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Abstract

The classes of tree permutations and forest permutations were defined by Acan
and Hitczenko (2016). We study random permutations of a given length from these
classes, and in particular the number of occurrences of a fixed pattern in one of
these random permutations. The main results show that the distributions of these
numbers are asymptotically normal.

The proof uses representations of random tree and forest permutations that
enable us to express the number of occurrences of a pattern by a type of U -statistics;
we then use general limit theorems for the latter.

Mathematics Subject Classifications: 05A05, 05C05, 60C05

1 Introduction

A number of authors have studied properties of random permutations drawn uniformly
from all permutations of a given (large) length in some given class of permutations. The
chosen class of permutations is often a pattern class, ı.e., is the class of all permutations
avoiding a certain set of one or several given patterns; equivalently, the class is closed
under taking patterns (subpermutations). (See Section 2 for definitions of various terms
used here and below.) Several different properties have been studied; in the present paper
we consider the asymptotic distribution of the number of occurences of some fixed pattern.
For this problem (and many others), it seems impossible to give general results valid for all
such permutation classes. (See e.g. Garrabrant and Pak [4] for some related impossibility
results supporting this.) Therefore, typically these classes are studied one by one, with
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methods depending on the knowledge of some structure theorem for permutations in that
particular class. See e.g. [2] and [10] for some results of this type.

The present paper continues this line of research by studying the number of occurences
of a given pattern in a random tree permutation or forest permutation. These classes of
permutations were defined by Acan and Hitczenko [1] as follows.

Definition 1. For a permutation π of [n], its permutation graph Gπ is the (labelled,
undirected) graph with vertex set [n], and an edge ij for every inversion (i, j) in π, i.e.,
for every pair (i, j) such that i < j and π(i) > π(j).

A permutation π is a tree permutation if Gπ is a tree, and a forest permutation if the
graph Gπ is a forest (i.e., acyclic).

Thus, every tree permutation is a forest permutation.
Acan and Hitczenko [1] noted also the following characterization, showing that the

forest permutations form a pattern class.

Proposition 2 ([1]). The forest permutations are precisely the permutations avoiding the
patterns 321 and 3412.

However, the class of tree permutations is not a pattern class, since a subpermutation
of a tree permutation may be a forest permutation with a disconnected permutation graph.
(For example, 312 is a tree permutation, but its subpermutation 12 is not.)

The structures of tree permutations and forest permutations were studied in [1]; see
Section 4. Using this, and results on (conditioned) U -statistics, we will show that the
number of occurences of a fixed pattern in a random tree or forest permutation is asymp-
totically normal, as the length tends to ∞; precise results are stated in Section 3, and
proved in the remainder of the paper. Section 5 defines the versions of U -statistics that
are used in the paper, and cites some results for them from [9] and [11]. Tree and forest
permutations are studied in Sections 6–12, leading to a representation of random forest
permutations in Section 7 and a, quite different, representation of random tree permuta-
tions in Section 10; these representations both enable us to count patterns by U -statistics,
which eventually yields proofs of the theorems.

Remark 3. Although we use similar methods for patterns in random tree permutations
and in random forest permutations, the details are quite different, and we see no direct
relation between the results for the two cases. Note that a random forest permutation is
a (random) sum of tree permutations, but most of these are very small (see (7.19) and
(7.5)); hence there is no reason to expect a relation between asymptotics for large forest
permutations and large tree permutations.

2 Definitions and notation

2.1 Permutations

Let Sn be the set of permutations of [n] := {1, . . . , n}, and S∗ :=
!

n Sn. Similarly, let Fn

be the set of all forest permutations of length n and Tn the subset of tree permutations,
and let F∗ :=

!
n Fn and T∗ :=

!
n Tn. Thus Tn ⊆ Fn ⊆ Sn.
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We denote the length of a permutation π by |π|.

2.2 Occurrence of patterns

If σ = σ1 · · · σm ∈ Sm and π = π1 · · · πn ∈ Sn, then an occurrence of σ in π is a
subsequence πi1 · · · πim , with 1 ! i1 < · · · < im ! n, that has the same order as σ, i.e.,
πij < πik ⇐⇒ σj < σk for all j, k ∈ [m]. In this context, σ is often called a pattern; we
may also say that σ is a subpermutation of π. We let occσ(π) be the number of occurrences
of σ in π, and note that

"

σ∈Sm

occσ(π) =

#
n

m

$
, (2.1)

for every π ∈ Sn and every m. For example, an inversion is an occurrence of 21, and thus
occ21(π) is the number of inversions in π.

We say that a permutation π avoids another permutation τ if occτ (π) = 0; otherwise,
π contains τ .

2.3 Sums and decompositions of permutations

If σ ∈ Sm and τ ∈ Sn, their (direct) sum σ ⊕ τ ∈ Sm+n is defined by letting τ act on
[m + 1,m + n] in the natural way; more formally, σ ⊕ τ = π ∈ Sm+n where πi = σi for
1 ! i ! m, and πj+m = τj +m for 1 ! j ! n. It is easily seen that ⊕ is an associative
operation. We say that a permutation π ∈ S∗ is decomposable if π = σ ⊕ τ for some
σ, τ ∈ S∗, and indecomposable otherwise; we also call an indecomposable permutation a
block. See further e.g. [3, Exercise VI.14].

It is easy to see that any permutation π ∈ S∗ has a unique decomposition π =
π1 ⊕ · · · ⊕ πℓ into indecomposable permutations (blocks) π1, . . . , πℓ (for some, unique,
ℓ " 1); we may call these the blocks of π

If i < j < k and ik is an edge in the permutation graph Gπ (i.e., an inversion), then
at least one of ij and jk is also an edge. It follows that the components of the graph Gπ

are intervals in [n], and then it is easy to see that they correspond to the blocks of π; in
particular, Gπ is connected if and only if π is indecomposable.

2.4 Random permutations

τ n will always denote a uniformly random tree permutation of length n; similarly, πn is
a uniformly random forest permutation of length n. In other words, these are uniformly
random elements of Tn and Fn, respectively.

%τ denotes a certain random tree permutation of random length defined in Section 7,
see (7.5); %τ 1, %τ 2, . . . will denote independent copies of %τ . Similarly, τ ∗

m is another random
tree permutation of random length, defined in Section 10.

2.5 Some further notation

Convergence in distribution is denoted by
d−→, and convergence in probability by

p−→.

We let
d
= denote equality in distribution.
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Given sequences of random variables Xn and constants an > 0, and a fixed exponent
q > 0, we let Xn = OLq(an) mean E |Xn/an|q = O(1). Moreover, we write Xn = OL∗(an)
if Xn = OLq(an) for every q < ∞.

By “convergence of all moments” we mean both ordinary and absolute moments,
including centered versions.

We find it convenient to express some explicit constants using

φ :=
1 +

√
5

2
, (2.2)

the golden ratio. Recall that φ2 = φ+ 1. We will also let p := φ−2, see (7.1)–(7.3).
Unspecified limits are as n → ∞.

3 Main results

Our main results are the following; the proofs are given later. In both cases, note that if
σ is not a forest permutation, then occσ(πn) = 0. Note also that we may assume |σ| " 2,
since the case σ = 1 is utterly trivial with occ1(π) = n for every π ∈ Σn. Moreover, if
τ ∈ Tn is a tree permutation, then occ21(τ) = n−1, since the number of inversions equals
the number of edges in the tree Gτ .

Theorem 4. Let τ n be a uniformly random tree permutation of length n, and let σ be a
fixed forest permutation with block decomposition σ = σ1⊕ · · ·⊕σd. Then, as n → ∞, for
some γ2 = γ2

σ " 0,
occσ(τ n)− nd/d!

nd−1/2

d−→ N
&
0, γ2

'
, (3.1)

with convergence of all moments. Moreover, γ2 > 0 unless |σi| ! 2 for every i, i.e., unless
each block σi is either 1 or 21.

We state the special case d = 1 separately.

Corollary 5. Let τ n be a uniformly random tree permutation of length n, and let σ be a
fixed tree permutation. Then, as n → ∞, for some γ2 = γ2

σ " 0,

occσ(τ n)− n√
n

d−→ N
&
0, γ2

'
, (3.2)

with convergence of all moments. Moreover, γ2 > 0 except in the trivial cases |σ| ! 2,
when occσ(τ n) is deterministic (n or n− 1).

Furthermore, when σ is a tree permutation, we give an exact formula for E occσ(τ n)
in Theorem 29; this expectation depends on n and |σ| only.

The asymptotic variance γ2
σ in Theorem 4 and Corollary 5 can be found from our

proof, but we do not know any explicit formula; we evaluate it for some simple cases in
Example 44. Note that Example 44 shows that γ2

σ in Corollary 5 really depends on σ,
and, moreover, that it is not simply a function of |σ|.
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Remark 6. If σ is a forest permutation with d " 2 blocks σi, all of lengths |σi| ! 2,
then γ2 = 0 in (3.1), but occσ(τ n) is, in general, not deterministic. We conjecture that
occσ(τ n) is asymptotically normal in this case too, with a variance of smaller order than in
Theorem 4, but we have not pursued this and leave it as an open problem. (Cf. Theorem 9
below for random forest permutations πn.)

Problem 7. Find a combinatorial explanation for the surprising fact that the asymptotic
expectation n in (3.2) is the same for all tree permutations σ. (We will see in the proof
that this is equivalent to the fact that the expectation in (11.23) is the same for all tree
permutations σ.)

More generally, find a combinatorial explanation for the fact that the asymptotic
expectation nd/d! (or, equivalently,

&
n
d

'
) in (3.1) depends only on the the number of

blocks d in σ.
Moreover, as just mentioned, Theorem 29 shows that for two tree permutations σ1

and σ2 of the same length, the expectations E occσ1(τ n) and E occσ2(τ n) are equal for
every n. (This obviously requires |σ1| = |σ2|, since occσ(τ n) = 0 if n < |σ|.) Again, we
do not know a simple proof of this fact, although the proof of Theorem 29 gives a kind of
combinatorial reason. Also, we do not know whether the equality extends to two forest
permutations with the same length and the same number of blocks.

We turn to patterns in a random forest permutation.

Theorem 8. Let πn be a uniformly random forest permutation of length n, and let σ be
a fixed forest permutation with block decomposition σ = σ1⊕ · · ·⊕σd. Let λ be the number
of blocks σi of length |σi| = 1, and let

%µσ :=
1

d!
(φ+ 2)λ−dφ4d−3λ−|σ| =

1

d!
5−(d−λ)/2φ3d−2λ−|σ|. (3.3)

Then, for some γ2
σ " 0,

occσ(πn)− %µσn
d

nd−1/2

d−→ N
&
0, γ2

σ

'
, (3.4)

with convergence of all moments.
Furthermore, γ2

σ > 0 except in the case σ = 1 · · · d (the identity permutation with every
|σi| = 1).

