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Abstract

We show that for every binary matroid N there is a graphD(N) such that for the
graphic matroid M(G) of a graph G, there is a matroid homomorphism from M(G)
to N if and only if there is a graph homomorphism from G to D(N). With this
we prove a complexity dichotomy for the problem HomM(N) of deciding if a binary
matroid M admits a matroid homomorphism to N . The problem is polynomial
time solvable if N has a loop or has no circuits of odd length, and is otherwise NP-
complete. We also get dichotomies for the list, extension, and retraction versions of
the problem.

Mathematics Subject Classifications: 05C15,05B35

1 Introduction

Recall that a binary matroid M is a matroid that is representable by a matrix over GF(2).
Its ground set is the set of columns of the matrix, and its circuits are those sets of columns
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that are minimally dependent- in particular the sum of the columns of a circuit over GF(2)
is 0. We consider only binary matroids in this paper, so even if it is not mentioned, every
matroid is binary. Moreover, for every matroid, we will assume that there are no parallel
points, meaning that the columns of the representing matrix are distinct. For two sets
A,B, we denote by A△B the symmetric difference (A−B)∪ (B −A) of A and B. For a
function φ : A → B and a subset X of A, we define φ(X) := △e∈X{φ(e)}. Thus e′ ∈ φ(X)
if and only if e′ = φ(e) for an odd number of edges e ∈ X.

Definition 1. For matroids M and N a matroid homomorphism φ : M → N is a map
φ : E(M) → E(N) such that for every circuit C of M , φ(C) is a disjoint union of circuits
of N . We consider the empty set to be the disjoint union of an empty set of circuits. We
write M → N to mean that there exists a matroid homomorphism from M to N .

The main goal of the present paper is to determine the complexity of deciding if there
is a matroid homomorphism between given matroids. We define the following decision
problem. In all our problems, both of the matroids M and N are given as matrices over
GF(2).

Problem. Matroid N -colouring or HomM(N)
Instance: A matroid M .
Decision: Does M → N?

The problem HomM(N) is in the complexity class NP. Recall that for a basis B of M ,
one gets a unique circuit Ce ⊆ B∪{e}, called a fundamental circuit, for each point e ∕∈ B,
and the set of such circuits, the fundamental circuits with respect to B, is a basis of the
cycle space of M . Thus to show that φ : E(M) → E(N) is a matroid homomorphism, it
is enough to check, for every fundamental circuit C with respect to a given basis B of M ,
that φ(C) is a disjoint union of circuits. This can be done in polynomial time in the size
|E(M)| of the instance, and so the problem HomM(N) is in NP.

Recall that for a graph G, the graphic matroid M(G) of G, also known as the cycle
matroid of G, is the matroid with ground set E(G) whose circuits are the cycles of G. A
graphic matroid M(G) is binary, represented by the incidence matrix of G. In the case
that G has loops, these loops would all be parallel, each being represented by a column
of zeros, and so only one exists in M(G). We call a matroid looped or loopless depending
on whether or not it has a loop, and when H is a loopless graph, will write Mℓ(H) for the
matroid we get from M(H) by adding a loop.

The problem HomM(M(H)), for a graph H, often translates into an interesting edge
colouring problem on G for an instance graphic matroid M(G). For example, a matroid
homomorphism φ : M(G) → M(K3) must assign colours from E(K3) = [3] to the edges of
G such that for every cycle in G the number of edges of each colour has the same parity.

Though appearing as an edge colouring problem, the problem of finding a matroid
homomorphism from M(G) to M(H) is still closely related to graph colouring and graph
homomorphism problems. Indeed, it is a trivial exercise to show the following. Recall
that a vertex map φ : V (G) → V (H) is a graph homomorphism φ : G → H if it takes
edges to edges.
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Figure 1: A matroid homomorphism of M(K4) to M(K3)

Fact 2. A graph homomorphism φ : G → H induces a matroid homomorphism φ′ :
M(G) → M(H) by φ′(uv) = φ(u)φ(v).

On the other hand, not all matroid homomorphisms are induced by graph homomor-
phisms in this way. To see this one need only recall that the graphic matroids M(P3) of
the path on three edges, and M(3K2) of the matching with three edges, are the same ma-
troid. Thus, for example, the identity matroid homomorphism M(P3) → M(3K2) cannot
be induced by a graph homomorphism P3 → 3K2 in this way. In [7], Whitney showed for
3-connected graphs G and G′ that M(G) ∼= M(G′) implies G ∼= G′, so perhaps there is
a limit to such facetious examples, but there are 3-connected pairs (G,H) of graphs for
which G → H but M(G) ∕→ M(H). One basic example was observed in [1] where they
show that there is a matroid homomorphism, shown in Figure 1, from M(K4) to M(K3).

Starting to address the problem of how different graph homomorphism and matroid
homomorphism can be, the authors of [1] went on to show the following. The purpose of
the result (not a main result in their paper) was to show that the homorphism (partial)
order of matroids, which we discuss in a little more detail in Section 2, has infinite
ascending chains.

Proposition 3 ([1]). For all n ! 3 there is no matroid homomorphism from M(K(n2)+2)

to M(Kn).

