle of length l for every integer l ∈ [`, n − 0.05d3e−dn] = [`, n − 0.1c3e−cn] with
probability at least 1 − C1e

−C2(δ2∧1)` + o(1). On the other hand part (b) of Theorem 1
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implies that L(G) contains the integers in [L(G) − 0.1c3e−cn, L(G)] w.h.p. As L(G) −
0.1c3e−cn 6 n− 0.1c3e−cn we have that L(G) contains [`, L(G)] with probability at least
1 − C1e

−C2(δ2∧1)` + o(1). Combining this last statement with the results of Bollobás and
of Karoński and Ruciński gives (1). Indeed for S ⊂ [L(G)] \ {1, 2},∏

k∈S

(
1− e−

ck

2k

)
+ ε >

∏
k∈S∩[`]

(
1− e−

ck

2k

)
= lim

n→∞
Pr(S ∩ [`] ⊆ L(G))

> lim
n→∞

Pr(S ⊆ L(G))

> lim
n→∞

Pr(S ∩ [`] ⊆ L(G) and [`+ 1, L(G)] ⊆ L(G))

>
∏

k∈S∩[`]

(
1− e−

ck

2k

)
− C1e

−C2(δ2∧1)` >
∏
k∈S

(
1− e−

ck

2k

)
− ε.

Similarly one can derive (2); the summation at (2) corresponds to the sum over k of the
probabilities that G is weakly pancyclic and has girth k.

The proof of Theorem 1 relies on the study of an induced subgraph of G and how it
lies in G which we relate to a subset S of V (G) which we call the strong 4-core of G. We
define the strong 4-core of G and establish some of its basic properties in Section 3. Using
the strong 4-core we identify an induced subgraph F of G(n, p) such that no subgraph of
G that spans more vertices can be hamiltonian. We then prove that F is hamiltonian and
derive parts (b) and (c) of Theorem 1. This, modulo the Hamiltonicity argument which
is presented at Section 6, is presented at Section 4. Finally, for the sake of completeness,
at Section 5 we present the proof of part (a) of Theorem 1.

2 Preliminaries and Notation

For a graph G we denote by V (G) and E(G) its vertex set and edge set respectively. For
v ∈ V (G) and k ∈ N we denote by Nk(v), N<k(v) and N6k(v) the set of vertices within
distance exactly k, less than k and at most k respectively from v in G. For U ⊆ V (G)
we let N(U) be the set of vertices in V (G) \ U that are adjacent to U and G[U ] be the
subgraph of G induced by U . For M ⊆

(
V (G)
2

)
we let G ∪M = (V (G), E(G) ∪M) and

G \M = (V (G), E(G) \M). We denote by δ(G) and ∆(G) the minimum and maximum
respectively degree of G. Finally by log x we denote the natural logarithm of x.

Throughout the paper we make use of Lemma 5, an extension of McDiarmid’s in-
equality given by Warnke in [24] (see Theorem 1.2 and Remark 2). Compared to the
more general Theorem 1.2 of [24], Lemma 5 is restated in a form that is easier to apply in
our setting. For the reduction of Lemma 5 from Theorem 1.2 of [24] we let G ∼ G(n, p)
with np 6 2 log n, consider the vertex exposure martingale for revealing G and make use
of the fact that G has maximum degree smaller than log2 n with probability 1− o(n−10).

Lemma 5. Let G ∼ G(n, p) with np 6 2 log n. Let f be a graph theoretic function such
that |f(G′)| 6 n for every graph G′ of order n. Assume that there exists an integer
d = d(n) with the property that for every v ∈ [n] and every graph G1 on [n] of maximum
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degree log2 n, with G2 being the graph obtained from G1 by deleting all the edges incident
to v, we have that

|f(G1)− f(G2)| 6 0.5d.

Then for every t > 0,

Pr(|f(G)− E(f(G))| > t) 6 2 exp

(
− t2

2n(d+ 1)2

)
+ o(n−8). (3)

3 The strong k-core

The k-core of G is the induced subgraph of G whose vertex set is the maximal subset S
of V (G) with the property that every vertex in S has at least k neighbors in S. It is well
known to be unique and it can be obtained by iteratively removing from G vertices with
fewer than k neighbors among the vertices left. The concept of the k-core was introduced
by Bollobás in his study of the evolution of sparse graphs [8]. Some years later, Pittel,
Spencer and Wormald [23] proved that the property of having a nonempty k-core has a
sharp threshold in the random graph model G(n, p). Namely the proved that there exists
a constant ck such that G(n, c/n) has a nonempty k-core with probability 1−o(1) if c > ck
and with probability o(1) if c < ck. In addition they gave a way of calculating ck.

To identify the vertex set of a longest cycle in G(n, p) we use a concept similar to that
of the k-core. For a graph G we define the strong k-core of G to be the maximal subset
S of V (G) with the property that every vertex in S ∪N(S) has at least k neighbors in S.
Observe that if the sets S1, S2 ⊂ V (G) have this property then so does the set S1 ∪ S2.
Thus the strong k-core of a graph is well-defined. It can also be obtained via the following
red/blue/black coloring procedure:

Algorithm 1

1: Input: a graph G, an integer k.
2: Initially color all the vertices of G black.
3: while there exists a black or blue vertex v ∈ V (G) with fewer than k black neighbors

do
4: Color v red and its black neighbors blue.
5: end while
6: Return the coloring of G.

For a graph G we let Vk,black(G), Vk,blue(G) and Vk,red(G) be the set of vertices whose
final color given by Algorithm 1 is black, blue and red respectively. Also denote by
SCk(G) the vertex set of its strong k-core. Observe that the set Vk,black(G) has the
property that no vertex in Vk,black(G) ∪ N(Vk,black(G)) is red. Therefore every vertex
v ∈ Vk,black(G) ∪ N(Vk,black(G)) has at least k neighbors in Vk,black(G). Consequentially,
Vk,black(G) ⊆ SCk(G). On the other hand no vertex in SCk(G) would ever be colored red
or blue. Indeed assume otherwise and let v be the first vertex in SCk(G) that receives
a color red or blue. If that color is red then at that moment v has fewer than k black
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neighbors. Else if v receives color blue then it has a neighbor u that receives color red
and therefore at that moment u has less than k black neighbors. As in both cases SCk(G)
is a subset of the set of black vertices at the moment that v receives a color other than
black we get a contradiction.

For the rest of this paper we will denote by Vblack(G) the vertex set of the strong 4-core
of G, by Vblue(G) the neighborhood of Vblack(G) and by Vred(G) the rest of the vertices of
G. We call the vertices in Vblack(G), Vblue(G) and Vred(G), black, blue and red respectively.
In addition we denote by Gr/b the subgraph of G induced by Vblue(G)∪Vred(G). A crucial
observation about the structure of the subgraph of G induced by Vblue ∪ Vred(G) is the
following one.

Observation 6. During the execution of Algorithm 1 with inputs G, 4, every time a vertex
is colored red at most 3 of its neighbors are colored blue. Thus every component C of Gr/b

contains at least |C|
4

red vertices. These vertices do not have any neighbor outside C.

In the following Lemma we summarize the properties of the strong 4-core of a random
graph that we are going to use later on.

Lemma 7. Let G ∼ G(n, c/n), 20 6 c 6 2 log n. For i > 1 let Xi be the number
of vertices in G that lie in components of size i in Gr/b. Then the following hold with
probability 1− o(n−2).

(a) E(Xi) 6 0.8−in/(ci) and Xi 6 0.8−in/(ci) + n0.55 for 1 6 i 6 log3 n.

(b) Xi = 0 for i > (103 log n)/c.

(c) At most 0.03c3e−cn red vertices lie in a component of Gr/b with at least 2 red vertices.

