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Abstract

Tanglegrams are formed by taking two rooted binary trees T and S with the
same number of leaves and uniquely matching each leaf in T with a leaf in S. They
are usually represented using layouts that embed the trees and matching in the
plane. Given the numerous ways to construct a layout, one problem of interest is
the Tanglegram Layout Problem, which is to efficiently find a layout that minimizes
the number of crossings. This parallels a similar problem involving drawings of
graphs, where a common approach is to insert edges into a planar subgraph. In
this paper, we explore inserting edges into a planar tanglegram. Previous results on
planar tanglegrams include a Kuratowski Theorem, enumeration, and an algorithm
for finding a planar layout. We build on these results and characterize all planar
layouts of a planar tanglegram. We then apply this characterization to construct a
quadratic-time algorithm that inserts a single edge optimally. Finally, we generalize
some results to multiple edge insertion.
Mathematics Subject Classifications: 05C05, 05C10, 05C30

1 Introduction

Let T and S be two rooted binary trees with leaves respectively labeled as {ti}i∈I and
{sj}j∈J , where I, J ⊆ N are finite index sets of the same size. If we let φ : I → J be
a bijection, then we can denote a tanglegram as (T, S, φ), where φ indicates that ti is
matched with sφ(i). A layout of a tanglegram draws T , S, and the edges (ti, sφ(i)) in the
plane such that T is planarly embedded left of the line x = 0 with all leaves on x = 0,
S is planarly embedded right of the line x = 1 with all leaves on x = 1, and the edges
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(ti, sφ(i)) are drawn using straight lines. See Figure 1 for examples. A crossing is any pair
of edges (ti, sφ(i)) and (tj, sφ(j)) that intersect in the layout, and the crossing number of a
tanglegram (T, S, φ), denoted crt(T, S, φ), is the minimum number of crossings over all
layouts of (T, S, φ). The Tanglegram Layout Problem attempts to efficiently find a layout
that achieves the crossing number.
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Figure 1: Two layouts for the same tanglegram, one with six crossings and one with no
crossings.

Tanglegrams initially arose in biology and computer science. Biologists use binary
trees to model evolution and tanglegrams to model relationships between species. Finding
optimal layouts helps determine how two species may have co-evolved [16]. Applications in
computer science include clustering, decomposition of programs into layers, or analyzing
the difference in hierarchy between similar programs or different versions of the same
program [3]. Combinatorial interest in tanglegrams developed more recently. Matsen
et al. formalized tanglegrams as mathematical objects and described connections with
phylogenetics [16]. Billey, Konvalinka, and Matsen then enumerated tanglegrams and
constructed an algorithm to generate them uniformly at random [2]. Subsequently,
Konvalinka and Wagner studied the properties of random tanglegrams [13], Ralaivaosaona,
Ravelomanana, and Wagner counted planar tanglegrams [17], and Gessel counted several
variations of tanglegrams using combinatorial species [8].

The crossing number of a tanglegram has connections with the crossing number of a
graph G, denoted cr(G), which is the minimum number of crossings over all drawings of G.
Determining if cr(G) 6 k for k ∈ N is NP-complete [7], and the same is true for determining
if crt(T, S, φ) 6 k [6]. Some of the known results in graph drawing have analogous results
in tanglegram layouts, and some have approached the Tanglegram Layout Problem by
translating what we know about graphs to tanglegrams. Czabarka, Székely, and Wagner
recently used the well-known Kuratowski Theorem characterizing planarity of graphs to
construct a Tanglegram Kuratowski Theorem characterizing planar tanglegrams, which are
tanglegrams with crossing number zero [5]. Prior to this, Lozano et al. constructed their
Untangle Algorithm for drawing a planar layout of a planar tanglegram [15]. Anderson et
al. recently proved that removing a between-tree edge (ti, sφ(i)) from a tanglegram reduces
the crossing number by at most n− 3, and they produced a family of tanglegrams to show
that this bound is sharp [1]. They also found that the maximum crossing number over all
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tanglegrams asymptotically approaches 1
2

(
n
2

)
, where n is the number of leaves in each tree.

Given the difficulty of minimizing crossings in graph drawings, some have studied
approximating the minimum number of crossings rather than finding it exactly. One
approach to this is edge insertion. The Edge Insertion Problem for graphs starts with a
graph G and an edge e ∈ G such that G\{e} is planar, and attempts to find an embedding
of G into the plane so that the drawing of G \ {e} is planar and the number of crossings
from e is minimized. This problem is well studied. A linear-time algorithm exists to solve
it, and some bounds have been found relating an optimal drawing of G and a solution
to the Edge Insertion Problem for G \ {e} with {e} inserted [9, 10]. The Edge Insertion
Problem generalizes to the Multiple Edge Insertion Problem, where we insert several edges
{e1, . . . , en} into planar G \ {e1, . . . , en} optimally, and current approximation algorithms
for graph drawing still use multiple edge insertion with planar subgraphs [4]. Given the
role that edge insertion with planar subgraphs plays in graph drawings, it is plausible that
edge insertion can play a similar role for tanglegram layouts. In this paper, we consider
the tanglegram versions of the insertion problems for graphs, which we now state.

Problem (Tanglegram Single Edge Insertion). Given a tanglegram (T, S, φ) and a
planar subtanglegram (TI , Sφ(I), φ|I) induced by I = [n] \ {i} for i ∈ [n], find a layout of
(T, S, φ) that restricts to a planar layout of (TI , Sφ(I), φ|I) and has the minimal number of
crossings possible.

Problem (Tanglegram Multiple Edge Insertion). Given a tanglegram (T, S, φ) and
a planar subtanglegram (TI , Sφ(I), φ|I) induced by I ⊆ [n], find a layout of (T, S, φ) that
restricts to a planar layout of (TI , Sφ(I), φ|I) and has the minimal number of crossings
possible.

We will start by characterizing the planar layouts of a planar tanglegram. For a planar
tanglegram (T, S, φ), we will define a leaf-matched pair (u, v) as a pair of internal vertices
u ∈ T and v ∈ S whose descendant leaves are matched by φ, and we will define an
operation called a paired flip. These pairs of internal vertices have the property that their
descendant leaves are matched by φ. By adding steps to the Untangle algorithm by Lozano
et al. for drawing a planar layout of a planar tanglegram, we construct ModifiedUntangle
(Algorithm 1), which also identifies leaf-matched pairs and stores them in a set L, obtaining
the following result.

Theorem 1. Let (T, S, φ) be a planar tanglegram, and let P(T, S, φ) denote its collection
of planar layouts. Let the output of ModifiedUntangle(T, S, φ) be the layout (X, Y ) and
set of leaf-matched pairs L. Every (X ′, Y ′) ∈P(T, S, φ) can be obtained by starting with
(X, Y ) and performing a sequence of paired flips at the leaf-matched pairs in L.

Letting size(T, S, φ) be the number of leaves in T or S, we then consider the generating
function

F (x, q) =
∑

planar (T,S,φ)

xsize(T,S,φ)q|{leaf-matched pairs of (T,S,φ)}|. (1)

The coefficient of xnqk is the number of tanglegrams of size n with k leaf-matched pairs.
When size(T, S, φ) > 2, the roots of T and S always form a leaf matched pair. A tanglegram
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is irreducible if this is the only leaf-matched pair. We let

H(x) =
∑

irreducible planar (T, S, φ)

xsize(T,S,φ), (2)

where we use the convention that the coefficient of x2 is 1
2
, as in [17, Proposition 8]. These

generating functions have a relationship, which we can use to find coefficients of xnqk in
F (x, q).

Theorem 2. The generating function F (x, q) satisfies the relation

F (x, q) = x+ q ·H(F (x, q)) +
q · F (x2, q2)

2
. (3)

Afterwards, we use our characterization of planar layouts to solve the Tanglegram
Single Edge Insertion Problem. After considering various cases, we construct Insertion
(Algorithm 5) and show the following result.

Theorem 3. The Insertion Algorithm solves the Tanglegram Single Edge Insertion
Problem in O(n2) time and space, where n is the size of the tanglegram.

Finally, we consider Tanglegram Multiple Edge Insertion. Similar to the corresponding
graph theory problems, Single Edge Insertion can be solved efficiently, but Multiple Edge
Insertion is significantly more difficult.

Theorem 4. The Tanglegram Multiple Edge Insertion Problem is NP-hard.

Nevertheless, we generalize some of our results from Insertion to construct our
MultiInsertion algorithm. While the space required will still be O(n2), the runtime is
potentially exponential, depending on where vertices and edges are inserted, as well as how
many leaf-matched pairs there are. Nevertheless, in certain situations, MultiInsertion
efficiently solves the Tanglegram Multiple Edge Insertion Problem.

We start in Section 2 by outlining terminology, notation, and previous results. In
Section 3, we give our ModifiedUntangle Algorithm, establish Theorem 1, and then show
the relation in Theorem 2. In Section 4, we give our Insertion Algorithm and prove
Theorem 1.3. In Section 5, we prove Theorem 1.4 and generalize some of our results from
Section 4 to the Tanglegram Multiple Edge Insertion Problem. We conclude by discussing
future work in Section 6.

2 Preliminaries

In this section, we begin by defining rooted binary trees and outlining the terminology
and notation that we will use. We then introduce our notation for tanglegram layouts
as ordered lists of leaves in the two trees. Afterwards, we define subtanglegrams, which
correspond to subgraphs in graph theory. Note that removing vertices or edges in a
tanglegram does not produce another tanglegram, so we give a description of the steps
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needed to construct subtanglegrams. An example of our notation and terminology will be
given in Example 8, and the reader is encouraged to refer to this example as they read
this section. We conclude with some known results.

A rooted binary tree T is a tree in which every vertex has either zero or two children,
and where a designated vertex called the root, denoted root(T ), is allowed to have degree
two. A vertex that has children is called an internal vertex, and a vertex with no children
is called a leaf. If v has children v1 and v2, we call v the parent of v1 and v2. We say
vertex v1 is a descendant of vk or vk is an ancestor of v1 if there is a sequence of vertices
v1, v2, . . . , vk such that vi+1 is the parent of vi for i = 1, 2, . . . , k − 1, and we use the
notation v1 < vk or vk > v1 to denote this. When needed, we use a subscript with the
name of a tree to specify ancestry in that tree, such as vk >T v1.

For an internal vertex v ∈ T , the subtree rooted at v is the tree formed by all vertices u
with u 6 v, and this subtree then has v as its root. Using subtrees, we can represent trees
using the nested lists notation from Section 2.3.2 of [12], where each set of parentheses
represents a subtree. Unless otherwise stated, we will index leaves with [n] = {1, 2, . . . , n},
and usually we will omit labels for internal vertices.

All trees are considered up to isomorphism, so in particular, relabeling vertices does
not produce a different tree. Given an internal vertex v ∈ T , a flip at vertex v is the
operation that interchanges the order of the children for all u 6 v. Pictorially, if we start
with a drawing of a tree T , a flip at v ∈ T reflects the subtree rooted at v, which motivates
the name “flip." Notice that each flip has order two, all flips commute with one another,
and for any rooted binary tree T , flips generate all trees isomorphic to T .

Tanglegrams (T, S, φ) are formed from a pair of rooted binary trees T, S and a bijection
φ matching their leaves. The size of (T, S, φ) is the common number of leaves in T or S.
We will call the edges in T and S tree edges and call the edges induced by φ between-tree
edges. For any vertex u ∈ T , we use Lf(u) to denote the leaves ` ∈ T such that ` 6T u, and
similarly for Lf(v) when v ∈ S. As with trees, we consider tanglegrams up to isomorphism.
Relabeling vertices or replacing T and S with isomorphic trees does not produce a new
tanglegram, provided that φ is modified appropriately. See [16] for more details. Notice
that for any tanglegram (T, S, φ), flips will generate all tanglegrams isomorphic to (T, S, φ),
as they generate all isomorphisms of the underlying trees.

Our notation for tanglegram layouts builds on the notation used in [15]. In any layout,
the number of crossings is completely determined by the order of the leaves in the two
trees and the bijection φ matching these leaves, as the between-tree edges (ti, sφ(i)) and
(tj, sφ(j)) intersect when ti is embedded above tj and sφ(i) is embedded below sφ(j). Since
we are primarily interested in the number of crossings rather than specific coordinates of
the plane embedding, we give the following definition.

Definition 5. Let (T, S, φ) be a tanglegram drawn in the plane with a given layout. The
leaf order of the given layout is a pair of ordered lists (X, Y ), where X and Y respectively
list the leaves of T and S in order of appearance from top to bottom in the layout.

One can view the leaf order of a layout (X, Y ) as an equivalence class of layouts, where
two layouts are equivalent if they draw the leaves of T and S in the same order from top
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to bottom. To recover a layout from the ordered lists (X, Y ), one can draw the leaves
listed in X and Y from top to bottom respectively on x = 0 and x = 1, and then use the
information from T , S, and φ to draw the trees and between-tree edges. Flips generate all
trees isomorphic to T or S, so they can act on leaf orders (X, Y ) to obtain all possible
leaf orders, where a flip at an internal vertex u acts on (X, Y ) by reversing the order of
the elements in Lf(u) in the appropriate list X or Y . Throughout this paper, we abuse
terminology and refer to this pair of lists (X, Y ) also as a tanglegram layout.

We will often decompose X and Y into concatenated lists (X1X2 . . . Xm, Y1Y2 . . . Yn),
where each Xi or Yj is some ordered collection of consecutive leaves. We do not impose
any restrictions on Xi and Yj beyond the fact that they must contain consecutive leaves,
but usually we will use Xi or Yj to represent the leaves in Lf(u) or Lf(v) for some u ∈ T
or v ∈ S. If we start with the layout (X1 . . . Xi . . . Xm, Y ) and the sublist Xi contains
the elements in Lf(u), we will denote the layout after a flip at u as (X1 . . . Xi . . . Xm, Y ),
where the bar indicates that the sublist Xi is reversed. Note that while this notation using
lists is convenient, the reader should visualize (X, Y ) as embeddings into the plane, and
when possible, we will include drawings to help illustrate the arguments that we make
using these ordered lists.

Finally, we will define induced subtrees and induced subtanglegrams using a similar
definition as in [5]. Notice that layouts (X ′, Y ′) of subtanglegrams correspond to taking
sub-lists in layouts (X, Y ) of the original tanglegram.

Definition 6. Let T be a tree with leaves indexed by [n]. For any I ⊆ [n], the rooted
binary subtree induced by I, denoted TI , is formed by taking the minimal subtree of T
containing the leaves indexed by I and suppressing all internal vertices that have only one
child.

Definition 7. Let (T, S, φ) be a tanglegram with the leaves of T and S indexed by [n].
For any I ⊆ [n], the subtanglegram induced by I is the tanglegram (TI , Sφ(I), φ|I), that is,
the tanglegram formed from the induced subtrees TI and Sφ(I) with leaves matched using
the restriction φ|I .

Example 8. Consider the tanglegram (T, S, φ) with

T = (((t1, t2), t3), (t4, t5)) S = (((s1, (s2, s3)), s4), s5)
i 1 2 3 4 5

φ(i) 4 2 5 1 3

Writing the leaves of T and S in the order given results in the layout (t1t2t3t4t5, s1s2s3s4s5).
A flip at the root of ((s1, (s2, s3)), s4) results in the layout (t1t2t3t4t5, s4s3s2s1s5). By taking
sub-lists of (X ′, Y ′) based on the elements in {1, 2, 4, 5} and φ({1, 2, 4, 5}) = {1, 2, 3, 4}, we
obtain the layout (t1t2t4t5, s4s3s2s1) for the subtanglegram (T{1,2,4,5}, Sφ({1,2,4,5}), φ|{1,2,4,5}).
Using T and S, we produce the drawings in Figure 2 corresponding to these ordered lists.

We conclude this section with known results that will be used in our work. These
results were previously mentioned, and we include them below for ease of citation. Recall
that crt(T, S, φ) is the minimum number of crossings over all layouts of a tanglegram
(T, S, φ).
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Figure 2: Layouts from Example 8.