Our first result, in Section 2 uses a simple version of what we call the cycle gadget
construction, to improve on Proposition 3. We get the following.

Proposition 4. Let m,n ! 2. There is a matroid homomorphism M(Km) → M(Kn) if
and only if m = 4 and n = 3, or m " n.

From the fact that M(K4) → M(K3), and the obvious fact that matroid homomor-
phisms compose, we have for any 4-chromatic graph G thatM(G) → M(K3) but G ∕→ K3.
Indeed, we will see in Section 3 that a graph G satisfies M(G) → M(K3) and G ∕→ K3 if
and only if it is 4-chromatic. To make such a statement for other graphs H in place of K3

and so to succinctly quantify the difference between graph homomorphisms and matroid
homomorphisms, we generalise the cycle gadget construction to build, in Section 3, what
we call decision graphs.

A graph D(N) is a decision graph for a matroid N if for any graph G we have the
following:

M(G) → N ⇐⇒ G → D(N).
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In Section 3 we construct a decision graph D(N) for any matroid N , and observe some
of its properties. This is our main tool in determining the computational complexity of
the problem HomM(N).

Where HomG(H) for a graph H is the graph H-colouring problem which asks for an
instance graph G if there is a graph homomorphism G → H, Hell and Nešetřil proved the
following H-colouring dichotomy in [5].

Theorem 5 ([5]). The problem HomG(H), for a graph H, is in the complexity class P if
H contains a loop or is bipartite, and is otherwise NP-complete.

Using our decision graphs in Section 4, we are able to quickly reduce the problem of
the complexity of HomM(N) to problems covered by the H-colouring dichotomy, and so
get the following extension to matroid homomorphisms. A matroid is bipartite if every
circuit has even cardinality.

Theorem 6. The problem HomM(N), for a matroid N , is in P if N contains a loop or
is bipartite, and is otherwise NP-complete. Moreover, if HomM(N) is NP-complete, it is
NP-complete for graphic instances.

Having settled the computational complexity of HomM(N) we then look at the fol-
lowing variations, defined for any matroid N , of HomM(N). The graph homomorphism
analogues of these problems are well known.

Problem. ListHomM(N) or list N -colouring
Instance: A matroid M with list L(e) ⊆ E(N) for each e ∈ E(M).
Decision: Is there a matroid homomorphism φ : M → N with φ(e) ∈ L(e) for all e?

An N-precolouring of a matroid M is a map p : S → E(M) for some subset S of
E(N). A matroid homomorphism φ : M → N extends p if it restricts on S to p. The
following problem can be viewed as a restriction of ListHomM(N) in which the only lists
are E(M), for vertices not in S, and lists of cardinality 1, for vertices in S.

Problem. ExtM(N) or N -precolour extension
Instance: A matroid M and an N -precolouring p of M .
Decision: Is there a matroid homomorphism φ : M → N extending p?

A submatroid of a matroid M is any matroid represented by a matrix that consists
of some subset of the columns of the matrix representing M . A retraction of M to a
submatroid N is a matroid homomorphism φ : M → N that restricts to the identity on
E(N) ⊆ E(M). The following problem can be seen as a restriction of ExtM(N) in which
the precolouring p is an isomorphism of a submatroid of M to N .

Problem. RetM(N) or N -retraction
Instance: A matroid M containing N as a submatroid.
Decision: Is there a retraction φ : M → N?
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Observing, finally, that an instance M of HomM(N) becomes an instance of RetM(N)
by replacing it with the 1-sum (a.k.a. direct sum)M⊕1N , we get the following polynomial
reductions

HomM(N) "P RetM(N) "P ExtM(N) "P ListHomM(N) (1)

where the inequalities mean that there are polynomial time reductions which show that
if the problem on the right has polynomial complexity, then so does the problem on the
left.

These reductions are standard and are all well known for the graph homomorphism
analogues. For graphs, moreover it is known that RetG(H) =P ExtG(H), though the
standard reduction for this does not to work for matroid homomorphisms.

Before we state our results with respect to these problems, we recall relevant results
about their graph homomorphism analogues. By the analogue of (1) for graphs, all of
these problems are NP-complete for loopless non-bipartite graphs.

In [4], Feder, Hell, and Huang showed that for loopless graphs, ListHomG(H) is in
P if and only if H is bipartite and its complement is the intersection graph of arcs of a
circle. In [3], Feder and Hell showed that ListHomG(H) is in P for a reflexive graph H
(a graph in which every vertex has a loop), if and only if H is an interval graph. In [4],
Feder, Hell, and Huang showed that the problem is in P for a general graph H, (in which
some subset of the vertices has loops,) if and only if H is a so-called ‘bi-arc’ graph. By
the CSP-dichotomy of Bulatov [2] and Zhuk [8] we know that RetG(H) = ExtG(H) is
in P if and only if H admits a so-called ‘WNU-polymorphism’, but there is not a good,
full, structural description of the graphs that have such polymorphisms– though several
partial results are known.

The picture for the corresponding matroid homomorphism problems is quite different;
we point out two big underlying differences.