(d) |Vred(G)| 6 0.25c3e−cn and |Vred(G) ∪ Vblue(G)| 6 c3e−cn.

Proof. (a) Observation 6 implies that for every component of size i we can identify sets
S, T with |S| > i/4, |S| + |T | = i such that G spans a tree on S ∪ T and no vertex in S
has a neighbor outside S ∪ T . Therefore for i > 1,

E(Xi) 6 i

(
n

i

)
ii−2pi−1

(
i

i/4

)
(1− p)

i(n−i)
4 6

(en
i

)i
ii−1pi−12ie−

pi(n−i)
4

6
n

ci

(
2enpe−(0.25+o(1))c

)i
6

0.8−in

ci
.

At the last inequality we used that c > 20. For v ∈ [n] deleting all the edges incident
to v in G may increase or decrease the number of components of Gr/b of size i by at
most d(v) + 1 6 ∆(G) + 1 (any “new” component contains an endpoint of a deleted
edge). Therefore, Lemma 5 implies that Xi 6 0.8−in/(ci) + n0.55 for 1 6 i 6 log3 n with
probability 1− o(n−2).
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(b) From the above calculation we also get,

Pr

( log3 n∑
i= 103 logn

c

Xi > 0

)
6 E

( log3 n∑
i= 103 logn

c

Xi

)
6

log3 n∑
i= 103 logn

c

n

(
2ece−0.235c

)i
e−0.01ci = O(n−9)

Now assume that Gr/b has a component C of size larger than log3 n. For t > 0 let mt

be the largest component spanned by the vertices of C that are either red or blue right
after the tth time the while-loop of Algorithm 1 is executed. Since at every step of our
process a single vertex is colored red and at most 3 of its neighbors blue we have that the
largest component at time t + 1 consists of a union of components at time t connected
via edges incident to these 4 vertices, hence mt+1 6 4∆(G) · max{mt, 1}. Thus either
∆(G) > 0.25 log1.5 n or there exists t > 0 such that 0.25 log1.5 n 6 mt 6 log3 n. In the
second case at time t the vertices of C span a component C ′ on mt vertices with at least
mt/4 red vertices. Those red vertices have no neighbor outside C ′ in G. Therefore Gr/b

spans a component of size at least log3 n with probability at most

O(n−9) +

log3 n∑
i=0.25 log1.5 n

n

(
2enpe−(0.25+o(1))c

)i
+ Pr(Bin(n, p) > log−1.5 n− 1) = o(n−2).

(c),(d) Let Y and Yi, i > 1 be the number of red vertices that lie in a component of
Gr/b with at least 2 and exactly i respectively red vertices. Then, Y = Y2 +

∑
i>3 Yi. A

component of Gr/b with exactly 2 red vertices consists either of two adjacent vertices u, v
that have at most 5 neighbors in total in [n]\{u, v} or two non-adjacent vertices u, v that
have a common neighbor w and at most 6 additional neighbors in total in [n] \ {u, v, w}.
Therefore,

E(Y2) 6 2

(
n

2

)
p

5∑
i=0

(
n

i

)
2ipi(1− p)2(n−2−i) + 2

(
n

2

)
np2

6∑
i=0

(
n

i

)
2ipi(1− p)2(n−3−i)

6 (1 + o(1))cn
5∑
i=0

2ipini

i!
e−2pn + (1 + o(1))c2n

6∑
i=0

2ipini

i!
e−2pn

6 (1 + o(1))c2e−2cn

( 5∑
i=0

(2c)i

i!c
+

6∑
i=0

(2c)i

i!

)
6 c2e−2cn · 2c6

6!
6 10−4c3e−cn.

Thereafter, similarly to the calculation of E(Xs) we have,

log3 n∑
s=3

E(Ys) 6
log3 n∑
s=3

3s∑
t=0

s

(
n

s+ t

)(
s+ t

t

)
(s+ t)s+t−2ps+t−1(1− p)(n−s−t)s

6
log3 n∑
s=3

( 3s∑
t=0

c−t
)
s

(
n

4s

)(
4s

3s

)
(4s)4s−2p4s−1e−p(n−4s)s
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6
log3 n∑
s=3

1.1(4cs)4s−1e−csn

(3s)!s!
6

6∑
s=3

1.1(4cs)4s−1e−csn

(3s)!s!
+

log3 n∑
s=7

1.1n

4cs

(
e4c444e−c

33

)s

6 0.015c3e−cn+ c3e−cn

log3 n∑
s=7

1.1e444

334s

(
e4c444e−c

33

)s−1

6 0.015c3e−cn+ c3e−cn

log3 n∑
s=7

142.5

s
· 0.175s 6 0.02c3e−cn.

Lastly, Y1 is bounded above by the number of vertices of degree 0, 1, 2 or 3 in G. Therefore,
E(Y1) 6 (1 + c+ 0.5c2 + c3/6)e−cn 6 0.2c3e−cn.

For v ∈ [n] deleting all the edges incident to v inGmay increase or decrease the number
of components ofGr/b with exactly i red vertices by at most d(v)+1 6 ∆(G)+1 (any “new”
component contains an endpoint of a deleted edge). Therefore, part (b) of this lemma and

Lemma 5 imply that |Vred(G)| =
∑log3 n

i=1 Yi 6 0.25c3e−cn and Y =
∑log3 n

i=2 Yi 6 0.03c3e−cn
with probability 1−o(n−2). Finally, by Observation 6, |Vred(G)∪Vblue(G)| 6 4|Vred(G)| 6
c3e−cn with probability 1− o(n−2).

For proving Theorem 1 we will use Theorem 8. We apply Theorem 8 in the next
section while we present its proof in Section 6.

Theorem 8. Let G ∼ G(n, c/n), 20 6 c. Let G′ be the subgraph of G induced by
Vblack(G) ∪ Vblue(G). Then for every U ⊆ Vblue(G) and matching M on Vblue \ U we have
that G′[V (G′) \ U ] ∪ M contains a Hamilton cycle that spans all the edges in M with
probability 1−O(n−2).

Theorem 8 describes a “strong” Hamiltonicity property of the strong 4-core of G that
allows it to act as an absorber that absorbs paths into a cycle. Indeed, let P be a set
of vertex disjoint paths spanned by [n] \ Vblack(G) with endpoints in Vblue(G). Let U be
the set of interior vertices of paths in P that belong to Vblue(G) and M be a matching
obtained by placing in M for every path P ∈ P an edge eP that joins its endpoints. Then
Theorem 8 implies that G′[V (G′) \ U ] ∪M contains a Hamilton cycle that spans all the
edges in M w.h.p. Replacing each edge in M with the corresponding path in P gives a
cycle that spans all the paths in P , Vblack(G) and Vblue(G).

Given this absorbing property of the strong 4-core of G, the proof of Theorem 1 boils
down to identifying and studying the “right” set of paths P . Theorem 8 was also utilised
in work following the publication of this manuscript for finding Hamilton cycles in random
graphs [3], [4].

4 Identifying the vertex set of a longest cycle

We start this section by showing how any red/blue/black vertex coloring of G with the
property that there does not exist a red to black edge can be used to upper bound L(G).
We then use the red/blue/black coloring associated with the strong 4-core (described in
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the previous section) to obtain an upper bound on L(G(n, c/n)) which will turn out to
be tight.

Notation 9. For a graph G and a coloring γ : V (G)→ {red, blue, black} we let T (G, γ) be
the set of the components of the subgraph of G induced by the γ-blue and γ-red vertices.
Thereafter, for T ∈ T (G, γ) we denote by PT,γ the set of all sets of vertex disjoint paths
with γ-blue endpoints spanned by T . Here we allow paths of length 0. So a single blue
vertex counts as a path. For P ∈ PT,γ let n(T, γ, P ) be the number of red vertices in V (T )
that are not covered by some path in P . Finally we let φ(T, γ) = minP∈PT,γ n(T, γ, P ).

