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Abstract

Let I ⊂ S = K[x1, . . . , xn] be a squarefree monomial ideal, K a field. The kth
squarefree power I [k] of I is the monomial ideal of S generated by all squarefree
monomials belonging to Ik. The biggest integer k such that I [k] 6= (0) is called the
monomial grade of I and it is denoted by ν(I). Let dk be the minimum degree of
the monomials belonging to I [k]. Then, depth(S/I [k]) > dk − 1 for all 1 6 k 6 ν(I).
The normalized depth function of I is defined as gI(k) = depth(S/I [k])− (dk − 1),
1 6 k 6 ν(I). It is expected that gI(k) is a non-increasing function for any I. In
this article we study the behaviour of gI(k) under various operations on monomial
ideals. Our main result characterizes all cochordal graphs G such that for the edge
ideal I(G) of G we have gI(G)(1) = 1. They are precisely all cochordal graphs
G whose complementary graph Gc is connected and has a cut vertex. As a far-
reaching application, for given integers 1 6 s < m we construct a graph G such
that ν(I(G)) = m and gI(G)(k) = 0 if and only if k = s+ 1, . . . ,m. Finally, we show
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that any non-increasing function of non-negative integers is the normalized depth
function of some squarefree monomial ideal.

Mathematics Subject Classifications: 13C15, 05E40, 05C70

1 Introduction

The study of the algebraic properties of the powers of a homogeneous ideal I of a poly-
nomial ring S = K[x1, . . . , xn], K a field, is a classical topic in Commutative Algebra.
Many of the known invariants of I behave asymptotically well, that is, stabilize or show
a regular behaviour for sufficiently high powers of I. In the last two decades the study of
the depth function fI(k) = depth(S/Ik) of a homogeneous ideal I has attracted a lot of
interest. A classical result of Brodmann [4] assures that fI(k) is constant for k � 0. On
the other hand, the initial behaviour of fI(k) remained quite elusive for a long time. It
was conjectured in [14] that for any bounded convergent function ϕ : Z>0 → Z>0 there
exists a suitable homogeneous ideal I such that ϕ = fI . Many years later, this conjecture
was settled in the affirmative by H.T. Hà, H. Nguyen, N. Trung and T. Trung in [12,
Theorem 4.1].

Recently, the study of the depth function of squarefree powers of squarefree monomial
ideals was initiated in [8], see also [2, 5, 6, 7, 17, 18]. Let I ⊂ S be a squarefree monomial
ideal andG(I) be its unique minimal set of monomial generators. The kth squarefree power
of I, denoted by I [k], is the monomial ideal generated by the squarefree monomials of Ik.
Thus u1u2 · · ·uk, ui ∈ G(I), i = 1, . . . , k, belongs to G(I [k]) if and only if u1, u2, . . . , uk
is a regular sequence. Let ν(I) be the monomial grade of I, i.e., the biggest length of a
monomial regular sequence contained in I. Then I [k] is non-zero if and only if k 6 ν(I).

Our motivation for studying such powers also comes from graph theory. Let G be
a finite simple graph on vertex set [n] = {1, . . . , n}, i.e., G has no loops or multiple or
directed edges. Furthermore, all the graphs we consider in this article do not have isolated
vertices. The edge ideal I(G), associated to G, is the ideal of S = K[x1, . . . , xn] generated
by all squarefree monomials xixj, i 6= j, such that {i, j} ∈ E(G). A matching M of G is a
set of edges of G such that no two distinct edges of M have common vertices. If |M | = k,
then M is called a k-matching. We denote by ν(G) the matching number of G, that is
the biggest size of a matching of G. Then, if up = xipxjp ∈ I(G), p = 1, . . . , k, we have
that u1u2 · · ·uk ∈ G(I(G)[k]) if and only if M =

{
{ip, jp} : p = 1, . . . , k

}
is a k-matching

of G. In particular, ν(I(G)) = ν(G).
Again, let I ⊂ S be a squarefree monomial ideal. We always let S to be the smallest

polynomial ring that contains G(I). Our main object of study is the normalized depth
function of I. For 1 6 k 6 ν(I), we denote by dk = indeg(I [k]) the initial degree of I [k],
i.e., the minimum degree of a monomial generator of I [k]. Then, for all k > 0 such that
I [k] 6= (0), we have depth(S/I [k]) > dk − 1 [8, Proposition 1.1(b)]. The normalized depth
function of I is defined as

gI(k) = depth(S/I [k])− (dk − 1), k = 1, . . . , ν(I).

In contrast to the behaviour of the depth function of ordinary powers, a quite different
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situation is expected. Indeed, it was predicted in [8] that the following is true:

Conjecture. For any squarefree monomial ideal, gI(k) is a non-increasing function.

At present, this conjecture is widely open. In this article, we investigate the behaviour
of the normalized depth function under some general operations and for a large class of
edge ideals.

Let us discuss now the outlines of the article.
In Section 2, we discuss the behaviour of the normalized depth function with respect

to two standard operations on monomial ideals: products and sums. In Theorem 1, we
show that the normalized depth function is additive if we take products of monomial
ideals I1 ⊂ S1, I2 ⊂ S2 of polynomial rings S1, S2 in disjoint sets of variables. That is
gI1I2(k) = gI1(k) + gI2(k). Hence, in Corollary 2 we deduce that gI1I2 is non-increasing if
both gI1 , gI2 are non-increasing. Then, we analyze the relationship between gI and g(I,x)

where x is a variable not dividing any monomial generator of I. Under mild hypotheses,
the precise relationship is obtained in Proposition 4. Its proof depends on the concept of
Betti splitting [9] and a criterion of Bolognini (Proposition 3). Next, if gI is non-increasing,
then g(I,x) is non-increasing, too (Corollary 5).