The first is that for a graph H, the complexity of the problems RetG(H), ExtG(H),
and ListHomG(H), depends significantly on which vertices of H have loops. But M(H)
can have at most one loop; it does not matter for the matroid versions of these problems
which vertices of H have loops. It only matters if there is one loop or none.

The second big difference is in the list version of the homomorphism problem. For
graphs, one can use the lists to restrict the problem to any induced subgraph, and so, show
that ListHomG(H) is NP-complete by showing that ListHomG(H

′) is NP-complete for any
induced subgraph H ′. The same works for ListHomM(M), but the induced structure is the
matroid induced by the points. So for graphic matroids, one gets that ListHomM(M(H))
is NP-complete if ListHomM(M(H ′)) is NP-complete for any subgraph H ′, not necessarily
induced. More generally if N ′ is a submatroid of N , then

ListHomM(N
′) "P ListHomM(N). (2)

This is a useful convenience in showing that ListHomM(N) is NP-complete.
In Section 5 we prove the following using another variation of our cycle gadget con-

struction.
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Theorem 7. The problem ExtM(N) is in P if N is the looped projective geometry
PGℓ(n, 2) for n ! −1, or the (loopless) affine geometry AG(n, 2) for n ! 0. Other-
wise ExtM(N) is NP-complete, and remains NP-complete when restricting only to graphic
instances.

The projective and affine geometries as matroids are described in Section 5, but we
note here, for those uncomfortable with a projective geometry with negative parameters,
the looped matroids PGℓ(n, 2) for n = −1, 0, and 1 are the looped graphic matroids
Mℓ(Ki) for i = 1, 2, 3 respectively, and the matroids AG(n, 2) for n = 0, 1 and 2 are the
graphic matroids M(K2), M(2K2) and M(C4) respectively. These are the only graphic
matroids covered by the theorem.

From this, it is a simple task to show that for the list version, any tractable cases with
at least 3 points becomes NP -complete for graphic instances. This leaves the following,
which we prove in Section 6.

Theorem 8. The problem ListHomM(N) is in P if N is the looped graphic matroid Mℓ(Ki)
for i = 1, 2, 3, or is the graphic matroid M(K2) or M(2K2). Otherwise ListHomM(N) is
NP-complete, and remains NP-complete when restricting only to graphic instances.

We finish off by showing the following in Section 7.

Theorem 9. The problem RetM(N) is in P if N is the looped projective geometry
PGℓ(n, 2) for n ! −1, or the affine geometry AG(n, 2) for n ! 0. Otherwise RetM(N) is
NP-complete.

Contrary to what happens for ExtM(N), the hardness results for RetM(N) do not
always persist when we restrict to graphic instances. Indeed, we show in Propositions 29
and 30 of Section 7 that RetM(N) drops to P for graphic instances when N is Mℓ(2K2) or
M(3K2). Because of this difference, our proof of Theorem 9 requires us to make matroid
versions of our gadgets– the graph versions cannot be made to work.

2 Matroid partial order and infinite ascending chains

As the identity map id : E(M) → E(M) is clearly a matroid homomorphism, and matroid
homomorphisms L → M → N clearly compose to give a matroid homomorphism L → N ,
the set of matroids is pre-ordered by the relation defined by setting M " N if M → N .
Calling matroids M and N homomorphically equivalent if M → N and N → M , this
pre-order induces a partial ordering on classes of homomorphically equivalent matroids.
It can be shown that each equivalence class has a unique (up to isomorphism) matroid
of minimum size, and this matroid is called the (matroid) core of the matroids in the
equivalence class.

Properties of the analogously defined partial order of graphs have long been investi-
gated, and it is a trivial exercise to show that there are infinite descending chains (the
odd cycles, for example) and infinite ascending chains (cliques, for example) in this partial
order.
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Figure 2: The cycle gadget construction !G and D1(K3)

In [1] it was shown that the graphic matroids of odd cycles are an infinite descending
chain in the homomorphism partial order of matroids. The authors then showed that
there exist infinite ascending chains in the partial order by showing, for all n ! 3, that
M(Km) ∕→ M(Kn) if m !

"
n
2

#
+ 2.

In this section we improve this significantly with the simplest version of our cycle
gadget construction.

Definition 10. For a loopless matroid N let D1(N) be the graph with vertex set E(N)
in which vertices e and f are adjacent if they occur together in a 3-circuit of N . For a
graph G, !G is the graph we get by adding a new vertex v∗ adjacent to all vertices.

The idea of the gadget is simple. By adding a dominating vertex v∗ to a graph G, we
effectively convert vertices of G into edges containing v∗ in !G. Edges {u, v} of G become

triangles {u, v, v∗} in !G, which being cycles, are used to relate the graph homomorphisms

of G to the matroid homomorphisms of !G.

Lemma 11. For any loopless matroid N , and any graph G the following holds:

G → D1(N) ⇐⇒ M( !G) → N.

