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Abstract

Cmulti

We call a 4-cycle in Ky, , n, multipartite, denoted by Cj"", if it contains at
multi

least one vertex in each part of Ky, n, pny. The Turdn number ex(Ky, nyng, C5M)
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(respectively, ex(Kp, ngmns, {C3, Cy™1})) is the maximum number of edges in a
graph G C Ky, n, n, such that G contains no CJ™!" (respectively, G contains neither
C3 nor CJ™t). We call an edge-colored CJ™!t! rainbow if all four edges of it have
different colors. The anti-Ramsey number ar(K,, n,ns, O is the maximum
number of colors in an edge-colored Ky, 5, n, With no rainbow C}fl“lti. In this paper,
we determine that ex(Ky, nyns, CFU) = ning + 2n3 and ar(Ky, nyn,, CFU) =
ex(Kn, no s, {C3, CPultily 41 = nyng +ng + 1, where ny = ng > ng > 1.

Mathematics Subject Classifications: 05C15, 05C35, 05C38

1 Introduction

We consider only nonempty simple graphs. Let G be such a graph, the vertex and edge
set of G is denoted by V(G) and E(G), the number of vertices and edges in G' by v(G)
and e(G), respectively. We denote the neighborhood of v in G by Ng(v), and the degree
of a vertex v in G by dg(v), the size of Ng(v). Let Uy, Uy be vertex sets, denote by
e¢(Uy, Us) the number of edges between Uy and U, in G. We write d(v) instead of dg(v),
N(v) instead of Ng(v) and e(Uy, Us) instead of eq(Uy, Us) if the underlying graph G is
clear.

Given a graph family F, we call a graph H an F-free graph, if H contains no graph in
F as a subgraph. The Turdn number ex(G, F) for a graph family F in G is the maximum
number of edges in a graph H C G which is F-free. If F = {F'}, then we denote ex(G, F)
by ex(G, F).

An old result of Bollobds, Erdés and Szemerédi [3] showed that ex(Kp, nyng, C3) =
ning + nyng for ny > ne > ng > 1 (also see [4, 2, 5]). Lv, Lu and Fang [8, 9] constructed
balanced 3-partite graphs which are Cy-free and {Cj, Cy}-free respectively and showed
that ex(Kynn, Ca) = (J5 + o(1))n*? and ex(Kpnn, {Cs, Ca}) > (1.82 + o(1))n?/2.

For further discussion, we need the definitions of the multipartite subgraphs and a
function f(ny,na,...,n,).

Definition 1. [7] Let » > 3 and G be an r-partite graph with vertex partition V,...,V,,
we call a subgraph H of G multipartite, if there are at least three distinct parts Vi, V;, Vj,
such that V(H)NV; # 0, V(H)NV; # 0 and V(H) NV} # 0. In particular, we denote a
multipartite H by H™" (see Figure 3 for an example of a C[™t in a 3-partite graph).

Forr>3andn; >2no > --->2n, > 1, let

71 .
ning +n3ng + -+ npony1 + 0, + 5 — 1, 17 is odd;

f(nl,ng,...,nr) = {

ning + nNang + -+ Ny + 5 — 1, r is even.

Fang, Gy6ri, Li and Xiao [7] recently showed that if G C K, n,.. n, and e(G) >
f(n1,n9,...,n,.) + 1, then G contains a multipartite cycle. Furthermore, they proposed
the following conjecture.

Conjecture 2. [7) For r > 3 and ny =2 ng > --- =2 n, > 1, if G C Ky, and
e(G) = f(ni,na,...,n,)+1, then G contains a multipartite cycle C™ of length at most
3

57“.
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Figure 1: A C™ in a 3-partite graph.

In this paper, we study the Turdn numbers of CPW and {Cj, C™} in complete
3-partite graphs and obtain the following results.

Theorem 3. Forni = ny = nz = 1, ex(Ky, nyng, OFU) = nying + 2n;.
Theorem 4. Forny = ny = ng > 1, ex(Kp, nyns, {Cs, CT9Y) = nyng + na.

Notice that Theorem 4 confirms Conjecture 2 for the case when r = 3.

A subgraph of an edge-colored graph is rainbow, if all of its edges have different colors.
For graphs G and H, the anti-Ramsey number ar(G, H) is the maximum number of colors
in an edge-colored G with no rainbow copy of H. Erdés, Simonovits and Sés [6] first
studied the anti-Ramsey number in the case when the host graph G is a complete graph
K, and showed the close relationship between it and the Turdan number. In this paper,
we consider the anti-Ramsey number of C™ in complete 3-partite graphs.