Theorem 9. [6, Theorem 3] The Tanglegram Layout Problem is NP-hard.

Theorem 10. [1, Theorem 3] Let (T, S, φ) be a tanglegram of size n and let (TI , Sφ(I), φ|I)
be an induced subtanglegram of size n− 1. Then crt(T, S, φ)− crt(TI , Sφ(I), φ|I) 6 n− 3.

Theorem 11. [1, Theorem 5] If (T, S, φ) is a tanglegram of size n, then crt(T, S, φ) < 1
2

(
n
2

)
.

3 Characterization of planar tanglegram layouts

In this section, we will start by giving our ModifiedUntangle algorithm, based on the
Untangle algorithm by Lozano et al. in [15]. Our additional steps involve the set L. We
will describe the significance of elements in this set, and then use it to characterize all
planar layouts of a planar tanglegram. We conclude this section with our enumerative
result on planar tanglegrams.

3.1 ModifiedUntangle Algorithm

The Untangle Algorithm by Lozano et al. starts by computing a table of Boolean values
P , where P [u, v] is True for u ∈ T, v ∈ S if a descendant of u is matched with a descendant
of v by φ. It begins with the ordered lists X = (root(T )) and Y = (root(S)) and then
refines these lists by replacing vertices with their children in an order chosen based on
the Boolean table P . They call these ordered lists of vertices (X, Y ) from each step
partial layouts, as they prescribe the order that some of the vertices in the tanglegram
are drawn. Untangle terminates when the lists in (X, Y ) contain only leaves of T and S,
respectively. It then outputs this pair of lists (X, Y ), which is an actual tanglegram layout.
We give our modified version of Untangle below, which has additional steps involving a
set L. Removing these steps yields the original Untangle algorithm. We will explain the
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significance of the set L in the next subsection.
Algorithm 1: ModifiedUntangle (based on [15, Algorithm 2])
Input: planar tanglegram (T, S, φ) with leaves {t1, . . . , tn} and {s1, . . . , sn}
Output: a planar layout (X, Y ) of (T, S, φ), list of leaf-matched pairs L ⊆ T × S

1 P := Boolean table with P [u, v] = False ∀ vertices u ∈ T , v ∈ S
2 set P [ti, sφ(i)] = True ∀ i ∈ [n]
3 recursively set P [u, v] = True for internal vertices u ∈ T, v ∈ S if there exists

u′ 6T u, v′ 6S v with P [u′, v′] = True
4 X := (root(T )), Y := (root(S)) as ordered lists
5 E := {(root(T ), root(S))} as a set of edges
6 L := ∅
7 while X ∪ Y contains an internal vertex of T or S do
8 u := internal vertex of T ∪ S with highest degree in the bipartite graph

G = (X, Y,E)
9 if u ∈ X then

10 if u has degree 1 in G then
11 update L := L ∪ (u, v), where v is the unique neighbor of u in G

12 update X,E := Refine(X, Y, u, E, P )

13 else if u ∈ Y then
14 if u has degree 1 in G then
15 update L := L ∪ (v, u), where v is the unique neighbor of u in G

16 update Y,E := Refine(Y,X, u, E, P )

17 return (X, Y ), L

Algorithm 2: Refine (based on [15, Algorithm 3])
Input: ordered lists of vertices (A,B), u ∈ A, edges E on A ∪B, Boolean table P
Output: A,E after u has been replaced with its children

1 u1, u2 := children of u in T ∪ S
2 for j ∈ [m] such that (u, bj) ∈ E where B = (b1, . . . , bm) do
3 update E := E \ {(u, bj)} // delete edges involving u
4 for i ∈ {1, 2} do
5 if P [ui, bj] = True then
6 update E := E ∪ {(ui, bj)} // insert edges involving u1 or u2

7 k := max{j ∈ [m] : (u1, bj) ∈ E} // last vertex in B adjacent to u1
8 if j > k for all (u2, bj) ∈ E then
9 replace u with u1u2 in A

10 else
11 replace u with u2u1 in A

12 return A,E
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Figure 3: A visualization of the Refine algorithm. Draw the inputs as a bipartite graph
G = (A,E,B) shown on the left, where the vertices are drawn from top to bottom based
on the order of elements in A and B. To refine the vertex u of highest degree, consider
the embedding shown in the middle with u1 drawn above u2, where new edges involving u1
and u2 are drawn using the Boolean table P . Since this drawing has crossings, Refine
will replace u with u2u1. Notice that in this case, drawing u2 above u1 results in a planar
drawing, as shown on the right.

A description of the steps in Refine is shown in Figure 3. Note that Refine does
not actually check if drawing u2 above u1 results in a planar embedding. This is because
planarity of (T, S, φ) guarantees that at least one of these embeddings will be planar,
provided we made appropriate choices at previous refinements. Details are addressed in
the proof of the next theorem. Since results from this proof will be relevant for our work,
we repeat it below for the convenience of the reader. Note that Lemma 13 is stated more
generally than in [15]. This extra generality will be useful in the next subsection.

Definition 12. A partial layout (X, Y ) for a tanglegram is called promising if it can be
extended to a planar layout by successively replacing vertices with their children in some
order.

Lemma 13 ([15], Lemma 3). Let (X, Y ) be a promising partial layout of a planar tangle-
gram (T, S, φ), and let E be the set of edges on X ∪ Y generated using the Boolean table
P , that is, for all u ∈ X and v ∈ Y , (u, v) ∈ E if and only if P [u, v] = True. Let u be a
vertex of highest degree in the bipartite graph (X,E, Y ).

(a) If deg(u) = 1, then replacing u with u1u2 or u2u1 results in a promising partial
layout.

(b) If deg(u) > 1, then either replacing u with u1u2 or replacing u with u2u1 results in a
promising partial layout, but not both.

In particular, if (X, Y ) is promising at the beginning of an iteration of the while loop in
Untangle, then it is promising at the end.

Proof. Without loss of generality, we will assume u ∈ T , as the result when u ∈ S is done
similarly. We let (X1, Y ) and (X2, Y ) be the partial layouts obtained by replacing u with
u1u2 or u2u1, respectively. Since (X, Y ) is promising, at least one of these partial layouts
must be promising, so assume that (X1, Y ) is promising.
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First, suppose deg(u) = 1 in (X,E, Y ). Since u is a vertex of maximum degree, the
unique neighbor of u, denoted v, also has degree 1. Notice that since u and v have degree
1, Lf(u) and Lf(v) must be matched by φ. Extend (X1, Y ) to a planar layout (X ′, Y ′) of
(T, S, φ), where Lf(u1) appears before Lf(u2). If we perform a flip at u and a flip at v, then
we obtain a layout where Lf(u2) appears before Lf(u1), as shown in Figure 4. Notice that
this is a planar layout that can be obtained by replacing u with u2u1 instead, implying
(X2, Y ) is also promising. We see that regardless of how we replace u with u1 and u2, the
resulting partial layout is promising.

u v

u1

u2

t1

...
tk

s1

...
sk

u v

u2

u1

tk

...
t1

sk

...
s1

Figure 4: Starting with the layout (X ′, Y ′) on the left with {ti}ki=1 and {si}ki=1 denoting
leaves, performing flips at u and v produces another planar layout.

Next, suppose that deg(u) > 1. As before, we suppose (X1, Y ) is promising. Let E ′ be
the edges on X1 ∪ Y constructed using the Boolean table P , and for i = 1, 2, we let N(ui)
denote the set of neighbors of ui in (X1, E

′, Y ). We claim that N(u1)∆N(u2) 6= ∅, where
∆ denotes the symmetric difference of two sets. To see this, suppose that N(u1) = N(u2).
If |N(u1)| = |N(u2)| = 1, then this would imply deg(u) = 1 in (X,E, Y ), which by
assumption cannot be the case. Hence, |N(u1)| = |N(u2)| > 2. Then there exists some
pair of vertices v1, v2 ∈ N(u1) = N(u2) that are each adjacent to both u1 and u2. However,
this implies a crossing occurs in both (X1, E

′, Y ) and (X2, E
′, Y ), as shown in Figure

5. Then by construction of the Boolean table P , there exist some t1,1, t1,2 ∈ Lf(u1) and
t2,1, t2,2 ∈ Lf(u2) where each ti,j ∈ Lf(ui) is matched to some si,j ∈ Lf(vj). Regardless
of any refinements of (X, Y ), the resulting layout will have either the crossing (t1,2, s1,2)
and (t2,1, s2,1), or the crossing (t1,1, s1,1) and (t2,2, s2,2). Since (X1, Y ) is assumed to be
promising, it must be that N(u1) 6= N(u2).

u1

u2

v1

v2

u2

u1

v1

v2

Figure 5: Arrangements of the vertices u1, u2, v1 and v2 when N(u1) = N(u2) and deg(u) >
2.

With N(u1)∆N(u2) 6= ∅ established, we let v ∈ N(u1)∆N(u2). First, we assume that
v = v1 ∈ N(u1) \N(u2). Since (X1, Y ) is promising, it must be that drawing (X1, E

′, Y )
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with vertices in the orders indicated by X1 and Y produces no crossings. Then v1 must
appear before any v2 ∈ N(u2) in the list Y . Furthermore, for any v2 ∈ N(u2), if we
interchange u1 and u2, then the edges (u1, v1) and (u2, v2) will intersect. Regardless
of our future refinements, there will exist some leaves ti ∈ Lf(u1), tj ∈ Lf(u2), sφ(i) ∈
Lf(v1), sφ(j) ∈ Lf(v2) such that (ti, sφ(i)) and (tj, sφ(j)) intersect, which implies (X2, Y )
cannot be promising. A similar argument applies when v = v2 ∈ N(u2) \N(u1).

Now consider the while loop in Untangle. The algorithm uses Refine on a vertex
u of highest degree in (X,E, Y ), which replaces u with u1 and u2. If deg(u) = 1, then
(a) shows that (X, Y ) is promising regardless of the choice at u. If deg(u) > 1, Refine
replaces (X, Y ) with (X1, Y ) or (X2, Y ) based on whichever bipartite graph (X1, E

′, Y )
or (X2, E

′, Y ) does not have crossings, and our proof of (b) shows that this results in a
promising partial layout.

Theorem 14. [15, Theorem 1] For any planar tanglegram (T, S, φ), the Untangle algo-
rithm terminates in a planar layout (X, Y ).

Proof. If (T, S, φ) is planar, then (X, Y ) = (root(T ), root(S)) in line 4 is promising. By
Lemma 13, (X, Y ) is promising after each iteration of the while loop. This loop terminates
when (X, Y ) contains only leaves of T and S, which must then be a planar layout.

Remark 15. In the proofs of Lemma 13 and Theorem 14, the arguments hold regardless of
which vertex of highest degree u is selected. In fact, we do not even need to select the
vertex of highest degree at every step in Untangle. We specified a vertex of highest degree
for simplicity. As long as Untangle does not use Refine on a vertex in (X,E, Y ) with
degree one while its neighbor has degree more than one, the algorithm will still output a
planar layout for a planar tanglegram.

Lemma 16. [15, Lemma 4] Untangle runs in O(n2) time and space, where n is the size
of the tanglegram.

Remark 17. The additional steps in ModifiedUntangle involve the set L, which has size
at most n− 1. Hence, for a planar tanglegram of size n, Theorem 14 and Lemma 16 also
imply that ModifiedUntangle terminates in a planar layout (X, Y ) and runs in O(n2)
time and space.

3.2 Leaf-matched pairs and paired flips

We now consider the additional steps involving the set L in ModifiedUntangle algorithm.
While the Untangle algorithm produces a planar layout for planar tanglegrams, one might
ask how to generate all of them. As noted in the proof of Lemma 13, if (X, Y ) is a planar
layout of (T, S, φ), then one method to generate additional planar layouts is using flips at
vertices u ∈ T and v ∈ S where Lf(u) and Lf(v) are matched by φ. We give a name for
these pairs of vertices and the operation involving a flip at both vertices, followed by an
example in Figure 6. Then we show that ModifiedUntangle identifies these pairs in the
set L.
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Figure 6: A paired flip at (u, v) maps each layout to the other one.

Definition 18. Let (T, S, φ) be a tanglegram with layout (X, Y ). A pair of internal
vertices (u, v) with u ∈ T and v ∈ S is a leaf-matched pair of (T, S, φ) if Lf(u) and Lf(v)
are matched by φ. A paired flip at (u, v) is the operation on (T, S, φ) corresponding to a
flip at u and a flip at v. This maps (X, Y ) to the layout (X ′, Y ′), where X ′ is the image
of X after a flip at u and Y ′ is the image of Y after a flip at v.

Lemma 19. Let (T, S, φ) be a planar tanglegram. A pair of internal vertices (u, v) is
a leaf-matched pair of a planar tanglegram (T, S, φ) if and only if at some step of the
ModifiedUntangle algorithm, the internal vertices u ∈ T and v ∈ S appear as adjacent
degree one vertices in (X,E, Y ). Hence, the set L returned by ModifiedUntangle is the
set of leaf-matched pairs of (T, S, φ).

Proof. Suppose the internal vertices u ∈ T and v ∈ S appear as adjacent degree one
vertices in (X,E, Y ) during some step of the ModifiedUntangle algorithm. Since both
vertices have degree one, the construction of the edges in (X,E, Y ) using the Boolean
table P in line 4 of Refine implies that Lf(u) and Lf(v) are matched under φ, and thus
(u, v) is a leaf-matched pair.

Conversely, suppose (u, v) is a leaf-matched pair. If u and v are the root vertices of T
and S, then these appear as degree one vertices at the first step of ModifiedUntangle.
Otherwise, at some step of the algorithm, either u or v will appear for the first time in
a partial layout (X, Y ), and without loss of generality, we assume it is u ∈ X. Since v
has not appeared in a partial layout yet, there is some vertex v′ ∈ Y that is an ancestor
of v. Then Lf(u) is matched with a proper subset of Lf(v′) in the tanglegram (T, S, φ),
so deg(v′) > 1 in (X,E, Y ). From line 8 of ModifiedUntangle, we see that v′ will be
replaced with its children before u is. Repeating this argument, v will eventually appear
before we use Refine on u, and at this time, u and v will be adjacent degree one vertices
since they are a leaf-matched pair of (T, S, φ).

We know that given a planar layout (X, Y ) of (T, S, φ), paired flips will generate
additional planar layouts, but we do not yet know that they generate all possible planar
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layouts. It may be possible that some appropriate choice of flips not equivalent to a
sequence of paired flips also results in a planar layout. We will show that this is in fact not
the case. Our proof for this uses Lemma 13, which holds for all promising partial layouts,
not just those considered in ModifiedUntangle.

First, notice that for a tanglegram (T, S, φ) of size n, ModifiedUntangle starts with a
promising partial layout (X1, Y1) = (root(T ), root(S)). At each step, it replaces an internal
vertex of T or S using Refine. Since a tree on n leaves has n− 1 internal vertices, the
algorithm uses Refine a total of 2n− 2 times. Thus, it produces a sequence of promising
partial layouts {(Xk, Yk)}2n−1k=1 that terminates at (X, Y ) = (X2n−1, Y2n−1). We give a name
for such a sequence.

Definition 20. Let (T, S, φ) be a tanglegram with layout (X, Y ). We call {(Xk, Yk)}2n−1k=1

a partial sequence for (X, Y ) if

• for k = 1, 2, . . . , 2n− 1, (Xk, Yk) is a partial layout,

• (X1, Y1) = (root(T ), root(S)),

• (X2n−1, Y2n−1) = (X, Y ), and

• for k = 1, 2, . . . , 2n − 2, the partial layout (Xk+1, Yk+1) is obtained from (Xk, Yk)
by refining some vertex u ∈ Xk ∪ Yk, that is, replacing u with its children in an
appropriate order.

A partial sequence is promising if all (Xk, Yk) are promising partial layouts, or equivalently,
if (X, Y ) = (X2n−1, Y2n−1) is a planar layout.

