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UFSM

Santa Maria, Rio Grande do Sul, Brazil, 97105-900.

fernando.tura@ufsm.br

Submitted: May 4, 2022; Accepted: Mar 9, 2023; Published: May 19, 2023

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A graph is said to be I-eigenvalue free if it has no eigenvalues in the interval I
with respect to the adjacency matrix A. In this paper we present two algorithms
for generating I-eigenvalue free threshold graphs.

Mathematics Subject Classifications: 05C50, 05C75,05C85

1 Introduction

In 1972 A. J. Hoffman [7] presented a remarkable result about the density of eigenvalues
on the real line. Let A be the set of all symmetric matrices of all orders, every entry of
which is a non-negative integer and R = {ρ : ρ = ρ(A) for some A ∈ A} where ρ(A) is
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the largest eigenvalue of A. He determined all limit points of R 6
√

2 +
√

5. Then, in

1989, Shearer [12] extended this result. He showed that every point >
√

2 +
√

5 is a limit
point of R. Since then, several interesting results have been obtained on this topic as you
can see in [13], where it is proved that every real number is a limit point of eigenvalues
of graphs.

Given that, it seems counterintuitive that some classes of graphs have no eigenval-
ues in a prescribed, arbitrary size interval. Nevertheless, Jacobs et al. [8] showed that
threshold graphs are (−1, 0)-eigenvalue free. And, in [1], Aguilar et al. proved that
anti-regular graphs, a subclass of threshold graphs, have no eigenvalues in the interval

Ω =
[
−1−

√
2

2
, −1+

√
2

2

]
except the trivial eigenvalues −1 and 0. This result was extended

by Ghorbani in [4] by showing that threshold graphs have no eigenvalues in Ω except the
trivial ones.

Searching for graphs that have no eigenvalues in some interval, in this paper, we pro-
vide two algorithms for generating infinite families of I-eigenvalue free threshold graphs.
More specifically, given a positive real number N and a natural number r one algorithm
constructs a threshold graph G with associated cotree TG(a1, a2, . . . , ar) of depth r, which
will be the initial threshold graph for generating infinite families of (0, N ]-eigenvalue free
threshold graphs. And, the other one provides a similar result for the interval [M,−1)
where M is a negative real number. We show that our approach also can be used to prove

that threshold graphs are
(
−1−

√
2

2
,−1

]
and

[
0, −1+

√
2

2

)
-eigenvalue free which shows that

we have a generalization of the above mentioned results.
Here is an outline of the paper. In Section 2 we describe the cotrees associated to

threshold graphs, and in Section 3 we recall an algorithm for locating eigenvalues in a
cograph G developed in [9] and present some of its applications that include determining
the inertia of G just using its associated cotree. In Section 4 we explain our strategy
based on the inertia of the graph. The algorithms for generating infinite families of I-
eigenvalue free threshold graphs are given in Section 5 and 6. In Section 7 we exhibit

such families. Our method is used to prove that threshold graphs are
(
−1−

√
2

2
,−1

]
and[

0, −1+
√
2

2

)
-eigenvalue free in Section 8. Finally, in Section 9 we discuss about some open

problems.

2 Threshold representation

Let G = (V,E) be an undirected graph with vertex set V and edge set E. If |V | = n, then
its adjacency matrix A(G) = [aij] is the n× n matrix of zeros and ones such that aij = 1
if and only if vi is adjacent to vj (that is, there is an edge between vi and vj). For v ∈ V ,
N(v) denotes the open neighborhood of v, that is {w|{v, w} ∈ E} and N [v] = N(v)∪{v}
the closed neighborhood. A value λ is an eigenvalue if det(λIn − A) = 0, and since A
is real symmetric its eigenvalues are real. In this paper, a graph’s eigenvalues are the
eigenvalues of its adjacency matrix.

The class of threshold graphs was introduced by Chvátal and Hammer [3] and Hender-
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son and Zalestein [6] in 1977 and their numerous applications go from computer science
to psychology [10].

A threshold graph can be constructed through an iterative process which starts with
an isolated vertex, and at each step either a new isolated vertex is added or a dominating
vertex is added, i.e., a vertex adjacent to all previous vertices is added. More specifically,
we may represent a threshold graph on n vertices using a binary sequence (b1, b2, . . . , bn)
as follows: bi = 0 if vertex vi is added as an isolated vertex, and bi = 1 if vi is added as
a dominating vertex. In Figure 1 we show the threshold graph G with binary sequence
b = (1, 1, 1, 1, 0, 0, 0, 1, 1). It can also be seen as consecutive blocks of 0’s and 1’s, for
instance b = (1, 1, 1, 1, 0, 0, 0, 1, 1) = 140312. Notice that we order the vertices of G in the
same way they are given in their sequence.

1

2

3

4

5 6

7

8

9

Figure 1: b = (1, 1, 1, 1, 0, 0, 0, 1, 1) = 140312

Threshold graphs are a subclass of cographs and each cograph can be represented by
a cotree, for more details see [2, 9]. It is interesting that for threshold graphs, the cotree
is a caterpillar, as shown in [11].

In this note, we focus on representing the threshold graph using its cotree (caterpillar),
that we describe below. A cotree TG of a threshold graph is a rooted path in which any
interior vertex w is either of union ∪ type (corresponding to a block of 0’s) or join ⊗ type
(corresponding to a block of 1’s). The terminal vertices (leaves) are typeless and represent
the vertices of the threshold. Since we work only with connected thresholds graphs in this
paper, our cotree is basically defined by placing a ⊗ node at the trees’s root. And then,
placing ∪ on interior nodes with odd depth, and placing ⊗ on interior nodes with even
depth.

Notice that, if a cotree TG associated to a threshold graph has an even depth then its
final interior node is a ∪ type, and if its depth is odd then it is a ⊗ type as in Figure 2.

The cotree denoted by TG(a1, a2, . . . , ar) with ai > 1 for 1 6 i 6 r − 1, ar > 2 and
r odd is depicted in Figure 2. Notice that following our notation each interior node at
depth i has ai terminal vertices (leaves).
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⊗
r

∪
r − 1

∪
2

⊗
1

Figure 2: Cotree TG(a1, a2, . . . , ar).

The binary representation corresponding to the cotree in Figure 2 is given by b =(
1ar , b

ar−1

2 , . . . , ba2r−1, 1
a1
)
. For instance, the threshold with binary representation b =

(1, 1, 1, 1, 0, 0, 0, 1, 1) = 140312 has the cotree representation TG(2, 3, 4) depicted in Figure
3.

⊗
3

∪
2

⊗
1

Figure 3: Cotree TG(2, 3, 4).