Lemma 10. For any red/blue/black coloring γ of G with the property that there is no
edge from a red to a black vertex we have,

L(G) 6 |V (G)| −
∑

T∈T (G,γ)

φ(T, γ). (4)

Proof. For any T ∈ T (G, γ) and any cycle C of G we have that C induces a set of vertex
disjoint paths on V (T ) with γ-blue endpoints. These paths leave uncovered at least φ(T, γ)
many γ-red vertices of V (T ). Hence any cycle of G spans at most n−

∑
T∈T (G,γ) φ(T, γ)

vertices.

Henceforward we let γ∗ : V (G) → {red, blue, black} be the coloring that colors the
vertices of Vx(G) with color x for x ∈ {red,blue,black}. Recall that we refer to γ∗-
red/blue/black vertices as simply red/blue/black vertices. For T ∈ T (G, γ∗) we fix a set
of vertex disjoint paths with blue endpoints P ∗(T ) with the property that ∪T∈T (G,γ∗)P ∗(T )
covers all but

∑
T∈T (G,γ∗) φ(T, γ∗) red vertices. We also let T (G) be the set of paths in

∪T∈T (G,γ∗)P ∗(T ) that cover a single red vertex.

Theorem 11. Let G ∼ G(n, c/n), c > 20. With probability 1−O(n−2),

L(G) = n−
∑

T∈T (G,γ∗)

φ(T, γ∗). (5)

In addition G spans a cycle of length L(G) − ` with probability 1 − O(n−2) for 0 6 ` 6
|T (G)|.

Proof. The inequality L(G) 6 n−
∑

T∈T (G,γ∗) φ(T, γ∗) is given by Lemma 10. Indeed, as
during Algorithm 1 every time a vertex is colored red its black neighbors are color blue
we have that there is no edge from Vred(G) to Vblack(G) and hence Lemma 10 applies.

Now fix ` ∈ {0, 1, 2, . . . , |T (G)|} and let {P1, P2, . . . , P|T (G)|} be an ordering of the
paths in T (G) (recall T (G) is the set of paths in ∪T∈T (G,γ∗)P ∗(T ) that cover a single
red vertex). Let M(`) be the matching on Vblue(G) obtained by replacing each path in
P(`) :=

(
∪T∈T (G,γ∗) P ∗(T )

)
\ {Pi : i ∈ [`]} by a single edge joining its endpoints. Also

let V −` be the set of vertices that lie in the interior of some path in P(`). We define the
graph Γ(`) as follows. V (Γ(`)) = Vblack(G) ∪ (Vblue(G) \ V −` ) and E(Γ(`)) consists of all
the edges of G spanned by V (Γ(`)) plus the edges in M(`).
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Let E` be the event that Γ(`) contains a Hamilton cycle C` that spans all of the edges
of M(`). Assume that E` occurs. Replace each edge of C` that belongs to M(`) with
the corresponding path in P(`) and let C ′` be the resulting cycle in G. Then C ′` covers
Vblack(G) ⊆ V (Γ`). In addition, as Vblue(G)\V −` ⊆ V (Γ`) and every vertex in V −` lies in the
interior of some path in P(`), C ′` covers Vblue(G). Thereafter C ′` also covers every vertex in
Vred(G) that is covered by some path in P(`). As P(`) =

(
∪T∈T (G,γ∗)P ∗(T )

)
\{Pi : i ∈ [`]},

the set of vertex disjoint paths ∪T∈T (G,γ∗)P ∗(T ) covers |Vred(G)| −
∑

T∈T (G,γ∗) φ(T, γ∗)

vertices in Vred(G) and each of the ` paths in {Pi : i ∈ [`]} ⊆ ∪T∈T (G,γ∗)P ∗(T ) covers a
single vertex in Vred(G) we have that C ′` covers |Vred(G)|−

∑
T∈T (G,γ∗) φ(T, γ∗)−` vertices in

Vred(G). All together C ′` covers |Vblack(G)|+ |Vblue(G)|+ |Vred(G)| −
∑

T∈T (G,γ∗) φ(T, γ∗)−
` = n−

∑
T∈T (G,γ∗) φ(T, γ∗)− ` vertices.

Theorem 8 implies that Γ(`) contains a Hamilton cycle that spans all of the edges
of M(`), hence G spans a cycle of length n −

∑
T∈T (G,γ∗) φ(T, γ∗) − `, with probability

1−O(n−2).

Proof of Lemma 4: We construct a set of vertex disjoint paths in Gr/b by taking
2 edges incident to every red vertex of degree at least 2 that lies in a component of Gr/b

containing a single red vertex. This set of edges induces a set of paths of length 2 with blue
endpoints that do not cover red vertices in components with at least 2 red vertices and
vertices of degree 0 or 1. G has (c+1)e−cn+O(n−0.55) vertices of degree 0 or 1 w.h.p. (see
[18]). Thus by Lemma 7 they do not cover at most (0.03c3+c+1)e−c+O(n0.6) > 0.04c3e−cn
red vertices w.h.p. Finally, Theorem 11 implies that Lc,n > n− 0.04c3e−cn w.h.p.

Proof of part (b) of Theorem 1 Given Theorem 11 it suffices to show that |T (G)| >
0.1c3e−cn w.h.p. Every vertex of degree 3 lies in Vred(G). Thus |T (G)| is larger than the
number of vertices of degree 3 minus the number of vertices that lie in a component of
Gr/b with at least 2 red vertices. G has c3e−cn/6 + O(n−0.55) vertices of degree 3 w.h.p.
(see [18]). Thus Lemma 7 implies |T (G)| > (1/6 − 0.03)c3e−c + O(n−0.55) > 0.1c3e−cn
w.h.p.

Proof of part (c) of Theorem 1: Similarly to the derivation of (4), any path P
of G may cover at most |V (G)| −

∑
T∈T (G,γ∗) φ(T, γ) + 2r(G) vertices where r(G) is the

size of the largest component of Gr/b; 2r(G) is an upper bound on the number of vertices
found in the first and last component of Gr/b that intersects P and we meet as we traverse
P from one of its endpoints to the other. Thus by Lemma 7, LPc,n−Lc,n 6 2 · 1000 logn

c
. On

the other hand LPc,n − Lc,n > −1 and therefore |LPc,n − Lc,n| 6
2000 logn

c
+ 1.

5 The scaling limit of the size of the longest cycle

To prove that Lc,n/n has a limit f(c) a.s. we first define a sequence of random variables
Lc,n,k that can be used to approximate Lc,n. Thereafter we show that for fixed k > 1
the sequence of random variables {Lc,n,k/n}n>1 has a limit fk(c) a.s. This will imply
that the sequence {fk(c)}k>1 can be used to approximate limn→∞ Lc,n/n. In particular, it
will imply that the sequence {fk(c)}k>1 is a Cauchy sequence and therefore it has a limit
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f(c). f(c) will turn out to be the a.s. limit of Lc,n/n. For the rest of this section we let
G ∼ G(n, c/n), c > 20 constant.

5.1 Approximating the longest cycle

Before defining the random variables Lc,n,k, k > 1 we express the length of the longest
cycle of G as the sum of “local” quantities. For this we introduce the following notation.

Notation 12. For v ∈ V (G) we let φ(v) = 0 if γ∗(v) = black. Otherwise we let φ(v) =
φ(T, γ∗|T )/|T | ∈ [0, 1] where T is the component of Gr/b that contains v and γ∗|T is the
restriction of γ∗ on T .