Section 3 contains our main two results. We focus our attention on the class of
cochordal graphs. Recall that a graph G is called cochordal if its complementary graph
Gc is chordal, that is, Gc does not contain induced cycles of length greater than three. In
1990 [10], Fröberg proved that I(G) has a linear resolution if and only if G is cochordal.
This result has been further refined by Herzog, Hibi and Zheng [15] by showing that
G is cochordal if and only if all ordinary powers I(G)k have linear quotients. It was
noted in [8, Corollary 3.2] that all the squarefree powers I(G)[k] have linear quotients,
k = 1, . . . , ν(G), if G is cochordal. Furthermore, in [8, Corollary 2.2] all graphs G such
that gI(G)(1) = 0 have been classified. In Theorem 7 we classify all cochordal graphs
G such that gI(G)(1) = 1. They are precisely all cochordal graphs G such that Gc is
connected with a cut vertex. Moreover, if G is such a graph, the normalized depth function
is gI(G)(1) = 1 and gI(G)(k) = 0 for k = 2, . . . , ν(G). The proof of this theorem relies upon
Hochster’s formula and a criterion obtained in [8] (Proposition 11). An indispensable tool
is the notion of special k-matching (Definition 13), see also Example 12. A far-reaching
application of Theorem 7 is given in Theorem 16. Note that the conjecture on the non-
increasingness of gI would also imply that if gI(k) = 0 then gI(k + 1) = 0, too, for any
k < ν(I). Hence, it is natural to consider the following problem, which was raised in [8].

Problem. For given integers 1 6 s < m, find a finite simple graph G with ν(G) = m
such that gI(G)(k) > 0 for k = 1, . . . , s and gI(G)(k) = 0 for k = s+ 1, . . . ,m.

In Theorem 16 we solve the above problem. A variation of Proposition 4 (Lemma 17)
is required for its proof. In particular, for the graph G we construct to solve the above
problem, we have gI(G)(k) = s − (k − 1) for k = 1, . . . , s and gI(G)(k) = 0 for k =
s+ 1, . . . ,m, m = ν(I(G)).
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In Section 4, we show that any non-increasing sequence of non-negative integers can be
the normalized depth function of some squarefree monomial ideal (Theorem 19). On the
other hand, it is an open question if any non-increasing function can be the normalized
depth function of an edge ideal.

We gratefully acknowledge the use of Macaulay2 [11] and CoCoA [1] which have been
invaluable tools to make our experiments.

2 The behaviour of the normalized depth function with respect
to some operations on monomial ideals

In this section we analyze the behaviour of the normalized depth function with respect
to some operations on monomial ideals.

Our first result shows that the normalized depth function is additive with respect to
the product of monomial ideals in disjoint sets of variables.

Theorem 1. Let S1 = K[x1, . . . , xn] and S2 = K[y1, . . . , ym] be polynomial rings in
disjoint sets of variables and let S = K[x1, . . . , xn, y1, . . . , ym]. Let I1 ⊂ S1, I2 ⊂ S2

be squarefree monomial ideals. Then, ν(I1I2) = min{ν(I1), ν(I2)} and for all 1 6 k 6
ν(I1I2),

gI1I2(k) = gI1(k) + gI2(k).

Proof. Obviously, ν(I1I2) = min{ν(I1), ν(I2)}. Let 1 6 k 6 ν(I1I2). Note that (I1I2)[k] =

I
[k]
1 I

[k]
2 , and moreover I

[k]
1 ⊂ S1 and I

[k]
2 ⊂ S2. By [16, Corollary 3.2],

projdim(S/(I1I2)[k]) = projdim(S1/I
[k]
1 ) + projdim(S2/I

[k]
2 )− 1.

Then

n+m− projdim(S/(I1I2)[k]) = n− projdim(S1/I
[k]
1 ) +m− projdim(S2/I

[k]
2 ) + 1.

Let dk = indeg(I
[k]
1 ), δk = indeg(I

[k]
2 ). Then indeg((I1I2)[k]) = dk + δk. Therefore, by the

Auslander–Buchsbaum formula

depth(S/(I1I2)[k])− (dk + δk − 1) = depth(S1/I
[k]
1 ) + depth(S2/I

[k]
2 ) + 1− (dk + δk − 1),

and hence gI1I2(k) = gI1(k) + gI2(k).

Corollary 2. Under the assumptions of the previous theorem, suppose gI1 and gI2 are
non-increasing functions, then gI1I2 is a non-increasing function too.

Let I ⊂ S ′ = K[x1, . . . , xn] be a squarefree monomial ideal. Now we examine the
relationship between gI and gJ , where J = (I, x) ⊂ S = S ′[x] = K[x1, . . . , xn, x].

For the proof of the next result we recall the concept of Betti splitting [9]. Let I, I1,
I2 be monomial ideals of S such that G(I) is the disjoint union of G(I1) and G(I2). We
say that I = I1 + I2 is a Betti splitting if

βi,j(I) = βi,j(I1) + βi,j(I2) + βi−1,j(I1 ∩ I2) for all i, j. (1)
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In particular, by [9, Corollary 2.2(a)],

projdim(I) = max
{

projdim(I1), projdim(I2), projdim(I1 ∩ I2) + 1
}
. (2)

The following criterion is due to Bolognini.