We would like to point out that in this paper we only deal with connected threshold
graphs. It means that in the binary representation we always have bn = 1 and in the
cotree representation our first node always is a ⊗.

Finally, we define siblings vertices given its important role in the structure of cographs
and in the following algorithm. Two vertices u and v are duplicates if N(u) = N(v) and
coduplicates ifN [u] = N [v]. Therefore, we call u and v siblings if they are either duplicates
or coduplicates.

3 Algorithm Diagonalize

The algorithm presented in this section was developed in [9]. Basically, it constructs a
diagonal matrix D congruent to A+xI, where A is the adjacency matrix of a cograph G.
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Algorithm 1 Diagonalize (TG, x)

Input: cotree TG, scalar x
Output: diagonal matrix D = [d1, d2, . . . , dn] congruent to A(G) + xI

initialize di := x, for 1 6 i 6 n
while TG has > 2 leaves do

select siblings {vk, vl} of maximum depth with parent w
α← dk β ← dl
if w = ⊗ then

if α + β 6= 2 then //subcase 1a

dl ← αβ−1
α+β−2 ; dk ← α + β − 2; TG = TG − vk

else if β = 1 then //subcase 1b

dl ← 1 dk ← 0; TG = TG − vk
else //subcase 1c

dl ← 1 dk ← −(1− β)2; TG = TG − vk; TG = TG − vl
end if

else if w = ∪ then
if α + β 6= 0 then //subcase 2a

dl ← αβ
α+β

; dk ← α + β; TG = TG − vk
else if β = 0 then //subcase 2b

dl ← 0 dk ← 0; TG = TG − vk
else //subcase 2c

dl ← β dk ← −β; TG = TG − vk; TG = TG − vl
end if

end if
end while

We would like to point out that the Diagonalize(TG, x) works bottom up since the
cotree is represented in the same way. In this note we just work with threshold graphs so
the cotrees we use are depicted in Figure 2. Therefore, throughout the text we represent
the steps bottom up by steps from left to right.

In this article given a graphG and a scalar a ∈ R we define the triple (a+, a0, a−), where
a+ denotes the number of eigenvalues of G that are greater than a, a0 the multiplicity of
a and a− the number of eigenvalues of G that are less than a. Therefore, the inertia of a
graph G, using our notation, is the triple (0+, 00, 0−). The following results presented in
this section are from [9] and will be used throughout the note. The next one shows that
the Algorithm 1 computes the triple (a+, a0, a−).

Theorem 1. Let D = [d1, d2, . . . , dn] be the diagonal returned by Diagonalize(TG,−a),
and assume D has a+ positive values, a0 zeros and a− negative values. Then

i: The number of eigenvalues of G that are greater than a is exactly a+.

ii: The number of eigenvalues of G that are less than a is exactly a−.

iii: The multiplicity of a is a0.
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The following three results show that we can obtain information about the localization
of certain eigenvalues of the cograph G just by analysing its associated cotree TG.

Theorem 2. Let G be a cograph with cotree TG having ⊗-nodes {w1, . . . , wj}, and assume
each wi has ti children in TG. Then

n−(G) =

j∑
i=1

(ti − 1).

Theorem 3. Let G be a cograph with cotree TG having ∪-nodes {w1, . . . , wm}, where wi
has ti > 0 terminal children. If G has j > 0 isolated vertices, then

n0(G) = j +
m∑
i=1

(ti − 1).

Theorem 4. Let G be a cograph with cotree TG having ⊗-nodes {w1, . . . , wm}, where wi
has ti > 0 terminal children. Then the multiplicity of −1 is

m∑
i=1

(ti − 1).

The next two lemmas provide an alternative initialization of the algorithm i.e., first
we perform assignments to the leaves with identical value of the cotree and then we move
on with the specialized cotree.

Lemma 5. If v1, . . . , vm have parent w = ⊗, each with diagonal value y 6= 1, then the
algorithm performs m− 1 iterations of subcase 1a, assigning during iteration j:

dk ←
j + 1

j
(y − 1) (1)

dl ←
y + j

j + 1
. (2)

Lemma 6. If v1, . . . , vm have parent w = ∪, each with diagonal value y 6= 0, then the
algorithm performs m− 1 iterations of subcase 2a, assigning during iteration j:

dk ←
j + 1

j
y (3)

dl ←
y

j + 1
. (4)

One advantage of the algorithm is that it is applied directly in the cotree so the
diagonal values processed during the iterations will be labeled in the vertices. As pointed
out before, the algorithm progresses bottom up but in this article we work only with
threshold graphs so we will represent these iterations from left to right. The next example
elucidates these observations.
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Example 7. We will apply Diagonalize to the cograph G with cotree TG(2, 3, 4) and
x = −1. Since we process the algorithm directly in the cotree, the diagonal values di’s
will appear at the terminal vertices vi’s during the execution. Each leaf is initialized with
the value di = −1 as in Figure 4. Since multiple leaves of the same parent (⊗ or ∪) have
the same diagonal value y = −1 at the initialization, we can begin performing assignments
to the terminal children (leaves) of the cotree using Lemmas 5 and 6 as follows.

⊗
3

−1−1−1−1

∪
2

−1−1−1

⊗
1

−1−1

Figure 4: Diagonalize(TG(2, 3, 4),−1).

At depth 3, there are 4 leaves all with value y = −1, and using Lemma 5, 3 iterations
are performed. According to equation (1), −4, −3, −8

3
are the permanent diagonal values

assigned. And, by (2), the final remaining value is

dl ←
1

2
.

Figure 5 depicts the cotree after Lemma 5 being applied at ⊗-nodes at depth 1 and 3,
and Lemma 6 at ∪-node at depth 2.

⊗
3

−4 −3 −8
3

1
2

∪
2

−2 −3
2

−1
3

⊗
1

−4 0

Figure 5: Specialized cotree TG(2, 3, 4).

Notice that the vertices associated to permanent values are removed and we proceed
with the cotree with the remaining vertices and its values as depicted in Figure 6 left.
The last vertex with value 1

2
is relocated to the next level as in Figure 6 right.

⊗
3

1
2

∪
2

−1
3

⊗
1

0

→
∪
2

1
2

−1
3

⊗
1

0

Figure 6: Applying subcase 2a.

Select the sibling pair {vk, vl} labeled with dk = 1
2

and dl = −1
3

at the ∪-node at depth
2 and initialize α ← dk = 1

2
and β ← dl = −1

3
as illustrated in Figure 6 right. Then
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subcase 2a is executed and the assignments dk ← 1
6

and dl ← −1 are made as shown
in Figure 7 left. Then, the remaining vertex is relocated to the next level as in Figure 7
right.

∪
1

−11
6

⊗
1

0

→
⊗
2

−1 0

Figure 7: Applying subcase 1a.