Theorem 11 implies that with probability 1− o(n−2),

L(G) = n−
∑

T∈T (G,γ∗)

φ(T, γ∗) = n−
∑

T∈T (G,γ∗)

|T | · φ(T, γ∗)

|T |
= n−

∑
v∈V (G)

φ(v). (6)

We now introduce the sequences of colorings {γ∗k(v)}k>1, v ∈ V (G) based on which we
will define the local functions φk : V (G) → [0, 1]. We later use φk to define Lc,n,k. For
v ∈ V (G) and k > 1 the coloring γ∗k(v) : N6k

G (v) → {red, blue, black} is generated as
follows. Initially all vertices in N6k

G (v) have color black. While there exists a blue or
black vertex u in N<k

G (v) with fewer than 4 black neighbors then color u red and its black
neighbors in N<k

G (v) blue.
For k > 1, given the colorings γ∗k(v), v ∈ [n] we define the function φ′k : V (G)→ [0, 1]

as follows. φ′k(v) = 0 if γ∗k(v) = black. Otherwise we let φ′(v) = φ(T, γ∗k)/|T | where
T is the component containing v in the subgraph of G[N6k(v)] induced by the γ∗k(v)-
red and γ∗k(v)-blue vertices. Thereafter, given the function φ′k we define the function
φk : V (G) → [0, 1] by φk(v) = 0 if there exists i ∈ [k] such that |N i(v)| > 10(ck)3i or
G[N6k(v)] spans a cycle and φk(v) = φ′k(v) otherwise. Finally we let

Lc,n,k(G) = n−
∑

v∈V (G)

φk(v). (7)

Equation (6) implies,

|L(G)− Lc,n,k(G)| 6
∑

v∈V (G)

I(φk(v) 6= φ(v)) 6
∑

v∈V (G)

I(φk(v) 6= φ′k(v) or φ′k(v) 6= φ(v)).

(8)

Lemma 13. With probability 1− o(n−2),

|{v ∈ V (G) : φk(v) 6= φ′k(v) or φ′k(v) 6= φ(v)}| 6 n

4k2
.

Proof. Let X ′k be the set of vertices that lie in a component of Gr/b of size at least k, Yk
be the set of vertices that are within distance k from a cycle of length at most 2k and Zk
be the set of vertices with |N i(v)| > 10(ck)3i for some i 6 k. We begin by showing that

|{v ∈ V (G) : φk(v) 6= φ′k(v) or φ′k(v) 6= φ(v)}| 6 |X ′k ∪ Yk ∪ Zk| 6 |X ′k|+ |Yk|+ |Zk|.
(9)
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For that it is sufficient to show that (i) every vertex v that is assigned the color black by
γ∗ is also assigned the color black by γ∗k(v), thus φ(v) = φk(v) = 0 and (ii) every vertex in
[n]\ (Yk ∪Zk) that lies in a component of size at most k− 1 in Gr/b satisfies φ′k(v) = φ(v).
For (i) note that the set of vertices that is assigned color black by γ∗k(v) in N<k(v) is the
maximal subset S of N<k(v) such that every vertex in S ∪N(S) has at least 4 neighbors
in S ∪Nk(v). On the other hand if we let Nk

black(v) = Nk(v)∩ Vblack(G) we have that the
set of vertices that is assigned color black by γ∗ in N<k(v) is the maximal subset S ′ of
N<k(v) such that every vertex in S ′ ∪N(S ′) has at least 4 neighbors in S ′ ∪Nk

black(v). As
Nk
black(v) ⊆ Nk(v) we have that S ′ ⊆ S and (i) follows.

Now let v ∈ [n] be a vertex that lies in a component C of size at most k − 1 in Gr/b

and N(C) be the neighborhood of the vertices in C in the graph G. Then every vertex
in N(C) is assigned color black by γ∗ and thus by γ∗k(v), by (i). Thus the set of black
vertices in both colorings γ∗, γ∗k(v) that lie in C is the maximal subset S of V (C) such
that every vertex in S ∪ N(S) has at least 4 neighbors in S ∪ N(C). Therefore in both
colorings every vertex in N(C) receives color black and no vertex in C receives color black.
Thereafter the set of blue vertices with respect to either γ∗ or γ∗k(v) equals to the set of
vertices with at least 4 neighbors in N(C), call this set A. Finally the vertices in C \ A
receive color red from both γ∗, γ∗k(v). Hence both γ∗, γ∗k(v) restricted to C ∪ N(C) are
identical and therefore φ(v) = φk(v).

We now bound |X ′k|, |Yk| and |Zk|. Lemma 7 implies that |X ′k| 6
∑

i>k
n
20i

0.8i +
O(n0.6) 6 n

10k2
with probability 1 − o(n−2). Thereafter let Y ′k be the set of vertices that

lie on a cycle of size at most 2k. Then every vertex in Yk lies within distance at most 2k
from a vertex in Y ′k and therefore |Yk| 6 |Y ′k|∆2k(G).

E(|Y ′k|) 6
3k∑
i=3

(
n

i

)
i!pi 6

3k∑
i=3

(np)i = o(n0.5).

In addition, for v ∈ [n] deleting all the edges incident to v in G may decrease |Y ′k| by at
most d(v) 6 ∆(G), thus by Lemma 5, |Y ′k| 6 n0.55 with probability 1−o(n−2). Thereafter
in the event ∆(G) 6 log2 n and |Y ′k| 6 n0.55 we have that |Yk| 6 k|Y ′k|∆2k(G) 6 n0.6. This
occurs with probability at least 1− n

(
n

log2 n

)
plog

2 n − o(n−2) = 1− o(n−2).
Finally, for v ∈ [n] and i 6 k the expected size of N i(v) is ci. Therefore Markov’s

inequality implies that Pr(|N i(v)| > 10(ck)3i) 6 ci/(10(ck)3i) and in extension that
E(|Zk|) 6 n

∑k
i=1 c

i/(10(ck)3i 6 n/(9c2k3). Thereafter, for v ∈ [n] deleting all the edges
incident to v in G may decrease |Zk| by at most ∆k(G). Thus by Lemma 5, |Y ′k| 6
n/(9c2k3) + n0.55 6 n/10k2 + o(n) with probability 1− o(n−2).

The bounds on |X ′k|, |Yk| and |Zk| and (9) imply,

|{v ∈ V (G) : φk(v) 6= φ′k(v) or φ′k(v) 6= φ(v)}| 6 |X ′k|+ |Yk|+ |Zk|

6
n

10k2
+ n0.6 +

n

10k2
6

n

4k2
.

with probability 1− o(n−2).

Lemma 13 and (8) imply the following.
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Lemma 14. |L(G)− Lc,n,k(G)| 6 n
4k2

with probability 1−O(n−2).

5.2 The limits of the approximations

We now let Hk be the set of pairs (H, oH) where H is a rooted tree, oH is a distinguished
vertex of H that is considered to be the root, every vertex in V (H) is within distance
at most k from oH and there are at most 10(ck)3i vertices at distance 1 6 i 6 k from
oH . For (H, oH) ∈ Hk let X(H,oH)(G) be the number of copies of (H, oH) in G. Also let
φ(H, oH) be equal to the value of φk(v) in the event (G[N6k(v)], v) = (H, oH). Then,

Lc,n,k(G) = n−
∑

v∈V (G)

φk(v) = n−
∑

(H,oH)∈Hk

φ(H, oH)X(H,oH)(G).

For k > 1 we let

ρc,k = 1−
∑

(H,oH)∈Hk

φ(H, oH)c|V (H)|−1

aut(H, oH)
.