Proposition 3. [3, Theorem 3.3] Let I, I1, I2 be monomial ideals of S such that G(I) is
the disjoint union of G(I1) and G(I2). Suppose that I1 and I2 are componentwise linear.
Then I = I1 + I2 is a Betti splitting.

Proposition 4. Let S ′ = K[x1, . . . , xn] and S = S ′[x] = K[x1, . . . , xn, x] be polynomial
rings and let I ⊂ S ′ be a squarefree monomial ideal all of whose squarefree powers are
componentwise linear. Let J = (I, x) and dk = indeg(I [k]) for 1 6 k 6 ν(I). Furthermore,
set gI(0) = gI(ν(I)+1) = +∞ and d0 = 0. Then ν(J) = ν(I)+1 and for all 1 6 k 6 ν(J),

gJ(k) = min{gI(k) + dk − dk−1 − 1, gI(k − 1)}. (3)

Proof. Firstly we verify our formula in the cases k = 1 and k = ν(J).

When k = 1, then J [1] = J = I+(x) and depth(S/J) = depth(S ′/I). Since indeg(J) =
min{d1, 1} = 1, we get that

gJ(1) = depth(S/J) = depth(S ′/I) = depth(S ′/I)− (d1− 1) + (d1− 1) = gI(1) + (d1− 1).

This agrees with formula (3), since d0 = 0 and gI(0) = +∞.

When k = ν(J), then J [ν(J)] = xI [ν(I)]. In this case, indeg(J [ν(J)]) = indeg(Iν(I)) + 1 =
dν(I) + 1 and depth(S/J [ν(J)]) = depth(S ′/I [ν(I)]) + 1. Hence

gJ(ν(J)) = depth(S/J [ν(J)])− dν(I) = depth(S ′/I [ν(I)]) + 1− dν(I) = gI(ν(I)),

and since gI(ν(I) + 1) = +∞, this agrees with (3).

Now let 1 < k < ν(J). Note that J [k] = I [k] + xI [k−1]. By our hypothesis both ideals
I [k] and I [k−1] are componentwise linear. Thus xI [k−1] is componentwise linear too, and
by Proposition 3, J [k] = I [k] + xI [k−1] is a Betti splitting. Hence by equation (2)

projdim(J [k]) = max
{

projdim(I [k]), projdim(xI [k−1]), projdim(I [k] ∩ xI [k−1]) + 1
}
.

Note that I [k] ⊂ I [k−1] and since x does not divide any of the minimal generators of I, we
obtain that I [k] ∩ xI [k−1] = xI [k]. Since projdim(S/xI [k]) = projdim(S ′/I [k]), we have

projdim(S/J [k]) = max
{

projdim(S ′/I [k]) + 1, projdim(S ′/I [k−1])
}
.

Applying the Auslander-Buchsbaum formula we get

depth(S/J [k]) = min
{

depth(S ′/I [k]), depth(S ′/I [k−1]) + 1
}
.

Note that

indeg(J [k]) = min{indeg(I [k]), indeg(I [k−1]) + 1} = min{dk, dk−1 + 1} = dk−1 + 1
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because dk > dk−1. Hence

gJ(k) = depth(S/J [k])− dk−1

= min{depth(S ′/I [k])− dk−1, depth(S ′/I [k−1])− dk−1 + 1}
= min{depth(S ′/I [k])− (dk − 1) + dk − dk−1 − 1, depth(S ′/I [k−1])− (dk−1 − 1)}
= min{gI(k) + dk − dk−1 − 1, gI(k − 1)},

as desired.

Corollary 5. With the assumptions and notation of the previous proposition, it follows
that gJ is a non-increasing function if gI is non-increasing.

Proof. By hypothesis gI(k + 1) − gI(k) 6 0 for all k = 1, . . . , ν(I) − 1. We shall prove
that gJ(k + 1)− gJ(k) 6 0 for all k = 1, . . . , ν(I). Recall that ν(J) = ν(I) + 1.

Let k = 1. From Proposition 4 we have gJ(2) = min{gI(2) + d2 − d1 − 1, gI(1)} and
gJ(1) = gI(1) + (d1− 1). If gJ(2) = gI(1), then gJ(2)− gJ(1) = −(d1− 1) 6 0. Otherwise,
if gJ(2) = gI(2) + d2 − d1 − 1, then gI(1) > gI(2) + d2 − d1 − 1 and

gJ(2)− gJ(1) = gI(2) + d2 − d1 − 1− (gI(1) + (d1 − 1))

= gI(2) + d2 − 2d1 − gI(1)

6 gI(2) + d2 − 2d1 − (gI(2) + d2 − d1 − 1)

= 1− d1 6 0,

since d1 > 1.

Let k ∈ {2, . . . , ν(I)− 1}. From Proposition 4 we have

gJ(k + 1) = min{gI(k + 1) + dk+1 − dk − 1, gI(k)},
gJ(k) = min{gI(k) + dk − dk−1 − 1, gI(k − 1)}.

We distinguish the four possible cases.

Case 1. Assume gJ(k+ 1) = gI(k+ 1) + dk+1− dk− 1 and gJ(k) = gI(k) + dk− dk−1− 1.
Then gJ(k + 1) 6 gI(k) and

gJ(k + 1)− gJ(k) = gJ(k + 1)− gI(k)− (dk − dk−1 − 1)

6 gI(k)− gI(k)− (dk − dk−1 − 1)

= −(dk − dk−1 − 1) 6 0

because dk > dk−1 + 1.