Again, the asymptotic variance γ2
σ can in principle be found from our proof, but we

do not know any explicit formula; see Remark 33 and Example 34.
In the exceptional case σ = 1 · · · d, the limit in (3.4) is 0, and a different normalization

is required.

Theorem 9. Let ιd be the identity permutation 1 · · · d for some d " 2. Then, for some
γ2
ιd
> 0,

occιd(πn)−
&
n
d

'
+ 5+

√
5

10(d−2)!
nd−1

nd−3/2

d−→ N
&
0, γ2

ιd

'
, (3.5)

with convergence of all moments.
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Remark 10. If we consider several patterns, (3.1), (3.2), (3.4) and (3.5) extend to joint
convergence to a multi-variate normal limit. This follows by the same proof, using Re-
marks 18 and 24. We omit the details.

4 Preliminaries on tree and forest permutations

We recall some facts from (mainly) [1] (in our notation); for completeness we sometimes
sketch the arguments, but we refer to [1] for further details.

Note first that a permutation is determined by its (labelled) permutation graph, in
other words, the mapping π *→ Gπ is injective. Furthermore, the induced subgraphs of
Gπ are the inversion graphs of the patterns occuring in π, up to obvious relabelling.

In particular, it is easily seen that the only induced cycles in a permutation graph are
C3 and C4 (as unlabelled graphs); these are the permutation graphs of 321 and 3412 (and
no other permutations), which proves Proposition 2.

Moreover, Gπ is a forest if and only if its component are trees, and thus π is a forest
permutation if and only its blocks are tree permutations. In other words,

π ∈ F∗ ⇐⇒ π = τ1 ⊕ · · ·⊕ τm (4.1)

for some (unique) sequence τ1, . . . , τm of tree permutations. (We will find the asymptotic
distribution of the number of blocks in a random forest permutation in Theorem 35.)

Let tn := |Tn| be the number of tree permutations of length n. It is shown in [1] that

tn =

(
1, n = 1,

2n−2, n " 2,
(4.2)

and thus the corresponding generating fuction T (z) is

T (z) :=
∞"

n=1

tnz
n = z +

z2

1− 2z
=

z − z2

1− 2z
, |z| < 1/2. (4.3)

As a consequence of (4.3) and (4.1), if fn is the number of forest permutations of length
n (with f0 := 1), then the corresponding generating function is

F (z) :=
∞"

n=0

fnz
n =

1

1− T (z)
=

1− 2z

1− 3z + z2
. (4.4)

The sequence (fn) is A001519 in [13] (where many other interpretations are given).

In a permutation π, label the left-to-right maxima by L, and the right-to-left minima
by R. Thus, i is labelled L if π(j) < π(i) for every j < i, ı.e., if there are no inversions
(j, i) with j < i. In other words,

i is labelled L ⇐⇒ i is the left endpoint of every adjacent edge in Gπ. (4.5)
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Similarly, i is labelled R if there are no inversions (i, j) with j > i, and

i is labelled R ⇐⇒ i is the right endpoint of every adjacent edge in Gπ. (4.6)

Now, let π be a forest permutation. If i < j < k, then ij and jk cannot both be edges
in Gπ, since otherwise, π(i) > π(j) > π(k), so (i, k) would also be an inversion, and thus
Gπ would contain a cycle ijk. If follows that every j ∈ [n] is labelled either L or R, or
possibly both.

Moreover, (4.5)–(4.6) imply that i is labelled both L and R if and only if i is isolated
in Gπ. In a tree permutation π with |π| " 2, this is impossible. Thus, if π is a tree
permutation with |π| " 2, then every i ∈ [n] is labelled L or R, but not both. Each tree
permutation τ with |τ | = n " 2 may thus be represented by a string Ωτ of n symbols L or
R. (The notation in [1] is different: there W1 [W0] denotes the set of i labelled L [R] here.)
The first symbol in Ωτ is always L and the last is R. We let Σn :=

)
L{L,R}n−2R

*
be the

set of such strings, so Ωτ ∈ Σn. It is shown in [1] that the map τ *→ Ωτ is a bijection
between Tn and Σn, for every n " 2. (Note that |Tn| = 2n−2 = |Σn| by (4.2).) In other
words, for n " 2, the tree permutations in Tn can be encoded by the strings in Σn. See
Figure 1 for an example.

1 2 3 4 5 6 7
(2) (3) (5) (1) (6) (7) (4)
L L L R L L R

Figure 1: The tree permutation τ = 2351674 with the corresponding permutation graph
and the corresponding string Ω2351674 = LLLRLLR. Formally, the vertices are labelled
1, . . . , 7, but for illustration, the values τ(i) are added in parentheses.

We follow [1] and define the blocks B1, . . . , B2m of Ωτ as the successive runs of L and R
in Ωτ . Note that since Ωτ begins with L and ends with R, there is always an even number
of blocks; an odd-numbered block B2l−1 is a run of L and an even-numbered block B2l is
a run of R. (Note that we also use ’block’ in a different sense for the block decomposition
of a permutation into its blocks (components) in Section 2.3; there should be no risk of
confusion since the two different meanings of ’block’ appear in different contexts, and we
will not use both at the same time.) [1, Lemma 8] shows how the edges and vertex degrees
in Gτ can be found explicitly from the code Ωτ and the blocks Bi. We summarize this as
follows.

Lemma 11 ([1]). Let τ be a tree permutation with |τ | " 2. Then the pairs of symbols in
Ωτ that correspond to edges in Gτ (and thus to inversions in τ) are:

(e1) each L and the nearest following R;

(e2) each R and the nearest preceding L;

the electronic journal of combinatorics 30(2) (2023), #P2.27 7



(e3) The last L in a block B2k−1 and the first R in B2k+2.

The symbols in Ωτ that correspond to leaves in Gτ are the following:

(l1) every L that is not the last L in its block;

(l2) the last but one symbol, if that is L;

(l3) every R that is not the first R in its block;

(l4) the second symbol, if that is R.

Proof. As said above, this is [1, Lemma 8], in different notation. (The four cases (l1)–(l4)
correspond to parts (a),(c),(d),(f) in that lemma.)

If σ is a tree permutation with |σ| " 2 such that its code Ωσ has 2m blocks, we define
b(σ) := m; in other words the code of σ has b(σ) L-blocks and b(σ) R-blocks. If |σ| = 1,
we do not define any code Ωσ, but we define (for later convenience) b(σ) := 1.

5 Preliminaries on U -statistics

A U-statistic is a random variable of the form

Un = Un(f) =
"

1!i1<···<id!n

f
&
Xi1 , . . . , Xid

'
, n " 0, (5.1)

where X1, X2, . . . is an i.i.d. sequence of random variables with values in some measurable
space S, and f : Sd → R is a given measurable function of d " 1 variables. (It is
often assumed that f is a symmetric function; we do not assume this.) U -statistics were
introduced by Hoeffding [6]; we will use versions and results from [9] and [11], see also
[10] for similar applications to pattern occurences in some other pattern classes.

The fundamental central limit theorem for U -statistics, due to Hoeffding [6] in the
symmetric case, can in the general (asymmetric) case be stated as follow, see [7, Theorem
11.20] and [9, Corollary 3.5 and (moment convergence) Theorem 3.15]. Assume that the
random variables Xi are i.i.d., let X denote a generic Xi, and define (for a given f)

µ := E f(X1, . . . , Xd), (5.2)

fi(x) := E
+
f(X1, . . . , Xd) | Xi = x

,
, (5.3)

σ̄ij := Cov
+
fi(X), fj(X)

,
, (5.4)

σ̄2 :=
d"

i,j=1

(i+ j − 2)! (2d− i− j)!

(i− 1)! (j − 1)! (d− i)! (d− j)! (2d− 1)!
σ̄ij. (5.5)

Note that fi(x) in [9; 11] is fi(x)− µ in the present notation. (The notation σ̄ used here
should not be confused with σ used elsewhere for permutations.)
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Proposition 12 ([7; 9]). Suppose that (Xi)
∞
1 are i.i.d. random variables, and that

E |f(X1, . . . , Xd)|2 < ∞. Then, with the notation in (5.2)–(5.5), as n → ∞,

Un −
&
n
d

'
µ

nd−1/2

d−→ N
&
0, σ̄2

'
. (5.6)

Furthermore, σ̄2 > 0 unless fi(X) = µ a.s. for i = 1, . . . , d.
Moreover, if E |f(X1, . . . , Xd)|p < ∞ for some p " 2, the (5.6) holds with convergence

of all moments of order ! p.

We will need a renewal theory version of Proposition 12. In addition to a sequence
(Xi)

∞
1 and a function f as above, let h : S → R be another measurable function, and

assume (for simplicity) that h(Xi) " 0 a.s. Define

ν := Eh(Xi), (5.7)

Sn = Sn(h) :=
n"

i=1

h(Xi), (5.8)

and let for each x > 0

N(x) := inf{N : SN " x}. (5.9)

Remark 13. The definition (5.9) agrees with N+(x) in [10] but differs slightly from N+(x)
and N−(x) in [9] and [11]; this does not affect the asymptotic results used here, see [11,
Remark 3.19]. (For integer valued h and integer x, as in our application, N(x) = N+(x−
1).) We will use results from [9] and [11]; note that the event {Sk = n for some k " 0}
equals {SN(n) = n} in the present notation, and {UN−(n) = n} in the notation of [9] and
[11]. (When we condition on this event in propositions below, we tacitly consider only n
such that the event has positive probability.)

The following results are special cases of [9, Theorems 3.11, 3.13(iii) and 3.18] (with
somewhat different notation).

Proposition 14 ([9]). Suppose that (Xi) are i.i.d., E |f(X1, . . . , Xd)|2 < ∞, and h(X) "
0 a.s., with ν := Eh(X) > 0 and Eh(X)2 < ∞. Then, with notations as above, as
x → ∞,

UN(x) − µν−dd!−1xd

xd−1/2

d−→ N
&
0, γ2

'
, (5.10)

where, with σ̄2 given by (5.5),

γ2 := ν1−2dσ̄2 − 2
µν−2d

(d− 1)! d!

d"

i=1

Cov
+
fi(X), h(X)

,
+

µ2ν−2d−1

(d− 1)!2
Var

+
h(X)

,
. (5.11)

Moreover, γ2 > 0 unless fi(X) = µ
ν
h(X) a.s. for i = 1, . . . , d.
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Proposition 15 ([9]). Suppose in addition to the hypotheses in Proposition 14 that h(X)
is integer-valued. Then (5.10) holds also conditioned on SN(x) = x (cf. Remark 13) for
integers x → ∞.