Here by aut(H, oH) we denote the number of automorphisms of H that map oH to oH .
Then,

E
(
Lc,n,k(G)

n

)
= 1−

∑
(H,oH)∈Hk

φ(H, oH)E(X(H,oH)(G))

n

= 1−
∑

(H,oH)∈Hk

φ(H, oH)
(

n
|V (H)|

)
|V (H)|!p|E(H)|(1− p)(

|V (H)|
2 )−|E(H)|

aut(H, oH) · n

= 1− lim
n→∞

∑
(H,oH)∈Hk

c|V (H)|−1

aut(H, oH)
+O(n−0.9) = ρc,k +O(n−0.9). (10)

Lemma 15. With probability 1− o(n−2),∣∣∣∣ρc,k − Lc,n,k(G)

n

∣∣∣∣ = O(n−0.4). (11)

Proof. Fix (H, oH) ∈ Hk. By Lemma 5 we have that Pr(|E(XH,oH (G)) − XH,oH (G)| >
n0.55) = o(n−2). As the cardinality of Hk is finite, by the union bound, we have that
|E(XH,oH (G))−XH,oH (G)| 6 n0.55 for all (H, oH) ∈ Hk with probability 1−o(n−2). Thus,∣∣∣∣Lc,n,k(G)− n+

∑
(H,oH)∈Hk

φ(H, oH)E(XH,oH (G))

∣∣∣∣ 6 n0.6

with probability 1− o(n−2). The above inequality combined with (10) imply (11).

Lemma 16. For integers k2 > k1 > 1 we have,

|ρc,k1 − ρc,k2 | 6
1

2k21
. (12)
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Proof. Let 1 6 k1 < k2. Lemmas 14 and 15 imply,

n|ρc,k1 − ρc,k2| 6 |nρc,k1 − Lc,n,k1(G)|+ |Lc,n,k1(G)− L(G)|
+ |Lc,n,k2(G)− L(G)|+ |nρc,k2 − L(G)|

6 O(n0.6) +
n

4k21
+

n

4k22
+O(n0.6) < O(n0.6) +

n

2k21
,

with probability 1 − O(n2). Thus |ρc,k1 − ρc,k2| 6 1
2k21

with positive probability for suffi-

ciently large n. As ρc,k1 , ρc,k2 are independent of n (12) follows.

(12) implies that the sequence {ρc,k}k>1 is a Caushy sequence. Therefore it has a limit
as k →∞ which we denote by ρc.

Proof of part (a) of Theorem 1 Define f : [0,∞)→ [0, 1] by f(c) = ρc for c > 20
and f(c) = ρ20 for 0 6 c 6 20. Then for k > 2, lemmas 14, 15 and 16 imply,

|nρc − Lc,n| 6 n|ρc − ρc,k|+ |nρc,k − Lc,n,k(G)|+ |Lc,n,k(G)− Lc,n(G)|

6 n
∑
i>k

1

2i2
+O(n0.6) +

n

4k2
6

n

2(k − 1)
+O(n0.6) +

n

4k2
6

2n

k
,

with probability 1 − O(n−2). As
∑

i>1 i
−2 < ∞ the Borel-Cantelli Lemma implies that

| limn→∞(Lc,n/n)− ρc| 6 2/k a.s and therefore limn→∞ Lc,n/n = ρc = f(c) a.s. for c > 20.
Now let 0 < ε 6 10−3. To prove that f is continuous it suffices to show that |f(c) −

f(c+ε)| 6 ε for c > 20. Let G1 ∼ G(n, c/n), G2 ∼ G(n, (c+ε)/n) and E = e1, e2, . . . , e2εn
be a sequence of 2εn edges where ei is chosen independently, uniformly at random from(
[n]
2

)
. Let G+

1 = G1∪E. Then G1, G2, E can be coupled such that L(G2) 6 L(G+
1 ) w.h.p.,

where G+
1 is the simple graph obtained from G1 ∪E by replacing its multiple edges with

the corresponding single edges. We may bound L(G1 ∪ E) by L(G1) plus the number of
vertices in components of (G1)

r/b that span an endpoint of an edge in E. Therefore, by
Lemma 7,

E(L(G2) 6 E(L(G1 ∪ E)) 6 E(L(G1)) + 4εn
∞∑
i=1

i · 0.8in/(ci)

n

6 E(L(G1)) + 4εn · 4

c
6 E(L(G1)) + 0.8εn. (13)

limn→∞ Lc,n/n = f(c) a.s. implies that E(L(G1)) = nf(c) + o(n) and E(L(G2)) =
nf(c+ ε) + o(n). Combining these equalities with (13) gives,

|f(c)− f(c+ ε)| 6
∣∣∣∣E(L(G1))

n
− E(L(G2))

n
+ o(1)

∣∣∣∣ 6 0.8ε+ o(1).

Hence |f(c)− f(c+ ε)| 6 ε as desired.
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6 Proof of Theorem 8

Fix U ⊆ Vblue(G) a matching M on V4,blue \ U and let H = G′[V (G′) \ U ]. We prove
Theorem 8 in 3 steps. In the first one we decompose H into a graph H ′ ⊂ H, an edge
set E1 ⊂ E(H) and a vertex set V1 ⊂ V (H) with the following properties. |E1| =
Ω(n/log log n), |V1| = O(n/log log n) and given V1,E(H) \E1, |E1| the set E1 is uniformly
distributed over all the sets of edges of size |E1| that are spanned by V (H) \ V1 and are
disjoint from E(H) \ E1. Then, by applying the Tutte-Berge formula twice, we find a
set of pairwise disjoint vertex paths in H ∪M of size at most 4n/log0.5 n that cover both
V (H) and M . Finally, using Pósa rotations we merge these paths into a Hamilton cycle
that covers M .

6.1 Decomposing H

To decompose H we first assign to every edge e of G a Bernoulli(p′) random variable Ye
with p′ = 1/c log log n. Then we let H1 be the subgraph of H with edge set E(H1) =
{e ∈ E(H) : Ye = 0} and we reveal H1. Thereafter, given Vred(G) we identify Vblack(G)
and let V1 be the set of vertices of V (H) with less than 4 neighbors in Vblack(G). Finally
we reveal all the edges of H incident to V1, define H ′ by V (H ′) = V (H) and E(H ′) =
E(H1) ∪ {uv ∈ E(H) : {u, v} ∩ V1 6= ∅} and let E1 = E(H) \ E(H ′).

Given H ′, V1 and e1 = |E1| let S(H ′, V1, e1) be the set that consists of all the sets
of edges T that are spanned by V (H) \ V1, do not intersect E(H ′) and have size e1.
Observe that Pr(T = E1|H ′, V1, e1) = 0 for T /∈ S(H ′, V1, e1). On the other hand for
T ∈ S(H ′, V1, e1) we have that Pr(T = E1|H ′, V1, e1) is independent T . Hence the
distribution of E1 is uniform over the elements of S(H ′, V1, e1). The sizes of V1 and E1

are given by the following lemma. Its proof is located in Appendix A.

Lemma 17. Let Esample be the event that |V1| 6 10n/log log n, n/1000 log log n 6 |E1|.
Then, Pr(Esample) = 1− o(n−2).

6.2 Finding a large 2-matching

For integers k, `, r, we say that a graph F has the property P(k, `, r), equivalently F ∈
P(k, `, r), if the following hold. F spans at most k vertex disjoint cycles of length at most
` and there does not exist a partition of V (F ) into 3 pairwise disjoint sets U1, U2, U3 such
that |U1| > r, |U2| 6 |U1| and every vertex in U1 has at most 1 neighbor in U1 ∪ U3.

Lemma 18. Let F be a graph and `, k, r be such that F ∈ P(k, `, r). Then, for every
matching M on V (F ) the graph F \M spans a matching M ′ of size at least 0.5|V (F )| −
0.5(r + k + (|V (F )|/`)).