Proof. Assume on the one hand that φM : M( !G) → N is a matroid homomorphism.
We claim that the map φG : V (G) → V (D1(N)) defined by φG(v) := φM(vv∗) is a graph
homomorphism. Indeed, for any edge uv ofG, φM({uv, uv∗, vv∗}) is a 3-circuit ofN , and so
maps uv∗ and vv∗ to distinct points that occur in a 3-circuit in N . Thus φG(u) = φM(uv∗)
is adjacent to φG(v) = φM(vv∗) in D1(N).

On the other hand, let φG : G → D1(N) be a graph homomorphism. Define a map

φM : E(M( !G)) → E(N) on points containing v∗ by φM(vv∗) = φG(v), and on other points
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uv corresponding to edges of G by setting φM(uv) to be the third point in the triangle
containing φG(u) and φG(v). Such a point exists because φG(u) and φG(v) are adjacent

in D1(N). By definition this map takes circuits of M( !G) of the form {uv, uv∗, vv∗} to

circuits of N . Observing that the maximal star centered at v∗ in !G is a basis of M( !G),
one sees that these circuits make up the set of fundamental circuits with respect to this
basis, and so φM is a matroid homomorphism.

Observe for a graphic matroid M(H) that a clique in D1(M(H)) corresponds to a set
of pairwise intersecting edges of H. This can consist only of edges in a triangle, or a star.
The largest clique in D1(M(K3)) is K3, but the largest clique in D1(M(Kn)) for n ! 4 is

Kn−1. As Km
∼= !Km−1 we thus get Proposition 4.

3 The decision graph for a matroid

A relation between matroid homomorphisms and the well studied concept of graph ho-
momorphisms is an invaluable tool in understanding matroid homomorphisms. In this
section we provide this tool.

Definition 12. A decision graph for a matroid N is a graph D such that for all graphs
G we have

M(G) → N ⇐⇒ G → D.

Clearly if there is a decision graph D there is one that is a core with respect to
graph homomorphisms, and this must be unique, so we call it the decision graph D(N)
of N . To construct decision graphs, we start with a simple extension of our cycle gadget
construction.

Definition 13. For a matroid N let D′
k(N) be the graph on the k-element multi-sets of

E(N) and let two such sets S and T be adjacent if there is some z such that S△T△{z}
is a disjoint union of circuits of N .

Let Dk(N) be the graph on subsets of E(N) of size up to k having the same parity as
k and, again, let two such sets S and T be adjacent if there is some z such that S△T△{z}
is a disjoint union of circuits of N .

For a graph G let !Gk be the graph we get from G by adding a new vertex v∗, and for
every vertex v of G a path of k new edges from v∗ to v.

The reason we introduce D′
k(N) instead of just Dk(N) is because it makes it clearer

that with just obvious changes to the proof of Lemma 11 one can show that for any k, G,
and N the following holds:

M( !Gk) → N ⇐⇒ G → D′
k(N). (3)

Observe the following.

Fact 14. For any matroid N and any k ! 1,
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(i) there is a retraction Dk(N) → D′
k(N) (it follows that Dk(N) and D′

k(N) are graph-
homomorphically equivalent,) and

(ii) there is a graph homomorphism Dk(N) → Dk+1(N).

Proof. We write Dk and D′
k for Dk(N) and D′

k(N). For fixed e ∈ E(N) the map ιk :
V (Dk) → V (D′

k) that adds k − |S| copies of e to the set S, is a graph homomorphism,
as S△T△{z} is a disjoint union of circuits of N if and only if it is when we add an even
number of copies of e. Moreover the map rk : D′

k → Dk that reverses this, reducing a
multi-set S ∈ V (D′

k) to the underlying set is also a graph homomorphism, showing thatD′
k

retracts to Dk. This proves item (i). To see that Dk → Dk+1 one can use the initial part
of the above argument with the map ι : V (Dk) → V (Dk+1) defined ι(S) = S△{e}.

With (3) and Fact 14 (i) we immediately get the following.

Lemma 15. For any k, G and N the following holds:

M( !Gk) → N ⇐⇒ G → Dk(N)

By Fact 14(ii) we have for any matroid N a chain of graph homomorphisms:

D1(N) → D2(N) → . . . .

As |E(N)| is finite, there is some m " |E(N)| such that Dd(N) ∼= Dm(N) for all d ! m.

Definition 16. LetD(N) be the graph core ofDm(N) wherem " |E(N)| is the minimum
m such that Dd(N) ∼= Dm(N) for all d ! m.

Example 17. For N = M(C5) one gets that D1(N) has no edges, D2(N) is the Petersen
graph, (plus an isolated vertex ∅), D3(N) adds 4 more vertices, and D4(N) adds one more.
For higher values of k we have Dk(N) ∼= D4(N). One can check that D4(N), shown in
Figure 3, is a graph core. Indeed, one might recognise it as the Clebsch graph. It admits a
matroid homomorphism to C5 mapping an edge to the point missing from the symmetric
difference of its endpoints.

Theorem 18. For any non-bipartite matroid N , and connected graph G, we have M(G) →
N if and only if G → D(N). So D = D(N) is the decision graph for N .

Proof. On the one hand if G → D → Dm(N), then M( !Gm) → N by Lemma 15, implying
M(G) → N by Fact 2.

