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Abstract

A graph is minimally k-connected (k-edge-connected) if it is k-connected (k-edge-
connected) and deleting any arbitrary chosen edge always leaves a graph which is
not k-connected (k-edge-connected). Let m =

(
d
2

)
+ t, 1 6 t 6 d and Gm be the

graph obtained from the complete graph Kd by adding one new vertex of degree t.
Let Hm be the graph obtained from Kd\{e} by adding one new vertex adjacent to
precisely two vertices of degree d− 1 in Kd\{e}. Rowlinson [Linear Algebra Appl.,
110 (1988) 43–53.] showed that Gm attains the maximum spectral radius among
all graphs of size m. This classic result indicates that Gm attains the maximum
spectral radius among all 2-(edge)-connected graphs of size m =

(
d
2

)
+ t except

t = 1. The next year, Rowlinson [Europ. J. Combin., 10 (1989) 489–497] proved
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that Hm attains the maximum spectral radius among all 2-connected graphs of size
m =

(
d
2

)
+1 (d > 5), this also indicates Hm is the unique extremal graph among all

2-connected graphs of size m =
(
d
2

)
+1 (d > 5). Observe that neither Gm nor Hm are

minimally 2-(edge)-connected graphs. In this paper, we determine the maximum
spectral radius for the minimally 2-connected (2-edge-connected) graphs of given
size; moreover, the corresponding extremal graphs are also characterized.

Mathematics Subject Classifications: 05C50, 05C75

1 Introduction

A graph is said to be connected if for every pair of vertices there is a path joining them.
The connectivity (or vertex-connectivity) κ(G) of a graph G is the minimum number of
vertices whose removal results in a disconnected graph or in the trivial graph. The edge-
connectivity κ′(G) is defined analogously, only instead of vertices we remove edges. A
graph is k-connected if its connectivity is at least k and k-edge-connected if its edge-
connectivity is at least k. It is almost as simple to check that the minimal degree δ(G),
the connectivity and edge-connectivity satisfy the following inequality:

δ(G) > κ′(G) > κ(G).

One of the most important task for characterization of k-connected graphs is to give
certain operation such that they can be produced from simple k-connected graphs by
repeatedly applying this operation[1]. This goal has accomplished by Tutte [24] for 3-
connected graphs, by Dirac [8] and Plummer [18] for 2-connected graphs and by Slater [21]
for 4-connected graphs. A graph is said to be minimally k-connected if it is k-connected
but omitting any of edges the resulting graph is no longer k-connected. Clearly, a k-
connected graph whose every edge is incident with one vertex of degree k is minimally
k-connected, especially a k-regular and k-connected graph is minimally k-connected.

Questions in extremal graph theory ask to maximize or minimize a graph invariant
over a fixed family of graphs. A classic result of minimally k-connected graph is given by
Mader who determined the extremal size of a minimally k-connected graph of high order
in [13]. We use A(G) to denote the adjacency matrix of a graph G. The largest eigenvalue
of A(G) is called the spectral radius of G, denoted by ρ(G). Giving a graph family G
to study the bounds of spectral radius of graphs in G and to characterize the extremal
graphs that achieves the bound is a famous problem in the spectral extremal graph theory
[4], which attracts some scholars and have produced many interesting results published
in various magazines [17, 14, 12, 23, 27].

In the origin of researches, G is restricted to the graphs of order n or size m. For giving
order of a graph, Nikiforov proposed a spectral Turán problem which asks to determine
the maximum spectral radius of an F -free graph with n vertices. This can be viewed as the
spectral analogue of Turán type problem. For more results in this direction, readers are
referred to a survey by Nikiforov [16]. For giving size of a graph, Brualdi and Hoffman
[4] gave an upper bound on spectral radius: if m 6

(
k
2

)
for some integer k > 1 then

ρ(G) 6 k − 1, with equality if and only if G consists of a k-clique and isolated vertices.
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Extending this result, Stanley [22] showed that ρ(G) 6
√
1+8m−1

2
. In particular, Nosal [17]

in 1970 proved that if G is a triangle-free graph with m edges then ρ(G) 6
√
m.

In the subsequent study, G is restricted to the graphs that have some combinatorial

structure. For examples, in 2002, Nikiforov [14, 15] showed that ρ(G) 6
√

2m(1− 1
r
) for

a graph G with m edges, where r is the clique number of G. Bollobás, Lee and Letzter
studied the maximizing spectral radius of subgraphs of the hypercube for giving size m
[2]. Very recently, Lin, Ning and Wu [12] proved that ρ(G) 6

√
m− 1 when G is non-

bipartite and triangle-free graph on m edges. Zhai, Lin and Shu [27] obtained that if G

contains no pentagon or hexagon of size m, then ρ(G) 6 1
2

+
√
m− 3

4
, with equality holds

if and only if G is a book.
In the recent works, some authors restrict G to the graphs that have fixed connectivity.

For examples, Chen and Guo showed that K2,n−2 attained the maximal spectral radius
among all n-vertices minimally 2-(edge)-connected graphs [5]. Fan, Goryainov and Lin
proved that K3,n−3 has the largest spectral radius over all minimally 3-connected graphs
of order n [9]. All the above studies indicate that the spectral radius of a graph are related
with the parameters of graphs (such as order n and size m), structure of graphs (such as
forbidding subgraphs) and vertex or edge connectivity of graphs.

Let m =
(
d
2

)
+ t, 1 6 t 6 d and Gm be the graph obtained from the complete graph

Kd by adding one new vertex of degree t. Let Hm be the graph obtained from Kd\{e}
by adding one new vertex adjacent to precisely two vertices of degree d − 1 in Kd\{e}.
In 1988, Rowlinson [19] determined that Gm attains the maximum spectral radius among
all graphs of size m. This classic result indicates that Gm attains the maximum spectral
radius among all 2-(edge)-connected graphs of size m =

(
d
2

)
+ t except t = 1. The next

year, Rowlinson [20] proved that Hm was the unique 2-(edge)-connected graphs with
m =

(
d
2

)
+ 1 (d > 5) edges and the maximal spectral radius. However, we find that both

Gm and Hm are not minimally 2-(edge)-connected graphs. Motivated this, our paper is
to study the spectral extremal problem of minimally 2-(edge)-connected graphs under
edge-condition restrictions.

Denote by SK2,m−1
2

the graph obtained from the complete bipartite graph K2,m−1
2

by

subdividing an edge once. Let K2,m−3
2
∗K3 be the graph obtained by identifying a vertex

of maximum degree of K2,m−3
2

and a vertex of K3 from the disjoint union of K2,m−3
2

and

K3. A friend graph, denoted by Ft, is a graph obtained from t triangles by sharing a
vertex. In this paper, we determine the maximum spectral radius for the minimally 2-
(edge)-connected graphs of given size m, moreover, the corresponding extremal graphs
are completely characterized as the following two theorems.