If (X ′, Y ′) is another planar layout of (T, S, φ), we can use {(Xk, Yk)}2n−1k=1 to find a
promising partial sequence {(X ′k, Y ′k)}2n−1k=1 for (X ′, Y ′). We do this by constructing each
(X ′k, Y

′
k) as follows.

• Draw the trees T and S with leaves from top to bottom in the order described by
(X ′, Y ′).

• For each u ∈ Xk, contract the subtree of T rooted at u to the vertex u itself. Do the
same for each v ∈ Yk, and call the resulting trees Tk and Sk.

• Let X ′k be the leaves of Tk listed from top to bottom, and similarly for Y ′k and Sk.

An example of these steps is shown below in Figure 7. Note that by construction, (Xk, Yk)
and (X ′k, Y

′
k) contain the same vertices, but possibly in different orders. We now show that

{(X ′k, Y ′k)}2n−1k=1 constructed in this manner is a promising partial sequence for (X ′, Y ′) and
then use this to establish Theorem 1.

Lemma 21. The sequence {(X ′k, Y ′k)}2n−1k=1 is a promising partial sequence for (X ′, Y ′).
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Figure 7: Starting with drawings of T and S corresponding to (X ′, Y ′), we use (Xk, Yk) =
(u2u3, v2v4v5) to form the contracted trees Tk and Sk shown on the right. Listing leaves
from top to bottom gives us the partial layout (X ′k, Y

′
k) = (u3u2, v5v4v2).

Proof. By construction, each (X ′k, Y
′
k) is a partial layout, (X ′1, Y

′
1) = (root(T ), root(S)),

and (X ′2n−1, Y
′
2n−1) = (X ′, Y ′). It remains to show that refining a vertex u ∈ X ′k ∪ Y ′k

produces (X ′k+1, Y
′
k+1). Denote the vertex refined in (Xk, Yk) to obtain (Xk+1, Yk+1) as

uk, and without loss of generality, we assume uk ∈ Xk. This implies that (X ′k, Y
′
k) and

(X ′k+1, Y
′
k+1) have almost the same vertices, except (X ′k, Y

′
k) contains uk, while (X ′k+1, Y

′
k+1)

contains its two children uk,1 and uk,2. By our construction using contractions, the tree
Tk can be obtained from Tk+1 by contracting the two children of uk onto the vertex itself.
Thus, we can obtain (X ′k, Y

′
k) from (X ′k+1, Y

′
k+1) by replacing the adjacent children of uk

with uk itself. Then we can also obtain (X ′k+1, Y
′
k+1) from (X ′k, Y

′
k) by refining uk. Thus,

all conditions in Definition 20 are satisfied, so we see that {(X ′k, Y ′k)}2n−1k=1 is a promising
partial sequence for (X ′, Y ′).

Proof of Theorem 1. By Lemma 19, L is the set of leaf-matched pairs of (T, S, φ). It is
clear that if (u, v) ∈ L, then starting with (X, Y ) and performing a paired flip at (u, v)
produces another layout in P(T, S, φ), so the same is true if we perform any sequence of
paired flips starting with (X, Y ). We show that all planar layouts can be obtained this
way.

Let (X ′, Y ′) ∈P(T, S, φ) be distinct from (X, Y ). Let {(Xk, Yk)}2n−1k=1 be the promising
partial sequence for (X, Y ) produced in ModifiedUntangle, with corresponding bipartite
graphs {(Xk, Ek, Yk)}2n−1k=1 . By Lemma 21, we can use this sequence for (X, Y ) to construct
a corresponding promising partial sequence {(X ′k, Y ′k)}2n−1k=1 for (X ′, Y ′) where (Xk, Yk) and
(X ′k, Y

′
k) contain the same vertices, though possibly in different orders. Thus, if we use the

Boolean table P to construct edges E ′k on the vertices in X ′k ∪ Y ′k, then E ′k = Ek. Since
(X ′, Y ′) 6= (X, Y ), there must be some minimal m such that (Xm+1, Ym+1) 6= (X ′m+1, Y

′
m+1).

Without loss of generality, we assume the refined vertex at this step was u ∈ Xm and
that Refine replaced u with u1u2 to obtain (Xm+1, Ym+1), while (X ′m+1, Y

′
m+1) requires

replacing u with u2u1.
Consider the degree of u in the bipartite graph (Xm, Em, Ym) = (X ′m, Em, Y

′
m). If

deg(u) > 2, then Lemma 13 implies that (X ′m+1, Y
′
m+1) is not promising, which is not the
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case since {(X ′k, Y ′k)}2n−1k=1 is a promising partial sequence for (X ′, Y ′). Thus, it must be
that deg(u) = 1. Since ModifiedUntangle always refines a vertex of highest degree, this
implies that all vertices in (Xm, Em, Ym) = (X ′m, Em, Y

′
m) must have degree 1.

Let v ∈ Ym be the unique neighbor of u in (Xm, Em, Ym). Once we replace u with its
children, notice that v will be the unique vertex in (Xm+1, Em+1, Ym+1) with deg(v) > 2.
Thus, after ModifiedUntangle replaces u with u1u2 to obtain (Xm+1, Ym+1), it will replace
v with its children in some order to obtain (Xm+2, Ym+2).

Lemma 19 implies that (u, v) ∈ L, so we let (X̃, Ỹ ) ∈ P(T, S, φ) be (X, Y ) after a
paired flip at (u, v). Using {(Xk, Yk)}2n−1k=1 , we again use Lemma 21 to construct a promising
partial sequence {(X̃k, Ỹk)}2n−1k=1 for (X̃, Ỹ ). By construction, (X̃k, Ỹk) = (Xk, Yk) for all
k 6 m, and because of the paired flip at (u, v), we see that (X̃k, Ỹk) = (X ′k, Y

′
k) for all

k 6 m+ 1. Furthermore, the preceding paragraph implies that (X̃m+2, Ỹm+2) is obtained
from (X̃m+1, Ỹm+1) by refining the vertex v. Since deg(v) = 2 in (X̃m+1, Em+1, Ỹm+1),
Lemma 13 implies that a unique choice for the children of v results in a promising partial
layout, and thus it must be that (X̃m+2, Ỹm+2) = (X ′m+2, Y

′
m+2).

If (X̃, Ỹ ) 6= (X ′, Y ′), we can repeat the above argument. Eventually, this process
terminates in a planar layout (X̃, Ỹ ) obtained from a sequence of paired flips starting at
(X, Y ), where (X̃k, Ỹk) = (X ′k, Y

′
k) for all k. Hence, we see that (X ′, Y ′) = (X̃, Ỹ ), and

any (X ′, Y ′) ∈P(T, S, φ) can be obtained using a sequence of paired flips starting with
(X, Y ).

Remark 22. A tanglegram is irreducible if its only leaf matched pair is given by the roots
of the two trees. For irreducible tanglegrams (T, S, φ) of size at least three, Theorem 1
implies that there are exactly two planar layouts, which must be mirror images of one
another. This specific case was established and used by Ralaivaosaona, Ravelomanana,
and Wagner to enumerate planar tanglegrams [17, Proposition 5].

We now define an undirected graph called the flip graph of a planar tanglegram.
Theorem 1 gives us a corollary about this graph. By using the outputted layout from
ModifiedUntangle and considering all subsets of L, one could in principle find all planar
layouts of a planar tanglegram (T, S, φ) and produce the flip graph of a tanglegram, though
there may be exponentially many planar layouts.

Definition 23. Let (T, S, φ) be a planar tanglegram. Define the flip graph of (T, S, φ)
as Γ(T, S, φ) = (V,E) with vertices v(X,Y ) ∈ V corresponding to planar layouts (X, Y ),
and edges (v(X,Y ), v(X′,Y ′)) ∈ E if (X ′, Y ′) can be obtained from (X, Y ) by a paired flip at
some leaf-matched pair (u, v) of (T, S, φ).

Corollary 24. The flip graph of a planar tanglegram is connected.

3.3 Enumeration of planar tanglegrams by number of leaf-matched pairs

In this subsection, we show an enumerative result for the number of planar tanglegrams
of size n with k leaf-matched pairs. Recall the generating functions F (x, q) and H(x)
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from (1) and (2). We first give a definition, and then establish our generalization of [17,
Theorem 1].

Definition 25. The irreducible component of a tanglegram (T, S, φ), denoted Irr(T, S, φ),
is the irreducible tanglegram formed by contracting each non-root leaf-matched pair of
(T, S, φ) to a single pair of matched leaves.

Proof of Theorem 2. Equation (3) is equivalent to

F (x, q) = x+ q ·
(
H(F (x, q))− F (x, q)2

2

)
+ q · F (x, q)2 + F (x2, q2)

2
, (4)

so we establish this relation instead. The term x accounts for the unique tanglegram of
size 1, which has no leaf-matched pairs. For the remaining tanglegrams, we can form each
tanglegram (T, S, φ) by starting with its irreducible component Irr(T, S, φ) and replacing
matched leaves with planar tanglegrams (possibly of size 1). We consider two cases
depending on the size of Irr(T, S, φ).

First, consider tanglegrams with size(Irr(T, S, φ)) > 3. As noted in the proof of
[17, Theorem 1], these tanglegrams do not have any symmetry. The generating function
q·[H(x)−x2/2] counts irreducible planar tanglegrams of size n > 3. A term qxn corresponds
to a planar irreducible tanglegram of size n, and replacing a pair of matched leaves with
a planar tanglegram corresponds to replacing x with F (x, q). Hence, q · [H(F (x, q)) −
F (x, q)2/2] enumerates tanglegrams with irreducible component of size n > 3.

Second, suppose size(Irr(T, S, φ)) = 2. These tanglegrams are formed by starting with
the unique planar tanglegram of size two corresponding to the term qx2 and replacing
the two pairs of leaves with two planar tanglegrams {(T1, S1, φ1), (T2, S2, φ2)}, where the
order is not relevant. The generating function F (x, q)2 would count ordered pairs of planar
tanglegrams. This correctly counts the case when (T1, S1, φ1) and (T2, S2, φ2) are the same,
but counts all other cases twice. To remedy this over-counting, we can add F (x2, q2), which
counts the pairs where (T1, S1, φ1) and (T2, S2, φ2) are the same, and then divide the result
by two to account for the order not being relevant. Hence, q · F (x,q)2+F (x2,q2)

2
enumerates

tanglegrams with irreducible component of size two. Combined, we obtain (4).

n, k 1 2 3 4 5 6 total
2 1 1
3 1 1 2
4 5 4 2 11
5 34 28 11 3 76
6 273 239 102 29 6 649
7 2436 2283 1045 325 73 11 6173

Table 1: Coefficients of xnqk in F (x, q) for 2 6 n 6 7.

Note that substituting q = 1 results in the original relation given in [17, Theorem
1]. Using this result and the coefficients of H(x) from [17], it takes a computer-algebra
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Figure 8: The 11 planar tanglegrams of size 4. The first five tanglegrams are irreducible,
the next four have two leaf-matched pairs, and the final two have three pairs.

system only a few seconds to generate several coefficients of F (x, q). We collect some of
these coefficients in Table 1. See [11, A349409] for more terms. The corresponding planar
tanglegrams for n = 4 are shown in Figure 8.

4 The Tanglegram Single Edge Insertion Problem

In this section, we solve the Tanglegram Single Edge Insertion Problem. For convenience
of the reader, we restate the problem below.

Problem (Tanglegram Single Edge Insertion). Given a tanglegram (T, S, φ) and a
planar subtanglegram (TI , Sφ(I), φ|I) induced by I = [n] \ {i} for i ∈ [n], find a layout of
(T, S, φ) that restricts to a planar layout of (TI , Sφ(I), φ|I) and has the minimal number of
crossings possible.

Since planar layouts of (TI , Sφ(I), φ|I) are relevant for this problem, we can apply
our work from Section 3. We use the notation (T, S, φ|I) = (T, S, φ) \ {(tj, sφ(j))}j /∈I
for a tanglegram with some between-tree edges removed. Note that (T, S, φ|I) is well-
defined as an input into ModifiedUntangle, motivating this notation. Letting (X, Y ), L =
ModifiedUntangle(T, S, φ|I), we will show that (X, Y ) does restrict to a planar layout
of (TI , Sφ(I), φ|I) whenever it is a planar subtanglegram. However, L may contain pairs
(u, v) where u ∈ T or v ∈ S are not vertices in (TI , Sφ(I), φ|I). One simple example of this
situation is shown in Figure 9.

To find the leaf-matched pairs of the subtanglegram, one could input (TI , Sφ(I), φ|I) itself
into ModifiedUntangle, and then relate the outputs to (T, S, φ), though this would require
extending the outputted layout of (TI , Sφ(I), φ|I) to a layout for (T, S, φ). Alternatively,
we can directly construct the set of leaf-matched pairs of (TI , Sφ(I), φ|I) using L.

Definition 26. Let (T, S, φ) be a tanglegram of size n, and let I ⊆ [n]. For any pair of
vertices u ∈ T , v ∈ S such that Lf(u) ∩ TI is paired with Lf(v) ∩ Sφ(I) by φ|I , define their
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Figure 9: When used on (T, S, φ|{1,2,3}) shown on the left, ModifiedUntangle will add
(u, v) to L on the first step of the algorithm. However, u is not a vertex of the subtanglegram
(T{1,2,3}, S{1,3,4}, φ|{1,2,3}), shown on the right.

reduced vertices to be

ured = minimal u′ 6T u such that Lf(u) ∩ TI = Lf(u′) ∩ TI

vred = minimal v′ 6S v such that Lf(v) ∩ Sφ(I) = Lf(v′) ∩ Sφ(I).

Given the set L from ModifiedUntangle(T, S, φ|I), define L(I) to be the set of all
(ured, vred) such that (u, v) ∈ L and |Lf(u) ∩ TI | = |Lf(v) ∩ Sφ(I)| > 1.

Lemma 27. Suppose (T, S, φ) is a tanglegram with planar subtanglegram (TI , Sφ(I), φ|I)
induced by I ⊆ [n], and let (X, Y ), L = ModifiedUntangle(T, S, φ|I). If (u, v) ∈ L, then
Lf(u) ∩ TI and Lf(v) ∩ Sφ(I) are matched by φ|I .

Proof. Since (u, v) ∈ L, we know u and v appeared as adjacent degree one vertices in a
bipartite graph (Xj, Ej, Yj) during some step of ModifiedUntangle. The edges Ej are
constructed using the Boolean table P , and because of the restriction φ|I , P [u, v] = True
if and only if some element of Lf(u)∩TI is matched with an element of Lf(v)∩Sφ(I) by φ|I .
From this, we see that u and v being adjacent degree one vertices in (Xj, Ej, Yj) implies
Lf(u) ∩ TI and Lf(v) ∩ Sφ(I) are matched by φ|I .

Lemma 28. Suppose (T, S, φ) is a tanglegram with planar subtanglegram (TI , Sφ(I), φ|I)
induced by I ⊆ [n], and let (X, Y ), L = ModifiedUntangle(T, S, φ|I).

(a) The layout (X, Y ) restricts to a planar layout of (TI , Sφ(I), φ|I).

(b) The set L(I) is the set of leaf-matched pairs of (TI , Sφ(I), φ|I).

Proof. To prove (a), we use a similar argument as in Theorem 14. Call (X, Y ) promising if
it extends to a planar drawing of (T, S, φ|I). The initial partial layout of roots is promising
by assumption. We claim that (X, Y ) is still promising after an iteration of Refine.
Suppose we are refining a vertex of highest degree u ∈ X. It is possible that when we use
Refine on u to replace it with its children u1 and u2, the Boolean table values P [ui, v]
are false for all v ∈ Y , and this occurs precisely when all between-tree edges incident to
leaves in Lf(ui) have been removed. If this occurs, we assume without loss of generality
that it occurs for u1. Since (X, Y ) was promising, it extends to some planar drawing, and
if we interchange the subtrees rooted at u1 and u2, we obtain another planar drawing
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since leaves in Lf(u1) are not incident to any of the between-tree edges. Thus, replacing u
with u1u2 or u2u1 both result in a promising partial layout. For all other cases, the same
arguments from Lemma 13 apply, and thus ModifiedUntangle terminates in a drawing of
(T, S, φ|I) that is planar. Restricting to just the leaves in I, this must be a planar layout
of (TI , Sφ(I), φ|I).