Case 2. Assume gJ(k + 1) = gI(k + 1) + dk+1 − dk − 1 and gJ(k) = gI(k − 1). Then
gJ(k + 1) 6 gI(k) and gJ(k + 1)− gJ(k) 6 gI(k)− gI(k − 1) 6 0 by our hypothesis.

Case 3. Assume gJ(k + 1) = gI(k) and gJ(k) = gI(k) + dk − dk−1 − 1. Then we have
gJ(k + 1)− gJ(k) = −(dk − dk−1 − 1) 6 0 as observed before.
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Case 4. Assume gJ(k + 1) = gI(k) and gJ(k) = gI(k − 1). Then gJ(k + 1) − gJ(k) =
gI(k)− gI(k − 1) 6 0 by our hypothesis.

Finally, let k = ν(I), then gJ(k + 1) = gJ(ν(J)) = gI(ν(I)) = gI(k). Whereas,
gJ(k) = min{gI(k) + dk − dk−1 − 1, gI(k − 1)}. If gJ(k) = gI(k) + dk − dk−1 − 1, then
gJ(k+1)−gJ(k) = −(dk−dk−1−1) 6 0, as noted before. Otherwise, if gJ(k) = gI(k−1),
then gJ(k + 1) − gJ(k) = gI(k) − gI(k − 1) 6 0, because by our hypothesis gI is a
non-increasing function. The proof is complete.

Remark 6. In Proposition 4 we assumed that all squarefree powers of I are componentwise
linear in order to guarantee that for all 2 6 k 6 ν(I), J [k] = I [k] + xI [k−1] is a Betti
splitting. However this hypothesis is not required because it was proved in the meanwhile
that J [k] = I [k] + xI [k−1] is always a Betti splitting [5, Lemma 1.4].

3 The normalized depth function of cochordal graphs

In this section we examine the normalized depth function of cochordal graphs.

Let G be a graph with vertex set V (G) = [n] = {1, . . . , n} and edge set E(G). We
always assume that G has no isolated vertices. Let S = K[x1, . . . , xn] be the polynomial
ring in n variables over a field K. The edge ideal I(G), associated to G, is the ideal of
S generated by the set of all monomials xixj, i 6= j, for which i is adjacent to j, i.e.,
{i, j} ∈ E(G).

The graph G is called connected if for any i and j there is a path between i and j,
that is, a sequence of vertices i0, i1, . . . , ip such that i0 = i, ip = j and {ik, ik+1} ∈ E(G)
for k = 0, . . . , p − 1. If G is not connected it is called disconnected. For any graph G
there exist unique subgraphs C1, . . . , Ct, called the connected components of G, such that
V (G) =

⋃t
i=1 V (Ci), E(G) =

⋃t
i=1 E(Ci) and each Ci is a connected graph. A vertex i of

a connected graph G is called a cut vertex of G, if G− {i} is disconnected. For a graph
G, one defines the complementary graph Gc by setting V (Gc) = V (G) and {i, j} is an
edge of Gc if and only if {i, j} is not an edge of G. Finally, G is called cochordal if Gc is
chordal, i.e., Gc has no induced cycles of length bigger than three.

Our main result is the following,

Theorem 7. Let G be a cochordal graph with no isolated vertices. Then, the following
conditions are equivalent:

(i) Gc is connected with a cut vertex;

(ii) gI(G)(1) = 1;

(iii) gI(G)(1) = 1 and gI(G)(k) = 0 for k > 2.

the electronic journal of combinatorics 30(2) (2023), #P2.31 7



For parts of the proof of this theorem we need to use Hochster’s formula. Let ∆ be a
simplicial complex on the vertex set [n] = {1, 2, . . . , n}, and let I∆ be its Stanley-Reisner
ideal. Recall that by Hochster’s formula [13, Theorem 8.1.1] we have

βi(S/I∆) =
∑
W⊆[n]

dimK H̃
|W |−i−1(∆W ;K),

where H̃j(∆W ;K) is the jth reduced simplicial cohomology module of the simplicial
complex ∆W = {F ∈ ∆ : F ⊆ W}.

Now, we explain the connection between simplicial complexes and squarefree powers
of edge ideals. Recall that a matching M of a graph G is a set of edges of G such that
no two distinct edges of M have common vertices. If |M | = k, then M is called a k-
matching. The vertex set V (M) of M is the set {i ∈ [n] : i ∈ e, for some e ∈ M}. The
matching number ν(G) of G is the maximum of the sizes of the matchings of G. We have
ν(G) = ν(I(G)). Thus I(G)[k] 6= (0) if and only if k 6 ν(G). Let G be a simple graph on
[n] and let k = 1, . . . , ν(G). Then we define

Γk(G) =
{
F ⊆ V (G) : V (M) 6⊆ F for any k-matching M of G

}
.

One has that I(G)[k] = IΓk(G). In other words Γk(G) is a simplicial complex on V (G) whose
Stanley-Reisner ideal is the kth squarefree power of I(G). A case of particular interest
occurs when k = 1. Then Γ1(G) = ∆(Gc) is the clique complex of the complementary
graph Gc of G, and in particular I(G) = IΓ1(G) = I∆(Gc). A clique C of a graph H is a
subset of V (H) such that for any i, j ∈ C, i 6= j, it follows that {i, j} ∈ C. The clique
complex of H is the simplicial complex ∆(H) on vertex set [n] whose faces are the cliques
of H.