Now, as α = −1 and β = 0, subcase 1a is executed at the last iteration and the
assignments dk ← −3 and dl ← 1

3
are made as shown in Figure 8.

⊗
1

−1 0

→
⊗
1

−31
3

Figure 8: Final remaining value.

The algorithm stops, and the final diagonal is formed by the permanent values and
the last remaining value as shown in Figure 9. Therefore, according to Theorem 1 1+ = 2,
1− = 7 and 10 = 0.

−4 −3 −8
3
−2 −3

2
−4 1

6
1
3
−3

Figure 9: Final diagonal.

4 Our strategy

We would like to begin this section with two observations. First, suppose we have a
threshold graph G such that 0+ = N+ for a positive real number N , that is, the number
of eigenvalues of G that are greater than 0 is equal to the number of eigenvalues of G that
are greater than N . Therefore, 0+ = N+ implies that G is (0, N ]-eigenvalue free. Second,
suppose we have a threshold graph G such that M+ = (−1)0 + 00 + 0+ for a negative
real number M < −1. Then, the number of eigenvalues of G that are greater than M is
equal to the number of eigenvalues of G that are greater than or equal to −1. That is,
M+ = (−1)0 + 00 + 0+ implies that G is [M,−1)-eigenvalue free.

Next, we explain our strategy for generating a threshold graph G that is (0, N ]-
eigenvalue free for a real number N > 0. Our method consists in constructing a threshold
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graph G with cotree TG(a1, a2, . . . , ar), by choosing each ai > 1 for 1 6 i 6 r − 1 and
ar > 2, and showing that this threshold graph is (0, N ]-eigenvalue free using the fact that
N+ = 0+. Next we compute 0+ as a function of the number of crosses and unions in TG
for the cases r odd and even.

Let G be a threshold graph with cotree TG(a1, a2, . . . , ar) with ar > 2 and r odd.
When we apply the algorithm Diag(TG, 0) we are able to compute the inertia (0+, 00, 0−)
of G. First, note that r = | ⊗ | + | ∪ | = 2| ⊗ | − 1 since | ∪ | = | ⊗ | − 1, where | ⊗ |
and | ∪ | denotes, respectively, the number of crosses and unions in G w.r.t. to the cotree
representation. Hence, by Theorem 2 we obtain the following

0− =

|⊗|−1∑
i=1

a2i−1 + 1− 1

+ ar − 1 =

 |⊗|∑
i=1

a2i−1

− 1.

And, by Theorem 3

00 =

|∪|∑
i=1

(a2i − 1) =

|∪|∑
i=1

(a2i)− | ∪ |.

Finally

0+ = n− 0− − 00 = n−

 |⊗|∑
i=1

a2i−1

− 1

−
 |∪|∑

i=1

(a2i)− | ∪ |



0+ = n−

 |⊗|∑
i=1

a2i−1

+

|∪|∑
i=1

(a2i)


︸ ︷︷ ︸

n

+| ∪ |+ 1

0+ = | ∪ |+ 1.

If r is even, then r = | ⊗ |+ | ∪ | with | ⊗ | = | ∪ |. Therefore, as before, by Theorem 2

0− =

|⊗|∑
i=1

(a2i−1 + 1− 1) =

|⊗|∑
i=1

(a2i−1)

and by Theorem 3

00 =

|∪|∑
i=1

(a2i − 1) =

|∪|∑
i=1

(a2i) + | ∪ |.

So,

0+ = n− 0− − 00 = n−

 |⊗|∑
i=1

(a2i−1)

−
 |∪|∑

i=1

(a2i) + | ∪ |

 = | ∪ |.

Therefore, as aforementioned, our approach is to construct a threshold graph such
that N+ = | ∪ |+ 1 if r is odd and N+ = | ∪ | if r is even.

the electronic journal of combinatorics 30(2) (2023), #P2.30 9



Now, we present our strategy for generating a threshold graph G that is [M,−1)-
eigenvalue free for a real number M < −1. As before, our method consists in constructing
a threshold graph G with cotree TG(a1, a2, . . . , ar), by choosing each ai > 1 for 1 6 i 6
r − 1 and ar > 2, and showing that this threshold graph is [M,−1)-eigenvalue free using
the fact that M+ = (−1)0 + 00 + 0+. Next we compute (−1)0 + 00 + 0+ for the cases r
odd and even.

Let G be a threshold graph with cotree representation TG(a1, a2, . . . , ar) with ar > 2
and r odd. Then r = | ⊗ |+ | ∪ | where | ⊗ | = | ∪ |+ 1. Using Theorem 4 we obtain that

(−1)0 =
∑|⊗|

i=1(a2i−1 − 1), so

(−1)0 + 00 + 0+ =

|⊗|∑
i=1

(a2i−1 − 1) + 00 + (n− 0− − 00)

=

|⊗|∑
i=1

(a2i−1 − 1) + n−

 |⊗|∑
i=1

(a2i−1)− 1


= n− | ⊗ |+ 1

= (n− r) + (| ∪ |+ 1),

since r = | ∪ |+ | ⊗ |.
And, if r is even then 0− =

∑|⊗|
i=1(a2i−1). Hence,

(−1)0 + 00 + 0+ = n− | ⊗ | = (n− r) + | ∪ |.

In this case, our approach is to construct an threshold graph such that M+ = (n −
r) + | ∪ |+ 1 if r is odd and M+ = (n− r) + | ∪ | if r is even.

5 Diag (TG,-N )

Instead of directly applying the algorithm Diag(TG(a1, a2, . . . , ar),−N) for N > 0, we
initialize the process using Lemmas 5 and 6 in the leaves of the cotree with identical value
as described in Example 7.

First, Lemma 5 is applied at each ⊗-node at depth i of the cotree. We perform ai− 1
iterations that leave negative permanent assignments j+1

j
(−N − 1) for j = 1 . . . ai − 1 by

(1) and by (2) a remaining value

dl ←
−N + ai − 1

ai
= 1− N + 1

ai

at the last iteration, as represented in Figure 10.
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⊗
i

−N −N
−

− ⊗
i

1−N+1
ai

→

Figure 10: Join.

And, following Lemma 6, for each ∪-node at depth i of the cotree we perform ai − 1
iterations that leave negative permanent assignments j+1

j
(−N) for j = 1 . . . ai − 1 by (3)

and by (4) a remaining value

dl ←
−N
ai

at the last iteration, as depicted in Figure 11.

∪
i

−N −N
−

− ∪
i

−N
ai

→

Figure 11: Union.