For (b), we let (X ′, Y ′), L′ = ModifiedUntangle(TI , Sφ(I), φ|I), so we must show that
L(I) = L′. For the remainder of this proof, we will use Lf(u) to denote the leaves of u in
T and use Lf(u) ∩ TI to denote the leaves of u in TI . We use a corresponding notation for
vertices v ∈ S.

We claim that L(I) ⊆ L′. Let (ured, vred) ∈ L(I) for some (u, v) ∈ L. By Definition 26
and Lemma 27, Lf(u)∩ TI = Lf(ured)∩ TI is matched with Lf(v)∩ Sφ(I) = Lf(vred)∩ Sφ(I)
by φ|I and |Lf(ured) ∩ TI | = |Lf(vred) ∩ Sφ(I)| > 1. Also recall from Definition 26 that
ured is the minimal u′ 6T u with Lf(u) ∩ TI = Lf(u′) ∩ TI . Note that this ured cannot be
a leaf in T since we know |Lf(u) ∩ TI)| = |Lf(ured) ∩ TI | > 1. Now let T1 and T2 be the
subtrees of T such that root(T1) and root(T2) are the children of ured. Then the definition
of ured implies that Lf(root(T1)) ∩ TI and Lf(root(T2)) ∩ TI are both proper, nonempty
subsets of Lf(ured) ∩ TI , and from this, we conclude that nonempty subtrees T ′1 ⊆ T1 and
T ′2 ⊆ T2 appear in the minimal subtree containing {ti}i∈I . This implies that ured must
appear in the minimal subtree containing {ti}i∈I , as it is the minimal vertex that is an
ancestor of the vertices in T ′1 ∪ T ′2. Furthermore, this also implies that ured has a child in
T ′1 and a child in T ′2. Since ured has two children in the minimal subtree containing {ti}i∈I ,
it will not be suppressed when forming TI . We conclude that ured is an internal vertex of
TI , and a similar argument shows vred is an internal vertex of Sφ(I). Combined, we see
that ured and vred are internal vertices of (TI , Sφ(I), φ|I), and Lf(ured)∩ TI is matched with
Lf(vred) ∩ Sφ(I) by φ|I . Thus, (ured, vred) ∈ L′, and we conclude that L(I) ⊆ L′.

To finish proving (b), we must show that L(I) ⊃ L′. Consider any leaf-matched
pair (u′, v′) ∈ L′. Observe that u′ = u′red and v′ = v′red since u′ and v′ are vertices in
(TI , Sφ(I), φ|I). During ModifiedUntangle(T, S, φ|I), either u′ or v′ appears first in some
partial layout (Xj, Yj), so we assume without loss of generality that it is u′ ∈ Xj. Since
v′ has not appeared yet in a partial layout, some vertex y′ >S v

′ must be in Yj. Since
Lf(u′)∩ TI is matched with a subset of Lf(y′)∩ Sφ(I) by φ|I , we know that y′ is the unique
neighbor of u′ in (Xj, Ej, Yj), and if deg(y′) > 1 in (Xj, Ej, Yj), then y′ will be refined
before we refine u′. Eventually, we will obtain some partial layout (Xk, Yk) where some
w′ >S v

′ will appear in Yk with deg(w′) = 1 in (Xk, Ek, Yk), and hence u′ and w′ are unique
neighbors of one another in (Xk, Ek, Yk). After this occurs, ModifiedUntangle will add
(u′, w′) to L before it refines u′ or w′. Since (u′, v′) ∈ L′, we know Lf(u′)∩TI is matched with
Lf(v′)∩Sφ(I). Since u′ and w′ had degree one in (Xk, Ek, Yk), Lemma 27 implies Lf(u′)∩TI
is also matched with Lf(w′)∩Sφ(I) by φ|I , and therefore Lf(v′)∩Sφ(I) = Lf(w′)∩Sφ(I). Since
v′red = v′, we conclude that w′red = v′red = v′, and thus (u′, v′) = (u′red, w

′
red) ∈ L(I).

4.1 Preserving subtanglegram planarity and reducing crossings

Throughout this subsection, fix (T, S, φ) as a tanglegram of size n, and fix I = [n] \ {i}
for some i ∈ [n]. Let L(I) be the leaf-matched pairs of (TI , Sφ(I), φ|I), and let (X, Y ) be
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a layout of (T, S, φ) that restricts to a planar layout of (TI , Sφ(I), φ|I). We also use the
notation

u0 = parent of ti ∈ T and v0 = parent of sφ(i) ∈ S, (5)

which are also the unique internal vertices in (T, S, φ) that are not in (TI , Sφ(I), φ|I). To
solve the Tanglegram Single Edge Insertion Problem, we pursue the following questions:

(1) What operations on (X, Y ) produce another layout (X ′, Y ′) that is also planar when
restricted to (TI , Sφ(I), φ|I)?

(2) How can we efficiently find the operation(s) that correspond to a solution to the
Tanglegram Single Edge Insertion Problem?

In this section, we answer (1) and establish some results that will lead to (2). A complete
answer to (2) requires some cases, which we detail in Section 4.2. Before we answer (1),
we start with a definition. While a special case of this definition is sufficient for answering
(1), the extra generality will be useful later in Section 5.

Definition 29. Let T be a tree, let u ∈ T be an internal vertex, and let u1, u2 be the
children of u. A subtree switch (sometimes abbreviated switch) at u is the operation on
T that interchanges the two subtrees rooted at u1 and u2, while maintaining the relative
order of all leaves within each subtree. Note that a subtree switch is equivalent to a flip at
u and then a flip at each child of u that is not a leaf.

Lemma 30. Suppose (X, Y ) and (X ′, Y ′) are both layouts of (T, S, φ) that restrict to
a planar layout of (TI , Sφ(I), φ|I). Then (X ′, Y ′) can be obtained from (X, Y ) using a
sequence of the following operations:

• paired flips at (u, v) ∈ L(I), and

• subtree switches at u0 and v0.

Proof. Note that flips at internal vertices u ∈ T and v ∈ S generate all trees isomorphic
to T and S, and all of these flips commute with one another. Hence, sequences of flips
at internal vertices generate all layouts of a tanglegram. From this, we know that some
sequence of flips f1, . . . , fm at vertices in T and S maps (X, Y ) to (X ′, Y ′), and all of these
flips commute with one another. We can assume that we do not flip at any vertex twice,
as all flips commute and have order two.

Recall that u0 is the parent of ti and v0 is the parent of sφ(i). Let u′ be the child of u0
that is not ti, and let v′ be the child of v0 that is not sφ(i). Note that these may or may
not be internal vertices. If u′ is an internal vertex, define g to be a flip at u′. Otherwise,
define g as the identity map. Similarly, define h to be a flip at v′ or the identity map,
respectively corresponding to when v′ is an internal vertex or a leaf.

First, suppose that none of the flips f1, . . . , fm are flips at u0 and v0. Then we can
restrict the layouts (X, Y ) and (X ′, Y ′) to (TI , Sφ(I), φ|I) and consider f1, . . . , fm as a
sequence of flips in the subtanglegram (TI , Sφ(I), φ|I). Since the restrictions of (X, Y ) and
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(X ′, Y ′) are planar layouts of (TI , Sφ(I), φ|I), Theorem 1 implies that f1, . . . , fm must be
equivalent to a sequence of paired flips at elements in L(I).

Now suppose that some fj corresponds to a flip at u0, but no flip at v0 occurs. Since
all flips commute, we can assume without loss of generality that this is f1. Then another
sequence of flips that maps (X, Y ) to (X ′, Y ′) is

f1, g, g, f2, . . . , fm,

as all flips have order 2. The composition g ◦ f1 is a subtree switch at u0 that maps (X, Y )
to a layout (X ′′, Y ′′) that is also planar when restricted to (TI , Sφ(I), φ|I). The sequence
g, f2, . . . , fm maps (X ′′, Y ′′) to (X ′, Y ′), and none of the flips involve the vertices u0 and
v0. By the preceding paragraph, this sequence must be equivalent to a sequence of paired
flips at elements in L(I). We can use a similar argument when some fj corresponds to a
flip at v0 and no flip at u0 occurs.

Finally, if flips at both u0 and v0 occur, then we assume without loss of generality that
these flips are f1 and f2, respectively. We then consider the sequence

f1, g, f2, h, g, h, f3, . . . , fm,

which is equivalent to f1, . . . , fm since all flips commute and have order 2. Using similar
reasoning, g ◦ f1 and h ◦ f2 are subtree switches, and g, h, f3, . . . , fm correspond to a
sequence of paired flips at elements in L(I).

Lemma 31. Let (u, v) ∈ L(I), and let (X ′, Y ′) be the image of (X, Y ) after a paired flip
at (u, v).

(a) If u 6>T ti and v 6>S sφ(i), then (X, Y ) and (X ′, Y ′) have the exact same crossings.

(b) If u >T ti and v >S sφ(i), then (X, Y ) and (X ′, Y ′) have the exact same crossings.

Proof. For (a), we suppose u 6>T ti and v 6>S sφ(i). Suppose (ti, sφ(i)) crosses some but not
all of the edges between Lf(u) and Lf(v). Then ti appears in the middle of the leaves in
Lf(u), or sφ(i) appears in the middle of the leaves in Lf(v). These respectively contradict
the assumptions u 6>T ti and v 6>S sφ(i), as the leaves in Lf(u) and Lf(v) must appear
consecutively in any layout. From this, we conclude that (ti, sφ(i)) either crosses all or
none of the edges between Lf(u) and Lf(v). Then a paired flip at (u, v) does not affect
any crossings.

For (b), suppose that for the pair (u, v), both u >T ti and v >S sφ(i). Then all crossings
of (T, S, φ) are contained in the subtanglegram with trees rooted at u and v. A paired flip
at (u, v) reflects this subtanglegram, preserving all of the crossings. Visualizations of these
arguments are shown in Figure 10.

The preceding lemmas suggest that we should focus on subtree switches at u0 and v0,
as well as the leaf-matched pairs (u, v) ∈ L(I) where exactly one of u >T ti or v >S sφ(i)
is true. Motivated by these observations, we define the following sets:

L(I)T = {(u, v) ∈ L(I) : u >T ti, v 6>S sφ(i)},
L(I)S = {(u, v) ∈ L(I) : u 6>T ti, v >S sφ(i)}.

(6)
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Figure 10: Lemma 31 shows that paired flips at (a, w), (v, x), (c, y) do not change any
crossings. Notice that a paired flip at (d, z) affects crossings involving the edges between
Lf(d) and Lf(z).

The two preceding lemmas then imply the following result concerning solutions to the
Single Edge Insertion Problem.

Corollary 32. A solution to the Tanglegram Single Edge Insertion Problem can be obtained
by starting at (X, Y ) and performing a sequence of the following operations:

• paired flips at (u, v) ∈ L(I)T ∪ L(I)S, and

• subtree switches at u0 and v0.

Proof. Let (Xmin, Ymin) correspond to a solution of the Tanglegram Single Edge Insertion
Problem. By Lemma 30, we can obtain (Xmin, Ymin) from (X, Y ) using a sequence
f1, f2, . . . , fm of paired flips at (u, v) ∈ L(I) and subtree switches at u0 and v0. Some of
these fj may correspond to paired flips at (u, v) ∈ L(I) where both or neither of u >T ti,
v >S sφ(i) are true. We can assume these paired flips correspond to fk+1, . . . , fm for some
0 6 k 6 m, as all flips commuting implies that paired flips and subtree switches also
commute. By Lemma 31 with induction, if we only perform f1, f2, . . . , fk, then we obtain
another layout (X ′min, Y

′
min) that has the exact same crossings as (Xmin, Ymin). Thus,

(X ′min, Y
′
min) also solves the Tanglegram Single Edge Insertion Problem, and the result

follows.

From Corollary 32, we see that solving the Tanglegram Single Edge Insertion Problem
reduces to finding specific sequences of paired flips at (u, v) ∈ L(I)T ∪ L(I)S and subtree
switches at u0, v0. Identifying the correct sequences will require some cases. Before we
consider these cases, note that the sets {u ∈ T : (u, v) ∈ L(I)T for some v ∈ S} and
{v ∈ S : (u, v) ∈ L(I)S for some u ∈ T} are linearly ordered since they form subsets of
the ancestors of ti and sφ(i), respectively. In particular, this implies that u >T u0 for all
(u, v) ∈ L(I)T , and v >S v0 for all (u, v) ∈ L(I)S since u0 and v0 are respectively the
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parents of ti and sφ(i). Additionally, whenever L(I)T and L(I)S are nonempty, each set
has a unique “maximal" element, which we denote

(uTmax, vTmax) = unique (u, v) ∈ L(I)T such that u >T u
′ for all (u′, v′) ∈ L(I)T ,

(uSmax, vSmax) = unique (u, v) ∈ L(I)S such that v >S v
′ for all (u′, v′) ∈ L(I)S.

(7)

Some examples are shown in Figure 11. We conclude this section with one final lemma
describing the implications of ancestry relations between u0 and uSmax, or v0 and vTmax.

u0

uSmax

ti

sφ(i)

v0

vTmax
ti

sφ(i)

u0

v0
uSmax

vTmaxti

sφ(i)

Figure 11: Examples of uSmax and vTmax.

Lemma 33. The following properties hold when the appropriate vertex uSmax or vTmax
exists.

(i) Suppose u0 >T uSmax, and let (u, v) ∈ L(I). If u >T ti, then v >S sφ(i). Hence,
L(I)T = ∅.

(ii) Suppose u0 6>T uSmax. Then u0 6>T u for any (u, v) ∈ L(I)S.

(iii) Suppose v0 >S vTmax, and let (u, v) ∈ L(I). If v >S sφ(i), then u >T ti. Hence,
L(I)S = ∅.

(iv) Suppose v0 6>S vTmax. Then v0 6>S v for any (u, v) ∈ L(I)T .

Proof. For (i), suppose u0 >T uSmax, and consider (u, v) ∈ L(I) with u >T ti. Since u0 is
the parent of ti, this implies that u >T u0. Combined with the assumption, we conclude

u >T u0 >T uSmax.

Then in the induced subtree TI , we know u >TI uSmax. This implies a corresponding
relation for their leaf-matched vertices v and vSmax in the induced subtree Sφ(I), so
v >Sφ(I) vSmax. Since the ancestry relations on Sφ(I) are restrictions of the relations on
S, this implies v >S vSmax. We know vSmax >S sφ(i) by the definition of L(I)S, so we
conclude that

v >S vSmax >S sφ(i).

For (ii), suppose u0 6>T uSmax. Assume by contradiction that u0 >T u for some
(u, v) ∈ L(I)S. Then by the definition of (uSmax, vSmax), we know that vSmax >S v, and
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therefore uSmax >T u by the same argument involving TI and Sφ(I) in the proof of (i)
above. We see that uSmax and u0 are both ancestors of u, and the assumption u0 6>T uSmax
then implies

uSmax >T u0 >T u

since the ancestors of u are linearly ordered. However, u0 is the parent of ti, so this implies
uSmax >T ti, contradicting (uSmax, vSmax) ∈ L(I)S. Results (iii) and (iv) follow by similar
arguments.

4.2 Insertion Algorithm

In the previous section, we established that a solution to the Single Edge Insertion Problem
only requires us to consider L(I)T , L(I)S, u0, and v0. Now we wish to efficiently find a
sequence of paired flips and subtree switches that solves the Tanglegram Single Edge
Insertion Problem. Our approach for finding such a sequence will be different depending on
where u0 and v0 are inserted. The three cases will be u0 >T uSmax, v0 >S vTmax, or when
neither of these is true, and an example of each of case was previously shown in Figure
11. In this subsection, we solve the three different cases, and then we will combine our
results to form the Insertion algorithm that solves the Tanglegram Single Edge Insertion
Problem.