Proposition 16 ([9]). Suppose in addition to the hypotheses in Proposition 14 or 15 that
E |f(X1, . . . , Xd)|p < ∞ and E |h(X)|p < ∞ for every p < ∞. Then the conclusion (5.10)
holds with convergence of all moments.

Remark 17. In the special case d = 1, when the U -statistic (5.1) is a standard single sum,
(5.2)–(5.5) and (5.11) simplify to f1 = f , σ̄2 = σ̄11 = Var f(X), and

γ2 =
1

ν
σ̄2 − 2

µ

ν2
Cov

+
f(X), h(X)

,
+

µ2

ν3
Varh(X)

=
1

ν
Var

-
f(X)− µ

ν
h(X)

.
. (5.12)

This special case is classical, see e.g. [5, Theorem 4.2.3].

Remark 18. The results in Propositions 12–16 hold jointly for several f (possibly with
different d). This is not stated explicitly in [9] (except for (5.6)), but it follows by the
same proofs as in [9] (perhaps, for convenience, using the Skorohod coupling theorem [12,
Theorem 4.30] and a.s. convergence in the proofs). See also [11].

5.1 Constrained U -statistics

In this subsection we extend some of the results above to constrained U -statistics, defined
as follows. We consider here only a case relevant for the application in the present paper;
for more general definitions and results, see [11] (with somewhat different notation).

Let, as above, (Xi)
∞
1 be an i.i.d. sequence of random variables in some measurable

space S.
Let d " 1 and let b1, . . . , bd be given non-negative integers. (These are regarded as

fixed in this subsection.) Let

b′j := bj − 1, (5.13)

Dj :=

j"

1

bi, 0 ! j ! d, (5.14)

D′
j :=

j"

1

b′i = Dj − j, 0 ! j ! d, (5.15)

D := Dd =
d"

i=1

bi = D′
d + d. (5.16)

Suppose that f : SD → R is a measurable function, and define the constrained U-statistic

/Un = /Un(f) :=
"

i1,...,id

f
&
(Xi1+k)

b′1
k=0, (Xi2+k)

b′2
k=0, . . . , (Xid+k)

b′d
k=0

'
(5.17)
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summing over all i1, . . . , id such that i1 " 1, i1+ b′1 < i2, i2+ b′2 < i3, . . . , id−1+ b′d−1 < id,
and id + b′d ! n. (We have grouped the arguments of f in (5.17), using an obvious

notation.) In other words, /Un is defined as Un in (5.1), with d replaced by D, but only
summing over i1, . . . , iD such that the b1 first indices are consecutive, as well as the next b2,
and so on. In particular, in the special case b1 = · · · = bd = 1, /Un equals the unconstrained
U -statistic Un in (5.1).

By replacing ij by ij −D′
j−1 in (5.17), we obtain the alternative formula

/Un :=
"

1!i1<i2<···<id!n−D′
d

f
&
(Xi1+k)

D′
1

k=0, (Xi2+k)
D′

2

k=D′
1
, . . . , (Xid+k)

D′
d

k=D′
d−1

'
. (5.18)

Define, as in (5.2),

µ = µf := E f(X1, . . . , XD). (5.19)

By (5.18), the mean of /Un is

E /Un =

#
n−D′

d

d

$
µ. (5.20)

Proposition 12 extends to constrained U -statistics as follows.

Proposition 19 ([11]). Let /Un = /Un(f) be a constrained U-statistic defined as above,
with (Xi)

∞
1 i.i.d., and assume E |f(X1, . . . , XD)|2 < ∞. Then, with µ = µf given by

(5.19) and some σ̄2 = σ̄2
f " 0,

/Un −
&
n
d

'
µ

nd−1/2

d−→ N
&
0, σ̄2

'
. (5.21)

Moreover, if E |f(X1, . . . , Xd)|p < ∞ for some p " 2, the (5.21) holds with convergence
of all moments of order ! p.

It does not matter whether we subtract E /Un or
&
n
d

'
µ in (5.21), since the difference is

O
&
nd−1

'
= o

&
nd−1/2

'
by (5.20).

Proof. This is a special case of [11, Theorems 3.9 and 3.15].

The variance σ̄2 in (5.21) can be calculated explicitly, see [11, Remark 6.2], but the
formulas are a bit complicated, and we omit them. Instead, we give a criterion that often
can be used in applications to show that σ̄2 > 0. We define, in analogy with (5.3),

fj
&
x1, . . . , xbj

'
:= E

+
f
&
X1, . . . , XD

'
| (XDj−1+1, . . . , XDj

) = (x1, . . . , xbj)
,
. (5.22)

We extend the definition (5.8) to functions g : Sb → R for any b " 1 by defining, for such
g,

Sn(g) :=
n"

i=1

g
&
Xi, . . . , Xi+b−1

'
. (5.23)
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Proposition 20. In Proposition 19, the asymptotic variance σ̄2
f = 0 if and only if for

every j ∈ [d], there exists a function ψj : Sbj−1 → R such that a.s.

fj
&
X1, . . . , Xbj

'
− µ = ψj

&
X2, . . . , Xbj

'
− ψj

&
X1, . . . , Xbj−1

'
, (5.24)

and thus a.s., for every n " 1,

Sn(fj − µ) = ψj

&
Xn+1, . . . , Xn+bj−1

'
− ψj

&
X1, . . . , Xbj−1

'
. (5.25)

Consequently, if σ̄2
f = 0, then Sn(fj) is independent of Xbj , . . . , Xn for every j ∈ [d] and

n " bj.

Proof. This is essentially a special case of [11, Theorem 8.4]; the difference is mainly
notational. The function gj in [11, Theorem 8.4 and Remark 6.2] is, in our case, given by

gj
&
x1, . . . , xD′

d+1

'
= fj

&
xD′

j−1+1, . . . , xD′
j−1+bj

'
− µ; (5.26)

thus gj is essentially the same as fj − µ but contains some redundant variables. [11,
Theorem 8.4] says that σ̄2

f = 0 if and only if there exists a function ϕj : SD′
d → R such

that a.s.

gj
&
X1, . . . , XD′

d+1

'
= ϕj

&
X2, . . . , XD′

d+1

'
− ϕj

&
X1, . . . , XD′

d

'
. (5.27)

This is (5.24), except that we have redundant variables. These may be eliminated one by
one. For example, if D′

j−1 > 0, and thus gj does not depend on x1 by (5.26), then (5.27)

implies that for a.e. fixed x1 ∈ S, we have ϕj

&
X1, . . . , XD′

d

'
= ϕj

&
x1, X2, . . . , XD′

d

'
a.s.,

and thus a.s.

ϕj

&
X1, . . . , XD′

d

'
= ϕ′

j

&
X2, . . . , XD′

d

'
(5.28)

for some function ϕ′
j : SD′

d−1 → R. Continuing in this way, from both ends, we see that
a.s.

ϕj

&
X1, . . . , XD′

d

'
= ψj

&
XD′

j−1+1, . . . , XD′
j−1+bj−1

'
(5.29)

for some function ψj, and thus (5.27) reduces to (5.24). (Alternatively, one might note
that (5.27) implies Var

+
Sn(fj − µ)

,
= VarSn(gj) = O(1), and then [8, Theorem 2] yields

(5.24) – this essentially repeats part of the argument in [11] yielding (5.27).) Conversely,
(5.24) trivially yields (5.27) for a suitable ϕj.

We will use a renewal theory version of constrained U -statistics. We assume again
that h : S → R with h(Xi) " 0 a.s., and use the notation (5.7)–(5.9). The following
results are special cases of [11, Theorems 3.20, 8.7, 3.21, and 3.23].
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Proposition 21 ([11]). Let /Un = /Un(f) be a constrained U-statistic defined as above,
with (Xi)

∞
1 i.i.d. Suppose that E |f(X1, . . . , XD)|2 < ∞, and that h(X) " 0 a.s., with

ν := Eh(X) > 0 and Eh(X)2 < ∞. Then, with notations as above, as x → ∞,

/UN(x) − µν−dd!−1xd

xd−1/2

d−→ N
&
0, γ2

'
, (5.30)

for some γ2 " 0. Moreover, γ2 > 0 unless, for each j = 1, . . . , d, the conditions in
Proposition 20 hold with f − µ replaced by the function fj(X1, . . . , Xbj)− µ

ν
h(X1).

Proof. The limit (5.30) is a special case of [11, Theorem 3.20]. The only detail that
requires a comment is that [11, Theorem 8.7] says that if γ2 = 0, then a.s.

gj
&
X1, . . . , XD′

d+1

'
+ µ− µ

ν
h(X1) = ϕj

&
X2, . . . , XD′

d+1

'
− ϕj

&
X1, . . . , XD′

d

'
(5.31)

for some function ϕ, where as above gj is given by (5.26). If we use (5.26) and define

ϕj

&
x1, . . . , xD′

d

'
:= ϕj

&
x1, . . . , xD′

d

'
−

D′
j−1"

i=1

µ

ν
h(xi), (5.32)

then (5.31) is equivalent to

fj
&
XD′

j−1+1, . . . , XD′
j−1+bj

'
− µ

ν
h
&
XD′

j−1+1

'
= ϕj

&
X2, . . . , XD′

d+1

'
− ϕj

&
X1, . . . , XD′

d

'
.

(5.33)

The result follows by eliminating redundant variables as in the proof of Proposition 20.

Proposition 22 ([11]). Suppose in addition to the hypotheses in Proposition 21 that
h(X) is integer-valued. Then (5.30) holds also conditioned on SN(x) = x for integers
x → ∞.

Proposition 23 ([11]). Suppose in addition to the hypotheses in Proposition 21 or 22
that E |f(X1, . . . , XD)|p < ∞ and E |h(X)|p < ∞ for every p < ∞. Then the conclusion
(5.30) holds with convergence of all moments.

Remark 24. Again, the results in Propositions 19 and 21–23 hold jointly for several f
(possibly with different d and b1, . . . , bd), see [11].