On the other hand, let M(G) → N . As N is non-bipartite, D has at least one edge,
and so we have G → D if G is bipartite. We may therefore assume that G contains an
odd cycle. Thus there is some d such that all vertices of G have a walk of length d to some
fixed vertex c. This defines a map !Gd → G which induces M( !Gd) → M(G) by Fact 2.

Composing this with M(G) → N gives M( !Gd) → N , which by the Lemma 15 implies
G → D, as needed.
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Figure 3: The decision graph D(M(C5))

We finish this section with a couple more observations and remarks about the decision
graphs.

Fact 19. Let H be a graph, and D = D(M(H)) be the decision graph of the matroid
M(H). We have M(D) → M(H) → M(D), so the matroids M(H) and M(D) are
matroid-homomorphically equivalent. Moreover, H → D; but these need not be graph-
homomorphically equivalent.

Proof. One gets M(D) → M(H) by taking G = D in Definition 12, and H → D by
taking G = H. This latter implies M(H) → M(D) by Fact 2.

As Proposition 4 did in the previous section, Theorem 18 also allows one to translate
properties of the homomorphism order of graphs to the homomorphism order of matroids.

Example 20. There are several well known constructions of graphs Sk, for odd k ! 3,
having odd girth and chromatic number k. For example, one could use a generalised
Mycielski construction, or Erdős’s sparse incomparability theorem. Such graphs are often
given as an example of an infinite antichain in the graph homomorphism order, and an
infinite family of their graphic matroids do the same in the matroid homomorphism order.
Indeed, to see that M(Sk) and M(Sℓ) are incomparable for k ! 3 and ℓ > χ(D(M(Kk))),
we observe that M(Sk) ∕→ M(Sℓ) as Sk has an odd circuit of cardinality k while the
shortest odd circuit in Sℓ has cardinality ℓ. On the other hand, we have Sk → Kk

and so M(Sk) → M(Kk), while by Theorem 18, the fact that Sℓ has chromatic number
ℓ > χ(D(M(Kk))) means that Sℓ ∕→ D(M(Kk)), and soM(Sℓ) ∕→ M(Kk). ThusM(Sℓ) ∕→
M(Sk).
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From the proof of Theorem 18 we see that the integer m for which D(M(H)) is the

core of Dm(M(H)) can further be bounded by the smallest integer d such that !Hd → H.
This is generally smaller than |E(M(H))|. We defined D as the core of Dm, but Dm itself
seems often to be a core.

Question 21. Is it true for a matroid N that Dm(N) is a graph core?

4 The Homomorphism Problem for Matroids

In this section we determine the complexity of the problem HomM(N) for a matroid N .
As we observed in the introduction, it is in the complexity class NP. Recall that a matroid
is bipartite if all of its circuits have even length.

Theorem 6. For a matroid N the problem HomM(N) is polynomial time solvable if N
contains a loop or is bipartite, and otherwise is NP -complete. Moreover, if HomM(N) is
NP-complete, it is NP-complete for graphic instances.

Proof. If N contains a loop then for an instance M we get a matroid homomorphism by
mapping all points to the loop. If N is bipartite, then it is matroid-homomorphically
equivalent to its core, which is easily seen to be M(K2), and so an instance M admits
a homomorphism to it if and only if every circuit is even. One can determine this by
checking it on a basis of the cycle space; this can be done in polynomial time.

We may therefore assume that N has an odd circuit of cardinality 2k+1 ! 3, and no
loop. It is easy to see then that the graph Dk(N) contains a (2k+1)-cycle, and no loop as
N is loopless, and then so does D(N) using Fact 14. Thus HomG(D(N)) is NP-complete
by Theorem 5, and as D(N) is the decision graph for N we get that HomM(N) is also
NP-complete. In fact, this shows that it is NP-complete for graphic instances.

5 The Precolouring Extension Problem

In this section we prove Theorem 7, which says that ExtM(N) is in P, for a matroid N ,
if N is PGℓ(r, 2) or AG(r, 2) for some r, and is otherwise NP-complete.

We will need one more version of our cycle gadget construction.

Definition 22. Given a matroid N , let P be a path, with endpoints u and v, and with
an N -precolouring p of P . Let C be the cycle we get from P by adding the new vertex
v∗ and the edges uv∗ and vv∗. Let DP (N) be the graph with vertex set E(N) such that
e and f are adjacent if there is a matroid homomorphism φ : M(C) → N , extending p,
with φ(uv∗) = e and φ(vv∗) = f .

Given a graph G, let !GP be the graph we get from !G1 by subdividing each edge uv of
E(G) so that it is the same length as P and has edges precoloured with the same colours
as P .

The proof of the following lemma requires only obvious changes to the proof of
Lemma 11.
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Lemma 23. For any matroid N , graph G, and precoloured path P

M( !GP ) → N ⇐⇒ G → DP (N).

The following is immediate from Lemma 23 by Theorem 5.

Corollary 24. If DP (N), for some precoloured path P , contains an odd cycle and no
loop, then ExtM(N) is NP -complete.