Proof. For a graph G and U ⊂ V (G) let oddG(U) be the number of odd components of
G[V (G) \ U ]. In addition denote by α′(G) the matching number of G. The Tutte-Berge
formula states

α′(G) = 0.5 min
U⊆V (G)

(|U | − oddG(U) + |V (G)|). (14)
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Let S ⊆ V (F ) be a set that minimizes |S| − oddF\M(S) of maximum size, A be the set of
isolated vertices in F [V (F ) \ S] \M and B = V (F ) \ (S ∪ A). Observe that B does not
span a tree in F \M . Indeed, assume otherwise, that is that B spans a tree T . Let l be
a leaf of T and p the parent of l (in the case that T consists of a single edge e we let p, l
be the endpoints of e). If |V (T )| is even then T \ {p} spans at least one odd component,
namely the one consisting of the vertex l. Else if |V (T )| is odd then T \{p} spans at least
one odd component in addition to {l}, hence at least 2. Therefore with S ′ = S ∪ {p},

|S ′| − oddF\M(S ′) 6 (|S|+ 1)− (oddF\M(S) + 1) = |S| − oddF\M(S)

contradicting the maximality of S. Therefore every component spanned by B contains
a cycle. F ∈ P(k, `, r) implies that there exist at most k cycles of length at most ` in
F , hence in F \M and therefore B spans at most k + |B|/(`+ 1) 6 k + |V (F )|/` many
components. In this case (14) and the choice of S imply that

α′(F \M) > 0.5|V (F )|+ 0.5|S| − 0.5(|A|+ k + (|V (F )|/`)). (15)

If |A| 6 r then (15) gives that α′(F \M) > 0.5|V (F )| − 0.5(r + k + (|V (F )|/`)). On the
other hand if |A| > r then every vertex in A has no neighbor in A ∪ B in F \M and
therefore it has at most one neighbor in A ∪ B in F . Hence, as F belongs to P(k, `, r)
(with (A, S,B) = (U1, U2, U3)) we have that |S| > |A|. In this case (15) gives that
α′(F \M) > 0.5|V (F )| − 0.5(k + (|V (F )|/`)).

We prove the following lemma in Appendix B.

Lemma 19. Let U ′ ⊆ Vblue(G) \ U . Then H ′, H ′[V (H ′) \ U ′] ∈ P(n/log0.5 n, log0.5 n, 0)
with probability 1 − o(n−2). In addition H ′ ∪M does not span a set of n/ log0.5 n vertex
disjoint cycles of length at most log0.5 n with probability 1− o(n−2).

By combining lemmas 18 and 19 we prove the following one.

Lemma 20. There exists a set of vertex disjoint paths P in H ′ ∪ M of size at most
4n/ log0.5 n that cover both V (H ′) and M with probability 1− o(n−2).

Proof. Let M1 be a maximum matching in H ′\M , M+
1 = M∪M1, VM be the set of vertices

that are incident to 2 edges inM+
1 andM2 be a maximum matching inH ′[V (H ′)\VM ]\M+

1 .
To construct the set P , let C be the set of components induced by M+

1 ∪M2. Remove
from every cycle in C an edge that does not belong to the matching M and let P be the
set of the resulting |C| paths.

Let E be the event that H ′, H ′[V (H ′) \ VM ] ∈ P(n/ log0.5 n, log0.5 n, 0) and H ′ ∪M
does not span a set of n/ log0.5 n vertex disjoint cycles of length at most log0.5 n. In the
event E , by Lemma 18, |M1| > 0.5|V (H ′)|−n/(log0.5 n) and |M2| > 0.5(|V (H ′)|−|VM |)−
n/(log0.5 n). Therefore the components in C span at least |V (H ′)| − 2n/ log0.5 n edges in
total. In addition, as every cycle in C belongs to H ′ ∪M , C spans at most n/ log0.5 n
cycles of length less than log0.5 n and 2n/ log0.5 n cycles in total. This implies that P is a
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set of vertex disjoint paths that covers |V (H ′)| and spans at least |V (H ′)| − 4n/ log0.5 n
edges. Thus

|V (H ′)| − 4n/ log0.5 n 6
∑
P∈P

|E(P )| =
∑
P∈P

|V (P )| − 1 = |V (H ′)| − |P|.

Hence |P| 6 4n/ log3 n with probability Pr(E) = 1− o(n−2).

6.3 Merging the paths into a Hamilton cycle

Let P = {P ′1, P ′2, . . . , P ′`} be a minimum size set of vertex disjoint paths that cover both M
and V (H ′). For i ∈ [`] let vi,1, vi,2 be the two endpoints of P ′i (in the case that P ′i is a path
of length 0, equivalently it consists of a single vertex vi, then v1,i = vi = v2,i). Then P1 =
P ′1, v1,2v2,1, P

′
2, v2,2v3,1, . . . , P

′
` is a Hamilton path of H ′∪R where R = {vi,2vi+1,1 : i ∈ [`−

1]}. We transform P1 into a Hamilton cycle of H = H ′∪E1 in ` iterations of an extension-
rotation procedure. Given a Hamilton path P = v1, e1, v2, e2, . . . , vi, ei, vi+1, . . . , en′−1, vn′
we say that the path P ′ = v1, e1, . . . , vi, vivn′ , vn′ , en′−1, vn′−1, . . . , ei+1, vi+1 is obtained by
a Pósa rotation with v1 being the fixed endpoint. We call ei the deleted edge, v1vn′ the
inserted edge, vi the pivot vertex and vi+1 the new endpoint. We say that the Pósa
rotation that transforms P to P ′ is admissible w.r.t. to the pair of edge sets (W , W ′) if
the inserted edge belongs to W and the deleted edge does not belong to W ′.

Let ` = |P|. For i ∈ [`] we let E ′i be the set of edges in E1 that have been revealed
during the first i− 1 iterations, thus E ′1 = ∅. We start the ith iteration with a Hamilton
path Pi in H ′ ∪ E ′i ∪ R that spans ` − i edges of R. We then proceed by performing all
sequences of Pósa rotations that fix the vertex v and are admissible w.r.t. (E(H ′),M)
(each such sequence starts with the path Pi). Let Endi be the set of distinct new endpoints
obtained and for w ∈ Endi let Pw,i be a path from v to w obtained by the Pósa rotations.
Thereafter, for w ∈ Endi we perform all sequences of Pósa rotations that fix the vertex w
and are admissible w.r.t. (E(H ′),M) (each such sequence starts with the path Pw,i) and
we let Endw,i be the set of distinct new endpoints obtained.

For w ∈ Endi, z ∈ Endw,i we let P{w,z},i be a path from w to z obtained by the above
procedure. If there exists a path P{w,z},i that contains fewer edges in R than Pi then we
let Pi+1 be such a path that spans ` − i − 1 edges in R, set E ′i+1 = E ′i and proceed to
the next iteration. Else, we reveal the edges in E1 \ E ′i one by one until we identify an
edge w, z with w ∈ Endi, z ∈ Endw,i. Once such an edge is identified, we let Hi be the
Hamilton cycle with edge set E(P{w,z},i) ∪ {{w, z}}. If i = ` then we output H`. Else,
Hi spans ` − i − 1 edges in R, we remove such an edge from Hi and let Pi+1 be the
resultant Hamilton path. If at any point we have revealed all the edges in E1 and have
not constructed H` yet, then we terminate the algorithm.