We start with the case u0 >T uSmax. Lemma 33 implies L(I)T is empty, so we can
focus our attention on v0, u0, and L(I)S = {(uj, vj)}mj=1, where elements have been indexed
so that v1 <S v2 <S . . . <S vm. Below we give an algorithm for this first case of single
edge insertion. Notice that we do not consider a flip or switch at any vertex until we have
considered all ancestors of that vertex, and we make these flip and switch choices based
on edges in a set we call E(u0), E(v0), and E(vj) for j = 1, 2, . . . ,m. These sets track
the crossings that can be affected by an operation at that vertex and cannot be affected
by operations at descendants of that vertex. An example of the algorithm is shown in
Figure 12.

ti

sφ(i)

ti

u0
v0

u1 v1u2 v2

E(u0)

ti

sφ(i)u0
v0

u1 v1u2 v2

E(v2)

ti

sφ(i)

u0

v0
u1 v1u2 v2

Figure 12: If ModifiedUntangle(T, S, φ|I) returns the layout on the left, then Algorithm 3
would first perform a subtree switch at u0 to obtain the layout in the middle. Then it would
not perform a paired flip at (u2, v2), would perform a paired flip at (u1, v1), and would not
perform a subtree switch at v0, returning the layout on the right with one crossing.

the electronic journal of combinatorics 30(2) (2023), #P2.32 24



Algorithm 3: Insertion Case u0 >T uSmax
Input: tanglegram (T, S, φ), index i s.t. (TI , Sφ(I), φ|I) is planar for I = [n] \ {i}
Output: layout of (T, S, φ) that restricts to a planar layout of (TI , Sφ(I), φ|I)

// Step 1: initialize the algorithm.
1 (X, Y ), L := ModifiedUntangle(T, S, φ|I)
2 construct L(I) from L using Definition 26
3 u0 := parent of ti, v0 := parent of sφ(i)
4 L(I)S := {(u, v) ∈ L(I) : u 6>T ti, v >S sφ(i)}

// Step 2: construct edge sets.
5 linearly order L(I)S = {(uj, vj)}mj=1 so that v1 <S v2 <S . . . <S vm
6 E(u0) := between-tree edges with an endpoint in Lf(u0) \ Lf(um)
7 E(v0) := between-tree edges with an endpoint in Lf(v0) \ {sφ(i)}
8 for j = 1, 2, . . . ,m, do
9 E(vj) := between-tree edges with an endpoint in Lf(vj) \ Lf(vj−1)

// Step 3: use paired flips and subtree switches.
10 if (ti, sφ(i)) crosses more than half of the edges in E(u0) in the layout (X, Y ),

then
11 update X := SubtreeSwitch(X, u0)

12 for j = m, . . . , 2, 1, do
13 if (ti, sφ(i)) crosses more than half of the edges in E(vj) in the layout (X, Y ),

then
14 update (X, Y ) := PairedFlip((X, Y ), (uj, vj))

15 if (ti, sφ(i)) crosses more than half of the edges in E(v0) in the layout (X, Y ), then
16 update Y := SubtreeSwitch(Y, v0)

17 return (X, Y )

Lemma 34. Algorithm 3 solves the Tanglegram Single Edge Insertion Problem when
L(I)S 6= ∅ and u0 >T uSmax.

Proof. By Lemma 28, the initial layout (X, Y ) of (T, S, φ) in Step 1 of Algorithm 3
restricts to a planar layout of (TI , Sφ(I), φ|I), and L(I) is the set of leaf-matched pairs of
(TI , Sφ(I), φ|I). The assumption u0 >T uSmax with Lemma 33 implies L(I)T = ∅. Corollary
32 with L(I)T = ∅ implies that starting with (X, Y ), some sequence of paired flips at
(uj, vj) ∈ L(I)S and subtree switches at u0 and v0 solves the Tanglegram Single Edge
Insertion Problem. The algorithm makes choices in the order u0, (um, vm), . . . , (u1, v1), v0,
so we will show that our choice at each step can extend to a solution to the Single Edge
Insertion Problem, and thus the algorithm terminates at a solution.

The algorithm starts with u0. Some operations at u0, (uj, vj) ∈ L(I)S, and v0 produce
a solution (Xmin, Ymin) to the Single Edge Insertion Problem. This layout contains
sublists for the elements in Lf(u0) and the leaves paired with them, which have the form
either (tiX1UX2, Y1V Y2) or (X1UX2ti, Y1V Y2), where U, V is an ordering of Lf(um),Lf(vm)
and X1, X2, Y1, Y2 order the remaining leaves. We focus on the case (tiX1UX2, Y1V Y2)
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Figure 13: The effect of a subtree switch at u0 and a paired flip at (um, vm).

illustrated in Figure 13, as the other case follows by similar reasoning. Notice that
E(u0) = Edges(X1) ∪ Edges(X2), where Edges(Xi) is the set of between-tree edges with a
leaf in Xi.

Beginning with (tiX1UX2, Y1V Y2), if we perform a subtree switch at u0, notice that
we can also perform a paired flip at (um, vm) to obtain

(tiX1UX2, Y1V Y2)
u0 subtree switch−−−−−−−−−→ (X1UX2ti, Y1V Y2)

(um, vm) paired flip−−−−−−−−−−−→ (X1UX2ti, Y1V Y2),

which is also illustrated in Figure 13. We call this new layout (X ′, Y ′). Notice that
crossings between (ti, sφ(i)) and Edges(U) are the same in (Xmin, Ymin) and (X ′, Y ′), so
the choice of subtree switch at u0 does not prevent minimization of crossings in Edges(U).
However, while (ti, sφ(i)) crosses Edges(X1) in (Xmin, Ymin), it crosses Edges(X2) in the
layout (X ′, Y ′), and these crossings cannot be affected by choices in L(I)S ∪ {v0}. Thus,
the choice at u0 that extends to a solution to the Tanglegram Single Edge Insertion
Problem must be one that minimizes crossings in E(u0) = Edges(X1) ∪ Edges(X2), so the
algorithm’s choice at u0 in lines 10-11 extends to a solution.

Now consider paired flips (uj, vj) ∈ L(I)S. Suppose that we made choices that extend
to a solution to the Single Edge Insertion Problem at u0 and any (uj′ , vj′) ∈ L(I)S with
vj′ >S vj. Then we know that some choices at (uj, vj), . . . , (u1, v1), and v0 lead to a
solution to the Single Edge Insertion Problem. This solution contains an ordering of
Lf(uj),Lf(vj). If j > 2, denote this ordering as (X1UX2, Y1V Y2) with U, V an ordering of
Lf(uj−1),Lf(vj−1) as shown on the left in Figure 14. If we perform a paired flip at (uj, vj),
then we can also perform a paired flip at (uj−1, vj−1) to obtain

(X1UX2, Y1V Y2)
(uj , vj) paired flip−−−−−−−−−−→ (X2 U X1, Y2 V Y1)

(uj−1, vj−1) paired flip−−−−−−−−−−−−−→ (X2UX1, Y2V Y1).

If j = 1, the ordering of Lf(u1),Lf(v1) is either (X0, Y1sφ(i)V Y2) or (X0, Y1V sφ(i)Y2), where
V is an ordering of Lf(v0) \ {sφ(i)}. Performing a paired flip at (u1, v1) and a subtree
switch at v0 respectively results in (X0, Y2sφ(i)V Y1) or (X0, Y2 V sφ(i)Y1).

In all cases, choosing to perform a paired flip at (uj, vj) does not prevent minimization
of crossings between (ti, sφ(i)) and Edges(V ). Thus, the choice at (uj, vj) that extends to
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Figure 14: The effect of paired flips at (uj, vj) and (uj−1, vj−1) when 2 6 j 6 m.

a solution must be the one that minimizes crossings in E(vj) = Edges(Y1) ∪ Edges(Y2), as
these crossings cannot be affected by operations at (uj−1, vj−1), . . . , (u1, v1), and v0. Then
the algorithm’s choice at (uj, vj) in lines 13-14 extends to a solution. Using induction, we
conclude that the sequence of paired flips at elements in L(I)S extends to a solution.

Finally, for v0, we must minimize crossings involving (ti, sφ(i)) and between-tree edges
with an endpoint in Lf(v0). This is precisely what the algorithm does with the set E(v0).
Combined, we conclude that Algorithm 3 solves the Tanglegram Single Edge Insertion
Problem when u0 >T uSmax.

Remark 35. When we consider whether or not to perform a subtree switch at u0, it is
possible that |X1| = |X2|, and in this case, both choices at u0 extend to a solution to the
Tanglegram Single Edge Insertion Problem. Similarly, when |Y1| = |Y2|, both choices of
whether or not to perform a paired flip at (uj, vj) ∈ L(I)S extend to a solution. In these
situations, we choose not to perform the subtree switch or paired flip for efficiency reasons.
Remark 36. One can analogously construct an Insertion Case v0 >S vTmax algorithm
for the situation L(I)T 6= ∅ and v0 >S vTmax. We include the algorithm in the Appendix
as Algorithm 8. Proof of its effectiveness follows from a similar argument to the one for
Lemma 34.

We now consider the remaining case, where u0 6>T uSmax and v0 6>S vTmax. In
this case, Lemma 33 implies u0 6>T u for any (u, v) ∈ L(I)S and v0 6>S v for any
(u, v) ∈ L(I)T . We linearly order L(I)S = {(uj, vj)}kj=1 and L(I)T = {(uj, vj)}k+mj=k+1 so
that v0 <S v1 <S v2 <S . . . <S vk and u0 <T uk+1 <T uk+2 <T . . . <T uk+m. Then we
define the E sets in a similar way as before. For j ∈ {1, 2, . . . , k}, define

E(vj) := between-tree edges with an endpoint in Lf(vj) \ Lf(vj−1),

and for j ∈ {k + 2, . . . , k +m}, define

E(uj) := between-tree edges with an endpoint in Lf(uj) \ Lf(uj−1).

Finally, define

E(uk+1) := between-tree edges with an endpoint in Lf(uk+1) \ Lf(u0),
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E(v0) := between-tree edges with an endpoint in Lf(v0) \ {sφ(i)},

E(u0) := between-tree edges with an endpoint in Lf(u0) \ {ti}.

The next lemma gives us a key property concerning these sets. We wish to use the E
sets to minimize crossings, and this lemma will show that we do not need to worry about
these sets intersecting in most cases.

Lemma 37. Suppose u0 6>T uSmax and v0 6>S vTmax. Then E(uj) ∩ E(v`) 6= ∅ can only
occur when j = ` = 0.

Proof. Suppose E(uj) ∩ E(v`) 6= ∅ for some j, ` 6= 0, that is, there exists (uj, vj) ∈ L(I)T ,
(u`, v`) ∈ L(I)S, and a between-tree edge (t, s) such that t ∈ Lf(uj) \ Lf(uj−1) and
s ∈ Lf(v`) \ Lf(v`−1). The assumption t ∈ Lf(uj) \ Lf(uj−1) implies uj >T t. Since
(uj, vj) ∈ L(I)T , the definition of L(I)T implies that uj >T ti and vj 6>S sφ(i). Furthermore,
(uj, vj) is a leaf-matched pair of (TI , Sφ(I), φ|I), so uj >T t implies vj >S s. Combined, we
see that uj >T t, uj >T ti, vj >S s, and vj 6>S sφ(i).

Using similar reasoning, the assumption s ∈ Lf(v`) \ Lf(v`−1) implies v` >S s, and
(u`, v`) ∈ L(I)S implies v` >S sφ(i). Since the ancestors of s are linearly ordered, the
fact that v` is an ancestor of both s and sφ(i) while vj is only an ancestor of s implies
v` >S vj, giving us the situation illustrated in Figure 15. This implies u` >T uj >T ti,
which contradicts (u`, v`) ∈ L(I)S.

u` v`

uj vj
ti

sφ(i)

t s

Figure 15: The proof of Lemma 37 (i).

Now suppose that E(u0)∩E(vj) 6= ∅ for some j 6= 0, that is, there exists some (uj, vj) ∈
L(I)S and some between-tree edge (t, s) with t ∈ Lf(u0) \ {ti} and s ∈ Lf(vj) \ Lf(vj−1).
Since t ∈ Lf(u0)\{ti}, we see that u0 >T t. Using the fact that (uj, vj) is a leaf-matched pair
of (TI , Sφ(I), φ|I), vj >S s implies uj >T t. Since ancestors of t are linearly ordered, either
uj >T u0 or uj <T u0. Using our assumption u0 6>T uSmax with Lemma 33, we conclude
that uj >T u0 >T ti, which contradicts (uj, vj) ∈ L(I)S. The case E(uj) ∩ E(v0) 6= ∅ for
j 6= 0 is ruled out by similar reasoning.
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u3 v3
u2 v2

u1 v1

u0

v0

ti

sφ(i)

E(u3)

E(v1)

u3 v3

u2 v2

u1 v1

u0

v0

ti

sφ(i)

E(u2)

E(v1)

u3 v3

u2 v2

u1 v1

u0

v0

ti

sφ(i)

E(v1)

Figure 16: If the layout from the left is the output of ModifiedUntangle(T, S, φ|I), then
Algorithm 4 will first perform a paired flip at (u3, v3). Afterwards, it will not perform a
paired flip at (u2, v2) or (u1, v1). Since E(u0) ∩ E(v0) = ∅, the algorithm will perform
subtree switches at u0 and v0, returning the layout shown on the right.

We now define an algorithm to solve the remaining cases of the Tanglegram Single
Edge Insertion Problem. As before, we consider flips at all ancestors of a vertex before
considering the vertex itself, and make flip and switch choices according to crossings in
the E(uj) and E(vj) sets. An example of the algorithm is shown in Figure 16.

Lemma 38. Algorithm 4 solves the Tanglegram Single Edge Insertion Problem when
u0 6>T uSmax and v0 6>S vTmax, where we also consider L(I)S = ∅ and L(I)T = ∅,
respectively, as cases of u0 6>T uSmax and v0 6>S vTmax.

Proof. Using the same argument as in Lemma 34, starting at (X, Y ) in Step 1 and
performing some sequence of paired flips at elements in L(I)T ∪L(I)S and subtree switches
at {u0, v0} solves the Tanglegram Single Edge Insertion Problem. Algorithm 4 first considers
the elements of L(I)T in the order (uk+m, vk+m), . . . , (uk+1, vk+1) and then elements of
L(I)S in the order (uk, vk), . . . , (u1, v1). Similar to Lemma 34, we show that our choice at
each element of L(I)T and L(I)S in this order extends to a solution to the Tanglegram
Single Edge Insertion Problem.

Consider (uj, vj) ∈ L(I)T , and assume that our choices at all previously considered
vertices extend to a solution to the Single Edge Insertion Problem. Some choice of
operations at (uj′ , vj′) ∈ L(I)T with uj′ 6T uj, (u`, v`) ∈ L(I)S, u0, and v0 solves the
Single Edge Insertion Problem. This gives us a layout (Xmin, Ymin) that includes an
ordering of Lf(uj),Lf(vj). When j 6= k + 1, this ordering has the form (X1UX2, Y1V Y2)
with U, V an ordering of Lf(uj−1),Lf(vj−1) as shown in Figure 17. If we perform a paired
flip at (uj, vj), then we can perform a paired flip at (uj−1, vj−1) to obtain the ordering
(X2UX1, Y2V Y1) on Lf(uj),Lf(vj). Letting Edges(U) be the between-tree edges with an
endpoint in U , we see that the original layout (Xmin, Ymin) and the new layout have the
same crossings between (ti, sφ(i)) and Edges(U). Thus, regardless of our choice at (uj, vj),
we can minimize crossings in Edges(U).