We would like to emphasize that, as described in Example 7, the vertices associ-
ated to permanent values are removed from the cotree. Therefore, after the specializa-
tion aforementioned in the terminal children of the cotree with identical value, we have∑r

i=1(ai − 1) = n− r negative permanent assignments. And, after that we will continue
processing the specialized cotree in Figure 12 using Algorithm Diagonalize from left to
right. Our strategy is to show that each ∪-node assigns a positive permanent value and
each ⊗-node a negative permanent value with a positive remaining value. Consequently,
it will imply that N+ = | ∪ |+ 1 if r is odd and N+ = | ∪ | if r is even.

⊗
r

1−N+1
ar

∪
r − 1

−N
ar−1

∪
2

−N
a2

⊗
1

1−N+1
a1

Figure 12: Specialized cotree.

It is important to point out that throughout this paper we execute Diagonalize in two
main steps. In the first one we process the leaves with identical value and obtain what
we have called specialized cotree as illustrated in Figure 12. Then, we proceed with the
algorithm on the specialized cotree as in Example 7.
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Consider the sequence of remaining values
{

1− N+1
ar
, −N
ar−1

, . . . , −N
a2
, 1− N+1

a1

}
at the

specialized cotree in Figure 12 and the functions

f(X, Y ) =
X Y − 1

X + Y − 2
(5)

g(X, Y ) =
X Y

X + Y
. (6)

If we choose the initial value sr+1 = 1− N+1
ar

and for each new value we pick g for a union

and f for a join, then we obtain recursively sr = g(sr+1,
−N
ar−1

), sr−1 = f(sr, 1 − N+1
ar−2

)
and so on, until we reach s1. These are the assignments we obtain by applying the
subcase 1a and subcase 2a from Diag(TG,−N), which is performed from left to right.
That is why we produce si in the inverse order, from sr+1 to s1.

In the next two lemmas we show that by choosing the number of terminal children we
can control the sign of the permanent and remaining assignments.

Lemma 8. Suppose we have a ∪-node with leaves having values si+1 > 0 and −N
ai

with

ai >
N
si+1

as illustrated in Figure 13. Then we obtain a positive permanent value pi and a

negative remaining value si.

∪
i

si+1 −N
ai

+ ∪
i

si < 0

→

Figure 13: Union step.

Proof. Since α = si+1 >
N
ai

and β = −N
ai

, we can execute subcase 2a because α+ β > 0.
It returns a positive permanent assignment

pi = dk ← si+1 −
N

ai
> 0,

and a negative remaining value

si = dl ← g

(
si+1,−

N

ai

)
=
si+1

(
−N
ai

)
pi

< 0.

Lemma 9. Suppose we have a ⊗-node with leaves having values si+1 < 0 and 1 − (N+1)
ai

with ai >
N+1

1−
(

1
si+1

) as illustraded in Figure 14. Then we obtain a negative permanent value

pi and a positive remaining value si.
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⊗
i

si+1 1− N+1
ai

− ⊗
i

si > 0

→

Figure 14: Join step.

Proof. Since α = si+1 < 0 and β = 1 − N+1
ai

then we can execute subcase 1a because

α + β − 2 = si+1 + 1 − N+1
ai
− 2 = si+1 − 1 − N+1

ai
< 0. It returns a negative permanent

assignment

pi = dk ← si+1 − 1− N + 1

ai
< 0,

and a positive remaining value

si = dl ← f

(
si+1, 1−

N + 1

ai

)
=
si+1

(
1− N+1

ai

)
− 1

pi
> 0

if and only if

ai >
N + 1

1−
(

1
si+1

) ,
as our hypothesis holds.

Next, we will show that the two lemmas above used together produce an algorithm to
construct threshold graphs that are (0, N ]-eigenvalue free.

Initial step: Considering r odd, after the specialization, the leaf at the ⊗-node of
depth r has the assignment

sr = 1− N + 1

ar
> 0

if and only if ar > N + 1. Then, using ar > N + 1 and Lemmas 8 and 9 we can construct
a threshold graph of depth r that is (0, N ]-eigenvalue free.

And for r even, after the specialization at the node of depth r we have a leaf with
assignment

sr =
−N
ar

< 0

for ar > 2. Then, using ar > 2 and lemmas 8 and 9 we can construct a threshold graph
of depth r that is (0, N ]-eigenvalue free.

The next two results sum up the above observations. We would like to point out that
in the next theorem we begin with a generic cotree TG(a1, a2, . . . , ar) and, at each step,
we choose specific values for ai, 1 6 i 6 r.

Theorem 10. Let N > 0 be a fixed number and r an odd number, if we choose natural
numbers ar > N + 1, ar−1 >

N
sr

, ar−2 >
N+1

1−
(

1
sr−1

) , etc., then TG(a1, a2, . . . , ar) is (0, N ]-

eigenvalue free.
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Proof. Considering the case r odd we have to prove that N+ = 0+ = | ∪ | + 1. We start
the Diag(TG,−N) using Lemmas 5 and 6 to process the terminal children with identical
value. As afore-explained this initial process produces (n−r) negative permanent diagonal
assignments, adding (n − r) to N−. Then we proceed the Algorithm Diagonalize on the
specialized cotree in Figure 12. The last ⊗-node at depth r has a leaf with assignment
sr = 1 − N+1

ar
> 0 which will be relocated to the next level at the ∪-node as shown in

Figure 15.

sr=1−N+1
ar

∪
r − 1

−N
ar−1

∪
2

−N
a2

⊗
1

1−N+1
a1

Figure 15: Specialized cotree relocated.

Using Lemma 8 at the ∪-node at depth r−1 we obtain a positive permanent diagonal
value pr−1 > 0 and a remaining assignment sr−1 < 0. The leaf having the value sr−1 is
then relocated to the next ⊗-node at level r− 2 as depicted in Figure 16. At the ⊗-node
at depth r − 2 we apply Lemma 9 and it creates a negative permanent diagonal value
pr−2 < 0 and a remaining value sr−2 > 0 which will be relocated to the next level r − 3.

sr−1<0

⊗
r − 2

1− N+1
ar−2

∪
2

−N
a2

⊗
1

1−N+1
a1

Figure 16: Specialized cotree relocated.

Continuing this process, the ⊗-node at level 1 will have two leafs with assignments s2
and 1− N+1

a1
as illustrated in Figure 17 left. Once we apply Lemma 9 we process the two

remaining vertices whose diagonal values will be p1 < 0 and s1 > 0.

⊗
1

s2 1− N+1
a1

− ⊗
1

s1 > 0

→

Figure 17: Last iteration.

The algorithm stops, and then each ∪-node has produced a positive permanent diag-
onal assignment, adding | ∪ | to N+. And each ⊗-node, except the one at depth r, has
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produced a negative permanent diagonal value, adding | ⊗ | − 1 to N−. And the final
permanent diagonal value is s1 > 0, adding +1 to N+. Therefore N− = (n− r) + |⊗ |− 1,
N0 = 0 and N+ = | ∪ |+ 1.