For e ∈ E1 set Xe = 1 if e is not revealed by the above algorithm or when e is revealed
it is used to construct some Hamilton cycle Hi, i 6 `. Set Xe = 0 otherwise. All Pósa
rotations performed by the above algorithm are admissible w.r.t. (E(H ′),M), thus they
never delete an edge from M or add an edge from R to a path while they are performed.
Here we are using that P is of minimum size, hence R ∩ E(H ′) = ∅. So in the event
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∑
e∈E1

Xe > `, H` is a Hamilton cycle of H ′ ∪ E1 ∪ R = H ∪ R that spans at most
|R| − ` = 0 edges in R and all of the edges of M .

Let Eexp be the event the following hold: (i) every set W ⊂ [n] of size at most 12 spans
at most |W |+2 edges in H ′, (ii) for every S ⊂ [n] and T ⊆ [n]\S with 5 6 |S| 6 n/c5 and
|T | 6 2|S| we have that the set S∪T spans fewer than 1.5|S|+ |T | edges in H ′ and (iii) for
every set S ⊂ [n] satisfying n/c9 6 |S| 6 10−30n we have that |NH′(S) \ Vblue(G)| 6 2|S|.
In the analysis of the above algorithm we make use of the following lemma.

Lemma 21. Pr(Eexp) = 1−O(n−2).

Proof. As H ′ ⊆ G we have,

Pr(¬(i)) 6
12∑
s=4

(
n

s

)(
0.5s2

s+ 3

)
ps+3 = O(n−2).

In addition,

Pr(¬(ii)) 6

n
c9∑
s=5

2s∑
t=0

(
n

s+ t

)(
0.5(s+ t)2

1.5s+ t

)
p1.5s+t

6

n
c9∑
s=5

2s∑
t=0

(
en

s+ t

)s+t(
0.5e(s+ t)2p

1.5s+ t

)1.5s+t

6 O(n−2) +

n
c9∑

s=log2 n

2s∑
t=0

(
0.5e2np

1.16

)s+t(
0.5e(s+ t)p

1.16

)0.5s

6 O(n−2) +

n
c9∑

s=log2 n

2s

(
e2c

2.32

)3s(
3e

2.32c9

)0.5s

6 O(n−2) +

n
c9∑

s=log2 n

s

(
3e13

2.327c3

)0.5s

= O(n−2).

For c 6 1000, as n/c9 > 10−30n, we have that Pr(Eexp) = 1 − O(n−2). Thereafter for
c > 1000 and s > n/c9 Lemma 7 implies that |Vblue(G)∪Vred(G)| 6 c3e−cn 6 n/c9 6 0.1s
with probability 1−O(n−2). In addition by construction each edge e spanned by Vblack(G)
does not belong to H ′ only if (i) e /∈ E(G) or (ii) e ∈ E(G) and Ye = 1, hence with
probability at most 1− p+ pp′ independently. Thus,

Pr(¬Eexp) 6 O(n−2) +
10−30n∑
s= n

c9

(
n

s

)(
n

2.1s

)
(1− p+ pp′)s(n−3.1s)

6 O(n−2) +
10−30n∑
s= n

c9

(en
s

)s ( en

2.1s

)2.1s
e−(1+o(1))ps·0.999n
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6 O(n−2) +
10−30n∑
s= n

c9

[
5
(n
s

)3.1s
e−0.99c

]s

6 O(n−2) +
10−30n∑
s= n

c9

[
c30e−0.99c

]s
= O(n−2).

Theorem 8 follows from Lemma 22.

Lemma 22.
∑

e∈E1
Xe > ` with probability 1−O(n−2).

Proof. Let E be the event that the events Esample and Eexp occur, and there exists a set of
at most 4n/ log n vertex disjoint paths in H ′∪M that cover both M and V (H ′). Lemmas
17, 20 and 21 imply that Pr(E) = 1−O(n−2).

Let P be any Hamilton u-v path in H ′∪E1∪R. Recall that u has at least 4 neighbors
in Vblack(G) in H ′. At most 1 of those neighbors precedes u on P . Also as these neighbors
belong to Vblack(G) they are not incident to M which is spanned by Vblue(G). Therefore
there are at least 3 admissible Pósa rotations w.r.t (E(H ′),M) that can be performed on P
and fix v. If none of the corresponding deleted edges belongs to R, then the corresponding,
at least 3, pivot vertices are adjacent to u and the corresponding new endpoint in H ′.
Call this observation (∗).

Let i ∈ [`] and Pi, v, Endi, {Endw,i : w ∈ Endi}, {Pw,i : w ∈ Endi}, {P{w,z},i : w ∈
Endi, z ∈ Endw,i} be as described earlier. Assume that at iteration i we do not perform a
Pósa rotation where the deleted edge belongs to R. Let Pivoti be the set of pivot vertices
that we meet while constructing the set Endi (starting from Pi). (∗) implies that, in H ′,
every vertex in Endi is adjacent to at least 3 vertices in Pivoti and every vertex in Pivoti
is adjacent to at least 2 vertices in Endi. It follows that the set Endi ∪ Pivoti spans at
least 1.5|Endi|+ |Pivoti \ Endi| many edges in H ′. If 4 6 |Endi| 6 n/c9, by considering
a first time a vertex in Pivoti is used as a pivot vertex, every vertex in Pivoti has a
neighbor on Pi that belongs to Endi, hence |Pivoti \Endi| 6 2|Endi|. In the special case
that |Endi| = 4, let v, u be the endpoints of Pi, Endi = {u, u1, u2, u3} where u3 is the
vertex further from u on Pi and wj be the vertex preceding uj on Pi for j = 1, 2, 3. (∗)
states that there are at least 3 admissible Pósa rotations w.r.t (E(H ′),M) that can be
performed on Pi and fix v. As Endi = {u, u1, u2, u3} and no two of these Pósa rotations
result in a pair of paths with the same endpoints we have that vwi ∈ E(H ′) for i = 1, 2, 3.
Let Pi,j be the path from v to uj that can be obtained by a single Pósa rotation from Pi.
Observe that on both Pi,1, Pi,2 the vertex w3 precedes u3 (as we traverse them starting
from v). Once again, as Endi = {u, u1, u2, u3}, (∗) implies that u1w3, u2w3 ∈ E(G).
Thus w3 ∈ Pivoti \ Endi has 4 neighbors in Endi. It follows that Pivoti ∪ Endi has size
s ∈ [4, 12] and spans at least 1.5|Endi|+ |Pivoti \ Endi|+ 1 = s+ 3 many edges in H ′.

Partition NH′(Endi) to N1]N2 where N1 is the set of vertices in NH′(Endi) that have a
neighbor on Pi who belongs to Endi. Then |N1| 6 2|Endi|. Let u ∈ N2 = NH′(Endi)\N1,
say u ∈ NH′(w) with w ∈ Endi. As none of the neighbors of u on Pi belong to Endi, the
Pósa rotation that inserts to Pw,i the edge uw and deletes an edge incident to u is not
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admissible w.r.t (E(H ′),M). Thus u is incident to an edge in M . As every edge in M is
spanned by Vblue(G) we have that u ∈ Vblue(G). It follows that

|NH′(Endi) \ Vblue(G)| = |N1| 6 2|Endi|.

In the event E , the event Eexp occurs. By taking S = Endi, T = Pivoti \ Endi and
W = Endi ∪ Pivoti at the definition of Eexp the above imply that in the event E we
have that |Endi| > 10−30n and (similarly) |Endw,i| > 10−30n for w ∈ Endi. Hence at
iteration i there exists a set of at least (0.5 + o(1))10−60n2 pairs {w, z} ⊂ V (H) \ V1 such
that during iteration i the Hamilton path P{w,z},i is generated. Here we are using that
in the event E the set V1 spans o(n2) pairs of vertices. Thus for every edge e ∈ E1 that
is revealed at iteration i we have that Xe = 1 with probability at least (1 + o(1))10−60

independently of the identity of the edges in E1 that are revealed beforehand. It follows
that the probability of the event

∑
e∈E1

Xe < ` is bounded above by

Pr

(
Bin

(
n

1000 log log n
, (1 + o(1))10−60

)
6

4n

log0.5 n

∣∣∣∣E)+ Pr(¬E) = O(n−2).