Theorem 1. Let G be a minimally 2-connected graph of size m.
(i) If m is even, then ρ(G) 6

√
m, the equality holds if and only if G ∼= K2,m

2
.

(ii) If m is odd and m > 9, then ρ(G) 6 ρ∗1(m), where ρ∗1(m) is the largest root of
x3 − x2 − (m− 2)x+m− 3 = 0, the equality holds if and only if G ∼= SK2,m−1

2
.

Theorem 2. Let G be a minimally 2-edge-connected graph of size m.
(i) If m is even, then ρ(G) 6

√
m, the equality holds if and only if G ∼= K2,m

2
.
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(ii) If m > 11 is odd and m 6= 15, then ρ(G) 6 ρ∗2(m), where ρ∗2(m) is the largest root of
x4−x3+(1−m)x2+(m−3)x+m−3 = 0, the equality holds if and only if G ∼= K2,m−3

2
∗K3.

If m = 15, then ρ(G) 6 1+
√
41

2
, the equality holds if and only if G ∼= F5.

A famous sharp lower bound of spectral radius given by Collatz and Sinogowitz in [6]
is ρ(G) > 2m

n
, equality holds if and only if G is a regular graph. Thus, the m-cycle attains

the minimum spectral radius among all minimally 2-(edge)-connected graphs of size m.
Notice that ρ∗2(m) 6

√
m for m > 5. Therefore, by Theorems 1 and 2, we obtain that

the spectral radius of a minimally 2-(edge)-connected graph lies in the interval [2,
√
m]

for m > 5. It means that a graph whose spectral radius lies out of [2,
√
m] will not be

minimally 2-(edge)-connected. Theorems 1 and 2 indeed indicate the relationship between
spectral radius and connectivity.

The rest of the paper is organized as follows. In the next section, we will give some
lemmas and some properties of a minimally 2-(edge)-connected graph. In Sections 3 and
4, we will give the proofs of Theorems 1 and 2, respectively.

2 Preliminaries

In this section, we firstly list some symbols and then write some properties of minimally
2-(edge)-connected graphs and some useful lemmas.

Let G be a graph with vertex set V (G) = {v1, v2, · · · , vn} and edge set E(G). For
v ∈ V (G), A ⊂ V (G), denote by N(v) and d(v) the neighborhood and the degree of the
vertex v in G, and denote NA(v) = N(v) ∩ A, dA(v) = |NA(v)|. The adjacent matrix
of a graph G is defined as the n × n square matrix A(G) = (aij) whose entries are 1 if
vivj ∈ E(G), otherwise 0. The spectral radius of G, denote by ρ(G), is defined to be the
largest eigenvalue of A(G). A chord of a graph is an edge between two vertices of a cycle
that is not an edge on the cycle. If a cycle has at least one chord, then it is called a
chorded cycle.

A graph is 2-(edge)-connected graph if it contains a 2-vertex (edge) cut set. A graph is
minimally 2-edge-connected, introduced in [1], if it is a 2-edge-connected but omitting any
edge the resulting graph is no longer 2-edge-connected. By definition, a 2-connected graph
is also 2-edge-connected, but the reverse is not true. However there exists a minimally
2-connected graph that is not minimally 2-edge-connected, for example the graph H(2, 2)
shown as Fig.1. There exists a minimally 2-edge-connected graph that is not minimally 2-
connected, for example the graph Cn ∗ Cm. Clearly, Cn is both of minimally 2-connected
and minimally 2-edge-connected. Furthermore, we will give some the properties of a
minimally 2-connected graph.

Lemma 3 ([8]). A minimally 2-connected graphs with more than three vertices contains
no triangles.

Lemma 4 ([1]). Every cycle of a minimally 2-connected graph contains at least two ver-
tices of degree two.
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Lemma 5 ([18]). G is a minimally 2-connected graph if and only if no cycle of G has a
chord.

Lemma 6 ([3]). If G is a minimally 2-(edge)-connected graph, then δ(G) = 2.

Lemma 7. A 2-edge-connected subgraph of a minimally 2-edge-connected graph is also
minimally 2-edge-connected.

Proof. Let G be a minimally 2-edge-connected graph, and H be a 2-edge-connected sub-
graph of G. By contrary that H is not minimal, then there exists an edge uv ∈ E(H)
such that H − uv is 2-edge-connected. Since G is a minimally 2-edge-connected graph,
we get that G − uv is 1-edge-connected. Thus G − uv has a cut edge, say xy, which
divides V (G − uv) into two vertices sets U and V such that x ∈ U and y ∈ V , and so
eG−uv(U, V ) = 1. Also we have u ∈ U and v ∈ V since G is a 2-edge-connected graph.
Noticed that H − uv is a subgraph of G− uv that is assumed to be 2-edge connected, we
claim that H − uv has a cycle C connecting u and v which must be contained in G− uv.
It is a contradiction. Thus, H is a minimally 2-edge-connected graph.

Lemma 8. If G is a minimally 2-edge-connected graph, then no cycle of G has a chord.

Proof. Suppose by contrary that the cycle of the minimally 2-edge-connected graph G
has a chord. Then G contains a chorded cycle, which is not minimally 2-edge-connected.
This is a contradiction from Lemma 7.

Recall that κ(G) (κ′(G)) denoted the vertex-connectivity (edge-connectivity) of G.

Lemma 9. If G is a minimally 2-edge-connected graph with no cut vertex, then G is
minimally 2-connected.

Proof. Since G is a 2-edge-connected graph and G has no cut vertex, we have 2 = κ′(G) >
κ(G) > 2, and so κ(G) = 2. Note that G is minimally 2-edge connected. We have
κ(G− e) 6 κ′(G− e) 6 1 for any e ∈ E(G). Thus G is minimally 2-connected.

Lemma 10 ([7]). Let G be a graph with adjacency matrix A(G), and let π be an equitable
partition of G with quotient matrix Bπ. Then det(xI−Bπ) | det(xI−A(G)). Furthermore,
the largest eigenvalue of Bπ is just the spectral radius of G.

By Lemma 10, we can give the bound of the spectral radius of SK2,m−1
2

.

Lemma 11. For odd number m > 5, we have ρ(SK2,m−1
2

) is the largest root of x3− x2−
(m− 2)x+m− 3 = 0 and

√
m− 2 < ρ(SK2,m−1

2
)) <

√
m− 1.