Before we prove Theorem 7, we recall the definitions of projective and affine geometries
as matroids, and observe some of their properties. Recall that the binary projective
geometry PG(n, 2) of rank n+1 is represented by the matrix whose m = 2n+1−1 columns
are the non-zero vectors (x1, . . . , xn+1) in Zn+1

2 . Adding the zero vector, the matroid
represented by the matrix whose columns consist of all vectors in Zn+1

2 is looped projective
geometry PGℓ(n, 2). Removing the columns corresponding to points in the hyperplane
x1 + x2 + · · ·+ xn+1 = 0 from PG(n, 2) leaves the matrix of 2n columns of odd support in
Zn+1

2 . As we get this from PG(n, 2) by removing a hyperplane, it is the affine geometry
AG(n, 2). Viewing the points of the matroid PG(n, 2) as geometric points, and the rank-
2 flats (which are exactly the 3-circuits) as lines, it is clear that this matroids satisfies
the defining property of projective geometries: every pair of points lies in a unique line.
The given representation of AG(n, 2) makes it just as clear that every set three distinct
points lies in a unique 4-circuit. We observe now that this property of a matroid actually
characterises finite affine geometries.

Lemma 25. Let N be a matroid of rank r.

(i) The matroid N is the looped projective geometry PGℓ(r − 1, 2) if and only if it is
looped and every pair of non-loop points are in a common 3-circuit.

(ii) The matroid N is the (loopless) affine geometry AG(r − 1, 2) if and only if it is
loopless and every set of three points are in a common 4-circuit.

Proof. We prove part (ii); the proof of (i) is similar, and is essentially a fact of finite
geometry.

We observed above that AG(r − 1, 2) has the required property. On the other hand,
let N be a loopless matroid of rank r such that every set of three points is in a 4-circuit;
we show it has the representation of AG(r − 1, 2) given just above the statement of the
lemma. As N is binary it has a matrix representation over GF(2), and we can assume that
the r points of a basis B can be represented by the columns of support 1. As any three of
these are in a 4-circuit, the fourth point in the circuit is their sum, and so every column
of support 3 must be in N . Continuing in this way, any column of support 2k + 1 " r
must occur as the fourth point in the 4-circuit containing some point of support 2k − 1
and two points in B.

With this, the following two propositions serve as the proof of Theorem 7.

Proposition 26. The problem ExtM(N) is NP-complete if N is any of the following.
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(i) Loopless and non-bipartite.

(ii) Loopless and contains 3 points not all together in a 4-circuit.

(iii) Looped and contains 2 non-loop points not both together in a 3-circuit.

Proof. Part (i) is immediate from Theorem 6 and (1).
For part (ii), assume that N contains three points labelled 1, 2 and 3 that do not

occur together in a 4-circuit. Let P be a 4-path with one precoloured edge of each of the
colours 1, 2 and 3 (and one uncoloured edge).

We claim that DP (N) is loopless and contains a triangle, giving the result by Corol-
lary 24. Indeed, the cycle C of Definition 22 is a 6-cycle with three coloured edges, each
getting a distinct colour from the set {1, 2, 3}. As the remaining three edges of C can be
coloured with the colours 1, 2 and 3 in any order, DP (N) contains a triangle on the ver-
tices 1, 2 and 3. We need just verify that it is loopless. If it has a loop, then there is some
matroid homomorphism φ : M(C) → N such that φ(uv∗) = φ(vv∗), where, recall, uv∗
and vv∗ are edges of C that were not pre-coloured. Thus C − {uv∗, vv∗}, which contains
the edges precoloured 1, 2 and 3 maps to a 4-circuit, which contradicts our assumption.

For part (iii), one need only make small obvious changes to the proof of part (ii).

Proposition 27. The problem ExtM(N) is in P if N satisfies either of the following.

(i) N is looped and every set of two non-loop points is in a 3-circuit.

(ii) N is loopless and bipartite and every set of three points is in a 4-circuit.

Proof. We prove part (ii), the proof of part (i) is similar but simpler.
Let N be bipartite and be such that every set of three points is in a 4-circuit. Let

the matroid M with an N -precolouring p be an instance of ExtM(N) and let S ⊆ E(M)
be the support of p. If M is non-bipartite, then the instance is a NO instance because
N is bipartite. Thus we may assume M is bipartite. If S contains any circuits C such
that p(C) is not a disjoint union of circuits of N , then the instance is a NO instance;
call such circuits C bad. Taking a basis of S and checking fundamental circuits with
respect to this basis, we can check S for bad circuits in polynomial time. If any exist,
we are done, so assume there are no bad circuits. We may assume that p is defined on a
spanning submatroid of N by arbitrarily colouring points whose inclusion in the support
of p creates no new circuit. Let B be some basis of N contained in the support of p. From
here, we extend p to a matroid homomorphism φ : M → N as follows. While one exists,
choose a point e on which φ is not defined. It creates a new fundamental circuit Ce with
respect to B. As M is bipartite Ce \ {e} contains an odd number of points. As N is
a binary affine geometry by Lemma 25, these points are represented by columns of odd
support, so the sum of an odd number of them over GF(2) is a column of odd support,
which is in N . Setting φ(e) to be this colour ensures that φ(Ce) is a disjoint union of
circuits of N . In this way, we can extend p to a homomorphism φ : M → N .
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6 The List Homomorphism Problem