Theorem 11. Let N > 0 be a fixed number and r an even number, if we choose natural
numbers ar > 2, ar−1 > N+1

1−( 1
sr

)
, ar−2 > N

sr−1
, etc., then TG(a1, a2, . . . , ar) is (0, N ]-

eigenvalue free.

Proof. Considering the case r even we have to prove that N+ = 0+ = | ∪ |. We start
the Diag(TG,−N) using Lemmas 5 and 6 to process the terminal children with identical
value. As afore-explained this initial process produces (n−r) negative permanent diagonal
assignments, adding (n − r) to N−. Then we proceed the Algorithm Diagonalize on the
specialized cotree in Figure 18 left. The last ∪-node at depth r has a leaf with assignment
sr = −N

ar
> 0 which will be relocated to the next level at the ⊗-node as shown in Figure

18 right.

∪
r

− N
ar

⊗
r − 1

1− N+1
ar−1

∪
2

−N
a2

⊗
1

1−N+1
a1

sr=− N
ar

⊗
r − 1

1− N+1
ar−1

∪
2

−N
a2

⊗
1

1−N+1
a1

→

Figure 18: Specialized cotree relocated.

Using Lemma 9 at the ⊗-node at depth r−1 we obtain a negative permanent diagonal
value pr−1 > 0 and a remaining assignment sr−1 > 0. The leaf having the value sr−1 is
then relocated to the next ∪-node at level r − 2 as depicted in Figure 19. At the ∪-node
at depth r − 2 we apply Lemma 8 and it creates a positive permanent diagonal value
pr−2 < 0 and a remaining value sr−2 < 0 which will be relocated to the next level r − 3.

sr−1>0

∪
r − 2

−N
ar−2

∪
2

−N
a2

⊗
1

1−N+1
a1

Figure 19: Specialized cotree relocated.

Continuing this process, the ⊗-node at level 1 will have two leafs with assignments s2
and 1− N+1

a1
as illustrated in Figure 17 left. Once we apply Lemma 9 we process the two

remaining vertices whose diagonal values will be p1 < 0 and s1 > 0.
The algorithm stops, and then each ∪-node, except the one at level r, has produced

a positive permanent diagonal assignment, adding | ∪ | − 1 to N+. And each ⊗-node
has produced a negative permanent diagonal value, adding | ⊗ | to N−. And the final
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permanent diagonal value is s1 > 0, adding +1 to N+. Therefore N− = (n − r) + | ⊗ |,
N0 = 0 and N+ = | ∪ |.

Remark 12. The values a1, a2, . . . , ar are natural numbers so ar−1 >
N
sr

for r odd (case

r even is similar), it means that ar−1 >
⌈
N
sr

⌉
if N

sr
is not an integer number, otherwise

ar−1 >
⌈
N
sr

⌉
+ 1. To avoid this confusion we can always choose ar > 1 + bN + 1c,

ar−1 > 1 +
⌊
N
sr

⌋
, ar−2 > 1 +

⌊
N+1

1−
(

1
sr−1

)
⌋

, etc., to construct TG(a1, a2, . . . , ar).

Now we can define an algorithm to produce threshold graphs TG(a1, a2, . . . , ar) sat-
isfying the Theorem 10 or 11:

Algorithm 2 The Right Free Interval Algorithm: RFI(N, r)

Input: a positive real number N and a positive integer r
Output: cotree TG(a1, a2, . . . , ar)

if r is odd then
Choose ar > 1 + bN + 1c
sr ← 1− 1+N

ar
else if r is even then

Choose ar > 2
sr ← −N

ar
end if
for i = r − 1 to 1 do

if i is odd then

Choose ai > 1 +

⌊
N+1

1−
(

1
si+1

)
⌋

pi ← si+1 − 1−
(
N+1
ai

)
si ← f

(
si+1, 1−

(
N+1
ai

))
else if i is even then

Choose ai > 1 +
⌊

N
si+1

⌋
pi ← si+1 − N

ai

si ← g
(
si+1,−N

ai

)
end if

end for

Definition 13. Let N > 0 be a fixed number and r an odd number (case r even is similar),

if we choose natural numbers ar = 1 + bN + 1c, ar−1 = 1 +
⌊

N
sr+1

⌋
, ar−2 = 1 +

⌊
N+1

1−( 1
sr

)

⌋
,

etc., then TG(a1, a2, . . . , ar) is called the initial threshold w.r.t. N , having no eigenvalues
in the interval (0, N ].
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Notice that the initial threshold is obtained by making the smallest choice for each ai
at RFI(N, r).

Next, we denote the first positive eigenvalue of a graph G by a + sign in the exponent,
as θ+(G).

Example 14. Given N = 4.8 and r = 5 then RFI(4.8, 5) generates the initial threshold
graph with cotree TG(5, 145, 5, 145, 6) which is (0, 4.8]-eigenvalue free. Indeed, a direct
computation shows that θ+(G) = 4.80000053517.

Example 15. Given N = 4.8 and r = 6 then RFI(4.8, 6) generates the initial threshold
graph with cotree TG(6, 44, 6, 36, 5, 2) which is (0, 4.8]-eigenvalue free. Indeed, a direct
computation shows that θ+(G) = 4.80016011291.

6 Diag(TG,-M )

We start the algorithm Diag(TG,−M), for a fixed number M < −1, processing the leaves
with identical value using Lemmas 5 and 6 as follows.

Lemma 9 is applied at each ⊗-node at depth i. We perform ai−1 iterations that leave
positive permanent diagonal values j+1

j
(−M − 1) for j = 1 . . . ai − 1 by (1). And, by (2),

at the last iteration, a remaining assignment

dl ←
−M + ai − 1

ai
= 1− M + 1

ai

as represented in Figure 20.

⊗
i

−M −M
+

+ ⊗
i

1−M+1
ai

→

Figure 20: Join.

And, at each ∪-node at depth i we use Lemma 8 as follows. We perform ai − 1
iterations that leave positive permanent diagonal values j+1

j
(−M) for j = 1 . . . ai − 1 by

(3). And a remaining value

dl ←
−M
ai

at the last iteration by (4) as represented in Figure 21.

∪
i

−M −M
+

+ ∪
i

−M
ai

→

Figure 21: Union.
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Therefore, after the specialization in the leaves with identical value we already have∑r
i=1(ai − 1) = n− r positive permanent diagonal values. Hence, following our strategy

we will work with the cotree represented in Figure 22 and we will show that each ∪-node
gives a positive permanent diagonal value and each ⊗-node returns a negative permanent
diagonal value with a positive remaining assignment. It will imply that M+ = (n− r) +
(| ∪ |+ 1) if r is odd and M+ = (n− r) + | ∪ | if r is even.