Proof. The vertices set of SK2,m−1
2

has an equitable partition and the quotient matrix is

Bπ =

1 1 0
1 0 m−3

2

0 2 0

 .
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We have f(x) = det(xI3−Bπ) = x3− x2− (m− 2)x+m− 3. By Lemma 10, ρ(SK2,m−1
2

)

is the largest root of f(x) = 0. Moreover, one can verify that f(
√
m− 2) < 0, and so

ρ(SK2,m−1
2

) >
√
m− 2. Also, we have f(

√
m− 1) =

√
m− 1 − 2 > 0 for m > 6 and

f ′(x) = 3x2 − 2x− (m− 2) > 0 for x >
√
m− 1. Thus, ρ(SK2,m−1

2
) <
√
m− 1.

Notice that if each edge of a k-connected graph is incident with at least one vertex
of degree k then the graph is minimally k-(edge)-connected. Clearly, SK2,m−1

2
is the

minimally 2-(edge)-connected. Moreover, we have the following lemma.

Lemma 12. Let G∗ attain the maximum spectral radius among all minimally 2-edge-
connected graphs of size m > 6. Then ρ(G∗) >

√
m− 2.

Proof. If m is even, then ρ(G∗) > ρ(K2,m
2

) =
√
m >

√
m− 2 since K2,m

2
is minimally

2-edge-connected. If m is odd, then ρ(G∗) > ρ(SK2,m−1
2

) >
√
m− 2 from Lemma 11.

Lemma 13 ([10, 11]). Let G and H be two graphs, and let P (G, x) be the characteristic
polynomial of G.
(i) If H is a proper subgraph of G, then ρ(H) < ρ(G).
(ii) If P (H,λ) > P (G, λ) for λ > ρ(G), then ρ(H) < ρ(G).

Lemma 14 ([14, 15]). Let G be a C3-free graph of size m. Then ρ(G) 6
√
m, the equality

holds if and only if G ∼= Ka,b, where ab = m.

Lemma 15 ([26]). Let u, v be two distinct vertices in a connected graph G, {vi | i =
1, 2, . . . , s} ⊆ NG(v) \ NG(u). X = (x1, x2, . . . , xn)T is the Perron vector of G, where xi
is corresponding to vi (1 6 i 6 n). Let G′ = G− {vvi | 1 6 i 6 s}+ {uvi | 1 6 i 6 s}. If
xu > xv, then ρ(G) < ρ(G′).

Lemma 16 ([7]). Let G be a connected graph with Perron vector X = (x1, x2, . . . , xn)T .
Let U , V and W be three disjoint subsets of V (G) such that there are no edges between V
and W . Let G′ be the graph obtained from G by deleting the edges between V and U , and
adding all the edges between V and W . If

∑
u∈U xu 6

∑
w∈W xw, then ρ(G) < ρ(G′).

Lemma 17 ([25]). Let (H, v) and (K,w) be two connected rooted graphs. Then

ρ((H, v) ∗ (K,w)) 6
√
ρ2(H) + ρ2(K),

the equality holds if and only if both H and K are stars, where (H, v) ∗ (K,w) is obtained
by identifying v and w from disjoint union of H and K.

3 Proof of Theorem 1

In this section, we will give the proof of Theorem 1. Let G∗ attain maximal spectral
radius ρ∗ = ρ(G∗) among all minimally 2-connected graphs with size m. Lemma 3 and
Lemma 6 indicate G∗ has no triangles and δ(G∗) = 2. If m is even, by Lemma 14 we have
G∗ ∼= K2,m

2
. In what follows, we always assume that m is odd.
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Next we will consider the structure of extremal graph G∗ for odd size m > 9. Let X =
(x1, x2, . . . , xn)T be the Perron vector of G∗ with coordinate xu∗ = max{xi | i ∈ V (G∗)}.
Denote by A = N(u∗) and B = V (G∗) \ (A ∪ u∗). Since G∗ has no triangles, we have
e(A) = 0, that is,

∑
i∈A dA(i)xi = 0, and thus

ρ∗2xu∗ =
∑
v∈A

∑
u∈N(v)

xu = d(u∗)xu∗ +
∑
i∈A

dB(i)xi +
∑
i∈B

dA(i)xi = d(u∗)xu∗ +
∑
i∈B

dA(i)xi

6 (d(u∗) + e(A,B))xu∗ = (m− e(B))xu∗ . (1)

By Lemma 12, ρ∗2 > m− 2. Combining with (1), we get e(B) < 2. Thus, e(B) = 0 or 1.
In the following, we will give four claims to finish our proof.

Claim 18. d(u∗) > 3.

Proof. Otherwise, d(u∗) 6 2. Since G∗ is minimally 2-connected, we have d(u∗) > δ(G∗) =
2 by Lemma 6. This induces d(u∗) = 2 and so |A| = 2. We may assume A = {u1, u2}.
Note that e(B) = 0 or 1. If e(B) = 0 then each vertex in B is adjacent with both of
u1 and u2 since δ(G∗) = 2. This leads to the size of G∗ is even, a contradiction. Thus
e(B) = 1, and we may assume B = {w1w2} ∪ I, where I = {v1, v2, . . . , vt} is an isolated
vertices set. Moreover, we see that each vi is adjacent to uj for j = 1, 2 due to δ(G∗) = 2,
and NA(w1) ∩NA(w2) = ∅, dA(w1) = dA(w2) = 1 since G has no triangles. Without loss
of generality, let NA(w1) = u1 and NA(w2) = u2. Now G∗ is determined and m = 2t + 5
in this situation, where t > 2. By the symmetry, we have xu1 = xu2 , xw1 = xw2 , and
xu∗ = xvi for i = 1, 2, . . . , t. Thus from A(G∗)X = ρ∗X, we have

ρ∗xu∗ = 2xu1 ,
ρ∗xu1 = (t+ 1)xu∗ + xw1 ,
ρ∗xw1 = xw2 + xu1 = xw1 + xu1 .

Furthermore, we get

(ρ∗2 − 2t− 2)xu∗ =
2

ρ∗ − 1
xu1 . (2)

Let g(ρ∗) = (ρ∗2 − 2t − 2)(ρ∗ − 1) − 2 = ρ∗3 − ρ∗2 − (2t + 2)ρ∗ + 2t. Then g(ρ∗) =
ρ∗3 − ρ∗2 − (m− 3)ρ∗ +m− 5. Since ρ∗ >

√
m− 2 by Lemma 12 and

g′(ρ∗) = 3ρ∗2 − 2ρ∗ − (m− 3) > g′(
√
m− 2) = 2m− 2

√
m− 2− 3 > 0,

we have g(ρ∗) > g(
√
m− 2) =

√
m− 2 − 2 > 0. Thus ρ∗2 − 2t − 2 > 2

ρ∗−1 . Therefore,

from (2) we get xu∗ < xu1 , which contradicts the maximality of xu∗ .

Claim 19. e(B) = 1.