Theorem 5. Forn; > ny = nz = 1, ar(Ky, nyns, O = nyng + n3 + 1.
We prove Theorems 3 and 4 in Section 2 and Theorem 5 in Section 3, respectively. We

always denote the vertex partition of K, 5, ns by V1, Vo and V3, where |V;| =n;, 1 <@ < 3.

2 The Turdn numbers of C'* and {Cj;, CP"*}

In this section, we first give the following lemma which will play an important role in our
proof.

Lemma 6. Let G be a 3-partite graph with vertex partition X,Y and Z, such that for all
reX, Nxz)NY #0 and N(z) N Z # 0.

(i) If G is C_free, then e(G) < |Y||Z| + 2|X];

(ii) If G is {C3, O™ free, then e(G) < |Y||Z] + | X|.

Proof. (i) Since G is CP"-free, G[N(x)] is Ky o-free for each x € X. Therefore,

e(G[N(z)]) =e(N(z)NY,N(z)NZ) <min {|N(z) NY|,|N(z) N Z|}. (1)
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For z € X, we let e, be the number of missing edges of G between N(x) NY and
N(z)N Z. By (1), we have

=|N(@)NY| |N(z)nZ|—e(N(z)NY,N(z)NZ)
2|N(x)ﬂY|-|N(x)ﬂZ\—min{|N( NY|,|N(z)NZ|} (2)
> |N(z)NY|+ |N(x)NZ| -2,

where the last inequality holds since |[N(z) N Y| > 1 and [N(z)NZ| > 1 for all z € X.
By (2), we get

e 2> (IN@)NY[+|N@)NZ|-2) =e(X,Y) +e(X,2) - 2|X[.  (3)

Notice that for any two distinct vertices x1, x5 € X, they cannot have common neighbors
in both Y and Z at the same time, otherwise we find a copy of C'"" in G. Thus each
missing edge between Y and Z is calculated at most once in the sum ) __ e,. Hence the
number of missing edges between Y and Z is at least ) _y e,. Then we have

oY, 2) < Y12 = 3 e < |VI1Z] - (e(X.Y) + e(X, Z) — 2|X]). (4)

By (4), we get
e(G) =e(X,)Y)+e(X,Z)+eY,Z) < |Y||Z] + 2|X]|.
(ii) Since G is Cs-free, for each z € X,
e(N(z)nY,N(z)NZ) = 0. (5)

Since for each z € X, [N(z)NY| > 1 and |[N(z) N Z| > 1 hold, by (5), the number of
missing edges between N(xz) NY and N(xz)NZ is |[N(z)NY]-|N(z) N Z|. Notice that
for any two distinct vertices xq, 9 € X, they cannot have common neighbors in both Y
and Z at the same time, otherwise we find a copy of C™ in G. Hence, the number of
missing edges between Y and 7 is at least Y _ |N(z) NY|-|N(x)N Z|. Thus,

(v, 2) < |Y|Z| - Y IN@) N Y] - [N (@) N Z]

rzeX

<IYIZ] =) (IN@) NY|+|N(@)nZ| - 1) (6)

the second inequality holds since |[N(z)NY| > 1and |[N(z)NZ| > 1 for z € X.
By (6), we have e(G) =e(Y,Z) +e(X,Y) +e(X,Z) < |Y||Z| + | X]. O

Now we are ready to prove Theorems 3 and 4.
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Figure 2: An example of C™"_free graph with niny + 2n3 edges.

Proof of Theorem 3. Let G C K, n,ns be a graph, such that V; and V, are completely
joined, V] (respectively, V5) and V3 are joined by an ng-matching, see Figure 2. Clearly,
G is O free and e(G) = nyng + 2n3. Therefore, ex(Ky, nyns, CT) = ning + 2n3.
Let G C K, nyns such that G is C"%-free, now we are going to prove that e(G) <
niny + 2ng3 by induction on ny + ng + ng.
For the base case n3 = 1, let V3 = {v}, we consider the following four subcases:
(i) N(v)N'V; # 0 and N(v) NV # (. By Lemma 6, we have e(G) < ning + 2.
(it) N(v) NV # 0 and N(v) NV, = 0.
For any vertex x € Va, we have e(z, N(v)) < 1, otherwise there is a C, Hence,
e(Va, N(v)) = > ey, €(x, N(v)) < ng. Therefore,

e(G) = e(Vs, N(v)) + e(V, N(v)) + e(Vi\ N(v), V2)
<d(v) +ng+ (m — d(v)>n2
< ning + 1.