When j = k + 1, the original ordering has the form (X1tiUX2, Y0) or (X1UtiX2, Y0)
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Algorithm 4: Insertion Case u0 6>T uSmax and v0 6>S vTmax
Input: tanglegram (T, S, φ), index i s.t. (TI , Sφ(I), φ|I) is planar for I = [n] \ {i}
Output: layout of (T, S, φ) that restricts to a planar layout of (TI , Sφ(I), φ|I)

// Step 1: initialize the algorithm.
1 (X, Y ), L := ModifiedUntangle(T, S, φ|I)
2 construct L(I) from L using Definition 26
3 u0 := parent of ti, v0 := parent of sφ(i)
4 L(I)S := {(u, v) ∈ L(I) : u 6>T ti, v >S sφ(i)}
5 L(I)T := {(u, v) ∈ L(I) : u >T ti, v 6>S sφ(i)}

// Step 2: construct edge sets.
6 linearly order L(I)S = {(uj, vj)}kj=1 so that v1 <S v2 <S . . . <S vk
7 linearly order L(I)T = {(uj, vj)}k+mj=k+1 so that uk+1 <T uk+2 <T . . . <T uk+m
8 for j = 1, 2, . . . , k, do
9 E(vj) := between-tree edges with an endpoint in Lf(vj) \ Lf(vj−1)

10 for j = k + 2, k + 3, . . . ,m, do
11 E(uj) := between-tree edges with an endpoint in Lf(uj) \ Lf(uj−1)

12 E(uk+1) := between-tree edges with an endpoint in Lf(uk+1) \ Lf(u0)
13 E(v0) := between-tree edges with an endpoint in Lf(v0) \ {sφ(i)}
14 E(u0) := between-tree edges with an endpoint in Lf(u0) \ {ti}

// Step 3: use paired flips in L(I)T and L(I)S.
15 for j = k +m, . . . , k + 2, k + 1, do
16 if (ti, sφ(i)) crosses more than half of the edges in E(uj) in the layout (X, Y ),

then
17 update (X, Y ) := PairedFlip((X, Y ), (uj, vj))

18 for j = k, . . . , 2, 1, do
19 if (ti, sφ(i)) crosses more than half of the edges in E(vj) in the layout (X, Y ),

then
20 update (X, Y ) := PairedFlip((X, Y ), (uj, vj))

// Step 4: use subtree switches at u0 and v0.
21 if E(u0) ∩ E(v0) = ∅, then
22 if (ti, sφ(i)) crosses the edges in E(u0), then
23 update X := SubtreeSwitch(X, u0)

24 if (ti, sφ(i)) crosses the edges in E(v0), then
25 update Y := SubtreeSwitch(Y, v0)

26 return X, Y

27 else
28 X ′, Y ′ := SubtreeSwitch(X, u0), SubtreeSwitch(Y, v0)
29 return a layout in {(X, Y ), (X ′, Y ), (X, Y ′), (X ′, Y ′)} with fewest crossings
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Figure 17: The effect of a paired flip at (uj, vj) and (uj−1, vj−1) when j > 2.

with U an ordering of Lf(u0) \ {ti}. If we make a paired flip at (uk+1, vk+1), we can
perform a subtree switch at u0 to respectively obtain (X2tiU X1, Y0) or (X2 UtiX1, Y0). In
either case, the resulting layout will again have the same crossings between (ti, sφ(i)) and
Edges(U), so regardless of our choice at (uk+1, vk+1), we can still minimize crossings in
Edges(U).

In both of the above cases, notice that the crossings involving E(uj) = Edges(X1) ∪
Edges(X2) are affected, as (ti, sφ(i)) will either cross Edges(X1) or Edges(X2). These
crossings cannot be affected by paired flips at any (uj′ , vj′) ∈ L(I)T with j′ < j, nor by
a subtree switch at u0. Additionally, by Lemma 37, E(uj) does not intersect E(v`) for
(u`, v`) ∈ L(I)S, nor does it intersect E(v0). Then E(uj) does not contain any edges with
a leaf in Lf(v`) for ` = 0, 1, . . . , k, and crossings in E(uj) cannot be affected by any of
the choices at (u`, v`) ∈ L(I)S and v0. Combined, we conclude that the choice at (uj, vj)
that extends to a solution to the Single Edge Insertion Problem must be the one that
minimizes crossings in E(uj), which is precisely what the algorithm does in lines 16-17.
Using induction, the sequence of choices in L(I)T extends to a solution.

Using a similar argument, we obtain the same conclusion for the choices of paired
flips in L(I)S. After making appropriate choices of paired flips for elements in L(I)T and
L(I)S, we know some combination of subtree switches at {u0, v0} solves the Tanglegram
Single Edge Insertion Problem. When E(u0) ∩ E(v0) = ∅, the choices at u0 and v0 affect
different crossings, and the algorithm chooses to minimize crossings in each set. When
E(u0) ∩ E(v0) 6= ∅, the algorithm checks all four possible layouts in lines 28-29 and
returns a layout with minimal crossings. In all cases, the output must be a solution to the
Tanglegram Single Edge Insertion Problem.

Using these algorithms and results, we now define a combined algorithm that solves
the Tanglegram Single Edge Insertion Problem below. The initial steps are similar to the
previous algorithms. We then check for the conditions corresponding to each case, and
proceed appropriately.

Proof of Theorem 3. Effectiveness of the Insertion Algorithm follows from the cases
considered in Step 2 combined with Lemma 34, Remark 36, and Lemma 38, so it remains

the electronic journal of combinatorics 30(2) (2023), #P2.32 31



Algorithm 5: Insertion
Input: tanglegram (T, S, φ), index i s.t. (TI , Sφ(I), φ|I) is planar for I = [n] \ {i}
Output: layout of (T, S, φ) that restricts to a planar layout of (TI , Sφ(I), φ|I)

// Step 1: initialize the algorithm.
1 (X, Y ), L := ModifiedUntangle(T, S, φ|I)
2 construct L(I) from L using Definition 26
3 u0 := parent of ti, v0 := parent of sφ(i)
4 L(I)S := {(u, v) ∈ L(I) : u 6>T ti, v >S sφ(i)}
5 L(I)T := {(u, v) ∈ L(I) : u >T ti, v 6>S sφ(i)}

// Step 2: consider cases.
6 use (6) to define uSmax when L(I)S 6= ∅ and vTmax when L(I)T 6= ∅
7 if L(I)S 6= ∅ and u0 >T uSmax, then
8 proceed from Step 2 of Algorithm 3

9 else if L(I)T 6= ∅ and v0 >S vTmax, then
10 proceed from Step 2 Algorithm 8

11 else
12 proceed from Step 2 of Algorithm 4

to show that the algorithm runs in O(n2) time and space. In Step 1, ModifiedUntangle
runs in O(n2) time and space by Remark 17. Additionally, constructing L(I) takes O(n2)
time and space, as L has size at most n, and for every (u, v) ∈ L, there are at most n
descendants of u and v. Lines 4-5 take O(n) time since the list L(I) also has size at most
n. Defining uSmax and vTmax and then checking the conditions in lines 7 and 9 also take
O(n) time since L(I)T and L(I)S have size at most n.

Now in Step 2 of all three cases, ordering the lists L(I)T and L(I)S can be done in
O(n log n) time. Next, each of the E sets can be calculated in O(n) time and space, and
we perform these calculations at most n times for a total of O(n2) time and space. The
paired flip and subtree switch choices in Step 3 of Algorithm 3, 8, or 4 run in O(n) time
each since counting crossings involving (ti, sφ(i)) can be done in linear time, and performing
paired flips and subtree switches can also be done in linear time. We make at most n
paired flip and subtree switch choices for a total of O(n2) time. In Algorithm 4, we may
also consider four layouts corresponding to combinations of {u0, v0} in lines 28-29. Since
each layout takes O(n2) space and crossings can be counted in O(n2) time by checking
all
(
n
2

)
pairs of edges, these remaining steps also take O(n2) time and space. Thus, the

Insertion algorithm runs in O(n2) time and space, regardless of the case.

If there exists a solution to the Tanglegram Layout Problem for (T, S, φ) such that
all crossings involve a single edge, then Insertion can be used to find a solution to the
Tanglegram Layout Problem. In particular, one can use Insertion(T, S, φ, i) over all
possible i to verify if crt(T, S, φ) = 1. However, in general, the solution to the Single Edge
Insertion Problem and the Layout Problem can differ by arbitrarily many crossings.
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Definition 39. Let (T, S, φ) be a tanglegram of size n. For any i ∈ [n] such that
(TI , Sφ(I), φ|I) with I = [n] \ {i} is planar, define crtei((T, S, φ), i) to be the common
number of crossings in any solution to the Tanglegram Single Edge Insertion Problem.
Define

crtei(T, S, φ) = min
i
{crtei((T, S, φ), i)}, (8)

where the minimum is taken over all well-defined choices of i.

Corollary 40. For any k ∈ N, there exists a tanglegram (T, S, φ) and such that

crtei(T, S, φ)− crt(T, S, φ) = k.

Proof. For k = 1, consider the tanglegram (T, S, φ) with two layouts in Figure 18. Direct
application of ModifiedUntangle or the Tanglegram Kuratowski Theorem in [5] shows
that the induced subtanglegram on [n] \ {i} is planar only when i = 2, and hence
crtei(T, S, φ) = crtei((T, S, φ), 2). Insertion((T, S, φ), 2) outputs the first layout in Figure
18 with three crossings, which is a solution to the Tanglegram Single Edge Insertion Problem
by Theorem 3. Hence, crtei(T, S, φ) = 3. Theorem 3 also implies that if crt(T, S, φ) = 1,
then for some choice of i ∈ [6], Insertion((T, S, φ), i) will have one crossing. Since this
not the case, the second layout in Figure 18 implies crt(T, S, φ) = 2. Combined, we see
that crtei(T, S, φ)− crt(T, S, φ) = 1.

t1

t2

t3

t4

t5

t6

s1

s2

s3

s4

s5

s6

t6

t1

t2

t4

t3

t5

s1

s6

s5

s3

s4

s2

Figure 18: The output of Insertion((T, S, φ), 2) and another layout for the same tangle-
gram.

For k > 1, form the size k + 5 tanglegram (T ′, S ′, φ′) by starting with (T, S, φ) and
replacing the edge (t4, s3) with a planar tanglegram (T̃ , S̃, φ̃) of size k. Since (T ′, S ′, φ′)
contains (T, S, φ) as a subtanglegram, we know crt(T ′, S ′, φ′) > 2, as any layout of
(T ′, S ′, φ′) with fewer than two crossings would restrict to a layout of (T, S, φ) with fewer
than two crossings. We can take the second layout in Figure 18 and replace (t4, s3) with
a planar layout of (T̃ , S̃, φ̃) to obtain a layout of (T ′, S ′, φ′) with exactly 2 crossings, so
crt(T ′, S ′, φ′) = 2.

Since (T[6]\{i}, Sφ([6]\{i}), φ|[6]\{i}) is planar only when i = 2, the same statement is true
for (T ′[k+5]\{i}, S

′
φ([k+5]\{i}), φ

′|[k+5]\{i}), as the tanglegram (T ′[k+5]\{i}, S
′
φ([k+5]\{i}), φ

′|[k+5]\{i})
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contains (T[6]\{i}, Sφ([6]\{i}), φ|[6]\{i}) as an induced subtanglegram. Starting with the first
layout in Figure 18, construct the layout (X ′, Y ′) for (T ′, S ′, φ′) by replacing (t4, s3) with
a planar layout of (T̃ , S̃, φ̃). Notice that (X ′, Y ′) has exactly k + 2 crossings and restricts
to a planar layout of (T ′[k+5]\{2}, S

′
φ([k+5]\{2}), φ

′|[k+5]\{2}). Furthermore, notice that the only
leaf-matched pairs of (T ′[k+5]\{2}, S

′
φ([k+5]\{2}), φ

′|[k+5]\{2}) are the roots of the two trees and
leaf-matched pairs of (T̃ , S̃, φ̃), so Corollary 32 implies that a solution to the Tanglegram
Single Edge Insertion Problem for (T ′, S ′, φ′) and i = 2 can be obtained by starting with
(X ′, Y ′) and using subtree switches at the parents of t2 and s5. However, these subtree
switches increase the number of crossings, so (X ′, Y ′) itself must be a solution to the
Single Edge Insertion Problem. Hence, crtei(T ′, S ′, φ′) = crtei((T ′, S ′, φ′), 2) = k + 2, and
therefore crtei(T ′, S ′, φ′)− crt(T ′, S ′, φ′) = k.

5 Multiple edge insertion

In this section, we consider the Tanglegram Multiple Edge Insertion Problem, which we
restate below for convenience of the reader. Similar to the corresponding problem for
graphs, this problem is NP-hard, which we now show.

Problem (Tanglegram Multiple Edge Insertion). Given a tanglegram (T, S, φ) and
a planar subtanglegram (TI , Sφ(I), φ|I) induced by I ⊆ [n], find a layout of (T, S, φ) that
restricts to a planar layout of (TI , Sφ(I), φ|I) and has the minimal number of crossings
possible.

Proof of Theorem 4. By Theorem 11, the crossing number of any tanglegram (T, S, φ) of
size n is strictly less than 1

2

(
n
2

)
. Then in an optimal layout of a tanglegram (T, S, φ), there

must exist some edges (ti, sφ(i)) and (tj, sφ(j)) that do not cross. If we solve the Multiple
Edge Insertion Problem for all index sets I of size two, one of them will be I = {i, j}.
After all

(
n
2

)
= O(n2) iterations, one of these layouts will be a solution to the Tanglegram

Layout Problem, which is NP-hard by Theorem 9.

5.1 Iterated single edge insertion

We start by giving an algorithm that inserts a single edge at a time using the approach
from the Insertion algorithm. While this will not solve the Tanglegram Multiple Edge
Insertion Problem, it has two advantages. First, the algorithm will run in polynomial
time. Second, Theorem 10 implies that if (TI , S|φ(I), φ|I) is a size n− 1 subtanglegram of
the size n tanglegram (T, S, φ), then crt(T, S, φ) and crt(TI , S|φ(I), φ|I) differ by at most
n− 3. This can be used to obtain a general bound on a tanglegram’s crossing number as
a function of the number of edges that we remove to obtain a planar subtanglegram. The
algorithm we give in this subsection will achieve this bound.

Lemma 41. Let (T, S, φ) be a size n tanglegram, and let I ⊆ [n]. If (TI , Sφ(I), φ|I) is
planar, then crt(T, S, φ) 6 (n−|I|)·(n+|I|−5)

2
.
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Proof. We assume without loss of generality that I = {1, 2, . . . , k}, as otherwise we can
relabel the tanglegram. Using the assumption crt(TI , Sφ(I), φ|I) = 0 with Theorem 10,

crt(T, S, φ) =
n∑

j=k+1

[
crt(T[j], Sφ([j]), φ|[j])− crt(T[j−1], Sφ([j−1]), φ|[j−1])

]
6

n∑
j=k+1

(j − 3) =
(n− k)(n+ k − 5)

2
.

We now give an algorithm that starts with a planar layout of (TI , Sφ(I), φ|I) and inserts
one edge at a time, with operations chosen in a similar manner as in Insertion. As before,
we restrict ourselves to paired flips and subtree switches, though we perform a paired flip
at each (u, v) ∈ L(I) at most once to ensure we achieve the bound in Lemma 41.