Proof. Suppose to the contrary that e(B) = 0, that is, B induces an independent set.
Recall that A is independent, for u ∈ B, it lies in a 4-cycle C = uv1u

∗v2u where v1, v2 ∈ A.
There is at least one of v1 and v2 having degree at least three since otherwise u∗ will be
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Figure 1: The graphs H and H(s, t), where s, t > 1.

a cut vertex. Also there is at least one of v1 and v2 having degree two since otherwise C
contains at most one vertex of degree two, which contradicts Lemma 4. It implies that
d(u) = 2 due to d(u∗) > 3, and then we may assume that d(v1) = 2 and d(v2) > 3. In
addition, the vertex as v2 in A is unique, because two vertices ( in A ) of degree greater
than 2 must lie in a 4-cycle along with u∗ and in this cycle there have been three vertices
of degree greater than 2. Therefore, G∗ is isomorphic to H showed in Fig.1. By the

quotient matrix of H, we have ρ∗ = 1 +
√

m−1
3

<
√
m− 2 for m > 9, which contradicts

Lemma 12. Thus e(B) = 1.

Claim 20. G∗[B] = K2.

Proof. Otherwise, by Claim 19, we have G∗[B] = {w1w2} ∪ I, where I is a nonempty
isolated vertex set. Choosing a vertex v ∈ I. Clearly, d(v) > 2. If N(v) ⊂ A1 = {v ∈
A | d(v) = 2}, then u∗ is a cut vertex, a contradiction. If N(v) ⊂ A2 = A\A1, then v is
included in a 4-cycle which has at most one vertex with degree two, a contradiction. So,
|NA1(v)| = 1 and |NA2(v)| = 1. Let v1 ∈ NA1(v), v2 ∈ NA2(v). Then u∗v1vv2u

∗ forms
a 4-cycle. Notice that min{|NA(w1)|, |NA(w2)|} > 1. Choosing two vertices u1 ∈ N(w1)
and u2 ∈ N(w2), respectively, then u∗u1w1w2u2u

∗ forms a 5-cycle. Moreover, the 4-cycle
and 5-cycle either have a common vertex u∗ or have a common edge u∗v2 (u2 coincides
v2). If the former occurs then u∗ is a cut vertex, otherwise G∗ contains a chorded cycle,
a contradiction.

By Claims 19 and 20, G∗[B] = {w1w2}. Since G∗ has no triangles, NA(w1)∩NA(w2) =
∅. Furthermore, NA(w1) ∪ NA(w2) = A. Assume |NA(w1)| = s, |NA(w2)| = t. Clearly,
s, t > 1 since δ(G∗) = 2. Let H(s, t) be a graph obtained from a double star graph Ds,t

by joining an isolated vertex u∗ to all its leaves vertices (see Fig.1). Now we get that
G∗ ∼= H(s, t) for some s and t satisfying 2s+ 2t+ 1 = m.

Claim 21. G∗ ∼= H(1, m−3
2

).

Proof. Without loss of generality, we assume s 6 t. If s = 1, then t = m−3
2

, and so
H(s, t) ∼= H(1, m−3

2
). The result holds. Suppose G∗ ∼= H(s, t) for s > 2. Let Y be
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the Perron eigenvector of H(s, t) with spectral radius ρ = ρ(H(s, t)), and let NA(w1) =
{v1, . . . , vs} and NA(w2) = {u1, . . . , ut}. By the symmetry, yv1 = · · · = yvs and yu1 =
· · · = yut . We have {

ρyv1 = yu∗ + yw1 ,
ρyu1 = yu∗ + yw2 ,

{
ρyw1 = syv1 + yw2 ,
ρyw2 = tyu1 + yw1 .

Then yv1 − yu1 = 1
ρ
(yw1 − yw2) and

(ρ+ 1)(yw1 − yw2) = syv1 − tyu1 =
s

ρ
(yw1 − yw2) + (s− t)yu1 ,

which indicates that

(ρ+ 1− s

ρ
)(yw1 − yw2) = (s− t)yu1 6 0.

Clearly, ρ > s
ρ

since H(s, t) has K1,s as a subgraph. It follows that yw1 6 yw2 . Note that

s > 2, obviously, G′ = H(s, t) − vsw1 + vsw2 is also a minimally 2-connected graph. By
Lemma 15, we have ρ(G′) > ρ(G∗), which is a contradiction.

By the definition of SK2,m−1
2

and H(1, m−3
2

), it is clear that SK2,m−1
2

∼= H(1, m−3
2

).

Thus Claim 21 and Lemma 11 imply the Theorem 1.

4 Proof of Theorem 2

In this section, we will give the proof of Theorem 2. As we know, a block of a graph is a
maximal 2-connected subgraph with respect to vertices. A block of a graph is called leaf
block if it contains exactly one cut vertex. By Lemma 9, a minimally 2-edge-connected
graph G without cut vertex is minimally 2-connected. Otherwise, G is made of some
blocks including at least two leaf blocks, in which each block is minimally 2-connected by
Lemma 9 and they intersect at cut vertices. In general, we write G = B(t, k) to denote a
minimally 2-edge-connected graph with t cut vertices and k blocks. If t = 0 then k = 1
and G = B(0, 1) is a type of minimally 2-connected graph that is considered in Theorem
1. If t > 1 then k > 2 and each block of G = B(t, k) has some cut vertices, in this case
G = B(t, k) can be viewed as a tree if each block is regarded as an edge.

Proof of Theorem 2 (i). We may assume that m > 4 and X = (x1, . . . , xn)T is the
Perron eigenvector of G.

Case 1. G has no cut vertex.
In this case, G is minimally 2-connected. By Theorem 1, ρ(G) 6

√
m and the equality

holds if and only if G ∼= K2,m
2

, which are just required.
Case 2. G has some cut vertices.
By definition, G = B(t, k) for some t > 1 and k > 2. Let B1, . . . , Bk be its k blocks

and m(Bi) = mi for i = 1, 2, . . . , k. We know that each Bi is minimally 2-connected and
m = m(B(t, k)) =

∑k
i=1mi. Let ρ∗1(m) be the largest root of x3−x2−(m−2)x+m−3 = 0.
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By Lemma 11 and simple computation, we have ρ∗1(m) = ρ(SK2,m−1
2

)) <
√
m for any odd

m. Thus from Theorem 1, we have ρ(Bi) 6
√
mi, and the equality holds if and only if

Bi
∼= K2,

mi
2

for i = 1, 2, . . . , k. Notice that each Bi is not a star since Bi is minimally
2-connected. By Lemma 17, we obtain

ρ(B(t, k)) <
√
ρ2(B1) + ρ2(B2) + · · ·+ ρ2(Bk) 6

√
m1 +m2 + · · ·+mk =

√
m,

as desired.

In what follows we will show (ii) of Theorem 2, and first we give some lemmas and
propositions for the preparations. Clearly, if we transfer a leaf block of B(t, k) to another
leaf block, one can simply verify the following result.