(itg) N(v)NVy =0 and N(v) N Va # 0.
For any vertex x € V;, we have e(z, N(v)) < 1, otherwise there is a C", Hence,
e(Vi, N(v)) = >y, e(x, N(v)) < ny. Therefore,

e(G) = e(V3, N(v)) +e(Vi, N(v)) + e(Va \ N(v), V1)
< d(v) +ny + (ng — d(v))my
< ning + 1.

(iv) N(v)NVy =0 and N(v) NV, = 0. We have e(G) = e(V1, Va) < nyno.

Now let n3 > 2, and assume that the statement is true for order less than ni +no + ns.
We distinguish the three cases depending on the equality of the numbers ny, no, ns.
Casel. ni=ny=ns=n=>2.

If there exists one part, say Vi, such that N(v) NV, # () and N(v) NV3 # ), for all
v € V4, then by Lemma 6, we have e¢(G) < |[Va||V5| + 2|Vi| = n? + 2n.

Thus, we may assume that for all ¢ € [3] = {1,2,3}, there exist a vertex v € V; and
J € [3]\ {i} such that N(v) N V; = (. We divide it into two subcases.

Case 1.1. There exist two parts, say V; and Va, such that N(v;)NVa = 0 and N(ve)NV; =
() for some vertices v; € V; and vy € V5.

ot

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(2) (2023), #P2.35



Since G is CP"i-free, d(vy) + d(v2) < |Va| +1 = n + 1. Without loss of generality,
let v3 € V3 be the vertex such that N(v3) NV = (). Then the number of edges incident
with {vy, v, v3} in G is at most d(vy) 4+ d(vy) +n — 1 < 2n. By the induction hypothesis,
e(G—{vy,v9,v3}) < (n—1)2+2(n—1). Thus, ¢(G) < (n—1)2+2(n—1) +2n < n?+2n.
Case 1.2. There exist vertices v; € Vi, v9 € V5 and v € V3 such that either N(v;) NV =
0, N(va)NV3=0,N(vs)NVi =0 or N(v1)NV3 =0, N(vs)NVa =10, N(vg) NV; = ) holds.

Without loss of generality, we assume that N(v1)NVy = (0, N(v9)NV3 = 0, N(v3)NV; =
0. If d(vy) + d(ve) + d(vs) < 2n + 1, then by the induction hypothesis, we have

e(@) < e(G — {vy,v9,v3}) + d(v1) + d(v2) + d(v3)
<(n—172+2n—1)+2n+1
< n? + 2n.

Now we assume that d(v1) +d(ve) +d(v3) = 2n+2, hence, d(vy) > 1,d(vy) = 1,d(v3) > 1.
Since G is CP_free, each vertex in V; \ {v;} can have at most one neighbor in N(v3),
we have e(Vy \ {v1}, N(v3)) < n— 1. Similarly, we have e(V5 \ {vs3}, N(v2)) < n —1 and

e(Va\ {2}, N(01)) < — 1.
Therefore,

e(V1,Va) = e(Vi\{v1}, Vo \ N(v3)) +e(Vi \ {1}, N(v3)) < (n = d(vs))(n — 1) + (n — 1),

e(Vi,Vs) = e(Vs \ {vs}, Vi \ N(v2)) + (Vs \ {uvs}, N(v2)) < (n —d(v2))(n — 1)
e(Va, Vs) = e(Va \ {v2}, V3 \ N(v1)) + e(Va \ {va}, N(v1)) < (n —d(v1))(n — 1)
Thus,

+ -
Ele)
| |
= =

e(G) = e(V1,V2) + e(V1,V3) + e(V2, V3)
(3n — (d(v1) + d(v2) + d(v3)))(n — 1) + 3(n — 1)
(3n—(2n+2))(n—1)+3(n—1)

n? —1.

NN N

Case 2. ny >ny=n3=n > 2.