7 Concluding Remarks

We have shown how one can identify a longest cycle in G ∼ G(n, c/n) and proved that
limn→∞ L(G)/n converges to a constant f(c) a.s. for c > 20. In addition we determined
the probability that G is weakly pancyclic. Our proofs rely on structural properties of
the strong 4-core of the binomial random graphs that hold with high probability. This
motivates the further study of the strong k-core of G(n, p) and in particular determining
npk, where for k > 3, pk is the minimum constant such that G(n, pk) has of a non-empty
strong k-core with probability at least 0.5.
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A Proof of Lemma 17

Proof. Let F ′ be the subgraph of G induced by {e ∈ G : Ye = 1}. Then F ′ ∼
G(n, 1/n log log n). Therefore,

Pr

(
|V1| >

10n

log log n

)
6 Pr

(
|E(F ′)| > 5n

log log n

)
6 Pr

(
Bin

(
n,

1

n log log n

)
>

5n

log log n

)
+ o(n−2) = o(n−2).

Let E be the event that H spans at least 0.25cn edges. Lemma 7 states that |Vred(G) ∪
Vblue(G)| 6 c3e−cn 6 0.01n with probability 1 − o(n−2). As every edge spanned by
Vblack(G) belongs to H,

Pr(¬E) 6

(
n

0.01n

)
Pr

(
Bin

((
0.99n

2

)
,
c

n

)
< 0.25cn

)
+ o(n−2)

6 2ne−
0.492·0.495cn

2 + o(n−2) = o(n−2).

Furthermore, let E ′5 = E5 ∩ E(H) and E ′2 be the set of edges are incident to vertices
of degree at least 2 in F ′. Observe that every edge of E ′5 \ E ′2 belongs to E1. Thus
|E1| > n/1000 log log n if |E ′5| > n/200 log log n and |E ′2| 6 n/400 log log n. In the event
E we have that |E5| > |E(H)| − 4n > |E(H)| − 0.2cn > 0.05cn. It follows that,

Pr

(
|E ′5| <

n

200 log log n

)
6 Pr

(
Bin

(
0.05cn,

1

c log log n

)
6

n

200 log log n

∣∣∣∣E)+ o(n−2) = o(n−2).

For upper bounding E2, let Xi be the number of vertices of degree i in F ′. By Lemma 5
we have that Xi 6 n

(
n
i

)
(pp′)i + n0.6 for i > 0 with probability 1− o(n−2). In addition,

Pr(∆(F ′) > log2 n) 6 Pr(∆(G) > log2 n) 6 nPr(Bin(n, 2 log n/n) > log2 n) = o(n−2).

Hence, |E ′2| 6
∑log2 n

i=2 i|Xi| 6
∑log2 n

i=2 n2i+1(log log n)−i + n0.6 6 n/400 log log n with prob-
ability 1− o(n−2). It follows that |E1| > |E ′5| − |E ′2| > n/(1000 log log n) with probability
1− o(n−2).

B Proof of Lemma 19

Proof. Let Z and Z+ respectively be the maximal number of vertex disjoint cycles of
length at most log0.5 n in H ′ ∪M and at most log0.6 n in G respectively. Say a cycle in
H ′ ∪M is heavy if it spans an edge in M that corresponds to a path in a component of
Gr/b with more than log0.1 n vertices. Let ZH be the number of heavy cycles in H ′ ∪M
and X>log0.1 n be the number of components of Gr/b of size at least log0.1 n. Then Z 6
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Z+ +ZH 6 Z+ +X>log0.1 n. Thereafter using that Z+ is bounded by the number of cycles

of length at most log0.6 n and Lemma 7 we have,

E(Z) 6
log0.6 n∑
i=3

(
n

i

)
(i− 1)!

2
pi + n(0.8)log

0.1 n 6
log0.6 n∑
i=3

(np)i + n(0.8)log
0.1 n 6

n

log n
.

By adding/deleting a single edge Z may increase/decrease by at most 1. Thus, by Lemma
5, Pr(Z > n/ log0.5 n) = o(n−2). As both graphs H ′ and H ′[V (H ′) \ U ′] are subgraphs of
H ′ ∪M we have that none of these 3 graphs contains a union of n/ log0.5 n vertex disjoint
cycles of length at most log0.5 n.

Given the above, to prove that Lemma 19 it suffices to prove that with probability
1− o(n−2) the following hold:

(P1) There does not exists a pair of sets S, T of size |S| = |T | 6 n/1.25c3 and every
vertex in S has at least 3 neighbors in T in G.

(P2) There do exist sets S,R ⊂ V (G) of size |R| 6 |S| ∈ [n/1.25c3, 0.3n] such every
vertex in S has at most 1 neighbor not in R ∪ Vblue(G) ∪ Vred(G) in G \ E1.

(P3) There does not exists a set U ⊂ [n] of size 0.3n such that G[U ] \ E1 is a matching.

Indeed let F ∈ {H ′, H ′[V (H ′) \ U ]} and assume that V (F ) has a partition into pairwise
disjoint sets U1, U2, U3 such that |U2| 6 |U1| and in F every vertex in U1 has at most 1
neighbor in U1∪U3, hence in U1. As every vertex in U1 has at most one neighbor in U1∪U3

and at least 4 neighbors in Vblack(G) ⊆ V (F ) it must have at least 3 neighbors in U2. Thus,
as F = G[V (F )] \E1, if (P1) and (P3) hold then n/(1.25c3) 6 |U1| 6 0.3n. Thereafter as
Vblack(G) ⊆ V (F ), every vertex in U1 has at most 1 neighbor in (U1 ∪U3)∩Vblack(G) in F
hence at most 1 neighbor in G \ E1 that does not lie in U2 ∪ Vred(G) ∪ Vblue(G). Thus if
(P1) and (P3) hold then (P2) does not hold.

We now bound Pr(P1),Pr(P2) and Pr(P3).

Pr(P1) 6

n
1.25c3∑
s=3

(
n

2s

)(
2s

s

)((
s

3

)
p3
)s

6

n
1.25c3∑
s=3

(en
2s

)2s
22s

(
(sp)3

6

)s

6

n
1.25c3∑
s=3

(
e2c3s

6n

)s
= o(n−2).

Let E be the event that |Vblue(G)∪Vred(G)| 6 c3e−cn. By Lemma 7, Pr(E) = 1−o(n−2).
In the event E , if (P2) holds then V (G) spans a pair of disjoint sets S,R′ ⊂ [n] such that (i)
|S| ∈ [n/1.25c3, 0.3n], (ii) |R′| 6 |S|+c3e−cn, (iii) every vertex in R′ has a neighbor in S in
G, and (iv) every vertex in S has at most 1 neighbor in V (G)\R′ in G\E1. Here we may
substitute conditions (ii) and (iii) with the weaker condition (v) |R′| = |S|+c3e−cn, this is
done for bounding p2 below. Thereafter, for c > 20 we have that if n/1.25c3 6 |S| 6 0.01n
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then c3e−cn 6 0.17|S|, else if |S| > 0.01n then c3e−cn 6 0.01|S|. Recall that each edge e
does not belong to G \ E1 only if (i) e /∈ E(G) or (ii) e ∈ E(G) and Ye = 1, hence with
probability at most 1− p+ pp′ independently. Thus for c > 20, Pr(P2) 6 p1 + p2 where,
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and
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Finally,
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