We observed before that ExtM(N) is a restriction of ListHomM(N) to lists of size 1 and
|E(N)|. From this observation we get that the problems are equivalent when |E(N)| " 2,
and so from Theorem 7 we get that ListHomM(N) is in P when N is Mℓ(K1), Mℓ(K2),
M(K2) or M(2K2). Moreover we also get that ListHomM(N) is NP-complete if N is
loopless and non-bipartite. This leaves the cases when |E(N)| is at least 3 and is either
looped or bipartite, and then the result follows from the observations (1) and (2) that

ExtM(N
′) "P ListHomM(N

′) "P ListHomM(N).

In the former case the submatroidN ′ on points 0, 1 and 2, where 0 is the loop, is isomorphic
to Mℓ(2K2), so ExtM(N

′) is NP-complete. In the latter case the submatroid N ′ on the
non-loops 1, 2 and 3 is isomorphic to M(3K2) so again ExtM(N

′) is NP-complete.
Thus without any work we get Theorem 8.

7 The Retraction Problem

The tractability part of Theorem 9 is immediate from Theorem 7 and (1). On the other
hand, we have from Theorem 6, and (1), that RetM(N) is NP-complete if the matroid N
is loopless and non-bipartite. Thus to complete the proof of Theorem 9 it is enough to
prove the following.

Proposition 28. The problem RetM(N) is NP-complete if the matroid N is either of the
following.

(i) Bipartite but not AG(n, 2) for some n ! 0.

(ii) Looped but not PGℓ(n, 2) for some n ! −1.

Proof. We prove part (i) first. Any such matroid N has a triple {a, b, c} ⊆ E(N) of points
not in a 4-circuit.

Let C be a 6-circuit with edges a, b, and c precoloured with the colours a, b, and c, and
let x and y be two of its uncoloured edges. Let H be the graph with vertex set on E(N) in
which vertices e and f are adjacent if there is a matroid homomorphism φM : M(C) → N
extending the precolouring, and taking x and y to e and f respectively. ClearlyH contains
the triangle on the points a, b and c, and as a, b and c do not occur in N in a 4-circuit, H
has no loops. Thus HomG(H) is NP-complete. We show that HomG(H) can be encoded
in RetM(N) and so get that RetM(N) is NP-complete.

Let G be an instance of HomG(H), and let N ′ be the matroid with the ground set
V (G) and having rank |V (G)| (meaning it has no circuits). Starting from N ⊕1 N

′, with
a basis B containing {a, b, c}∪V (G), construct an instance M of RetM(N) by adding the
new point euv, for every edge uv of G, whose corresponding vector in the representation
over GF (2) is the sum of those of u, v, a, b and c. Doing so adds a new fundamental
6-circuit Cuv = {a, b, c, u, v, euv} with respect to B which enforces that, under retraction
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to N , the points u and v must map to points that are adjacent as vertices of H. It is
clear that a retraction r : M → N therefore defines a graph homomorphism φG : G → H
by setting φG(v) = r(v) for all v ∈ V (G).

On the other hand, let φG : G → H be a graph homomorphism. Partially define the
map r : E(M) → E(N) by letting it be identity on N , and setting r(v) = φG(v) for points
in V (G). We complete it to a retraction r : M → N by setting, for every edge uv of G,
r(euv) to be the point of N such that r(Cuv) is a disjoint union of circuits of N . Such a
point exists as uv is an edge of H. That this map takes circuits of N to circuits in N is
clear as it is the identity on these points; that it takes other circuits to disjoint unions of
circuits comes from the fact that the other fundamental circuits with respect to B are the
Cuv, and that we defined r on the last point of these circuits in such a way as to make
the image a union of circuits of N .

Thus HomG(H) is encoded in RetM(N), as needed.
For part (ii) the proof is essentially the same, replacing the 6-circuit C with a 5-circuit

with precoloured edges a and b where a, b are non-loop points of N not in a 3-circuit, and
other designated edges x and y. Under retraction to N it is clear that that x and y must
go to distinct points, and so the graph H on V (N) of possible targets of these two points
is loopless and contains the triangle on a, b and 0, where 0 is the loop of N .

The following propositions show that the complexity of RetM(N) may differ from that
of its restriction to graphic instances. Note that we can use Tutte’s algorithm [6] for a
graphic matroid M given as a binary matrix to construct a graph G such that M = M(G)
in polynomial time. We do not need this algorithm to distinguish YES and NO instances;
however we need it to give a certificate for YES instances.

Proposition 29. Let M be a graphic matroid containing a submatroid N isomorphic to
M(3K2). Then there is a retraction M → N if and only if M is bipartite and no 4-circuit
of M contains every point of N . Consequently, RetM(M(3K2)) is polynomial time solvable
for graphic instances.