Lemma 8. Let G be a chordal graph and let ∆(G) be its clique complex. Then

H̃i(∆(G);K) = H̃ i(∆(G);K) = 0 for any i 6= 0.

Proof. By [13, Corollary 9.2.2] we have that H̃i(∆(G);K) = 0 for all i 6= 0. Since

dimK H̃i(∆;K) = dimK H̃
i(∆;K) for any simplicial complex ∆ and any i, we also have

that H̃ i(∆(G);K) = 0 for all i 6= 0, as desired.

The following result is well-known, see for example [13, Problem 8.2].

Lemma 9. A simplicial complex ∆ on [n] is connected if and only if H̃0(∆;K) = 0.

If u ∈ S is a monomial, the set supp(u) = {i : xi divides u} is called the support of u.
Furthermore, a monomial ideal I ⊂ S has linear quotients if for some ordering u1, . . . , us
of its minimal generating set G(I), (u1, . . . , uj−1) : uj is generated by variables, for all
j = 2, . . . , s.

For our convenience we state the following results from [10] and [8, Corollary 3.2].

Proposition 10. Let G be a graph. Then
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(a) I(G) has a linear resolution if and only if G is cochordal.

(b) If G is cochordal, I(G)[k] has linear quotients for all k = 1, . . . , ν(I(G)).

To prove Theorem 7 we need the concept of dominating k-matchings. Recall that a
k-matching M of G is a dominating k-matching if V (M) is a dominating set, which means
that any vertex v ∈ V (G)− V (M) is adjacent to a vertex of V (M).

Proposition 11. [8, Proposition 3.3] Let G be a graph with no isolated vertices and 1 6
k 6 ν(G). Suppose that I(G)[k] has linear quotients with respect to the ordering u1, . . . , us
of its minimal monomial generators. Then the following statements are equivalent:

(i) gI(G)(k) = 0.

(ii) There exist a dominating k-matching M and some i = 2, . . . , s which satisfy the
following conditions:

(a) V (M) = supp(ui), and

(b) for any t ∈ V (G) − V (M), there exists a k-matching M ′ with V (M ′) =
supp(um) for some m = 1, . . . , i− 1 such that V (M ′) ⊂ V (M) ∪ {t}.

In particular, if G is a cochordal graph, the statements (i) and (ii) are equivalent.

Let us illustrate the previous criterion with an example.

Example 12. Consider the graph G on vertex set [6] = {1, 2, . . . , 6} depicted below.

6 3

5 4

1

2

4 5

2 3

1

6

G Gc

Note that G is a cochordal graph, Gc is connected with a cut vertex, namely 1. Since
Gc is chordal, by Proposition 10(b) all squarefree powers I(G)[k] have linear quotients.
We have ν(G) = 3, gI(G)(1) = 1 and gI(G)(2) = gI(G)(3) = 0. By using Macaulay2 [11],
we obtained the following list. It provides a linear quotient order for I(G)[1], I(G)[2] and
I(G)[3],

I(G)[1] : x2x4, x3x4, x2x5, x3x5, x2x6, x3x6, x1x6;

I(G)[2] : x2x3x4x5, x2x3x4x6, x1x2x4x6, x1x3x4x6,

x1x2x5x6, x1x3x5x6, x2x3x5x6;

I(G)[3] : x1x2x3x4x5x6.

the electronic journal of combinatorics 30(2) (2023), #P2.31 9



One can see each minimal generator u ∈ I(G)[k] as a k-matching. Fix k = 2. Then
we can order the generators of I(G)[2] as above. For instance u3 = (x1x6)(x2x4) cor-
responds to the 2-matching

{
{1, 6}, {2, 4}

}
. Consider now u6 = (x1x6)(x3x5) and let

M =
{
{1, 6}, {3, 5}

}
. We claim that M satisfies Proposition 11(ii). Indeed M is a

dominating 2-matching and V (G) − V (M) = {2, 4}. Let M ′ =
{
{1, 6}, {2, 5}

}
, then

V (M ′) ⊂ V (M) ∪ {2}, V (M ′) = supp(u5) and 5 < 6. Likewise for t = 4, we can consider
M ′′ =

{
{1, 6}, {2, 4}

}
, then V (M ′′) = supp(u3) ⊂ V (M) ∪ {2} and 3 < 6.

The vertex 1 in Gc is a cut vertex and Gc − {1} has two connected components: C1

consisting only of the edge {2, 3} and C2 consisting only of the triangle with vertices
4, 5, 6. Note that in the matching M =

{
{1, 6}, {3, 5}

}
, corresponding to u6 ∈ I(G)[2],

the first edge arises by considering the cut vertex 1 of Gc and the second edge is an edge
connecting the vertex 3 ∈ V (C1) to the vertex 5 ∈ V (C2). Furthermore u6 is the biggest
monomial in the given linear quotient order corresponding to this kind of matching, i.e.,
such that supp(u6) = V (M) with M such a matching.

We give a name to the kind of k-matchings we discovered in the previous example.

Let G be a graph such that Gc is chordal, connected with a cut vertex. Let i be a
cut vertex of Gc. After a relabeling we can assume i = 1. Then Gc − {1} has at least
two connected components. Let C1 be one of these connected components and let C2

be the union of all other connected components. Then V (Gc − {1}) = V (C1) ∪ V (C2)
and furthermore, for any i ∈ V (C1) and any j ∈ V (C2), {i, j} ∈ E(G). The open
neighbourhood NG(1) = {j ∈ [n]− {1} : {1, j} ∈ E(G)} is non-empty, otherwise 1 would
be an isolated vertex of G. Recall that we only consider graphs with no isolated vertices.