6 Patterns and codes of tree permutations

Consider an occurrence of a tree permutation σ ∈ Tℓ in another tree permutation τ ∈ Tn.
The occurrence is defined by a subset I = {i1, . . . , iℓ} of the index set [n]. We colour each
symbol in the code Ωτ red if its index belongs to I, and black otherwise. We use also the
same colours for the corresponding vertices in Gτ . (All colourings in this paper are in red
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1 2 3 4 5 6 7
(2) (3) (5) (1) (6) (7) (4)
L L L R L L R

Figure 2: One occurrence of σ = 21 in τ = 2351674, at indices {2, 4}, is marked by red,
cf. Figure 1. (In this figure, we underline red L and R so that they can be seen also in
black-and-white print.) The corresponding coloured version of Ω2351674 is thus LLLRLLR.

and black. We may regard the red symbols or vertices as marked.) See Figure 2 for an
example.

Note that in the resulting coloured copy of Ωτ , the red symbols form the code Ωσ of
σ; this is a consequence of (4.5)–(4.6) and the fact that the corresponding (red) induced
subgraph of Gτ equals Gσ up to an order-preserving relabelling. However, not every
subset of ℓ symbols in the right order corresponds to an occurrence of σ. There is a 1–1
correspondence between

1. (nonempty) subsets of [n],

2. (nonempty) subsequences of Ωτ ,

3. occurences of some permutation υ in τ ,

4. (nonempty) labelled subgraphs of the permutation graph Gτ .

However, the subgraph in (4) is not necessarily a tree, and thus, the permutation υ in (3)
is not necessarily a tree permutation.

We may characterize the subsets of symbols in Ωτ that yield occurences of σ as follows.

Lemma 25. Let τ and σ be tree permutations with |τ | " |σ| " 2. A colouring of the
code Ωτ corresponds to an occurrence of σ in τ if and only if we may the delete the black
symbols one by one in some order according to the following rules (always interpreted
for the current string) until only red symbols remain, and these form the code Ωσ. The
allowed deletions are (in any order, and possibly repeated):

(A1) a black L that is immediately followed by another L;

(A2) a black L in the last but one position;

(A3) a black R that is immediately preceded by another R;

(A4) a black R in position 2.

Proof. Consider first the case of deleting one vertex i ∈ [n] from the tree Gτ , i.e., restrict-
ing the permutation τ to [n] \ {i} and then relabelling to get a permutation τ1 in Sn−1.
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The permutation graph Gτ1 is an induced subgraph of Gτ , and is thus always a forest; it
is a tree if and only if it is connected, which is the case exactly when i is leaf in Gτ . By
Lemma 11, the black vertices that may be deleted leaving a tree correspond precisely to
the symbols listed in (A1)–(A4).

Thus, to repeatedly remove black symbols according to the rules in the lemma, is
equivalent to repeatedly removing black leaves of Gτ , leaving a red subtree; if the resulting
red code is Ωσ, then this yields an occurence of σ.

Conversely, if the colouring of Ωτ corresponds to an occurrence of σ in τ , then the red
vertices form a red subtree in Gτ , and we may remove the black vertices of Gτ is some
order such that we always remove a black leaf of the current tree; this means that we may
remove the black symbols in some order such that the rules (A1)–(A4) are followed.

We may invert the deletions in Lemma 25, and instead insert black symbols into Ωσ.

Lemma 26. Let τ and σ be tree permutations with |τ | " |σ| " 2. A colouring of the
code Ωτ corresponds to an occurrence of σ in τ if and only if we may obtain it by from a
red code Ωσ by inserting black symbols one by one according to the following rules (always
interpreted for the current string). The allowed insertions are (in any order, and possibly
repeated):

(B1) a black L immediately to the left of any L;

(B2) a black L immediately to the left of the last symbol;

(B3) a black R immediately to the right of any R;

(B4) a black R immediately to the right of the first symbol.

Proof. Immediate from Lemma 25.

We have so far considered deleting or inserting one symbol at a time. Since only the
end result matters, the following version is more convenient for our purposes. (Recall that
the first red symbol always is L, and the last is R.)

Lemma 27. Let σ be a tree permutation with |σ| " 2. A coloured code Ω corresponds to
a marked (red) occurrence of σ in some tree permutation τ if and only if we may obtain
Ω from a red code Ωσ by inserting black symbols as follows (the strings may be empty):

(C1) a string of black L immediately to the left of each red L except the first;

(C2) a string of black L immediately to the left of the last red R;

(C3) a string of black R immediately to the right of each red R except the last;

(C4) a string of black R immediately to the right of the first red L;

(C5) any black string that is empty or begins with L before the first red symbol;

(C6) any black string that is empty or ends with R after the last red symbol.
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Proof. It is easily seen that if we take any coloured code obtained by these rules, and
insert another black symbol according to the rules in Lemma 26, then the result is also
described by (C1)–(C6). Hence, by induction, all possible coloured codes are given by the
insertions (C1)–(C6).

Conversely, suppose that Ω is obtained from a red Ωσ by (C1)–(C6); we have to show
that it also can be obtained by repeating (B1)–(B4) in some order. Evidently, (C1)–(C4)
can be obtained by repeating (B1)–(B4), so it remains only to show that we may add an
arbitrary black string beginning with L before the first red symbol, and an arbitrary black
string ending with R after the last red symbol. To see this, note that we may first add a
black L to the left by (B1). Then, when the code begins with a black L, we may by either
add a black R as the second symbol by (B4), or a black L as the first symbol by (B1),
but the latter gives the same result as adding a black L as the second symbol. Hence, we
may add an arbitrary black symbol immediately after the first one, and by repeating this
we may obtain any black string beginning with L, verifying (C5). The argument for the
right side is symmetric.

Lemma 28. Fix a tree permutation σ with |σ| " 2. For every n, let an;σ be the number
of pairs (τ, σ′) of a tree permutation τ of length |τ | = n together with a marked occurence
σ′ of the pattern σ. Define also the generating function

Aσ(z) :=
"

n"|σ|

an;σz
n. (6.1)

Then,

Aσ(z) =
z|σ|

(1− z)|σ|−2(1− 2z)2
. (6.2)

Proof. By Lemma 27, an;σ equals the number of coloured codes of length n that can be
obtained from a red Ωσ by the rules (C1)–(C6). These insertions are independent of each
other, so they correspond to multiplying factors in the generating function Aσ(z).

Each possible application of (C1)–(C4) yields a factor
0∞

k=0 z
k = (1− z)−1. There is

one possible such application for each symbol in Ωσ, by (C1) or (C4) for each L, and by
(C2) or (C3) for each R. Hence, the total contribution of (C1)–(C4) is (1− z)−|σ|.

By (C5), we may to the left add a black prefix that is either empty or is an arbitrary
sting beginning with L, which gives 2k−1 possible prefixes of length k for every k " 1 (and
1 prefix of length 0). This contributes to Aσ(z) a factor

1 +
∞"

k=1

2k−1zk = 1 +
z

1− 2z
=

1− z

1− 2z
. (6.3)

Black suffixes by (C6) contribute the same factor. These factors all multiply the term
corresponding to the original red symbols Ωσ, which is z|σ|. Hence, we obtain

Aσ(z) = z|σ|(1− z)−|σ|
1 1− z

1− 2z

22

, (6.4)

which yields (6.2).
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This yields an exact formula for the expected number of occurences of σ; note that
the result depends only on |σ| and n.

Theorem 29. Fix a tree permutation σ with |σ| " 2. Then, for n " |σ|,

E occσ(τ n) = [zn]
&
z|σ|(2− z)2−|σ|(1− z)−2

'
= [zn−|σ|]

&
(2− z)2−|σ|(1− z)−2

'

= n+ 3− 2|σ|+ 2−n

|σ|−3"

i=0

(|σ|− 2− i)2|σ|−i−1

#
n− |σ|+ i

i

$
. (6.5)

Proof. The total number of occurences of σ in tree permutations of length n is an;σ, and
the number of such tree permutations is tn = 2n−2 by (4.2). Hence, by (6.1)–(6.2),

E occσ(τ n) =
an;σ
2n−2

= [zn]
&
22−nAn(z)

'
= [zn]

&
4An(z/2)

'

= [zn]
z|σ|

(2− z)|σ|−2(1− z)2
, (6.6)

which gives the first two expressions in (6.5); the explicit formula then follows from the
partial fraction expansion, with m = |σ|− 2 " 0,

1

(2− z)m(1− z)2
=

1

(1− z)2
− m

1− z
+

m"

j=1

m− j + 1

(2− z)j
. (6.7)

7 A random tree permutation of random length

Recall that T (z) is the generating function in (4.3), and let, throughout the paper, p be
the (unique) positive root of

T (p) = 1. (7.1)

By (4.3), this yields 0 < p < 1/2 and p− p2 = 1− 2p, or p2 − 3p+ 1 = 0, and thus

p =
3−

√
5

2
= 0.381966 . . . . (7.2)

Recalling the golden ration φ in (2.2), we thus have

p = φ−2 = 2− φ. (7.3)

We note also

1− p = φ− 1 = φ−1, 1− 2p = p(1− p) = φ−3. (7.4)
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We now define a random tree permutation %τ to be a random element of T∗ with the
distribution

P(%τ = τ) = p|τ |, τ ∈ T∗. (7.5)

Note that the sum over all τ ∈ T∗ of the probabilities in (7.5) equals
0

n tnp
n = T (p) = 1,

and thus (7.5) really defines a probability distribution.
The random tree permutation %τ thus has random length. It follows from (7.5) that

the probability generating function of |%τ | is

G|!τ |(z) :=
∞"

n=1

tnp
nzn = T (pz). (7.6)

Lemma 30. We have

E |%τ | = φ+ 2 =
5 +

√
5

2
=

√
5φ

.
= 3.618, (7.7)

E |%τ |2 = 11φ+ 8 =
27 + 11

√
5

2
.
= 25.798, (7.8)

Var |%τ | = 6φ+ 3 = 3φ3 = 6 + 3
√
5

.
= 12.708, (7.9)

E |%τ |k < ∞, ∀k < ∞. (7.10)

Proof. By (7.6) and straightforward calculations using (7.3)–(7.4),

E |%τ | = G′
|!τ |(1) = pT ′(p) =

p(1− 2p+ 2p2)

(1− 2p)2
= φ4(φ−3 + 2φ−4) = φ+ 2. (7.11)

Similarly,

E
+
|%τ |(|%τ |− 1)

,
= G′′

|!τ |(1) = p2T ′′(p) =
2p2

(1− 2p)3
= 2φ5 = 10φ+ 6 (7.12)

and thus, combining (7.11) and (7.12),

E |%τ |2 = 11φ+ 8 (7.13)

and

Var |%τ | =
&
11φ+ 8

'
− (φ+ 2)2 = 6φ+ 3. (7.14)