Lemma 22. For a minimally 2-edge-connected graph G = B(t, k), let Bi be a leaf block of
G and u ∈ Bi be a cut vertex. For any v ∈ V (G)\{u}, we have G′ = G−

∑
w∈N(u)∩Bi

wu+∑
w∈N(u)∩Bi

wv is also minimally 2-edge-connected.

· · ·t t t tt t
t t t

tt t
1

2

t2

...
t
t t
t t t· · · t31 2

F1(t1, t2, t3)

· · ·
t1 t1t t t t
t
tt t
1

2

t2

...
t
t t
t t t· · · t31 2

F0(t1, t2, t3)

Figure 2: The graphs F0(t1, t2, t3) and F1(t1, t2, t3).

Denote by u1 the maximum degree vertex of the friend graph with t1 triangles, u2
a maximum degree vertex of K2,t2 , and u3 a vertex of K2,t3+1 with degree two. Let
F0(t1, t2, t3) be the graph obtained from the above three graphs by identifying u1, u2 and
u3. Denote F1(t1, t2, t3) the graph by identifying a vertex of C5 and the maximum degree
vertex of F0(t1, t2, t3) (see Fig.2), where ti > 0.

In order to give the proof of Theorem 2 (ii), we begin by proving the following two
useful propositions.

Proposition 23. ρ(F1(t1, t2, t3)) < ρ(F0(t1 +1, t2 +1, t3)), where F1(t1, t2, t3) and F0(t1 +
1, t2 + 1, t3) have the same number of edges

m =

{
3t1 + 2t2 + 2t3 + 7 for any t1 > 0, t2 = 0 or > 2 and t3 > 1,
3t1 + 2t2 + 5 for any t1 > 0, t2 = 0 or > 2 and t3 = 0.

(3)

Proof. Let G1 = F1(t1, t2, t3) ∪K1 and let

G′1 = G1 − (w1w2 + w1w3 + w2w4) + (w3w4 + u∗u′1 + u′1v)
∼= F1(t1 + 1, t2 + 1, t3) ∪ 2K1,
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· · ·
t1t t t t

t t
t t t

tt t
w3

w4

w1

w2

u1

u2

ut2

v...
t
t t
t t t· · · vt3

· · ·
t1t t t t

t tt t tt t
w3

w4

w1

w2

u1

u2 vt
t t
t t t· · · vt3

tu′1 u∗u∗

v1 v2v1 v2
G1 G′1

��
��
tt
...ut2
u′1

Figure 3: The vertex labels of G1
∼= F1(t1, t2, t3)∪K1 and G′1

∼= F0(t1 +1, t2 +1, t3)∪2K1.

where the labels of V (G1) and V (G′1) are shown in Fig.3. Clearly, ρ(G1) = ρ(F0(t1, t2, t3)),
ρ(G′1) = ρ(F0(t1 + 1, t2 + 1, t3)) and

m(G1) = m(G′1) = m =

{
3t1 + 2t2 + 2t3 + 7 for any t1 > 0, t2 = 0 or > 2 and t3 > 1,
3t1 + 2t2 + 5 for any t1 > 0, t2 = 0 or > 2 and t3 = 0.

It suffices to show ρ = ρ(G1) < ρ′ = ρ(G′1).
Let Y = (y1, . . . , yn) and Z = (z1, . . . , zn) be the Perron eigenvector of G1 and G′1,

respectively. Then we obtain

(ρ′ − ρ)Y TZ = Y TA(G′1)Z − Y TA(G1)Z

=
∑

ij∈E(G′1)

(yizj + ziyj)−
∑

ij∈E(G1)

(yizj + ziyj)

= (yw3zw4 + zw3yw4) + (yu∗zu′1 + zu∗yu′1) + (yu′1zv + zu′1yv)

−[(yw1zw3 + zw1yw3) + (yw2zw1 + zw2yw1) + (yw2zw4 + zw2yw4)].

Notice that yu′1 = 0, yw1 = yw2 , yw3 = yw4 , zw1 = zw2 = 0 and zw3 = zw4 , we have

(ρ′ − ρ)Y TZ = 2(yw3 − yw1)zw3 + yu∗zu′1 + yvzu′1 . (4)

Since C5 is a proper subgraph of G1, by Lemma 13, we have ρ > ρ(C5) = 2. By the
eigen-equations ρyw1 = yw2 + yw3 = yw1 + yw3 , we have yw3 = (ρ− 1)yw1 > yw1 , and so the
right of (4) is more than 0. Note that Y TZ > 0. It follows that ρ′ > ρ.

Proposition 24. ρ(F0(t1, t2, t3)) < ρ(F0(t1, t2 + t3 + 1, 0)), where F0(t1, t2, t3) and
F0(t1, t2 + t3 + 1, 0) have the same number of edges m = 3t1 + 2t2 + 2t3 + 2, where
t1 > 0, t2 = 0 or > 2, and t3 > 1.

Proof. Let G2 = F0(t1, t2, t3) ∪ (t3 + 1)K1, its vertices be labelled as in Fig.3 and the
isolated set I2 = {u′1, u′2, . . . , u′t3+1}. Let

G′2 = G2− (
2∑
i=1

u∗v′i +
2∑
i=1

t3∑
j=1

v′ivj) + (

t3+1∑
i=1

(u∗u′i + vu′i))
∼= F0(t1, t2 + t3 + 1, 0)∪ (t3 + 2)K1.
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v′1
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v1
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· · · t t· · ·

u1 u2 ut2

u′1 u′t3+1

u∗

v

G2 G′2

Figure 4: The vertex labels of G2
∼= F0(t1, t2, t3) ∪ (t3 + 1)K1 and G′2

∼= F0(t1, t2 + t3 +
1, 0) ∪ (t3 + 2)K1.

Clearly, ρ(F0(t1, t2, t3)) = ρ(G2) and ρ(F0(t1, t2 + t3 + 1, 0)) = ρ(G′2). Also, F0(t1, t2, t3)
and F0(t1, t2 + t3 + 1, 0) have the same number of edges 3t1 + 2t2 + 2t3 + 2 = m. It suffices
to show ρ = ρ(G2) < ρ′ = ρ(G′2).

Suppose to the contrary that ρ > ρ′. Let Y = (y1, . . . , yn) and Z = (z1, . . . , zn) be
the Perron eigenvector of G2 and G′2, respectively. By symmetry, we have yu′1 = 0, and
zv1 = zv′1 = 0. Thus we obtain

(ρ′ − ρ)Y TZ = Y TA(G
′

2)Z − Y TA(G2)Z =
∑

ij∈E(G
′
2)

(yizj + ziyj)−
∑

ij∈E(G2)

(yizj + ziyj)

= (t3 + 1)(yu∗zu′1 + zu∗yu′1 + yvzu′1 + zvyu′1)− 2(yu∗zv′1 + zu∗yv′1)− 2t3(yv1zv′1 + zv1yv′1)

= (t3 + 1)(yu∗zu′1 + yvzu′1)− 2yv′1zu∗ . (5)

By eign-equation of A(G2) and A(G′2), we have{
ρyv = t2yu1 ,
ρyu1 = yu∗ + yv.