Definition 13. Let G be a simple finite graph such that Gc is chordal, connected with
cut vertex 1. Let k > 2. A k-matching M = {e1, e2, . . . , ek}, ep = {ip, jp} ∈ E(G),
p = 1, . . . , k, is called special if

(i) e1 = {1, j} for some j ∈ NG(1), and

(ii) i2 ∈ V (C1) and j2 ∈ V (C2).

Lemma 14. Let G be a graph with no isolated vertices such that Gc is chordal, connected
with cut vertex 1. Then for any 2 6 k 6 ν(G), there exists a special k-matching of G.

Proof. Let M = {e1, e2, . . . , ek}, ep = {ip, jp} ∈ E(G), p = 1, . . . , k be an arbitrary k-
matching. Firstly, we show that we can assume e1 = {1, j} with j ∈ NG(1). If 1 ∈ V (M)
there is nothing to prove. Assume that 1 /∈ V (M). Let NG(1) = {j ∈ [n]− {1} : {1, j} ∈
E(G)} be the open neighbourhood of 1 in G. As said before NG(1) is non-empty, otherwise
1 would be an isolated vertex of G. If for some j ∈ NG(1), j ∈ supp(M), then j = iq
for some q. We may assume q = 1. Then

{
{1, j}, {i2, j2}, . . . , {ik, jk}

}
is the desired

k-matching of G. Otherwise, if NG(1) ∩ V (M) = ∅, then (M − {e1}) ∪
{
{1, j}

}
, with

j ∈ NG(1), is the desired k-matching.
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Thus we may assume that e1 = {1, j} with j ∈ NG(1). Now we prove that we can
assume i2 ∈ V (C1) and j2 ∈ V (C2). We distinguish the two possible cases.

Case 1. Suppose that V (M)−{1} ⊆ V (C1). The case V (M)−{1} ⊆ V (C2) is analogous.
Pick i ∈ V (C1) \ {j}. Then we can consider the k-matching

M ′ = (M − {e2}) ∪
{
{i, j2}

}
=
{
{1, j}, {i, j2}, e3, . . . , ek

}
.

M ′ is a special k-matching since i ∈ V (C1) and j2 ∈ V (C2).

Case 2. Suppose now that there exist i ∈ V (C1) and j ∈ V (C2) such that {i, j} ⊆ V (M).
If iq ∈ V (C1) and jq ∈ V (C2) for some q, then there is nothing to prove. Suppose that
this is not true. Then since k > 2 there exist integers q1 and q2 such that iq1 , jq1 ∈ V (C1)
and iq2 , jq2 ∈ V (C2). Note that q1, q2 > 1 since e1 = {1, j} and 1 /∈ C1, C2. But then
{iq1 , jq2}, {jq1 , iq2} are edges of G. Thus

M ′ = (M − {eq1 , eq2}) ∪
{
{iq1 , jq2}, {jq1 , iq2}

}
is the desired special k-matching.

The cases above show that a special k-matching of G exists.

Lemma 15. Let G be a graph with no isolated vertices such that Gc is chordal, connected
with cut vertex 1. Then a special k-matching is a dominating k-matching.

Proof. Let M = {e1, e2, . . . , ek}, ep = {ip, jp} ∈ E(G), p = 1, . . . , k be a special k-
matching. Thus e1 = {1, j} with j ∈ NG(1), i2 ∈ V (C1) and j2 ∈ V (C2). Let t ∈
V (G) − V (M). Since V (G) = V (C1) ∪ V (C2) ∪ {1} and 1 ∈ V (M), either t ∈ V (C1) or
t ∈ V (C2). If t ∈ V (C1), then t is adjacent to j2 ∈ V (C2) and {i2, j2} ∈M . Otherwise, if
t ∈ V (C2), then t is adjacent to i2 ∈ V (C1), as wanted.

Now, we are in the position to prove Theorem 7.

Proof of Theorem 7. We are going to prove the implications (iii)⇒(ii), (ii)⇒(i) and (i)⇒(iii).
The implication (iii)⇒(ii) is obvious.

(ii)⇒(i): By the Auslander-Buchsbaum formula we know that (ii) is equivalent to
projdim(S/I(G)) = n− 2. Since I(G) = I∆(Gc), by Hochster’s formula

βn−2(S/I(G)) =
∑
W⊆[n]

dimK H̃
|W |−n+1(∆(Gc)W ;K)

=
∑
W⊆[n]

n−16|W |6n

dimK H̃
|W |−n+1(∆(Gc)W ;K)

must be non-zero. Here the last equation follows from the fact that H̃j(∆;K) = 0 if

j < 0. Since Gc is a chordal graph, by Lemma 8 H̃1(∆(Gc);K) = 0. Hence, the previous
formula simplifies to

βn−2(S/I(G)) =
n∑
j=1

dimK H̃
0(∆(Gc)[n]−{j};K). (4)

the electronic journal of combinatorics 30(2) (2023), #P2.31 11



Since βn−2(S/I(G)) is non-zero, there exists at least one integer j ∈ [n] such that

H̃0(∆(Gc)[n]−{j};K) 6= 0, which means that Gc has a cut vertex. Moreover, Gc is con-
nected by [8, Corollary 2.2].