Algorithm 6: IteratedInsertion
Input: tanglegram (T, S, φ), index set I such that (TI , Sφ(I), φ|I) is planar
Output: layout of (T, S, φ) that restricts to a planar layout of (TI , Sφ(I), φ|I)

1 (X, Y ), L(I) := ModifiedUntangle(TI , Sφ(I), φ|I) J := I, M := L(I)
2 while [n] \ J 6= ∅, do
3 i := smallest element of [n] \ J // Choose an edge to insert.
4 extend (X, Y ) to a layout of (TJ∪{i}, Sφ(J∪{i}), φ|J∪{i})
5 MT := {(u, v) ∈M : u >T ti, v 6>S sφ(i)} // Perform paired flips at
6 MS := {(u, v) ∈M : u 6>T ti, v >S sφ(i)} // these pairs of vertices.
7 update M := M \ (MT ∪MS) // Prevent future flips in MT ∪MS.
8 u0, v0 := parents of ti, sφ(i) in (TJ∪{i}, Sφ(J∪{i}), φ|J∪{i})
9 proceed from Step 2 of Insertion with L(I)T , L(I)S respectively replaced by

MT ,MS, and obtain (X, Y ) after operations at MT ,MS, u0, v0
10 update J := J ∪ {i}
11 return (X, Y )

Theorem 42. Let (T, S, φ) be a size n tanglegram and I ⊆ [n] such that (TI , Sφ(I), φ|I)
is planar. IteratedInsertion finds a layout of (T, S, φ) with at most (n−|I|)·(n+|I|−5)

2

crossings in O(n3) time and O(n2) space.

Proof. We start by proving the run-time and space claims. Line 1 runs in O(n2) time and
space. By construction, the while loop will have at most n− |I| iterations since we add
an element to J at the end of each iteration. Line 4 can be done in O(n2) time and space
by starting with the trees TJ∪{i} and Sφ(J∪{i}) and performing operations until the leaves
of TJ and Sφ(J) appear in the order indicated by (X, Y ). The remaining steps of the while
loop also run in O(n2) time since Insertion runs in O(n2) time, for a combined total of
O(n3) time. Since we re-use the same variables X, Y, J,M,MT ,MS, we also see that the
algorithm runs in O(n2) space since Insertion runs in O(n2) space by Theorem 3.
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We now show that the output has at most (n−|I|)·(n+|I|−5)
2

crossings. First, note that
since the subtanglegram (TI , Sφ(I), φ|I) is planar, the layout (X, Y ) originally obtained
from ModifiedUntangle(TI , Sφ(I), φ|I) in line 1 has 0 crossings. We show that during each
iteration of the while loop, the algorithm adds at most |J | − 3 crossings. This would
imply that the total number of crossings at the end of IteratedInsertion is bounded by
the sum from the proof of Lemma 41, implying the claim.

We consider two cases for each iteration of the while loop. First, suppose that in this
iteration of the loop, the sets MT and MS are empty. Then the algorithm only considers
subtree switches at u0 and v0, the parents of ti and sφ(i). In particular, we do not affect the
relative ordering of any vertices in (TJ , Sφ(J), φ|J), and thus we do not affect any previous
crossings. Some combination of subtree switches will produce at most |J | − 3 of the |J | − 1
possible crossings. Proceeding from Step 2 of Insertion will lead to using Algorithm 4,
which will consider subtree switches at u0 and v0 before returning the option with the
fewest number of crossings. Thus, the algorithm adds at most |J | − 3 new crossings from
this iteration, all involving edge (ti, sφ(i)).

Next, suppose that MT ∪MS is nonempty, and let (u, v) ∈MT ∪MS. By Lemma 28,
(u, v) is a leaf-matched pair of (TI , Sφ(I), φ|I). Since (u, v) was not previously considered
in the algorithm, it must be that for all previously inserted edges (t, s), both or neither
of u >T t and v >S s are true. From this, we see that crossings between (t, s) and edges
in (TI , Sφ(I), φ|I) are not affected by paired flips at (u, v). Furthermore, for any other
previously inserted edge (t′, s′), we also know that either both or neither of u >T t

′ and
v >S s

′ are true. In all cases, whether or not (t, s) and (t′, s′) intersect is not affected by a
paired flip at (u, v). Thus, all previously existing crossings are unaffected, and we only
create new crossings involving the current edge (ti, sφ(i)). Using the same argument as in
the previous paragraph, proceeding from Step 2 of Insertion will add at most |J | − 3
new crossings, all of which involve edge (ti, sφ(i)).

5.2 MultiInsertion Algorithm

We now generalize our results from Section 4 and then give an algorithm for solving
the Tanglegram Multiple Edge Insertion Problem. For this subsection, fix a tanglegram
(T, S, φ) of size n, and fix I ⊆ [n] such that (TI , Sφ(I), φ|I) is a planar subtanglegram. Let
(X, Y ) be a layout of (T, S, φ) that restricts to a planar layout of (TI , Sφ(I), φ|I), and let
L(I) be the set of leaf-matched pairs of (TI , Sφ(I), φ|I). Recall that for u ∈ T and v ∈ S,
Lf(u) and Lf(v) respectively denote the descendants of u and v that are leaves in T and
S. For J ⊆ [n], we will abuse notation by using Lf(u) ∩ J or Lf(v) ∩ φ(J) to denote the
leaves in Lf(u) or Lf(v) that are indexed by J or φ(J), respectively. Letting Ic denote the
complement of I, define the following sets:

L(I)0 = {(u, v) ∈ L(I) : Lf(u) ∩ Ic is matched with Lf(v) ∩ φ(I)c by φ}
L(I)T = {(u, v) ∈ L(I) : |Lf(u) ∩ Ic| = 1 and |Lf(v) ∩ φ(I)c| = 0}
L(I)S = {(u, v) ∈ L(I) : |Lf(u) ∩ Ic| = 0 and |Lf(v) ∩ φ(I)c| = 1}
L(I)1 = L(I) \ (L(I)0 ∪ L(I)T ∪ L(I)S)

M(I) = {internal vertices of (T, S, φ) that are not in (TI , Sφ(I), φ|I).}

(9)
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Figure 19: The subtanglegram induced by I = {1, 2, 4, 5, 8, 9, 10, 11} ⊆ [11] is shown
in black. By (9), we see that L(I) = {(u1, v1), (u2, v2), (u3, v3), (u4, v4)} and M(I) =
{u5, u6, u7, v5, v6, v7}. Using (9), we partition L(I) into L(I)0 = {(u4, v4)}, L(I)T = ∅,
L(I)S = {(u1, v1), (u2, v2)}, and L(I)1 = {(u3, v3)}.

Notice that L(I)0, L(I)T , L(I)S, and L(I)1 partition the set L(I). When |I| = n− 1, the
sets L(I)0, L(I)T and L(I)S reduce to the same ones defined in Section 4, and L(I)1 = ∅.
An example of these sets is shown in Figure 19.

Lemma 43. Let (X ′, Y ′) be the image of (X, Y ) after any sequence of paired flips at
elements in L(I) and subtree switches at elements of M(I). Then (X ′, Y ′) also restricts to
a planar layout of (TI , Sφ(I), φ|I).

Proof. It suffices to show the claim when (X ′, Y ′) is the image of (X, Y ) after a single
subtree switch or paired flip. If we start with (X, Y ) and perform a flip at (u, v) ∈ L(I),
then restricted to the subtanglegram (TI , Sφ(I), φ|I), this has the same effect as performing
a paired flip on a planar layout of (TI , Sφ(I), φ|I). Thus, (X ′, Y ′) is still planar when
restricted to (TI , Sφ(I), φ|I).

Now suppose we start with (X, Y ) and perform a subtree switch at u ∈M(I) to obtain
(X ′, Y ′). Without loss of generality, we assume u ∈ T , as u ∈ S is done similarly. Then we
can decompose (X, Y ) = (X1U1U2X2, Y ) and (X ′, Y ′) = (X1U2U1X2, Y ), where U1 and
U2 order the leaves of the subtrees rooted at the children of u. Since u is not a vertex of
(TI , Sφ(I), φ|I), Definitions 6 and 7 imply that either

(1) u is not in the minimal subtree of T containing the leaves indexed by I, or

(2) u is one of the internal vertices with one child that is suppressed when forming TI
from T .

In the case of (1), the entire subtree rooted at u does not appear in TI . Then both U1 and
U2 are deleted when we restrict (X, Y ) and (X ′, Y ′) to (TI , Sφ(I), φ|I), and both layouts
restrict to the same layout of the subtanglegram. In the case of (2), the entire subtree
rooted at one of the children of u does not appear in TI , so either U1 or U2 is deleted
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when (X, Y ) and (X ′, Y ′) are restricted to (TI , Sφ(I), φ|I). Again, (X ′, Y ′) and (X, Y ) will
restrict to the exact same layout of (TI , Sφ(I), φ|I) as (X, Y ). In both cases, since (X, Y )
restricts to a planar layout of (TI , Sφ(I), φ|I), so does (X ′, Y ′).

Lemma 44. Let (X ′, Y ′) be the image of (X, Y ) after a paired flip at (u, v) ∈ L(I)0. Then
(X, Y ) and (X ′, Y ′) have the same crossings.

Proof. Since (u, v) ∈ L(I)0, notice that both or neither of u >T ti and v >S sφ(i) are
true for any i /∈ I. If u >T ti and v >S sφ(i), a paired flip at (u, v) flips the induced
subtanglegram on the subtrees rooted at u and v, preserving all crossings in (T, S, φ) that
involve (ti, sφ(i)). Otherwise, if u 6>T ti and v 6>S sφ(i), then (ti, sφ(i)) cross all or none of
the edges between the subtrees rooted at u and v, and a paired at (u, v) does not affect
these crossings.

Lemma 45. A solution to the Tanglegram Multiple Edge Insertion Problem can be obtained
by starting at (X, Y ) and performing a sequence of subtree switches at elements in M(I)
and paired flips at elements in L(I)T ∪ L(I)S ∪ L(I)1.

Proof. Let (Xmin, Ymin) be a solution to the Multiple Edge Insertion Problem. Some
composition of flips fm ◦ . . . ◦ f2 ◦ f1 maps (X, Y ) to (Xmin, Ymin), as flips generate all
trees isomorphic to T and S. All of these flips commute and have order 2, so we can also
assume that all fi are distinct, i.e., no flips occur at any vertex more than once.

If none of the flips in {f1, f2, . . . , fm} involve vertices in M(I), then restricting (X, Y )
and (Xmin, Ymin) to the subtanglegram (TI , Sφ(I), φ|I), these flips are equivalent to a
sequence of flips mapping one planar layout of (TI , Sφ(I), φ|I) to another. By Theorem 1,
these flips must be equivalent to a sequence of paired flips at elements in L(I). Since all
flips commute, we can commute paired flips involving (u, v) ∈ L(I)0 to be the last ones
performed. By Lemma 44, paired flips at (u, v) ∈ L(I)0 do not affect any crossings, so we
can obtain another solution to the Multiple Edge Insertion Problem by excluding them,
leaving only the paired flips at elements in L(I) \ L(I)0 = L(I)T ∪ L(I)S ∪ L(I)1.

Now suppose some flip in {f1, f2, . . . , fm} involves an element in M(I). Without loss
of generality, assume f1 is a flip at u ∈ M(I), u ∈ T , and no flips occur at any u′ >T u.
Now define g1 and h1 to be flips at the children of u, or treat these as the identity if the
corresponding child is a leaf. Notice that the composition

fm ◦ . . . ◦ f2 ◦ h1 ◦ g1 ◦ h1 ◦ g1 ◦ f1

also maps (X, Y ) to (Xmin, Ymin). The composition h1 ◦ g1 ◦ f1 is a subtree switch at u,
and the remaining operations g1, h1, f2, . . . , fm do not involve flips at any u′ ∈M(I) with
u′ >T u. If g1 or h1 are equivalent to any of the fi, then we commute flips and replace
fi ◦ g1 or fi ◦ h1 with the identity. We will find that fm ◦ · · · ◦ f2 ◦ h1 ◦ g1 is equivalent to
f̃k ◦ · · · ◦ f̃2 ◦ f̃1, and in this second composition, there are no repeated flips at any vertex,
and no flips occur at u′ ∈ M(I) with u′ >T u. If some f̃i involves a flip at a vertex in
M(I), then we iterate this argument. Since we choose a maximal vertex u ∈ M(I) at
each iteration, this process will eventually terminate. We will then have a sequence of

the electronic journal of combinatorics 30(2) (2023), #P2.32 38



subtree switches mapping (X, Y ) to some layout (X ′, Y ′), and the remaining flips mapping
(X ′, Y ′) to (Xmin, Ymin) do not involve vertices in M(I). The conclusion then follows from
the preceding paragraph.

We now focus on M(I) and define subsets M(I)0, M(I)T , and M(I)S that allow us to
generalize our results from Insertion. For any leaves ti and sφ(i) with i /∈ I, we let P (ti)
and P (sφ(i)) denote their respective parents. We define M(I)0 to contain all P (ti) and
P (sφ(i)) for i /∈ I, such that

• Lf(P (ti)) ∩ Ic = {ti},

• Lf(P (sφ(i))) ∩ φ(I)c = {sφ(i)}, and

• there exists (u, v) ∈ L(I) with either P (ti) >T u and v >S P (sφ(i)), or P (sφ(i)) >S

v and u >T P (ti).

Note that these combined properties imply (u, v) /∈ L(I)0 by definition. The set M(I)0 is
intended to generalize the results in Algorithms 3 and 8, which are the cases u0 >T uSmax
and v0 >S vTmax.

Now we define M(I)T and M(I)S, which generalize additional situations from our
Insertion algorithm. For any ti ∈ T with i /∈ I, define A(ti) to be the minimal
distance ancestor u of ti such that Lf(u) ∩ I 6= ∅. Now define M(I)S to contain all
P (sφ(i)) ∈M(I) \M(I)0 for i /∈ I such that Lf(P (sφ(i))) ∩ φ(I)c = {sφ(i)}, and either

• Lf(A(ti)) ∩ I and Lf(P (sφ(i))) ∩ φ(I) do not contain matched leaves, or

• there exists (u, v) ∈ L(I) such that A(ti) >T u and v >S P (sφ(i)). In this case, note
that these properties imply (u, v) /∈ L(I)0.

Similarly, define A(sφ(i)) to be the minimal distance ancestor v of sφ(i) such that Lf(v) ∩
φ(I) 6= ∅. Define M(I)T to contain all P (ti) ∈ M(I) \ M(I)0 for i /∈ I such that
Lf(P (ti)) ∩ Ic = {ti}, and either

• Lf(P (ti)) ∩ I and Lf(A(sφ(i))) ∩ φ(I) do not contain matched leaves, or

• there exists (u, v) ∈ L(I) such that u >T P (ti) and A(sφ(i)) >S v. Again, (u, v) /∈
L(I)0.

Finally, we define M(I)1 = M(I) \ (M(I)0 ∪M(I)T ∪M(I)S) to be the remaining inserted
vertices so that M(I)0,M(I)T ,M(I)S, and M(I)1 partition M(I). An example of these
sets is shown in Figure 20.

We now define a natural partial order � on P = L(I)T ∪ L(I)S ∪ L(I)1 ∪M(I) using
the partial orders on T and S. This will be useful for both determining what crossings to
focus on at each element, as well as the order in which we should consider the elements
when performing subtree switches and paired flips.

• For (u1, v1), (u2, v2) ∈ P ∩ L(I), (u1, v1) � (u2, v2) if u1 6T u2 and v1 6S v2.
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Figure 20: For the subtanglegram induced by I = {1, 2, 3, 4, 6, 7, 10, 11} ⊆ [11] shown in
black, M(I) is partitioned into M(I)0 = {u1, v1}, M(I)T = ∅, M(I)S = {v2, v3}, and
M(I)1 = {u2, u3}.

• For (u1, v1) ∈ P ∩ L(I), u ∈ P ∩ T , (u1, v1) � u if u1 6T u, and u � (u1, v1) if
u 6T u1.

• For (u1, v1) ∈ P ∩L(I), v ∈ P ∩S, (u1, v1) � v if v1 6S v, and v � (u1, v1) if v 6S v1.

• For u1, u2 ∈ P ∩ T , u1 � u2 if u1 6T u2.

• For v1, v2 ∈ P ∩ S, v1 � v2 if v1 6S v2.

• Finally, take the transitive closure of the above relations.

Recall that for partially ordered sets, we say z ∈ P covers x ∈ P if x ≺ z and there do not
exist any y ∈ P with x ≺ y ≺ z, i.e., z is larger than x and there are no elements between
them. We use the notation x �· y or y ≺· x to denote the covering relation.