{
ρyv′1 = yu∗ + t3yv1 ,
ρyv1 = 2yv′1 .

{
ρ′zu′1 = zu∗ + zv,
ρ′zv = (t3 + t2 + 1)zu′1 .

Then we obtain

yv =
t2

ρ2 − t2
yu∗ , yv′1 =

ρ

ρ2 − 2t3
yu∗ and zu′1 =

ρ′

ρ′2 − (t3 + t2 + 1)
zu∗ .

From (5), we get

(ρ′ − ρ)Y TZ = (
(t3 + 1)ρ′

ρ′2 − (t3 + t2 + 1)

ρ2

ρ2 − t2
− 2ρ

ρ2 − 2t3
)yu∗zu∗ . (6)

Since (t3+1)ρ′

ρ′2−(t3+t2+1)
monotonically decreases with respect to ρ′ and ρ > ρ′, from (6) we get

(ρ′ − ρ)Y TZ > (
(t3 + 1)ρ

ρ2 − (t3 + t2 + 1)

ρ2

ρ2 − t2
− 2ρ

ρ2 − 2t3
)yu∗zu∗

= (
t3 + 1

ρ2 − (t3 + t2 + 1)

ρ2

ρ2 − t2
− 2

ρ2 − 2t3
)ρyu∗zu∗

> (
t3 + 1

ρ2 − (t3 + t2 + 1)
− 2

ρ2 − 2t3
)ρyu∗zu∗ . (7)
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Let g(ρ) = (t3 + 1)(ρ2− 2t3)− 2(ρ2− (t3 + t2 + 1)) = (t3− 1)ρ2− 2t23 + 2t2 + 2. It is clear
that g(ρ) > 0 for ρ > ρ(K2,t3+1) =

√
2t3 + 2. One can also verify that ρ2 > t2 + t3 + 1.

Hence,
(t3 + 1)

ρ2 − (t3 + t2 + 1)
− 2

ρ2 − 2t3
> 0.

From (7) we have ρ′ > ρ, a contradiction. Therefore, ρ < ρ′.

Now is the time to prove (ii) of Theorem 2.

Proof of Theorem 2 (ii). Let G∗ be the graph with the maximum spectral radius over
all minimally 2-edge-connected graphs of odd size m > 11, and let X = (x1, . . . , xn)T be
the Perron eigenvector of G∗ with coordinate xu∗ = max{xi | i ∈ V (G∗)}. Denote by
ρ∗ = ρ(G∗), A = N(u∗) and B = V (G∗) \ (A ∪ u∗). Notice that δ(G∗) = 2. Now we give
Claims 25-32 to finish the proof of Theorem 2 (ii).

Claim 25. G∗[A] is isomorphic to the union of some independent edges and isolated
vertices.

Proof. On the one hand, G∗[A] contains no cycle. Otherwise, we assume that a cycle
Cl ⊂ G∗[A] (l > 3). Then there exists a wheel Wl+1 in G∗, it forms a chorded cycle in
G∗, which contradicts Lemma 8. On the other hand, G∗[A] contains no P3. Otherwise,
G∗ contains a chorded cycle with order 4, a contradiction.

Let A1 be the isolated vertex set of G∗[A]. Then A2 = A \ A1 consists of some
independent edges if A2 6= ∅.

Claim 26. NB(u) = ∅ for any u ∈ A2.

Proof. Otherwise, there exists a vertex v ∈ B that is adjacent to a vertex u2 ∈ A2. We
may further assume that u2 ∼ u′2 ∈ A2. If v has no neighbor in B, then there exists a
vertex u ∈ A adjacent to v due to δ(G∗) > 2. It follows that

C = u∗u′2u2vu1u
∗ is a cycle with the chord u∗u2 if u = u1 ∈ A1

C = u∗u′2vu2u
∗ is a cycle with the chord u′2u2 if u = u′2 ∈ A2

C = u∗u′2u2vu3u
∗ is a cycle with the chord u∗2u2 if u = u3 ∈ A2

It is impossible since any cycle of G∗ has no chord. So, dB(v) > 1. However, in this
situation, there exists a path P := vv1 · · · vt in G∗[B] such that vt is adjacent to some
u′ ∈ A since otherwise u2v will be a cut edge. By regarding u′ as the above u, as similar
above we can find a chorded cycle in G∗, a contradiction.

If A2 6= ∅, then, from Claim 25, {u∗} ∪ A2 induces t1 = |A2|
2

triangles with a common
vertex u∗. Moreover, we see from Claim 26 that each of these triangles must be a leaf
block of G∗.

Claim 27. e(B) = 0 or 1.
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Proof. By Claims 25 and 26, we know that A2 induces some independent edges and
NB(A2) = ∅. Recall that A1 induces some isolated vertices. Clearly,

∑
i∈A1

dA1(i)xi = 0.

From Lemma 12, ρ∗ >
√
m− 2 > 3 for m > 11. By symmetry, for any i, j ∈ A2, we have

xi = xj and so ρ∗xi = xu∗ + xj = xu∗ + xi, which induces xi = xu∗
ρ∗−1 <

xu∗
2

. Then we have

ρ∗2xu∗ = d(u∗)xu∗ +
∑
i∈A1

dA1(i)xi +
∑
i∈A2

dA2(i)xi +
∑
i∈B

dA(i)xi

< d(u∗)xu∗ +
xu∗

2

∑
i∈A2

dA2(i) + e(A,B)xu∗

= d(u∗)xu∗ +
xu∗

2
· 2e(A2) + e(A,B)xu∗

= (d(u∗) + e(A) + e(A,B))xu∗

= (m− e(B))xu∗ .

Combining it with (m− 2)xu∗ < ρ∗2xu∗ , we have e(B) < 2. It follows the result.

If e(B) = 1, we may denote e = w∗1w
∗
2 the unique edge in G∗[B] in what follows.

Without loss of generality, we may assume dA(w∗1) 6 dA(w∗2).

Claim 28. G∗[{u∗, w∗1, w∗2} ∪NA1({w∗1, w∗2})] ∼= C5.