This shows (7.7)–(7.9).
Finally, (7.10) follows because G|!τ |(z) has radius of convergence greater than 1. (Or

directly from (4.2) and (7.5).)
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7.1 From random trees to random forests

Recall that forest permutations are sums of tree permutations (4.1). Let %τ 1, %τ 2, . . . be
an infinite sequence of independent random tree permutations with the distribution (7.5),
and let

Sm :=
m"

i=1

|%τ i|, (7.15)

the total length of them first of these tree permutations. Thus, for anym " 1, %τ 1⊕· · ·⊕%τm

is a forest permutation of length Sm, having m blocks.
Suppose that π is a forest permutation with m blocks τ1, . . . , τm. Then, by (7.5),

P
&
%τ 1 ⊕ · · ·⊕ %τm = π

'
= P

&
%τ i = τi, ∀i ! m

'
=

m3

i=1

P
&
%τ i = τi

'
=

m3

i=1

p|τi| = p|π|. (7.16)

Note that this depends only on |π|.
In order to obtain arbitrary forest permutations, we have to consider a random number

of blocks. We use a renewal theoretic approach. For any n " 1, let, as in (5.9),

N(n) := min{m " 1 : Sm " n}. (7.17)

Then, SN(n) " n. Moreover, if π ∈ Fn has m blocks π1, . . . , πm, then %τ 1 ⊕ · · · ⊕ %τm = π
entails Sm = |π| = n, and thus N(n) = m. Hence, using also (7.16),

P
&
%τ 1 ⊕ · · ·⊕ %τN(n) = π

'
= P

&
N(n) = m & %τ 1 ⊕ · · ·⊕ %τm = π

'

= P
&
%τ 1 ⊕ · · ·⊕ %τm = π

'
= p|π| = pn. (7.18)

This probability is thus the same for all π ∈ Fn. Consequently, conditioned on SN(n) = n,
so that %τ 1 ⊕ · · · ⊕ %τN(n) ∈ Fn, (7.18) implies that %τ 1 ⊕ · · · ⊕ %τN(n) has the uniform
distribution in Fn, and thus

πn
d
=

&
%τ 1 ⊕ · · ·⊕ %τN(n) | SN(n) = n

'
. (7.19)

In words, we can construct a uniformly random πn ∈ Fn from the infinite sequence (%τ i)
by composing %τ 1, %τ 2, . . . until their total length is at least n, and then condition on the
total length being exactly n.

8 Trees in a random tree permutation !τ

The construction (7.19) suggests that it is useful to study the random variable occσ(%τ ),
for a given permutation σ. We do this first for a tree permutation σ.

Lemma 31. Let σ be a tree permutation, and let %τ be random with the distribution (7.5).
Then,

µσ := E[occσ(%τ )] =
(
E |%τ | = φ+ 2, |σ| = 1,

p|σ|(1− p)−|σ|& 1−p
1−2p

'2
= p|σ|/2−2 = φ4−|σ|, |σ| " 2.

(8.1)

E[occσ(%τ )k] < ∞, ∀k " 1. (8.2)
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Proof. First, if |σ| = 1, i.e., σ = 1, then trivially occσ(τ) = |τ | for any permutation τ ,
and thus this case of (8.1) follows from Lemma 30.

Assume now |σ| " 2, and let an;σ and Aσ(z) be as in Lemma 28. Then,
"

τ∈Tn

occσ(τ) = an;σ, (8.3)

and thus it follows from (7.5) that

E occσ(%τ ) =
"

τ∈T∗

occσ(τ)p
|τ | =

"

n"|σ|

pn
"

τ∈Tn

occσ(τ) =
"

n"|σ|

pnan;σ = Aσ(p). (8.4)

Consequently, (8.1) follows from (8.4) och (6.4), using (7.4).
Finally, (8.2) follows from (7.10), since occσ(τ) ! |τ | for any σ.

Example 32. The only tree permutation σ with |σ| = 2 is 21, and occ21(τ) counts the
number of inversions in τ , i.e., the number of edges in Gτ . If τ is a tree permutation,
we thus have occ21(τ) = |τ |− 1. Indeed, Lemma 31 yields E occ21(%τ ) = φ2, which equals
E
+
|%τ |− 1

,
= E |%τ |− 1 = φ+ 1 given by Lemma 30.

9 Patterns in a random forest permutation

We are now prepared to prove Theorems 8 and 9 on patterns in πn.

Proof of Theorem 8. Let π ∈ Sn have block decomposition π = π1 ⊕ · · · ⊕ πN . If σ =
σ1 ⊕ · · · ⊕ σd occurs as a pattern in π, then each block σj is mapped into some block
πij , but it is possible that several blocks of σ fit in the same block of π. Let occ′σ(π) be
the number of occurrences of σ such that the blocks are mapped to different blocks in
π, i.e., where the function j *→ ij is injective, and let occ′′σ(π) denote the number of the
remaining occurrences.

Let us first consider occ′σ, which will be the main term. We have

occ′σ(π) =
"

1!i1<···<id!N

d3

j=1

occσj
(πij). (9.1)

Thus, by (7.19),

occ′σ(πn)
d
=

1 "

1!i1<···<id!N(n)

d3

j=1

occσj
(%τ ij)

444 SN(n) = n
2
. (9.2)

This is a conditioned U -statistic of the type in Proposition 15, based on the i.i.d. sequence
Xi := %τ i, with S = S∗, the (discrete) space of all permutations, and h(τ) := |τ |; more

precisely, we then have occ′σ(πn)
d
=

&
UN(n)(f) | SN(n) = n

'
with

f
&
τ1, . . . , τd

'
:=

d3

j=1

occσj
(τj). (9.3)
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Note that (8.2) and Hölder’s inequality imply that E
+44f(%τ 1, . . . , %τ d)

44p, < ∞ for every
p < ∞. Similarly, E

+
h(%τ 1)

p
,
< ∞ by (7.10).

It follows from Proposition 15 that (3.4) holds for occ′σ, with some %µσ and γ2
σ; note

that in the notation of Section 5, by Lemma 30,

ν := Eh(%τ ) = E |%τ | = φ+ 2, (9.4)

and by (5.2), (9.3), the independence of %τ i, and (8.1) in Lemma 31,

µ = µσ :=
d3

j=1

E
+
occσj

(%τ j)
,
=

d3

j=1

µσj
= (φ+ 2)λφ4(d−λ)−(|σ|−λ). (9.5)

Thus, by (5.10), %µσ in (3.4) (so far for occ′σ) is given by

%µσ =
µσ

νdd!
=

µσ

(φ+ 2)dd!
=

1

d!
(φ+ 2)λ−dφ4d−3λ−|σ|, (9.6)

which yields (3.3).
Similarly, by (5.3),

fi(τ) = occσi
(τ)

3

j ∕=i

E occσj
(%τ j) =

3

j ∕=i

µσj
· occσi

(τ) =
µσ

µσi

occσi
(τ). (9.7)

Suppose that |σi| > 1. We may have, with positive probabilities,

1. |%τ | = 1, and then occσi
(%τ ) = 0,

2. %τ = σi, and then occσi
(%τ ) = 1 > 0.

Thus it is impossible to have fi(%τ ) = c|%τ | a.s., for any real c. Consequently, Proposition 14
yields γ2

σ > 0 if any block σi with |σi| > 1 exists.
It remains to show that occ′′σ(πn) is negligible. By grouping the blocks of σ that are

mapped into the same block of π, we see that occ′′σ(π) can be written as a sum over all
decompositions σ = σ̃1 ⊕ · · · ⊕ σ̃k with k < d, of the number of occurrences with each
σ̃i mapped into a block of π, with these blocks distinct. (Here σ̃i are necessarily forest
permutations.) It follows, using again (7.19), and N(n) ! n, that

E occ′′σ(πn) !
1

P(SN(n)=n)
E occ′′σ

&
%τ 1 ⊕ · · ·⊕ %τN(n)

'
! C E occ′′σ

&
%τ 1 ⊕ · · ·⊕ %τ n

'

= C

d−1"

k=1

"

σ̃1,...,σ̃k

"

1!i1<···<ik!n

E
k3

j=1

occσ̃j
(%τ ij). (9.8)

The number of terms in the multiple sum is O
&
nd−1

'
, and each term is O(1), using

independence, the trivial occσ̃j
(%τ ) ! |%τ ||σj |, and (7.10). Hence, E occ′′σ(πn) = O

&
nd−1

'
,

and (3.4) follows from the result for occ′σ(πn).
Moment convergence follows in the same way, using Proposition 16 and Minkowski’s

inequality; we omit the details.
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Proof of Theorem 9. We have the trivial identity

"

σ∈Sd

occσ(πn) =

#
n

d

$
. (9.9)

Furthermore, we only have to consider forest permutations σ ∈ Fd in (9.9), since otherwise
occσ(πn) = 0.

Let σ ∈ Fd, and let d′ be its number of blocks. If σ ∕= ιd, then d′ < d. If d′ ! d − 2,
then (3.4) implies that occσ(πn)/n

d−3/2 p−→ 0, so such terms can be ignored.
The remaining terms in (9.9) have d′ = d− 1, and thus 1 block of length 2 and d− 2

blocks of length 1. There are d − 1 such permutations; for example, if d = 4, they are
2134, 1324 and 1243. For each such σ, we have by (3.3)

%µσ =
1

(d− 1)!
(φ+ 2)−1φ4(d−1)−3(d−2)−d =

1

(d− 1)!
(φ+ 2)−1φ2, (9.10)

where, see (7.7),

(φ+ 2)−1φ2 =
φ2

√
5φ

=
φ√
5
=

5 +
√
5

10
. (9.11)

Hence, Theorem 8 yields

occσ(πn)− 5+
√
5

10
(d− 1)!−1nd−1

nd−3/2

d−→ N
&
0, γ2

σ

'
, (9.12)

Moreover, the proof of Theorem 8 applies also to the sum
0′

σ occσ over these d−1 permu-
tations σ. (Consider the sum of the corresponding functions (9.3). See also Remark 10.)
Thus,

0′
σ occσ(πn)− 5+

√
5

10
(d− 2)!−1nd−1

nd−3/2

d−→ N
&
0, γ2

'
, (9.13)

where γ2 > 0 by the argument in the proof of Theorem 8.
As said above, we may add all σ ∈ Fk with less than d− 1 blocks to the sum in (9.13)

without changing the limit. The resulting sum is, by (9.9),

"

σ∈Fd\{ιd}

occσ(πn) =

#
n

d

$
− occιd(πn), (9.14)

and thus (3.5) follows, with γ2
ιd
= γ2 in (9.13),

Moment convergence follows by the same argument.