(i)⇒(iii): Since Gc is connected, by [8, Corollary 2.2] we have gI(G)(1) > 1. Since Gc

is chordal, under our assumptions equation (4) holds. But Gc has a cut vertex, which

means that there exists a j such that H̃0(∆(Gc)[n]−{j};K) 6= 0 (Lemma 9). Using formula
(4) this shows that βn−2(S/I(G)) is non-zero and thus gI(G)(1) = 1.

It remains to prove that gI(G)(k) = 0 for all k > 2. For this purpose, we use Proposition
11. Since Gc is chordal, by Proposition 10(b) all squarefree powers I(G)[k] have linear
quotients. Let 2 6 k 6 ν(G) and let u1, . . . , us be a linear quotient ordering for I(G)[k].
By Lemma 14 a special k-matching of G exists. Let i be the biggest integer such that
supp(ui) = V (M) with M a special k-matching of G. Let M = {e1, e2, . . . , ek} be a
special k-matching such that supp(ui) = V (M). Assume the assumptions and notation
before Definition 13. Then e1 = {1, j} with j ∈ NG(1), 1 is a cut vertex of Gc, i2 ∈ V (C1)
and j2 ∈ V (C2). We claim that M satisfies condition (ii) of Proposition 11. Since G is
cochordal, this is equivalent to gI(G)(k) = 0 and will conclude our proof.

By Lemma 15, M is a dominating k-matching. Let t ∈ V (G)− V (M). Since V (Gc −
{1}) = V (C1) ∪ V (C2), then either t ∈ V (C1) or t ∈ V (C2). If t ∈ V (C1), then

M ′ = (M − {e2}) ∪
{
{t, j2}

}
is again a special k-matching, and V (M ′) = supp(um) for some m. By our assumption
on i, we have m < i and furthermore V (M ′) ⊂ V (M) ∪ {t}.

Similarly, if t ∈ V (C2) then

M ′ = (M − {e2}) ∪
{
{i2, t}

}
is special k-matching with V (M ′) = supp(um), m < i and V (M ′) ⊂ V (M) ∪ {t}.

Theorem 7 has the following interesting consequence.

Theorem 16. Given positive integers s < m, there exists a graph G with matching number
ν(G) = m such that gI(G)(k) = 0 if and only if k = s+ 1, . . . ,m.

For the proof of this theorem, we need the following lemma which is a variation of
Proposition 4.

Lemma 17. Let H be a cochordal graph on vertex set [n] and let G be the graph on vertex
set [n+ 2] whose edge set is E(H) ∪ {{n+ 1, n+ 2}}. Then, ν(I(G)) = ν(I(H)) + 1 and
for all k = 1, . . . , ν(I(G)),

gI(G)(k) = min{gI(H)(k) + 1, gI(H)(k − 1)},

where we set gI(H)(0) = gI(H)(ν(I(G)) + 1) = +∞.
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Proof. The proof is very similar to that of Proposition 4. We include a sketch.
Our formula is easily verified for k = 1 and k = ν(I(H)) + 1. Let 2 6 k 6 ν(I(H)),

then I(G)[k] = I(H)[k] + xn+1xn+2I(H)[k−1] is a Betti splitting, as both ideals I(H)[k] and
xn+1xn+2I(H)[k] have linear resolutions, see Propositions 10(b) and 3. Since I(H)[k] ∩
xn+1xn+2I(H)[k−1] = xn+1xn+2I(H)[k], by formula (2) we have

projdim(I(G)[k]) = max{projdim(I(H)[k]) + 1, projdim(I(H)[k−1])}.

Let S = K[x1, . . . , xn+2] and R = K[x1, . . . , xn]. Then

depth(S/I(G)[k]) = min{depth(R/I(H)[k]) + 1, depth(R/I(H)[k−1]) + 2}.

Finally adding −(2k − 1) to both sides of the previous equation we obtain gI(G)(k) =
min{gI(H)(k) + 1, gI(H)(k − 1)}, as desired.

Using the exact same argument of the proof of Corollary 5 we get

Corollary 18. Under the assumptions and notation of the previous lemma, if gI(H) is
non-increasing, then gI(G) is non-increasing, too.

Now we are in the position to prove our second main result.

Proof of Theorem 16. For s = 1 we can pick any graph G with matching number
ν(I(G)) = m whose complementary graph satisfies condition (i) of Theorem 7. Then
gI(G)(1) = 1 and gI(G)(k) = 0 for all k = 2, . . . ,m.

Now, let s > 1 and set ` = s − 1. Set yi = xn+2i−1xn+2i, i = 1, . . . , `. Let
G0 be any graph on vertex set [n], n big enough, whose complementary graph satis-
fies condition (iii) of Theorem 7, and with matching number ν(I(G0)) = m − `. Let
R = K[x1, . . . , xn, y1, . . . , y`] and J = (I(G0), y1, y2, . . . , y`). Then ν(J) = m. We claim
that J [k] has a linear resolution, k = 1, . . . ,m. For ` = 1, J [k] = I(G0)[k] + y1I(G0)[k−1]

is a Betti splitting, because I(G0)[k], y1I(G0)[k−1] have linear resolutions. Note that
I(G0)[k] ∩ y1I(G0)[k−1] = y1I(G0)[k] has again a linear resolution and it is equigener-
ated in degree 2k + 1. Since J [k] is equigenerated in degree 2k, applying formula (1)
in our situation, we see that J [k] has again a linear resolution. For ` > 1, we set
L = (I(G0), y1, . . . , y`−1). Then J = (L, y`). By induction L[k] has a linear resolution,
k = 1, . . . , ν(L). Thus repeating the same argument as in the case ` = 1, it follows that
J [k] has a linear resolution, for all k = 1, . . . , ν(J).