Proof. Firstly, we will show NA1(w
∗
1) ∩ NA1(w

∗
2) = ∅. Otherwise, let u0 ∈ A1 be the

common vertex. Now, {u0, w∗1, w∗2} induces a 3-cycle. If u0w
∗
1w
∗
2 is a leaf block of G∗, then

G′ = G∗ − u0w∗1 − u0w∗2 + u∗w∗1 + u∗w∗2 is minimally 2-edge-connected and ρ(G′) > ρ(G∗)
by Lemma 15, a contradiction. Therefore, there exists another vertex u2 ∈ A1 that is
adjacent to at least one of {w∗1, w∗2}. It follows that{

C = w∗2u0u
∗u2w

∗
1w
∗
2 is a cycle with the chord u0w

∗
1 if u2 ∼ w∗1,

C = u∗u0w
∗
1w
∗
2u2u

∗ is a cycle with the chord u0w
∗
2 if u2 ∼ w∗2,

which always leads a contradiction.
Secondly, we will show dA1(w

∗
1) = 1 and dA1(w

∗
2) > 1. In fact, since δ(G∗) = 2 and

NA2(w
∗
1) = NA2(w

∗
2) = ∅ by Claim 26, we have dA1(w

∗
1), dA1(w

∗
2) > 1. If

dA1(w
∗
1), dA1(w

∗
2) > 2, then G∗ contains H(2, 2) (see Fig.1) as a subgraph. We see that

H(2, 2) is not minimally 2-edge-connected, which contradicts Lemma 7.
Combining the above two facts, we have G∗[{u∗, w∗1, w∗2} ∪NA1({w∗1, w∗2})] ∼= H(1, t2)

for some positive t2 > 1, and clearly H(1, t2) is a leaf block of G∗. Finally, it suffices
to show t2 = 1. Suppose to the contrary that t2 > 2. Now let NA1(w

∗
1) = {u0} and

NA1(w
∗
2) = {u1, u2, . . . , ut2}. Then G′ = G∗−w∗1w∗2 +w∗1u

∗ is a graph obtained from G by
replacing the block H(1, t2) to K2,t2 ∗K3. Thus, G′ is also minimally 2-edge-connected.
By Lemma 15, we have ρ(G′) > ρ(G∗), a contradiction.

Denote by B1 the set of all isolated vertices in B. By Claim 27, B = B1 ∪ {w∗1w∗2}.
By Claim 28, we may assume that NA1(w

∗
1) = {v∗1} and NA1(w

∗
2) = {v∗2} in what follows.

Claim 29. NB1({v∗1, v∗2}) = ∅.
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Proof. Suppose to the contrary that there exists a vertex w in B1 with neighbor v∗1 or v∗2.
Without loos of generality, we assume NA1(w) = v∗1. Notice that d(w) > 2. We claim
that NA1(w) = {v∗1, v∗2}. Since otherwise, w ∼ v ∈ A1\{v∗1, v∗2}, then u∗vwv∗1w

∗
1w
∗
2v
∗
2u
∗ is

a cycle with the chord v∗1u
∗, a contradiction. Thus, W = {u∗, w, w∗1, w∗2, v∗1, v∗2} induces

a minimally 2-edge-connected leaf block of G∗. By symmetry, we also have xv∗1 = xv∗2 .
Let G′ = G∗ − w∗2v∗2 + w∗2v

∗
1. We see that W also induces a leaf block of G′ and so G′

is also a minimally 2-edge connected graph. By Lemma 15, we have ρ(G′) > ρ(G∗), a
contradiction.

Let A′1 = A1\{v∗1, v∗2}. By Claim 29, each vertex of B1 only joins some vertices in A′1.
i.e. NA1(wi) = NA′1

(wi) for any wi ∈ B1.

Claim 30. |B1| > 2 and |NA1(w1) ∩NA1(w2)| = 0 or 2 for any w1 6= w2 ∈ B1.

Proof. Firstly, we show that |B1| > 2. Otherwise, we may assume B1 = {w1}, then
G∗[NA1(w1) ∪ {w1, u

∗}] ∼= K2,a1 , where a1 = |NA1(w1)|. By Claims 26, 28 and 29, we
have G∗ ∼= F1(t1, a2, 0) for some positive t1 > 0, a2 > 2 and 3t1 + 2a2 + 5 = m(G∗) = m.
By Proposition 23, we know that ρ(G∗) = ρ(F1(t1, a2, 0)) < ρ(F0(t1 + 1, a2 + 1, 0), a
contradiction.

Suppose that |NA1(w1) ∩ NA1(w2)| > 3, let {v1, v2, v3} ⊆ NA1(w1) ∩ NA1(w2), then
G∗ contains a 5-cycle C2 = v1w1v2w2v3v1 with chord v1w2, a contradiction. Next we
show that |NA1(w1) ∩ NA1(w2)| 6= 1. Otherwise, let NA1(w1) ∩ NA1(w2) = {v}, then G∗

contains a 6-cycle C1 = u∗w′1w1vw2w
′
2u
∗ with chord u∗v, where w′1 ∈ NA1(w1)\{v} and

w′2 ∈ NA1(w2)\{v}, it is a contradiction. Thus, we have |NA1(w1)∩NA1(w2)| = 0 or 2.

Notice that dA1(wi) > 2 for any wi ∈ B1. By Claims 25-30 we can get the struc-
ture of G∗ shown as Fig.5. In particular, if e(B) = ∅, then G∗ contains no 5-cycle C =
u∗v∗1w