For the elements in L(I)T , L(I)S,M(I)0,M(I)T , and M(I)S, we now define generaliza-
tions of the E(uj) and E(vj) sets from Insertion. These sets, which we denote Crs(u, v),
Crs(u), or Crs(v), will determine what crossings we should consider at the corresponding
elements. Using the notation ej for the between-tree edge (tj, sφ(j)), we organize these
definitions in Table 2.

Finally, recall that a linear extension of a partially ordered set P is a bijective map
F : P → {1, 2, . . . , |P|} such that F (w) > F (w′) in the usual order on N whenever w � w′,
or equivalently, a total ordering of P that respects the partial ordering. We can use a linear
extension on P with respect to � defined above to determine the order that we perform
operations, as by construction of �, the order F−1(|P|), . . . , F−1(2), F−1(1) guarantees
that we consider all ancestors of a vertex in T or S before we consider the vertex itself. We
now give an example of the sets in Table 2, followed by our MultiInsertion algorithm
and an example of its application.
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Element Relevant Properties Crossing Set

(u, v) ∈ L(I)T Lf(u) ∩ Ic = {ti}
{(ei, ej) : tj ∈ Lf(u) \ Lf(u′)

where (u, v) �· u′ or (u, v) �· (u′, v′)}

(u, v) ∈ L(I)S Lf(v) ∩ φ(I)c = {sφ(i)}
{(ei, ej) : sφ(j) ∈ Lf(v) \ Lf(v′)

where (u, v) �· v′ or (u, v) �· (u′, v′)}

P (ti) ∈M(I)0
there exists (u, v) ∈ L(I) with
P (ti) >T u and v >S P (sφ(i))

{(ei, ej) : tj ∈ Lf(P (ti)) \ Lf(u)
where P (ti) �· (u, v)}

P (sφ(i)) ∈M(I)0
there exists (u, v) ∈ L(I) with
P (ti) >T u and v >S P (sφ(i))

{(ei, ej) : sφ(j) ∈ Lf(P (sφ(i))) \ {sφ(i)}}

P (ti) ∈M(I)0
there exists (u, v) ∈ L(I) with
P (sφ(i)) >S v and u >T P (ti)

{(ei, ej) : tj ∈ Lf(P (ti)) \ {ti}}

P (sφ(i)) ∈M(I)0
there exists (u, v) ∈ L(I) with
P (sφ(i)) >S v and u >T P (ti)

{(ei, ej) : sφ(j) ∈ Lf(P (sφ(i))) \ Lf(v)
where P (sφ(i)) �· (u, v)}

P (ti) ∈M(I)T Lf(P (ti)) ∩ Ic = {ti} {(ei, ej) : tj ∈ Lf(P (ti)) \ {ti}}
P (sφ(i)) ∈M(I)S Lf(P (sφ(i))) ∩ φ(I)c = {sφ(i)} {(ei, ej) : tj ∈ Lf(P (sφ(i))) \ {sφ(i)}}

Table 2: Crossing sets for elements in L(I)T , L(I)S, M(I)0, M(I)T , and M(I)S.

Example 46. Consider the tanglegram in Figure 21, and let I = {1, 2, 4, 5, 8, 9, 10, 11}.
We index elements in P by their images under a linear extension, so

P = {v1, (u2, v2), v3, v4, (u5, v5), u6, (u7, v7), u8, u9}. (10)

Observe that L(I)T = ∅, L(I)S = {(u2, v2), (u5, v5)}, L(I)1 = {(u7, v7)}, M(I)0 = ∅,
M(I)T = {u6}, M(I)S = {v1, v3, v4}, and M(I)1 = {u8, u9}. Table 2 states Crs(v1) =
{(e7, e11)}, Crs(u2, v2) = {(e7, e10)}, Crs(v3) = {(e3, e8), (e3, e9)}, Crs(v4) = {(e6, e2)},
Crs(u5, v5) = {(e6, e1)}, and Crs(u6) = {(e3, e1), (e3, e2)}.
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Figure 21: Two layouts for the same tanglegram.
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Algorithm 7: MultiInsertion
Input: tanglegram (T, S, φ), index set I such that (TI , Sφ(I), φ|I) is planar
Output: layout of (T, S, φ) that restricts to a planar layout of (TI , Sφ(I), φ|I)

1 (X, Y ), L := ModifiedUntangle(T, S, φ|I)
2 construct L(I) from L using Definition 26
3 construct M(I), M(I)0, M(I)T , M(I)S, M(I)1, L(I)0, L(I)T , L(I)S, and L(I)1
4 calculate Crs(w) for all w ∈ L(I)T ∪L(I)S ∪M(I)0 ∪M(I)T ∪M(I)S using Table 2
5 F := linear extension of P = L(I)T ∪ L(I)S ∪ L(I)1 ∪M(I) with respect to partial

order �
6 (Xmin, Ymin) := (X, Y )
7 for C ⊆ L(I)1 ∪M(I)1, do
8 (X ′, Y ′) := (X, Y )
9 for j = |P|, . . . , 2, 1, do

10 if [F−1(j) ∈ C ∩ L(I)1] or [F−1(j) ∈ L(I)T ∪ L(I)S and more than half of
the crossings in Crs(F−1(j)) occur in (X ′, Y ′)], then

11 update (X ′, Y ′) := PairedFlip((X ′, Y ′), F−1(j))

12 else if [F−1(j) ∈ C ∩M(I)1 ∩ T ] or [F−1(j) ∈M(I)T ∪ (M(I)0 ∩ T ) and
more than half of the crossings in Crs(F−1(j)) occur in (X ′, Y ′)], then

13 update X ′ := SubtreeSwitch(X ′, F−1(j))

14 else if [F−1(j) ∈ C ∩M(I)1 ∩ S] or [F−1(j) ∈M(I)S ∪ (M(I)0 ∩ S) and
more than half of the crossings in Crs(F−1(j)) occur in (X ′, Y ′)], then

15 update Y ′ := SubtreeSwitch(Y ′, F−1(j))

16 if (X ′, Y ′) has fewer crossings than (Xmin, Ymin), then
17 update (Xmin, Ymin) := (X ′, Y ′)

18 return (Xmin, Ymin)

Example 47. Consider the tanglegram (T, S, φ) and linear extension of P from Example
46. Suppose that the the output of ModifiedUntangle(T, S, φ|I) is the layout on the left
in Figure 21. MultiInsertion will consider 2|L(I)1∪M(I)1| = 8 iterations in the for loop in
line 7. In each iteration, it produces another layout, and ultimately the algorithm returns
the layout encountered that has the fewest number of crossings. In the iteration C = ∅,
the algorithm will perform a subtree switch at v4, a paired flip at (u2, v2), and a subtree
switch at v1, resulting in a layout with seven crossings shown on the right in Figure 21.
Note that this is not a solution to the Multiple Edge Insertion Problem since the iteration
with C = {(u7, v7)} will produce a layout with fewer crossings.

Lemma 48. In some iteration of the for loop in line 7 of MultiInsertion, the resulting
layout (X ′, Y ′) is a solution to the Tanglegram Multiple Edge Insertion Problem.

Proof. By Lemma 45, starting with (X, Y ) in line 1 and performing some sequence of
paired flips and subtree switches at elements in P produces a solution. In some iteration
of the for loop in line 7, the choices at elements in L(I)1 ∪M(I)1 all extend to a solution.
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We will assume that we are in this iteration, and we will show that the choice at each
element in L(I)T ∪ L(I)S ∪M(I)0 ∪M(I)T ∪M(I)S extends to a solution, provided that
all prior choices extend to a solution.

Consider (u, v) ∈ L(I)T . By definition of L(I)T , u is an ancestor of a single inserted
leaf ti and v is not an ancestor of any inserted leaves. Thus, the choice at (u, v) can only
affect the crossings C = {(ei, ej) : tj ∈ Lf(u)}. Applying the same arguments as in Lemma
34 and 38, if we perform a paired flip at (u, v), then we can perform either a paired flip or
a subtree flip at the element covered by (u, v) to obtain the same crossings in C \Crs(u, v).
The case of a paired flip is illustrated in Figure 22. From this, we see that the choice at
(u, v) that extends to a solution must be one that minimizes crossings in Crs(u, v), which
is what MultiInsertion does. The case (u, v) ∈ L(I)S follows by a similar argument.

u u′ vv′ti

sφ(i)

X1

U

X2

Y1

V

Y2

u u′ vv′ti

sφ(i)

X2

U

X1

Y2

V

Y1

Figure 22: The effect of a paired flip at (u, v) ∈ L(I)T and (u′, v′) with (u, v) �· (u′, v′)

Now consider P (ti), P (sφ(i)) ∈ M(I)0. Our choices at P (ti), P (sφ(i)) can only affect
crossings between (ti, sφ(i)) and edges in (TI , Sφ(I), φ|I) with an endpoint in Lf(P (ti)) or
Lf(P (sφ(i))). In the case that there is a leaf-matched pair (u, v) ∈ L(I) with P (ti) >T u
and v >S P (sφ(i)), we can use the same arguments from Lemma 34 with P (ti) in place
of u0 and P (sφ(i)) in place of v0 to conclude that MultiInsertion makes choices that
extend to a solution. The case when there is a leaf-matched pair (u, v) ∈ L(I) such that
P (sφ(i)) >S v and u >T P (ti) is done similarly.

Finally, consider P (ti) ∈ M(I)T . Notice that the choice at P (ti) can only affect the
crossings Crs(P (ti)) = {(ei, ej) : tj ∈ Lf(P (ti)) \ {ti}}, where all such tj must be leaves in
the subtanglegram (TI , Sφ(I), φ|I) since Lf(P (ti)) ∩ Ic = {ti}. We claim that our future
choices at elements in P do not affect these crossings.

• Any leaf-matched pairs (u, v) ∈ L(I) with (u, v) � P (ti) have already been considered
based on the linear extension, and there are no leaf-matched pairs (u, v) ∈ L(I) with
P (ti) � (u, v).

• If we perform subtree switches at u ∈M(I)∩ T \ {P (ti)}, then the resulting layouts
restrict to the same layout of (TI∪{i}, Sφ(I∪{i}), φ|I∪{i}). Hence, the same crossings
occur in Crs(P (ti)).
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• If we perform subtree switches at v ∈M(I)∩ S with v 6= A(sφ(i)), then the resulting
layouts restrict to the same layout of (TI∪{i}, Sφ(I∪{i}), φ|I∪{i}). Again, the same
crossings occur in Crs(P (ti)).

• Now for A(sφ(i)), we consider two cases. In the case that Lf(A(sφ(i))) ∩ φ(I) and
Lf(P (ti)) ∩ I do not contain matched leaves, an operation at A(sφ(i)) cannot affect
the crossings in Crs(P (ti)). In the case that there exists (u, v) ∈ L(I) \ L(I)0 with
A(sφ(i)) � (u, v) � P (ti), an operation at A(sφ(i)) has already been considered.

Thus, a choice at P (ti) that extends to a solution must be one that minimizes crossings in
Crs(P (ti)), which is precisely what the algorithm does. The case P (sφ(i)) ∈M(I)S follows
by a similar argument.

Theorem 49. MultiInsertion solves the Tanglegram Multiple Edge Insertion Problem
in O(2|L(I)1∪M(I)1|n2) time and O(n2) space.

Proof. By Lemma 43, MultiInsertion only encounters layouts that restrict to planar lay-
outs of (TI , Sφ(I), φ|I). By Lemma 48, MultiInsertion encounters a solution (Xmin, Ymin)
to the Multiple Edge Insertion Problem in some iteration of the for loop in line 7. From
lines 16-17, we see that the algorithm stores the layout with the fewest number of crossings
considered over all iterations of the for loop, so it will return either (Xmin, Ymin) or another
layout with the same number of crossings. Thus, the output of MultiInsertion is a
solution to the Multiple Edge Insertion Problem.

For the run-time and space claims, first note that lines 1-6 can all be completed in
O(n2) time. The for loop in line 7 then runs for 2|L(I)1∪M(I)1| iterations. The for loop in
line 9 has at most 2n steps, and each step takes O(n) time, as all of the if and else if
conditions can be checked in O(n) time, and paired flips and subtree switches take O(n)
time. The remaining steps after line 16 take O(n2) time for a total of O(2|L(I)1∪M(I)1|n2)
time. For the space claim, notice that storing all of the sets and layouts takes O(n2)
space.

Remark 50. In the special case that |I| = n− 1, the set L(I)1 is empty and |M(I)1| 6 2.
Here, MultiInsertion reduces to a less efficient version of Insertion that still runs in
O(n2) time.

6 Future work

In Section 3, we defined the flip graph of a planar tanglegram. While paired flips will
generate all vertices in this graph, it is possible that some flips do not produce a new
layout, as tanglegrams are considered up to isomorphism on T and S. One simple example
of this is the unique tanglegram of size 2, where a paired flip at the roots of both trees
does not produce a new layout. As such, we pose the following problem.

Problem 1. For any planar tanglegram (T, S, φ), characterize the flip graph Γ(T, S, φ).
In particular, determine the number of vertices, the number of edges, and the degree of
any vertex.
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Billey, Konvalinka, and Matsen previously gave an algorithm for generating tanglegrams
uniformly at random [2]. We propose a corresponding problem for the case of planar
tanglegrams. Since there is a bijection between irreducible planar tanglegrams and pairs
of triangulations with no common diagonal from [17], solving this problem may lead to
solutions to other open problems.

Problem 2. Construct an efficient algorithm generating planar tanglegrams uniformly at
random.

Finally, we pose a problem about using MultiInsertion to approximate the tanglegram
crossing number, where the bound is modeled after one in [4]. For any tanglegram (T, S, φ),
this also requires finding a planar subtanglegram (TI , Sφ(I), φ|I), and from Corollary 40,
we know that we do not necessarily want a subtanglegram of maximum size. Additionally,
we insist on an efficient algorithm, so we must modify MultiInsertion at the vertices in
L(I)1 ∪M(I)1.

Problem 3. Use MultiInsertion to construct an efficient algorithm that finds a tan-
glegram layout with at most O(crt(T, S, φ) · poly(log n)) crossings, where n is the size of
(T, S, φ) and poly(x) is some polynomial in x.
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Appendix

Algorithm 8: Insertion Case v0 >S vTmax
Input: tanglegram (T, S, φ), index i such that (TI , Sφ(I), φ|I) is planar for

I = [n] \ {i}
Output: layout of (T, S, φ) that restricts to a planar layout of (TI , Sφ(I), φ|I)

// Step 1: initialize the algorithm.
1 (X, Y ), L := ModifiedUntangle(T, S, φ|I)
2 construct L(I) from L using Definition 26
3 u0 := parent of ti, v0 := parent of sφ(i)
4 L(I)T := {(u, v) ∈ L(I) : u >T ti, v 6>S sφ(i)}

// Step 2: construct edge sets.
5 linearly order L(I)T = {(uj, vj)}mj=1 so that u1 <T u2 <T . . . <T um
6 E(v0) := between-tree edges with an endpoint in Lf(v0) \ Lf(vm)
7 E(u0) := between-tree edges with an endpoint in Lf(u0) \ {ti}
8 for j = 1, 2, . . . ,m, do
9 E(uj) := between-tree edges with an endpoint in Lf(uj) \ Lf(uj−1)

// Step 3: use paired flips and subtree switches to change
crossings.

10 if (ti, sφ(i)) crosses more than half of the edges in E(v0) in the layout (X, Y ), then
11 update Y := SubtreeSwitch(Y, v0)

12 for j = m, . . . , 2, 1, do
13 if (ti, sφ(i)) crosses more than half of the edges in E(uj) in the layout (X, Y ),

then
14 update (X, Y ) := PairedFlip((X, Y ), (uj, vj))

15 if (ti, sφ(i)) crosses more than half of the edges in E(u0) in the layout (X, Y ), then
16 update X := SubtreeSwitch(X, u0)

17 return (X, Y )
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