⊗
r

1−M+1
ar

∪
r − 1

−M
ar−1

∪
2

−M
a2

⊗
1

1−M+1
a1

Figure 22: Specialized cotree.

Next, we prove that each ⊗-node leaves a permanent negative value and a remaining
value positive. Whereas, each ∪-node leaves a permanent positive value. And, these
results will prove that we obtain | ∪ | positive permanent values. In the last iteration, at
the final ⊗-node, we will have a positive remaining diagonal assignment. It will imply
that M+ = (n− r) + (| ∪ |+ 1) if r is odd and M+ = (n− r) + | ∪ | if r is even.

Consider the sequence of remaining assignments
{

1− M+1
ar

, −M
ar−1

, . . . , −M
a2
, 1− M+1

a1

}
at the specialized cotree in Figure 22. If we choose the initial value sr+1 = 1 − M+1

ar
and for each iteration we choose the function (6) for a union and (5) for a join, then we

obtain recursively sr = g
(
sr+1,

−M
ar−1

)
, sr−1 = f

(
sr, 1− N+1

ar−2

)
and so on, until we reach

s1. These are the assignments we obtain by applying the subcase 1a or subcase 2a from
Diag(TG,−M), which is performed from left to right. That is why we produce si in the
inverse order, from sr+1 to s1.

In the next two lemmas we show that by choosing the number of terminal children we
can control the sign of the permanent and remaining assignments.

Lemma 16. Suppose we have a |∪ |-node with leaves having values si+1 > 1 and −M
ai

with

ai > −M + M
si+1

as illustrated in Figure 23. Then we obtain a positive permanent value

pi and a remaining value 0 < si < 1.

∪
i

si+1 > 1 −M
ai

+ ∪
i

0 < si < 1

→

Figure 23: Union step.
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Proof. Since α = si+1 > 1 and β = −M
ai

then α + β > 1 and we can use subcase 2a. It
returns a permanent diagonal assignment

pi = dk ← si+1 −
M

ai
> 1

and a remaining one

si = dl ← g

(
si+1,−

M

ai

)
=

(si+1)
(
−M
ai

)
pi

> 0.

Now, we want to show that si < 1, so

si =
(si+1)

(
−M
ai

)
si+1 − M

ai

< 1

if and only if

ai > −M +
M

si+1

,

as our hypothesis holds.

Lemma 17. Suppose we have a ⊗-node with leaves having assignments 0 < si+1 < 1
and 1 − (M+1)

ai
with ai > − M+1

1−si+1
as illustrated in Figure 24. Then we obtain a negative

permanent value pi and a positive remaining value si > 1.

⊗
i

si+1 1− M+1
ai

− ⊗
i

si > 1

→

Figure 24: Join step.

Proof. Since α = si+1 and β = 1 − M+1
ai

then α + β − 2 = si+1 + 1 − M+1
ai
− 2 =

si+1 − 1 − M+1
ai

< 0 if and only if ai > − M+1
1−si+1

. Therefore, we can use subcase 1a and

the permanent diagonal assignment will be

pi = dk ← si+1 − 1− M + 1

ai
< 0.

And the remaining one

si = dl ← f

(
si+1, 1−

M + 1

ai

)
=

(si+1)(1− M+1
ai

)− 1

si+1 − 1− M+1
ai

> 1

if and only if
si+1(−(M + 1)) < −(M + 1),

which is satisfied if and only if si+1 < 1.
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As in Section 5, the two lemmas above used together produce an algorithm to construct
threshold graphs that are [M,−1)-eigenvalue free.

Initial step: Considering r odd, after the specialization of the leaves with identical
value, the ⊗-node at depth r has a leaf with assignment

sr = 1− M + 1

ar
> 1

if and only if −(M+1)
ar

> 0, which is satisfied for all ar > 2. Then, using ar > 2 and Lemmas
16 and 17 we can construct a threshold graph of depth r that is [M,−1)-eigenvalue free.
And, for r even, after the specialization, the ∪-node at depth r has a leaf with assignment

sr =
−M
ar

.

sr > 0 is trivially satisfied and sr < 1 iff ar > −M . Then, using ar > −M and Lemmas
16 and 17 we can construct a threshold graph of depth r that is [M,−1)-eigenvalue free.

Remark 18. In the left case we have ar free if r is odd and in the right case we have ar
free if r is even.

The next two theorems sum up the above results and their proofs are similar to the
proofs of Theorems 10 and 11.

Theorem 19. Let M < −1 be a fixed number and r an odd number, if we choose natural

numbers ar > 2, ar−1 > −M
(

1− 1
sr

)
, ar−2 > − M+1

1−sr−1
, etc., then TG(a1, a2, . . . , ar) is

[M, −1)-eigenvalue free.

Theorem 20. Let M < −1 be a fixed number and r an even number, if we choose natural

numbers ar > −M , ar−1 > −M+1
1−sr , ar−2 > −M

(
1− 1

sr−1

)
, etc., then TG(a1, a2, . . . , ar)

is [M, −1)-eigenvalue free.

Now we can define an algorithm to produce threshold graphs TG(a1, a2, . . . , ar) sat-
isfying the Theorem 19 or 20:
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Algorithm 3 The Left Free Interval Algorithm: LFI(N, r)

Input: a negative real number M < −1 and a positive integer r
Output: cotree TG(a1, a2, . . . , ar)

if r is odd then
Choose ar > 2
sr ← 1− 1+M

ar
else if r is even then

Choose ar > 1 + b−Mc
sr ← −M

ar
end if
for i = r − 1 to 1 do

if i is odd then
Choose ai > 1 +

⌊
−M−1
1−si+1

⌋
pi ← si+1 − 1−

(
M+1
ai

)
si ← f

(
si+1, 1−

(
M+1
ai

))
else if i is even then

Choose ai > 1 +
⌊
−M + M

si+1

⌋
pi ← si+1 − M

ai

si ← g
(
si+1,−M

ai

)
end if

end for

As before, the initial threshold is obtained by making the smallest choice for each ai
in LFI(M, r).

Next, we denote the first negative eigenvalue of a graph G smaller than −1 by a −
sign in the exponent, as θ−(G).

Example 21. Given M = −3.3 and r = 7 then LFI(−3.3, 7) generates the initial
threshold graph with cotree TG(11, 4, 46, 3, 35, 2, 2) which is [−3.3,−1)-eigenvalue free.
Indeed, a direct computation shows that the maximum negative eigenvalue is θ−(G) =
−3.30000464177 < M .