Remark 33. The asymptotic variance γ2
σ can by (5.11) and (5.5) be computed from vari-

ances and covariances of the occσi
(%τ ) and |%τ |. (See also Remark 17 when σ is a tree

permutation, so d = 1.) We do not know any general formula, but at least for a specific
σ, it should be possible to calculate these using methods similar to those in the proof of
Lemmas 31 and 28.
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Example 34. Consider the simplest example σ = 21, where we count the number of
inversions in a random forest permutation πn. In this case, σ is indecomposable, so
d = 1. Furthermore, by (9.3) and Example 32,

f(τ) = occ21(τ) = |τ |− 1 = h(τ)− 1, (9.15)

and thus, using also (9.4),

µ21 = E f(%τ ) = ν − 1 = φ+ 1 = φ2, (9.16)

in agreement with (9.5). Hence, by (9.6) (or (3.3)) and (9.11),

%µ21 =
µ21

ν
=

φ2

φ+ 2
=

5 +
√
5

10
. (9.17)

Moreover, (5.12) yields, using also (7.9) and (7.7),

γ2
21 =

1

ν
Var

-
|%τ |− 1− ν − 1

ν
|%τ |

.
= ν−3 Var |%τ | = 3φ3

(
√
5φ)3

= 3 · 5−3/2 .
= 0.268. (9.18)

Consequently, Theorem 8 yields

occ21(πn)− 5+
√
5

10
n

n1/2

d−→ N
&
0, 3 · 5−3/2

'
. (9.19)

This implies also that for the case d = 2 of Theorem 9, we have γ2
12 = γ2

21 = 3 · 5−3/2.

Note that occ21(πn) equals the number of edges in the forest Gπn , and thus n −
occ21(πn) is the number of components of Gπn , which equals the number of blocks in πn.
Hence, Example 34 implies a central limit theorem for the number of blocks in a random
forest permutation:

Theorem 35. Let T (πn) be number of blocks in a random forest permutation πn, i.e.,
the number of tree permutations in a decomposition (4.1) of πn. Then

T (πn)− 5−
√
5

10
n

n1/2

d−→ N
&
0, 3 · 5−3/2

'
, (9.20)

with convergence of all moments.

10 Random tree permutations from random blocks

In the remaining sections, we study patterns in a random tree permutation τ n. In analogy
with the construction of πn from random tree permutations %τ i in Section 7, we may
construct the random tree permutation τ n with given length from a code with blocks of
random lengths. There is only one L-block or R-block of each length, and therefore (cf.
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(7.5)) we simply let (Li)
∞
1 and (Ri)

∞
1 be two infinite sequences of random variables, all

i.i.d., with the geometric distribution

P(Li = ℓ) = P(Ri = ℓ) = 2−ℓ, ℓ " 1. (10.1)

We also define the random vector

Xi := (Li, Ri), (10.2)

and, for a vector x = (ℓ, r),

h(x) := ℓ+ r. (10.3)

We use the notation of Section 5; in particular,

Sm :=
m"

i=1

h(Xi) =
m"

i=1

(Li +Ri). (10.4)

For m " 1, let τ ∗
m be the random tree permution that has a code with 2m blocks of

lengths L1, R1, . . . , Lm, Rm, and thus (random) length Sm. Then, for every tree permuta-
tion τ having a code Ωτ with 2m blocks with lengths ℓ1, r1, . . . , ℓm, rm, by independence
and (10.1),

P
&
τ ∗
m = τ

'
= P

&
L1 = ℓ1, R1 = r1, . . . , Lm = ℓm, Rm = rm

'

=
m3

i=1

P(L1 = ℓi)P(Ri = ri) =
m3

i=1

2−ℓi2−ri = 2−|τ |. (10.5)

It follows as in Section 7.1, cf. (7.18)–(7.19), that if τ is a tree permutation of length n
that has 2m blocks in its code, then

P
&
τ ∗
N(n) = τ

'
= P

&
N(n) = m & τ ∗

m = τ
'
= P

&
τ ∗
m = τ

'
= 2−|τ |, (10.6)

which is the same for all τ ∈ Tn, and thus

τ n
d
=

&
τ ∗
N(n) | SN(n) = n

'
. (10.7)

Note that XN(n) does not have the same distribution as Xi for a fixed i, see e.g. [5,
Section 2.6]. We will use a simple (coarse) estimate (valid for much more general Xi and
h(Xi)). Define for convenience h(Xi) := 0 for i ! 0.

Lemma 36. For any j " 0, k " 1 and n " 1,

P
+
h(XN(n)−j) = k

,
!

&
k + j Eh(X1)

'
P
&
h(X1) = k

'
. (10.8)

Hence, for any q > 0,

E
+
h(XN(n)−j)

q
,
! E

+
h(X1)

q+1
,
+ j Eh(X1)E

+
h(X1)

q
,
. (10.9)
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Proof. Write Yi := h(Xi) and Zi :=
0j

s=1 Yi+s. If YN(n)−j = k, then there exists some
m " 0 (viz. N(n)− j − 1) such that Sm < n, Ym+1 = k, and Sm + Ym+1 +Zm+1 " n. For
a given m, Sm, Ym+1 and Zm+1 are independent, and thus

P
&
YN(n)−j = k

'
!

∞"

m=0

n−1"

i=0

P
&
Sm = i, Ym+1 = k, k + Zm+1 " n− i

'

=
∞"

m=0

n−1"

i=0

P
&
Sm = i

'
P
&
Ym+1 = k

'
P
&
k + Zm+1 " n− i

'

= P
&
Y1 = k

' n−1"

i=0

∞"

m=0

P
&
Sm = i

'
P
&
k + Z1 " n− i

'

! P
&
Y1 = k

' n−1"

i=0

P
&
k + Z1 " n− i

'

! P
&
Y1 = k

' ∞"

s=1

P
&
k + Z1 " s

'
= P

&
Y1 = k

'
E
&
k + Z1

'

= (k + j EY1)P
&
Y1 = k

'
. (10.10)

This proves (10.8). We obtain (10.9) by multiplying (10.8) by kq and summing over k.

We record a simple fact.

Lemma 37. We have ELi = ERi = 2, and thus

ν := Eh(Xi) = 4. (10.11)

Proof. By definition, Li
d
= Ri ∼ Ge(1/2), and thus, as is well known, ELi = ERi = 2.

(See also (11.16) below.) Hence, (10.11) follows.

11 Trees in a given tree permutation

We next express the number of occurences of a pattern σ in a tree permutation using
codes and block lengths. We consider here only the case when σ is a tree permutation.

Lemma 38. Let σ be a tree permutation with |σ| " 3 having a code with 2b blocks of
lengths ℓ1, r1, . . . , ℓb, rb, and let τ be a tree permutation with |τ | " 3 having a code with
2m blocks of lengths ℓ′1, r

′
1, . . . , ℓ

′
m, r

′
m. Then

occσ(τ) =
m−b"

s=0

b3

i=1

αL,i

&
ℓ̃′i+s

'
αR,i

&
r̃′i+s

'
(11.1)

where

ℓ̃′k := ℓ′k − 1{k = 1, ℓ1 > 1}, (11.2)
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r̃′k := r′k − 1{k = m, rb > 1}, (11.3)

and

αL,i(ℓ
′) :=

#
ℓ′ − 1 + 1{i = 1, ℓ1 > 1}+ 1{i = b, rb = 1}

ℓi − 1 + 1{i = b, rb = 1}

$
, (11.4)

αR,i(r
′) :=

#
r′ − 1 + 1{i = b, rb > 1}+ 1{i = 1, ℓ1 = 1}

ri − 1 + 1{i = 1, ℓ1 = 1}

$
. (11.5)

Proof. The occurrences of σ in τ are described by colourings of Ωτ that can be obtained
as in Lemma 27. Consider one such colouring, /Ωτ say. We find some properties of it.

(i): Consider first the red symbols in /Ωτ that correspond to a single block Bj in Ωσ.
These red symbols have the same type (L of R), and there are no other red symbols
between them. It follows from Lemma 27 that they have to belong to the same block, B′

k

say, in τ , except for the first and last blocks B1 and B2b. If |B1| " 2, it is also possible
that the first L in B1 corresponds to the last in B′

k−2, while all others correspond to red
L in B′

k (for some odd k " 3). We have a symmetric situation for the last block B2b if

|B2b| " 2. Write k = k(j) for the index of the block B′
k in /Ωτ that corresponds to Bj.

(To be precise in all cases, B′
k(j) contains the last red L in Bj if j is odd, and the first red

R in Bj if j is even.)
(ii): Furthermore, for an L-block B2i−1 in Ωσ, the last L in the corresponding block

B′
k(2i−1) in

/Ωτ has to be red, except in the case of the last L-block B2b−1 if |B2b| = 1; in

that exceptional case there is no restriction on the red subset of B′
k(2b−1) (except it having

the size ℓb of B2b−1). For an R-block B2i there is a symmetric condition, unless i = 1 and
|B1| = 1.

(iii): In all cases, k = k(j) ≡ j (mod 2). Moreover, no completely black blocks can
be inserted between the red symbols in two consecutive blocks of Ωσ. Hence, k(j + 1) =
k(j) + 1 for every j < 2b, and thus there exists s ∈ [0,m− b] such that k(j) = j + 2s for
all i.

Conversely, any choice of red symbols satisfying (i)–(iii) for some s ∈ [0,m− b] gives a
colouring of the code Ωτ that can be constructed as in Lemma 27, and thus corresponds
to an occurrence of σ in τ .

For each choice of s, the choices of red symbols permitted by (i)–(iii) for an L-block

B2i−1 is αL,i(ℓ̃
′
s+i); note that for 1 < i < b, this is just

&ℓ′i+s−1

ℓi−1

'
, while for i = 1 and b

there are (possibly) some adjustments that are taken care of by the indicator functions
in (11.2) and (11.4). Similarly, the choices of red symbols for an R-block B2i is αR,i(r̃

′
s+i).

Hence, still for a fixed s, the total number of choices of red symbols in Ωτ is given by the
product in (11.1), because the choices for the different blocks B1, . . . , B2b can be made
independently of each other. Consequently, (11.1) holds.

Remark 39. The condition |σ| " 3 in Lemma 38 excludes the two cases σ = 1 and σ = 21.
Recall that both these cases are trivial, with occ1(τ) = |τ | and occ21(τ) = |τ |− 1 for any
tree permutation τ . (The latter because the number of inversions in τ equals the number
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of edges in the tree Ωτ .) Note that 21 has the code LR, so in the notation above, it has
b = 1 and ℓ1 = r1 = 1; however, (11.1) is not valid in this case.