∗
1w
∗
2v
∗
2u
∗. For two nonnegative integers p, q, G∗[NA1(B1)∪B1] ∼=

⋃p
i=1K1,ri

⋃q
j=1K2,sj ,

�
 �	�
 �	
�
 �	�
 �	�
 �	

�
�

�
�
�
�

````̀

u u u u u u u u u u u u
uuuuuuuuuuu

u
u
u
u
u

u u u u u ut1

v∗1

v∗2

w∗1

w∗2

r1 rp

w1 wp
· · ·

s1 s2 sq

· · ·

· · ·

· · ·

A′1

B1

u∗

v1 v2 v3 v4

w′1 w′2
· · · · · · · · ·

· · · · · ·

Figure 5: The structure of G∗, where t1 > 0, p+
∑q

i=1 si = |B1| and
∑p

i=1 ri + 2q = |A′1|.

where 3t1+2
∑p

i=1 ri+2
∑q

i=1 si+2q+5 = m (ri, si > 2). Furthermore, we will determine
the values of p, q.
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Claim 31. p 6 1 and q 6 1.

Proof. We firstly show p 6 1. Suppose p > 2, then there exists two vertices, say w1, w2

in B1 with G∗[NA′1
(wi) ∪ {wi}] = K1,ri for i = 1, 2. Without loss of generality, we may

assume that xw1 > xw2 . Denote by

G
′
= G∗ −

∑
v∈NA1

(w2)

vw2 +
∑

v∈NA1
(w2)

vw1.

By Lemma 15, we have ρ(G
′
) > ρ∗. Clearly w2 is an isolated vertex of G

′
. Set

G
′′

= G
′ − {w2}. Then G

′′
is also a minimally 2-edge-connected graph since NA1(w1) ∪

NA1(w2) ∪ {w1, u
∗} induces a block K2,r1+r2 in G

′′
. However ρ(G

′′
) = ρ(G

′
) > ρ∗, a

contradiction.
Now we will show q 6 1. Otherwise, q > 2. ThenG∗[NA1(B1)∪B1] containsK2,s1 , K2,s2

(s1, s2 > 2) as induced subgraphs. Denote by w′i ∈ V (K2,si) ∩ B1 for i = 1, 2. Set
NA1(w

′
1) = {v1, v2} and NA1(w

′
2) = {v3, v4}. Let X be the Perron vector of G∗ whose

entry xv is labelled by vertex v. By the symmetry, xv1 = xv2 and xv3 = xv4 . Without
loss of generality, we may assume that xv1 > xv3 . Then xv1 + xv2 > xv3 + xv4 . Let
G
′′′

= G∗ − w′2v3 − w′2v4 + w′2v1 + w′2v2, and ρ′′′ = ρ(G
′′′

). Clearly, G
′′′

is minimally
2-edge-connected. By Lemma 16, we get ρ′′′ > ρ∗, which contradicts with the maximality
of ρ∗.

By comparing Fig. 2 with Fig. 5, we have t2 = r1 and t3 = s1. From Claims 25-31, we
know that G∗ has two forms: F0(t1, t2, t3) or F1(t

′
1, t
′
2, t
′
3), where t1, t3, t

′
1, t
′
3 > 0, t2, t

′
2 = 0

or t2, t
′
2 > 2 and satisfy

m =


3t1 + 2t2 if t3 = 0
3t1 + 2t2 + 2t3 + 2 if t3 > 1
3t′1 + 2t′2 + 5 if t′3 = 0
3t′1 + 2t′2 + 2t′3 + 2 + 5 if t′3 > 1.

Clearly, t1 > 1 since otherwise m is even. Suppose that G∗ ∼= F1(t
′
1, t
′
2, t
′
3), by Proposition

23, we have ρ(F1(t
′
1, t
′
2, t
′
3)) < ρ(F0(t

′
1 + 1, t′2 + 1, t′3)), which contradicts the maximality of

ρ(G∗). Thus G∗ ∼= F0(t1, t2, t3), where t3 > 0, t2 = 0 or > 2 and

m =

{
3t1 + 2t2 if t3 = 0
3t1 + 2t2 + 2t3 + 2 if t3 > 1.

If t3 = 0, then t2 = m−3t1
2

, and thus G∗ ∼= F0(t1, t2, 0) = F0(t1,
m−3t1

2
, 0)). If t3 > 1, then

t2 + t3 + 1 = m−3t1
2

. By Proposition 24, we have

ρ(F0(t1, t2, t3)) < ρ(F0(t1, t2 + t3 + 1, 0)) = ρ(F0(t1,
m− 3t1

2
, 0)).

By the maximality of ρ(G∗) again, we get G∗ ∼= F0(t1,
m−3t1

2
, 0) for some t1 > 1 and

m−3t1
2

= 0 or > 2. At last, we will show t1 = 1.
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Claim 32. G∗ ∼= F0(1,
m−3
2
, 0) for m > 11 and m 6= 15, and G∗ ∼= F5 for m = 15.

Proof. Denote by f(G, x) the characteristic polynomial of quotient matrix of A(G). Let

f1(x) = f(F0(t1,
m− 3t1

2
, 0), x) = x4 − x3 + (t1 −m)x2 + (m− 3t1)x− 3t1

2 +mt1,

where t1 > 2, and let f2(x) = f(F0(1,
m−3
2
, 0), x) = x4−x3 +(1−m)x2 +(m−3)x+m−3.

Then

f1(x)− f2(x) = (t1 − 1)x2 + (3− 3t1)x− 3t1
2 + 3 + (t1 − 1)m = (t1 − 1)g(x), (8)

where g(x) = x2 − x+m− 3(t1 + 1).
If m−3t1

2
> 2, then 2 6 t1 6 m−4

3
. Note that m > 11. One can verify that g(x) > 0

for x >
√
m− 2. From (8), we have f1(x) − f2(x) > 0 for x >

√
m− 2. Notice that

f2(
√
m− 2) = −

√
m− 2 − 1 < 0. By Lemma 13 (ii), we have ρ(F0(t1,

m−3t1
2

, 0)) <
ρ(F0(1,

m−3
2
, 0)) for any t1 > 2. Thus, G∗ ∼= F0(1,

m−3
2
, 0).

If m−3t1
2

= 0, then t1 = m
3

, i.e. G∗ ∼= F0(
m
3
, 0, 0), where 3 | m and m > 11. By the

computation,

ρ(F0(
m

3
, 0, 0)) =

1 +
√

1 + 8m
3

2
<
√
m− 2 < ρ(F0(1,

m− 3

2
, 0))

for m > 19. For 11 6 m 6 17, i.e. m = 15, we have 1+
√
41

2
= ρ(F5) > ρ(F0(1, 6, 0)).

By the above arguments, G∗ ∼= F5 for m = 15, and G∗ ∼= F0(1,
m−3
2
, 0) for m > 11 and

m 6= 15.

Notice that F0(1,
m−3
2
, 0) ∼= K2,m−3

2
∗ K3 and ρ(F0(1,

m−3
2
, 0)) is the largest root of

x4−x3 + (1−m)x2 + (m− 3)x+m− 3 = 0. It completes the proof of Theorem 2 (ii).

Remark 33. For odd m < 11, by Claims 25-31, we get that the minimally 2-edge connected
graphs of size m = 3, 5, 7, 9 and their extremal graphs are given by Table.1.

m Minimally 2-edge-connected graph G∗ ρ(G∗)

3 C3 C3 2

5 C5 C5 2

7 C7, SK2,3, C3 ∗ C4 C3 ∗ C4 2.5035

9 C9, SK2,4, C3 ∗ C6, C3 ∗K2,3, C4 ∗ C5, F3 F3 3

Table 1: The extremal graphs of minimally 2-edge-connected graph for m = 3, 5, 7, 9.

Remark 34. Nosal in 1970 stated that if a graph G of size m is triangle free, then its
spectral radius ρ(G) 6

√
m, which is called a spectral Mantel’s theorem. A natural

question: how large can a graph family be such that ρ(G) 6
√
m? If G is a minimally 2-

edge-connected graph of size m, from Theorem 2 we know that ρ(G) 6
√
m. A minimally

2-edge-connected graph may contain a triangle. Thus the minimally 2-edge-connected
graph set is a new class of graphs with their spectral radii no more than

√
m.
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