Curiously, the left initial threshold graph and the right initial threshold graph coin-
cides in LFI(M, 7)=RFI(N, 7) = TG(1, 1, 1, 1, 1, 1, 2) for M = −1−

√
2

2
< −1 and N =

−1 −M = −1+
√
2

2
> 0. A direct computation shows that θ−(G) = −1.24338010982 <

M = −1.20710678118 and θ+(G) = 0.231890667597 > N = 0.20710678118. Notice that
TG(1, 1, 1, 1, 1, 1, 2) is the cotree associated to an anti-chain graph of order n = 8. How-
ever, as we exemplify below, this correspondence between N and M = −N − 1 does not
hold for any threshold.

Using Example 21, where G is the threshold graph with associated cotree TG(11, 4,
46, 3, 35, 2, 2), we compute θ+(G) = 0.558865493736 < N = −1−M = 2.3. Actually, the
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right initial threshold graph obtained from RFI(−3.3, 7) is TG(3, 14, 3, 16, 3, 14, 4) which
satisfies θ+(G) = 2.30004052499 > 2.3.

7 Infinite families

In this section, we show that the initial threshold graph generated by Algorithms 2 or 3 is
an initial threshold graph for a family of threshold graphs that have the same I-eigenvalue
free property.

We recall below the known interlacing property that can be found in [5].

Theorem 22. Let G be a graph and H = G− v, where v is a vertex of G. If λ1 > λ2 >
· · · > λn and θ1 > θ2 > · · · > θn−1 are the eigenvalues of A(G) and A(H), respectively,
then

λi > θi > λi+1 for each i = 1, 2, . . . , n− 1.

Given a threshold graph G with eigenvalues λ1 > λ2 · · · > λn and H = G − v with
eigenvalues θ1 > θ2 · · · > θn−1.

Consider the cotree TH(a1, . . . , ar) of depth r associated to the threshold graph H
with ai > 1 for 1 6 i 6 r − 1 and ar > 2. Denote m(0, H) = p and m(−1, H) = q the
respective multiplicities of 0 and −1 in H. We recall that

θ+(H) = first positive eigenvalue of H greater than 0,

and
θ−(H) = first negative eigenvalue of H smaller than −1.

Suppose that M < θ−(H) and θ+(H) > N . Using the notation above we have the
following:

θn−1 6 · · · 6 θi+p+q+2 6 θi+p+q+1 < M < −1 = θi+p+q = · · · = θi+p+2 = θi+p+1︸ ︷︷ ︸
q=m(−1,H)

< 0

0 = θi+p = · · · = θi+2 = θi+1︸ ︷︷ ︸
p=m(0,H)

< N < θi 6 · · · θ2 6 θ1.

Hence, θi+p+q+1 = θ− < M and θi = θ+ > N .
Notice that, when we add a vertex v to the threshold H then we have two possibilities:

1. we add a vertex v to a ∪-node at depth l that has al terminal vertices in H. Then
G will have a ∪-node at depth l that has al + 1 terminal vertices;

2. we add a vertex v to a ⊗-node at depth l that has al terminal vertices in H. Then
G will have a ⊗-node at depth l that has al + 1 terminal vertices.

Using Theorems 3 and 4 we have the following:
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1. m(0, G) = m(0, H) + 1 and m(−1, G) = m(−1, H);

2. m(0, G) = m(0, H) and m(−1, G) = m(−1, H) + 1;

Now, we apply the interlacing Theorem 22.

λi > θi︸︷︷︸
θ+

> λi+1︸︷︷︸
?

> θi+1 = λi+2 = · · · = λi+p = θi+p = 0 > λi+p+1︸ ︷︷ ︸
−1 or 0

>

> θi+p+1 = −1 = λi+p+2 = · · · = λi+p+q = θi+p+q = −1 > λi+p+q+1︸ ︷︷ ︸
?

> θi+p+q+1︸ ︷︷ ︸
θ−

> λi+p+q+2.

Considering the two possible cases we conclude the following.

1. m(0, G) = p + 1 and m(−1, G) = q. It implies that λi+1 = λi+p+1 = 0 and
λi+p+q+1 = −1.

2. m(0, G) = p and m(−1, G) = q+1. It implies that λi+1 = 0 and λi+p+1 = λi+p+q+1 =
−1.

And, it implies that

λi = λ+(G) > θi = θ+ > N and λi+p+q+2 = λ−(G) 6 θi+p+q+1 = θ− < M.

The above computations motivate the following definition.

Definition 23. Let TG(a1, . . . , ar) with ai > 1 for 1 6 i 6 r − 1 and ar > 2, and
TG′ (b1, b2, . . . , br) be two threshold graphs. We say that G � G

′
if ai 6 bi for i = 1, 2, . . . , r

i.e., if G
′

is generated from G by adding any amount of leaves to ∪-nodes or ⊗-nodes (of
course, G ≺ G

′
if G � G

′
and G 6= G

′
). Notice that G and G

′
have the same depth.

Then, we have proved the next result.

Corollary 24. For I = (0, N ] or I = [M,−1) we have that, if G � G
′

and TG(a1, . . . , ar)
is I-eigenvalue free, then TG′ (b1, . . . , br) is I-eigenvalue free.

In Example 15, given N = 4.8 and r = 6, RFI(4.8, 6) generated the initial threshold
graph G with associated cotree TG(6, 44, 6, 36, 5, 2) which is (0, 4.8]-eigenvalue free. By
Corollary 24, any threshold graph represented by the cotree TG′ (6 + i1, 44 + i2, 6 + i3, 36 +
i4, 5 + i5, 2 + i6) for any integers ij > 0, 1 6 j 6 6, is (0, 4.8]-eigenvalue free.
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8 Revisiting Ghorbani’s work

In this section we use our approach to revisit the conjecture proposed by Aguilar et al.
in [1] proved by Ghorbani in [4].

Theorem 25. Given N = −1+
√
2

2
= 0.20710678+ and r any odd natural number (the even

case is identical) then the algorithm RFI(N, r) generates the initial threshold graph with
cotree TG(1, . . . , 1, 2) (with r − 1 leafs 1’s) that is (0, N ]-eigenvalue free.