Recall that b in Lemma 38 is denoted b(σ), see Section 4, and that we also have defined
b(1) := 1 for the case σ = 1. For any tree permutation σ we define, for b = b(σ) vectors
xj = (ℓ′j, r

′
j),

fσ

&
x1, . . . , xb

'
:=

b3

i=1

αL,i

&
ℓ′i
'
αR,i

&
r′i
'
, if |σ| " 3, (11.6)

with αL,i and αR,i given by (11.4)–(11.5), and

fσ(x1) := ℓ′1 + r′1 = h(x1) if |σ| ! 2. (11.7)

(In the exceptional cases 1 and 21 where (11.7) applies, we have b(σ) = 1.)
We compute also some expectations needed later.

Lemma 40. Let σ be as in Lemma 38 and let αL,i and αR,i be given by (11.4)–(11.5). Let
Li and Ri have the geometric distribution in (10.1). Then,

EαL,i(Li) =
&
1 + 1{i = 1, ℓ1 > 1}

'&
1 + 1{i = b, rb = 1}

'
, (11.8)

EαR,i(Ri) =
&
1 + 1{i = b, rb > 1}

'&
1 + 1{i = 1, ℓ1 = 1}

'
. (11.9)

Proof. In the definition (11.4), there are two special cases: (I) i = 1 and ℓ1 > 1; (II) i = b
and rb = 1. Note that both may occur together, if b = 1; thus there are four possible
combinations.

Case 1: Neither (I) nor (II). In this case, (11.4) is simply
&
ℓ′−1
ℓi−1

'
, and thus

EαL,i(Li) = E
#
Li − 1

ℓi − 1

$
. (11.10)

To compute this binomial moment, we note that the probability generating function of
Li − 1 is, by (10.1),

gL−1(z) :=
∞"

ℓ=1

zℓ−12−ℓ =
1/2

1− z/2
=

1

2− z
, (11.11)

and thus,

E
#
Li − 1

k

$
=

1

k!

dk

dzk
gL−1(1) = 1, k " 0. (11.12)

(Alternatively, compute [zk]gL−1(1 + z).) Hence, in this case,

EαL,i(Li) = 1. (11.13)
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Case 2: (I) but not (II). Then, ℓ1 " 2 and (11.4) yields

EαL,i(Li) = E
#

Li

ℓi − 1

$
. (11.14)

The probability generating function of Li is, by (11.11),

gL(z) = zgL−1(z) =
z

2− z
=

2

2− z
− 1, (11.15)

and thus,

E
#
Li

k

$
=

1

k!

dk

dzk
gL(1) = 2, k " 1. (11.16)

(Alternatively, use (11.12) and
&
Li

k

'
=

&
Li−1
k

'
+
&
Li−1
k−1

'
.) Hence, (11.14) yields

EαL,i(Li) = 2. (11.17)

Case 3: (II) but not (I). Then, (11.4) yields, using (11.16),

EαL,i(Li) = E
#
Li

ℓi

$
= 2. (11.18)

Case 4: Both (I) and (II). Then, b = i = 1, ℓ1 " 2, and (11.4) yields

EαL,i(Li) = E
#
Li + 1

ℓi

$
. (11.19)

The probability generating function of Li + 1 is, by (11.15),

gL+1(z) = zgL(z) =
2z

2− z
− z =

4

2− z
− 2− z, (11.20)

and thus,

E
#
Li + 1

k

$
=

1

k!

dk

dzk
gL(1) = 4, k " 2. (11.21)

(Alternatively, use (11.16) and
&
Li+1
k

'
=

&
Li

k

'
+
&

Li

k−1

'
.) Hence, by (11.19),

EαL,i(Li) = 4. (11.22)

We may summarize the four cases (11.13), (11.17), (11.18) and (11.22) as (11.8).
Similarly, by only notational changes, (11.5) yields (11.9).

Lemma 41. Let σ be any tree permutation, let b := b(σ), and let (Xi)i be the i.i.d. random
vectors defined in (10.2). Then

E fσ

&
X1, . . . , Xb

'
= 4. (11.23)
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Proof. The case |σ| ! 2 is immediate by (11.7) and Lemma 37.
Assume thus |σ| " 3. Then, by (11.6), independence, and Lemma 40,

E fσ(X1, . . . , Xb) = E
b3

i=1

αL,i

&
Li

'
αR,i

&
Ri

'
=

b3

i=1

EαL,i

&
Li

' b3

i=1

EαR,i

&
Ri

'

=
&
1 + 1{ℓ1 > 1}

'&
1 + 1{rb = 1}

'
·
&
1 + 1{rb > 1}

'&
1 + 1{ℓ1 = 1}

'

=
&
1 + 1{ℓ1 > 1}

'&
1 + 1{ℓ1 = 1}

'
·
&
1 + 1{rb = 1}

'&
1 + 1{rb > 1}

'

= (1 + 1)(1 + 1) = 4, (11.24)

which completes the proof.

We have no simple explanation for the, perhaps surprising, fact that the expectation
(11.23) is the same for every tree permutation σ, cf. Problem 7.

12 Patterns in a random tree permutation of given length

We next consider the occurrences of a pattern σ in a random tree permutation τ n. We
use the construction and notation in Sections 10 and 5. In particular, Xn and Sm are
defined by (10.1)–(10.4) and N(n) by (5.9).

We first consider the case of a tree permutation σ. Recall fσ defined by (11.6)–(11.7).

Lemma 42. Let σ be a tree permutation and let b := b(σ). Then

occσ(τ n)
d
=

1N(n)−b"

s=0

fσ

&
Xs+1, . . . , Xs+b

' 444 SN(n) = n
2
+OL∗(1). (12.1)

Proof. Assume first |σ| " 3, so fσ is given by (11.6). Recall τ ∗
m defined in Section 10,

and note that τ ∗
N(n) is a tree permutation having a code with 2N(n) blocks of lengths

L1, . . . , RN(n). Lemma 38 thus shows that

occσ
&
τ ∗
N(n)

'
=

N(n)−b"

s=0

b3

i=1

αL,i

&
Li+s − 1{s = 0, i = 1, ℓ1 > 1}

'

· αR,i

&
Ri+s − 1{s = N(n)− b, i = b, rb > 1}

'
. (12.2)

Except in the extreme cases s = 0 and s = N(n)−m, the product in the sum in (12.2) is

b3

i=1

αL,i

&
Li+s

'
αR,i

&
Ri+s

'
= fσ

&
Xs+1, . . . , Xs+b

'
. (12.3)

In the cases s = 0 and s = N(n) − b, the product might be smaller, but is still " 0.
Hence, (12.2) yields

N(n)−b−1"

s=1

fσ

&
Xs+1, . . . , Xs+b

'
! occσ

&
τ ∗
N(n)

'
!

N(n)−b"

s=0

fσ

&
Xs+1, . . . , Xs+b

'
. (12.4)
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We claim that

fσ

&
X1, . . . , Xb

'
, fσ

&
XN(n)−b+1, . . . , XN(n)

'
= OL∗(1). (12.5)

This implies that the difference of the first and last sums in (12.4) is OL∗(1), and thus

occσ
&
τ ∗
N(n)

'
=

N(n)−b"

s=0

fσ

&
Xs+1, . . . , Xs+b

'
+OL∗(1). (12.6)

To show (12.5), note first that (11.6) and (11.4)–(11.5) imply that

fσ(Xk+1, . . . , Xk+b) !
b3

i=1

(Lk+i +Rk+i)
c =

b3

i=1

h(Xk+i)
c, (12.7)

for some c < ∞ depending on σ only. Hence, using Hölder’s inequality, (12.5) follows if
we show that for every q < ∞ and every j ∈ [1, b],

Eh(Xj)
q = O(1), Eh(XN(n)−b+j)

q = O(1), (12.8)

The first part is trivial, since for any fixed j, we have Eh(Xj)
q = Eh(X1)

q < ∞. The
second part follows from Lemma 36.

Hence, (12.6) holds, and (12.1) follows by conditioning on SN(n) = n, recalling (10.7).
Note that the error term OL∗(1) survives this conditioning, because P(SN(n) = n) →
1/Eh(X1) > 0, see e.g. [5, Theorem 2.4.2], and thus for any q < ∞,

E
+
|OL∗(1)|q | SN(n) = n

,
!

E
+
|OL∗(1)|q

,

P
+
SN(n) = n

, = O(1). (12.9)

Finally, if |σ| ! 2, then b = 1 and

N(n)−b"

s=0

fσ(Xs+1) =

N(n)−1"

s=0

h(Xs+1) = SN(n). (12.10)

Furthermore, occσ(τ n) = n or n− 1, and thus (12.1) is trivial.

The sum in (12.1) is a constrained U -statistic of the type in (5.17), with d = 1 and
b1 = b(σ). We extend Lemma 42 to forest permutations σ.

Lemma 43. Let σ be a forest permutation with block decomposition σ = σ1 ⊕ · · · ⊕ σd.
Let bj := b(σj), and define

fσ

&
(x1i)

b1
i=1, . . . , (xdi)

bd
i=1

'
:=

d3

j=1

fσj

&
xj1, . . . , xjbj

'
. (12.11)

Then

occσ(τ n)
d
=

1
/UN(n)(fσ)

444 SN(n) = n
2
+OL∗(nd−1). (12.12)
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Proof. Recall again τ ∗
m from Section 10, and consider first occσ(τ

∗
m), for some given m.

By definition, τ ∗
m has 2m blocks, which we denote by B′

1, . . . , B
′
2m.

As before, we mark an occurrence of σ in τ = τ ∗
m by colouring the corresponding

symbols in the code Ωτ red (and the remaining ones black). Then each σj corresponds to
a set of red symbols, Aj say; these sets Aj are subsets of {1, . . . , |τm|}.

As in (5.13), let b′j := bj − 1. For each σj with |σj| " 3, the red symbols Aj are as
in the proof of Lemma 38, and they lie in some blocks B′

2ij−1, . . . , B
′
2(ij+b′j)

, possibly also

with a red symbol in B′
2ij−3 or B′

2(ij+b′j)+2.

If |σj| = 2, so σj = 21, then the red symbols in Aj are an L and an R forming an
edge, and thus described by Lemma 11(e1)–(e3); we then define ij so that the L belong
to B′

2ij−1 (and thus the R to B′
2ij

or B′
2ij+2).