Proof. Let G be a graph such that M(G) = M and let ei be the precoloured edge of each
of the colours i ∈ {1, 2, 3}. Our goal is to decide whether or not G has a good colouring:
a colouring of the edges of G with the colours {1, 2, 3}, extending the precolouring, such
that every cycle has an even number of edges of each colour. First suppose there is a
retraction M → N . If G is non-bipartite, or all of e1, e2, and e3 are in a 4-cycle, then a
good colouring is impossible.

To show the other direction, assume that G is bipartite and that not all of the three
edges e1, e2 and e3 are in a 4-cycle. We claim that there are non-adjacent vertices v1 and
v2 in G such that each is in exactly one of the edges ei. Indeed, let H be subgraph of G
consisting of the edges e1, e2, and e3 and only the vertices that they contain. If H is not
connected, then there exists ei (say e1) such that e1 shares no vertex with e2 or e3. Since
e2 and e3 form a matching or a 2-path, we can let v2 be a vertex of e2 having degree 1
in H. As H is bipartite, there is an end of e1 that is not adjacent to v2; let this end be
v1. If H is connected, then because it is bipartite, it is either a 3-path or a copy of K1,3.
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In either case, we can pick any two leaves as v1 and v2; if they are adjacent in G then G
contains a 3-cycle, in the case that H is K1,3, or a 4-cycle containing all of e1, e2, e3 in the
case that H is a 3-path.

With v1 and v2 as claimed, we may assume that v1 is in e1 and v2 is in e2. Colour the
edges of G incident to v1 with colour 1, those incident to v2 with colour 2, and all other
edges with colour 3. Any cycle has 0 or 2 edges of colour 1 and colour 2, and has even
length so has an even number of edges of colour 3. This is the good colouring we needed,
and thus there is a retraction M → N .

For the last part, with our graphic representation of M , we can check if e1, e2, and e3
occur together in a 4-circuit in constant time, and can use a tree search, in linear time
(in the number of points of M), to decide if G is bipartite.

Proposition 30. Let M be a graphic matroid containing a submatroid N isomorphic to
Mℓ(2K2), and let e1 and e2 be the non-loop points of N . Then there is a retraction M → N
if and only if M contains neither a 3-circuit containing e1 and e2, nor a M(K4) containing
e1 and e2. Consequently, RetM(Mℓ(2K2)) is polynomial time solvable for graphic instances.

Proof. Let the loop of N be called e0. Let G be a graph such that M(G) = M . Our goal
is to decide if we can colour the edges of G with the colours 0, 1 and 2 in such a way that
edge ei gets colour i for each i, and every cycle has an even number of edges of each of
the colours 1 and 2. We call such a colouring of the edges a good colouring.

First suppose there is a retraction M → N , and so G has a good colouring. Under
a good colouring, a 3-cycle C gets three possible colourings: all three edges are coloured
with 0; two edges are coloured 1 and one is coloured 0; or two edges are coloured 2 and
one is coloured 0. In particular, a 3-cycle containing the edges of colour 1 and 2 omit a
good colouring. We call such cycles omitting 3-cycles. If M contains a 3-circuit containing
e1 and e2, these must get colour 1 and 2, so it is a omitting 3-cycle in G. So towards
contradiction, suppose there is a subgraph H ∼= K4 of G containing edges e1 and e2. Note
that if any edge of colour 1 in H shares a vertex with an edge of colour 2, then the vertices
of these edges induce an omitting 3-cycle in H, and so there is no good colouring. Thus
{e1, e2} is a matching in H, and any other edge of H is coloured with 0. This is not a
good colouring on any 3-cycle in H, giving a contradiction.

To show the other direction, assume that G has neither a 3-cycle containing e1 and e2
nor a K4 containing e1 and e2. We claim that there are non-adjacent vertices v1 and v2
in G such that each is in exactly one of the edges e1 and e2. If e1 and e2 have a common
vertex, then let v1, v2 be non-common vertices of e1, e2, respectively. They are adjacent by
the assumption that G has no 3-cycle containing e1 and e2. If e1 and e2 have no common
vertex, then there is an end vi of ei for each i ∈ {1, 2} such that v1, v2 are not adjacent;
otherwise there is a K4 containing e1 and e2.

With v1 and v2 as claimed, we may assume that v1 is in e1 and v2 is in e2. Colour the
edges of G incident to v1 with colour 1, those incident to v2 with colour 2, and all other
edges with colour 0. Any cycle has 0 or 2 edges of colour 1 and colour 2, so this is the
good colouring we needed, and thus there is a retraction M → N .
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Again, we can check in linear time whether G has a 3-cycle or a copy of K4 containing
e1 and e2.

8 Concluding Remarks

The hardness proofs for all of our results depend on the H-colouring dichotomy of [5];
but it is not clear that these results require this hammer. We wonder if any of our main
results cannot be proved without resorting to this, or stronger, results.

That RetM(N) and ExtM(N) have the same complexity dichotomies suggests that, as in
the graph homomorphism case, there could be a direct encoding of ExtM(N) in RetM(N).
The standard graph reduction does not work, nor should it as the complexities of these
problems do not agree for graphic instances. Such encodings exists with various strong
properties on N , but we were unable to make them general enough to prove Theorem 9.
A direct proof of the equivalence of these problems would be interesting.
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