Proof. A direct computation shows that ar > 1 + bN + 1c = 2 so the initial choice is
ar = 2. From there our proof is by induction. Also by direct computation, we can compute
sr = 3/4 − 1/4

√
2 ' 0.3964 > 0 and ar−1 > 1 + bN

sr
c = 1 + b0.5224c = 1, so the initial

choice is ar−1 = 1 and compute sr−1 = g
(
sr,

−N
ar−1

)
= g (sr,−N) =

(−3+
√
2)(−1+

√
2)

10−6
√
2

'

−0.4336 < 0. Analogously, ar−2 > 1 +

⌊
N+1

1−
(

1
sr−1

)
⌋

= 1 + b0.3651c = 1, is the initial

choice, and compute sr−2 = f
(
sr−1, 1− N+1

ar−2

)
= f(g(sr,−N),−N). In what follows we

obtain the initial choice equal to 1 and therefore s2k = f (g (s2k+2,−N) ,−N), s2k+1 =
g (f (s2k+3,−N) ,−N). Now we will consider k + 1. Both recurrences are explicit and
easy to solve. For even indices we get s2k = f(g(s2k+2,−N),−N) = ϕ(s2k+2) where

ϕ(t) =

(
2
√

2 + 1
)
t+ 2− 2

√
2

4
(
1 +
√

2
)
t− 2

√
2 + 1

.

It is easy to see that ϕ(t) = t has a unique solution µ =
√
2

2(1+
√
2)
' 0.2928. Since ϕ′(t) < 1

for t > µ = 0.2928(see Figure 25, left) and s0 = 0.3964 we get that if µ < s2k < s0 then

s2k = ϕ(s2k+2) ∈ (µ, sr) meaning that 0 =
⌊
N
µ

⌋
>
⌊

N
s2k+2

⌋
>
⌊
N
sr

⌋
= 0, that is the initial

choice for 2k + 2 is 1.
For the odd indices we get s2k+1 = g(f(s2k+3,−N),−N) = ψ(s2k+3) where

ψ(t) =

(
1−
√

2
) (

2 +
(
−1 +

√
2
)
t
)(

4
√

2− 4
)
t+ 5− 2

√
2

.

It is easy to see that ψ(t) = t has a unique solution µ′ =
√
2−2

2
√
2−2 ∼ −0.7071. Since

ψ′(t) < 1 for t > µ′ = −0.7071 (see Figure 25, right) and sr−1 = −0.4336 < 0 we get

that, if µ′ < s2k+3 < sr−1 then s2k+1 = ψ(s2k+3) ∈ (µ′, sr−1) meaning that 0 =

⌊
N+1

1−( 1
µ)

⌋
>⌊

N+1

1−
(

1
s2k+1

)
⌋
>

⌊
N+1

1−
(

1
sr−1

)
⌋

= 0, which is the initial choice for 2k + 1 is also 1.

In both cases we will always have ai = 1 as the initial choice. Given the decreasing
convergence towards to the fixed points µ and µ′ we deduce that our claim is true for a
arbitrary large r, concluding our proof.
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Figure 25: From the left, ϕ(t) and ψ(t)

Corollary 26. Given the threshold graph G with associated cotree TG(1, . . . , 1, 2) of depth
r then, any threshold graph TG′(a1, a2, . . . , ar) with ar > 2, ai > 1 for 1 6 i 6 r − 1 is

(0, −1+
√
2

2
]-eigenvalue free.

Proof. Our hypothesis implies that G � G′ and, by Corollary 24 and Theorem 25, we
conclude that there is no threshold graph with eigenvalues in the interval (0, −1+

√
2

2
].

The proof of the next two results are similar to the ones above.

Theorem 27. Given M = −1−
√
2

2
= −1.207106781 and r any odd natural number (the

even case is identical) then the algorithm LFI(M, r) generates the initial threshold graph
with cotree TG(1, . . . , 1, 2) (with r − 1 leafs 1’s) that is (M,−1]-eigenvalue free.

Corollary 28. Given the threshold graph G with associated cotree TG(1, . . . , 1, 2) of depth
r then, any threshold graph TG′(a1, a2, . . . , ar) with ar > 2, ai > 1 for 1 6 i 6 r − 1 is

(−1−
√
2

2
,−1]-eigenvalue free.

9 Future work

As a sequel of this work, we would like to investigate additional properties of the initial
threshold graphs generated by Algorithms RFI(N, r) and LFI(N, r), such as the existence
of minimal ones, w.r.t. the I-eigenvalue free property.

By Corollary 24, the relation G � G
′

preserves the I-eigenvalue free property. In
this way, given for instance I = (0, N ] and the initial threshold graph TG(a1, . . . , ar),
obtained from RFI(N, r), we already know that, if G � G

′
then G

′
is also (0, N ]-eigenvalue

free. However, if G
′′ � G the situation is not clear. By a simple counting procedure

we can see that there are exactly K = a1 · . . . · ar of such graphs. For a fairly small
number N =

√
5 = 2.26+ the initial threshold graph, obtained from RFI(

√
5, 7), is

TG(4, 10, 4, 55, 3, 12, 4), producing K = 4 ·10 ·4 ·55 ·3 ·12 ·4 = 1, 267, 200 threshold graphs
smaller than itself to compare. We can perform an exhaustive search for a G

′′ � G such
that G

′′
is also (0, N ]-eigenvalue free, by directly computing the spectrum of each graph.
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This task could be extremely hard from a computational point of view but we can make
it easy by using the Diagonalize algorithm (it took about 5 minutes for N =

√
5 using a

naive implementation). Comparing the number of positive outputs for Diag
(
TG′′ ,

−1+
√
2

2

)
(which has no zero outputs, because −1+

√
2

2
is not eigenvalue for any threshold graph)

and Diag(TG′′ , N) (which should not have zero outputs if N < θ+(G′′)) we can see that
G
′′

is also (0, N ]-eigenvalue free if, and only if, this number of positive outputs remains
unchanged. Remembering that, after the specialization, n − r outputs will be negative,

we only need compute r values in Diag
(
TG′′ ,

−1+
√
2

2

)
and Diag(TG′′ , N). We made this

computation for several values N > 0 never founding any G
′′ ≺ G such that G

′′
is also

(0, N ]-eigenvalue free. Despite the efficiency of our method, it still prohibitive, for N = 3.5
we must to perform about 22 million tests. In other words, we conjecture that the initial
graph is minimal in the sense that any smaller threshold graph is not (0, N ]-eigenvalue
free.

Conjecture 29. Let N > 0 and r > 2 be fixed numbers defining the interval I =
(0, N ], and TG(a1, . . . , ar), the initial threshold graph obtained from RFI(N, r), then G is
minimal, i.e., if G̃ � G is such that G̃ is also I-eigenvalue free then G̃ = G.

The conjecture is obviously true for N = −1+
√
2

2
because the initial threshold graph,

TG(2, 1, 1, . . . , 1), is the small one. In a future work we expect to investigate this conjecture
trying to prove the minimality of the initial graph for each fixed r. We believe that
probably does not exist a global minimum, except if we fix r, because we already know
that the sequence

θ+(TG(1, 2)), θ+(TG(1, 1, 2)), θ+(TG(1, 1, 1, 2)), . . .

converges to N = −1+
√
2

2
.
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