Finally, if σj = 1, Aj is a single red symbol, which can be either L or R; we define ij
such that this symbol belongs to B′

2ij−1 or B′
2ij
.

The sets Aj follow each other in order, and thus we must have 1 ! i1 ! i2 ! . . . id ! m.
(Equality is possible, e.g. if |σj| = 1.) Moreover, for a given sequence i1, . . . , id, if all gaps
ij+1 − ij " 3, then the sets Aj can be chosen independently, without interfering with
each other (by colliding, having symbols in wrong order, or causing edges between two
of them). If furthermore i1 > 1 and id + b′d < m, the number of choices for each σj with
|σj| " 3 is fσj

&
Xij , . . . , Xij+b′j

'
by the proof of Lemma 38. The same holds for |σj| ! 2 by

the definition (11.7): if σj = 1, then Aj is one of the Lij +Rij symbols in B′
2ij−1 ∪B′

2ij
; if

σ = 21, then Aj consists of an L in B′
2ij−1 and an R in B′

2ij
or B′

2ij+2 chosen according to
one of (e1)–(e3) in Lemma 11, and this too gives Lij + Rij choices. (Note that (e1) and
(e2) overlap in one possibility.) Hence, for such i1, . . . , id the number of possible choices
of A1, . . . , Ad is

d3

j=1

fσj

&
Xij , . . . , Xij+b′j

'
= fσ

&
(Xi)

i1+b′1
i=i1

, . . . , (Xi)
id+b′d
i=id

'
. (12.13)

If some gap ij+1−ij ! 2, the number of possibilities may be smaller, but we may conclude
that, recalling the definition (5.17),

44occσ
&
τ ∗
m

'
− /Um(fσ)

44 !
"*

fσ

&
(Xi)

i1+b′1
i=i1

, . . . , (Xi)
id+b′d
i=id

'
, (12.14)

where
0* denotes the sum over i1, . . . , id ∈ [1,m−b′d] such that either i1 = 1, id = m−b′d,

or ij ! ij+1 ! ij + 2 for some j.
We now take m = N(n), condition on SN(n) = n and use (10.7). It remains only

to show that the sum in (12.14) (with m = N(n)) is OL∗(nd−1); this then survives the
conditioning as in (12.9). To see this, consider first the terms with i1 = 1 or ij ! ij+1 !
ij + 2 for some i. Since m = N(n) ! n, we may extend the sum to all i1, . . . , id ∈ [1, n]
satisfying one of these conditions. This is a sum of O(nd−1) terms, and each term is
OL∗(1) by (12.11), (12.7)–(12.8) and Hölder’s inequality. Hence the sum of these terms is
OL∗(nd−1) by Minkowski’s inequality.
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The remaining sum consists of terms with id = m− b′d = N(n)− b′d, and is thus

! fσd

&
XN(n)−b′d

, . . . , XN(n)

' n"

i1,...,id−1=1

d−13

j=1

fσj

&
Xij , . . . , Xij+b′j

'
. (12.15)

The first factor is OL∗(1) as shown in (12.7)–(12.8), and the sum is again a sum of O(nd−1)
terms that are OL∗(1), and thus this sum is OL∗(nd−1) by Minkowski’s inequality. Hence,
(12.15) is OL∗(nd−1) by Hölder’s inequality, which completes the proof.

Proof of Theorem 4. Lemma 43 and Proposition 22 show that

occσ(τ n)− µν−dd!−1nd

nd−1/2

d−→ N
&
0, γ2

'
, (12.16)

with convergence of all moments by Proposition 23; note that E |f(X1, . . . , XD)|p < ∞
and Eh(X1)

p < ∞ for every p < ∞ by (12.11), (12.5), and (12.8). Furthermore, (12.11)
and Lemma 41 imply that

µ = E f(X1, . . . , XD) =
d3

j=1

E fσj
(X1, . . . , Xbj) = 4d, (12.17)

while ν = 4 by Lemma 37. Hence, µν−d = 1, and (3.1) follows from (12.16).
To see that γ2 > 0 if some |σj| " 3, we use the criterion in Proposition 20. By (5.22)

and (12.11),

fσ,j(x1, . . . , xbj) = fσj
(x1, . . . , xbj)

3

i ∕=j

E fσi

&
X1, . . . , Xbi

'
= cfσj

(x1, . . . , xbj) (12.18)

for some constant c > 0. Now suppose that |σj| " 3. Then, (12.18), (11.6) and (11.4)–
(11.5) show that, with xi = (ℓ′i, r

′
i), fσ,j(x1, . . . , xbj) is a polynomial in {ℓ′i, r′i} of total

degree

δj :=

bj"

i=1

&
ℓi − 1 + ri − 1

'
+ 1{rbj = 1}+ 1{ℓ1 = 1}. (12.19)

We see also that the polynomial has only one term with this degree, and that this term
has a positive coefficient. Note further that

δj "
&
ℓ1 − 1 + 1{ℓ1 = 1}

'
+
&
rbj − 1 + 1{rbj = 1}

'
" 2. (12.20)

In particular, if we take x1 = · · · = xbj = (s, s), then fσ,j(x1, . . . , xbj) is a polynomial in s
of degree δj " 2. Hence, if we fix any n > 2bj, and consider the event (which has positive
probability)

Xi = (Li, Ri) =

(
(s, s), bj < i ! 2bj,

(1, 1), otherwise
(12.21)

the electronic journal of combinatorics 30(2) (2023), #P2.27 32



for an integer s " 1, we see that Sn(fσ,j) defined in (5.23) is a polynomial in s of degree
δj " 2. Furthermore, on the same event, Sn(h) is a polynomial in s of degree 1, and
thus, Sn

&
fσ,j − µ

ν
h
'
is a non-constant polynomial in s. Consequently, the condition in

Proposition 20 cannot be satisfied for fσ,j − µ
ν
h, and thus Proposition 21 shows that

γ2 > 0.

We compute the asymptotic variance γ2 only in a simple special case.

Example 44. Suppose that σ is a tree permutation with b(σ) = 1; thus its code has

only two blocks, of lengths ℓ1 = ℓ and r1 = r. Then, the U -statistic /UN(fσ) in (12.12) is
simply a partial sum:

/UN(fσ) =
N"

i=1

fσ(Xi) = SN(fσ). (12.22)

This is the special case d = 1 of an unconstrained U -statistic discussed in Remark 17,
and (5.12) yields, since µ = ν = 4 by (12.17) and (10.11),

γ2 =
1

4
Var

+
fσ(X)− h(X)

,

=
1

4

1
Var

+
fσ(X)

,
− 2Cov

+
fσ(X), h(X)

,
+Var

+
h(X)

,2
, (12.23)

where X = (L,R) with independent L,R ∼ Ge(1/2) as in (10.1)–(10.2). We recall that
EL = ER = 2. A simple calculation, for example using (11.16), yields VarL = VarR = 2
and thus Varh(X) = Var(L+R) = 4.

We consider several cases.

Case 1: ℓ = r = 1. This means Ωσ = LR, and thus σ = 21. As we have seen earlier, this
case is trivial and occσ(τ n) is deterministic. Indeed, we have fσ = h and thus (12.23)
yields γ2 = 0.

Case 2: ℓ > 1, r = 1. This means that σ is the permutation 23 · · · (ℓ+ 1)1.
By (11.6) and (11.4)–(11.5),

fσ(L,R) = αL,1(L)αR,1(R) =

#
L+ 1

ℓ

$#
R− 1

0

$
=

#
L+ 1

ℓ

$
. (12.24)

We have, using (11.21),

E
5
L

#
L+ 1

ℓ

$6
= (ℓ− 1)E

#
L+ 1

ℓ

$
+ (ℓ+ 1)E

#
L+ 1

ℓ+ 1

$
= 8ℓ, ℓ " 2, (12.25)

and thus (12.23) yields, using also EL2 = 6,

γ2 =
1

4
Var

5#
L+ 1

ℓ

$
− (L+R)

6
=

1

4

#
Var

5#
L+ 1

ℓ

$
− L

6
+ 2

$
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=
1

4

7
E

8##
L+ 1

ℓ

$
− L

$2
9
− 2

:
=

1

4
E

8#
L+ 1

ℓ

$2
9
− 4ℓ+ 1. (12.26)

This can easily be evaluated for any ℓ " 2, although we do not know a closed formula.

Case 3: ℓ = 1, r > 1. This means that σ is the permutation (r + 1)1 · · · r ∈ Tr+1. This
case is the same as the preceding one, if we exchange ℓ ↔ r and L ↔ R.

Case 4: ℓ > 1, r > 1. This means that σ = 2 · · · ℓ(ℓ+ r)1(ℓ+1) · · · (ℓ+ r− 1). By (11.6)
and (11.4)–(11.5),

fσ(L,R) = αL,1(L)αR,1(R) =

#
L

ℓ− 1

$#
R

r − 1

$
. (12.27)

We have, using (11.16),

E
5
L

#
L

ℓ− 1

$6
= (ℓ− 1)E

#
L

ℓ− 1

$
+ ℓE

#
L

ℓ

$
= 4ℓ− 2, ℓ " 2, (12.28)

and thus (12.23) yields

γ2 =
1

4
E

8##
L

ℓ− 1

$#
R

r − 1

$
− L−R

$2
9

=
1

4
E

8#
L

ℓ− 1

$2
9
E

8#
R

r − 1

$2
9
− 1

2
E
5#

L

ℓ− 1

$#
R

r − 1

$
(L+R)

6
+

1

4
E(L+R)2

=
1

4
E

8#
L

ℓ− 1

$2
9
E

8#
R

r − 1

$2
9
− 4(ℓ+ r) + 9. (12.29)

Again, this is easily evaluated for any ℓ, r " 2.

ℓ\r 1 2 3 4 5

1 0 6 52 306 1664
2 6 2 28 174 944
3 52 28 154 800 4150
4 306 174 800 3946 20196
5 1664 944 4150 20196 103010

Table 1: Some numerical values of γ2 = γ2(ℓ, r) in Example 44.

Some numerical values for small ℓ and r are given in Table 1. These values are integers
(but they do not seem to correspond to any integer sequence in [13]); we conjecture that
γ2(ℓ, r) is an integer for all ℓ, r " 1, but we have no proof.

Note that γ2(1, 3) ∕= γ2(2, 2), which verifies our claim after Corollary 5 that γ2
σ can

differ for different tree permutations σ, even if they have the same length.

Problem 45. In Example 44, is γ2 an integer for every ℓ, r " 1?

Problem 46. Is γ2
σ an integer for every tree permutation σ? For every forest permutation

σ?
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