Let S = K[x1, . . . , xn, xn+1, . . . , xn+2`]. Let G be the graph on vertex set [n + 2`],
` = s− 1, whose edge set is

E(G0) ∪
{
{n+ 1, n+ 2}, {n+ 3, n+ 4}, . . . , {n+ 2s− 3, n+ 2s− 2}

}
.

Note that ν(I(G)) = m. We claim that gI(G)(k) = s − (k − 1) for k = 1, . . . , s and
gI(G)(k) = 0 for k = s+ 1, . . . ,m. This will conclude our proof.
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For s = 2, our claim follows from Lemma 17. Let s > 2, L = (I(G0), y1, . . . , ys−2) and
G′ = G − {n + 2s − 3, n + 2s − 2}. Note that projdim(S/I(G)[k]) = projdim(R/J [k]).
Since J [k] = L[k] + y`L

[k−1] is a Betti splitting, formula (2) yields

projdim(R/J [k]) = max
{

projdim(R/L[k]) + 1, projdim(R/L[k−1])
}
.

Thus

projdim(S/I(G)[k]) = max
{

projdim(S/I(G′)[k]) + 1, projdim(S/I(G′)[k−1])
}
.

Arguing as in Proposition 4, we have

gI(G)(k) = min
{
gI(G′)(k) + 1, gI(G′)(k − 1)

}
.

By induction on s, we may assume that gI(G′)(k) = (s− 1)− (k − 1) for k = 1, . . . , s and
gI(G′)(k) = 0 for k = s, . . . ,m− 1. An easy calculation shows that gI(G)(k) = s− (k − 1)
for k = 1, . . . , s and gI(G)(k) = 0 for k = s+ 1, . . . ,m, as desired.

4 Construction of non-increasing normalized depth functions

We conclude this article with the following result which shows that any non-increasing
function can be the normalized depth function of a suitable squarefree monomial ideal.

Theorem 19. Let a1 > a2 > . . . > am be a non-increasing sequence of non-negative
integers. Then, there exists a squarefree monomial ideal I ⊂ S = K[x1, . . . , xn], n large
enough, such that ν(I) = m and gI(k) = ak for k = 1, . . . ,m.

For the proof of this result we need the following lemmata.

Lemma 20. Given positive integers s < m, there exists a squarefree monomial ideal
I ⊂ S = K[x1, . . . , xn], n large enough, such that ν(I) = m, gI(k) = 1 for k = 1, . . . , s
and gI(k) = 0 for k = s+ 1, . . . ,m.

Proof. Let G be any graph on [n], n large enough, with matching number ν(G) = m− s
such that Gc is disconnected and chordal. Let S = K[x1, . . . , xn, xn+1, . . . , xn+s] and
I = (I(G), xn+1, . . . , xn+s). We claim that ν(I) = m, gI(k) = 1 for k = 1, . . . , s and
gI(k) = 0 for k = s+ 1, . . . ,m. This will conclude our proof.

By [8, Corollary 2.6], gI(G)(k) = 0 for k = 1, . . . ,m − s. We prove our statement
by induction on s. For s = 1, since indeg(I(G)) = 2 and I(G)[k] has a linear resolution
for all k = 1, . . . ,m − s, by Proposition 4 we get that ν((I(G), xn+1)) = (m − s) + 1,
g(I(G),xn+1)(1) = 1 and g(I(G),xn+1)(k) = 0 for k = 2, . . . , (m− s) + 1. Suppose our claim is
true up to s− 1 and set L = (I(G), xn+1, . . . , xn+(s−1)). Then L[k] has a linear resolution,
for k = 1, . . . ,m−1, and I = (L, xn+s). Moreover, indeg(L) = 1, ν(L) = (m−s)+(s−1) =
m− 1, gL(k) = 1 for k = 1, . . . , s− 1 and gL(k) = 0 for k = s, . . . ,m− 1. Applying again
Proposition 4, our statement follows.
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Lemma 21. Given a positive integer m, there exists a squarefree monomial ideal I ⊂
S = K[x1, . . . , xn], n large enough, such that ν(I) = m and gI(k) = 1 for k = 1, . . . ,m.

Proof. By the previous lemma, we can find L ⊂ K[x1, . . . , xn], n large enough, such that
ν(L) = m + 1, gL(k) = 1 for k = 1, . . . ,m, gL(m + 1) = 0. Let G be any graph on [p]
with matching ν(G) = m such that Gc is disconnected. Let I(G) = (yiyj : {i, j} ∈ E(G))
be its edge ideal and S = K[x1, . . . , xn, y1, . . . , yp]. We claim that I = L · I(G) verifies
ν(I) = m and gI(k) = 1 for k = 1, . . . ,m. This follows at once by Theorem 1 and [8,
Corollary 2.6].

Finally, we are in the position to prove our last result.

Proof of Theorem 19. Any vector (a1, a2, . . . , am), with a1 > a2 > · · · > am > 0 integers,
can be written uniquely as a sum of vectors of type (1, 1, . . . , 1, 0, 0, . . . , 0) and type
(1, 1, . . . , 1). Combining Theorem 1 with Lemmata 20, 21, the result follows.
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