If there exists one vertex vy € V; such that d(vg) < n, then by the induction hypothesis,
we have e¢(G) = e(G —vg) + d(vg) < (n1 — 1)n + 2n + n < nyn + 2n. Otherwise, we have
d(v) > n+1 for all vertices v € V4. Hence, N(v) NV, # () and N(v) N V3 # 0 hold for all
v € V1. By Lemma 6, we get e(G) < n? + 2n; < nyn + 2n.

Case 3. ny > nq9 > nsz = 2.

If there exists one vertex vy € Vs such that d(vy) < ng, by the induction hypothesis,
we have e(G) = e(G — vg) + d(vo) < ni(ne — 1) + 2n3 + ny < nyng + 2n3. Otherwise, we
have d(v) = ny + 1 for all vertices v € V5. Hence, N(v) N'V; # 0 and N(v) N V3 # ) for
all v € V5. By Lemma 6, we get e(G) < ning + 2ny < nyns + 2ns. O

Proof of Theorem 4. Let G C K, n,ns be a graph, such that V; and V, are completely
joined, Vi and V3 are joined by an ns-matching and there is no edge between V5, and
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V3
Figure 3: An example of {C3, C™W}_free graph with nin, + ns edges.

Vi, see Figure 3. Clearly, G is {Cs, C™ti} free and e(G) = nyny + nz. Therefore,
X( Koy np sy {C3, CIMM}) = nang + ns.

Let G C K, nyns such that G is {Cs, CPH}_free, now we can prove e(G) < nyng + ns
by induction on n; 4+ ny 4+ ng in the same way as we did in the proof of Theorem 3, just
the coefficients in the computation change a bit. For sake of brevity, we skip the details
of the proof. O

3 The anti-Ramsey number of C!t

In this section, we study the anti-Ramsey number of C™W% in the complete 3-partite
graphs. Given an edge-coloring ¢ of G, we denote the color of an edge e by c(e). For a
subgraph H of G, we denote C(H) = {c(e)|le € E(H)}. We call a spanning subgraph
of an edge-colored graph a representing subgraph, if it contains exactly one edge of each
color.

Given graphs GG; and G9, we use G; A G5 to denote the graph consisting of G; and
(G5 sharing exactly one common vertex. We call a multipartite Cg in a 3-partite graph
non-cyclic if there exists a vertex v in Cy such that the two neigborhoods in Cg of v
belong to the same part. Let F be a graph family which consists of C% (see graph G
in Figure 4), C3 A C3 (see graph G5 in Figure 4), the non-cyclic C2""% (see graphs G, G4
in Figure 4) and C3 A Cs (see graphs G5, G, G in Figure 4) and the C"!¥ which contains
at least two vertex-disjoint non-multipartite Ps (see graph Gg in Figure 4).

To find a rainbow C™ in the edge-colored complete 3-partite graphs, we follow the
idea of Alon [1] and prove the lemma as follows..

Lemma 7. Let ny > ny > ng > 1. For an edge-colored Km,n‘wg, iof there is a rainbow
copy of some graph in F, then there is a rainbow copy of CFH,

Proof. We separate the proof into three cases.
Case 1. An edge-colored K, ,,n, contains a rainbow copy of G, G5 or Gy.

Suppose there is a rainbow copy of Go in Ky, n, s (see Figure 5), then whatever the
color of vyws is, at least one of viuvewyv; and viwsuwqvy is a rainbow C}fmlti. Similarly,
with the help of the red edge that is showed in G3 and G4 (see Figure 5), there are two
Cilti’s whose edge-intersection is the red edge, so one of the two C"’s must be rainbow.
Case 2. An edge-colored K, ,,n, contains a rainbow copy of Gs.
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Figure 4: F = {Gl} U {GQ} U {Gg, G4} U {G5, GG, G7} U {Gg}

G3 G4

Figure 5: Illustration of Case 1.
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Suppose there is a rainbow copy of G5 in K, »,n, (see Figure 6). If vswsuwqvs is
not rainbow, then wws shares the same color with one of vsws, vswy and ww,. Hence,
uvwsu Uuv wyu is a rainbow copy of Gy, by Case 1, we can find a rainbow copy of CJIt,

Figure 6: Illustration of Case 2.

Case 3. An edge-colored K, ,,n, contains a rainbow copy of Gg, G7 or Gs.

G7 GS
Figure 7: Illustration of Case 3.

Suppose there is a rainbow copy of Gg¢ in K, n, 0, (see Figure 7). If voujwiugvy is
not rainbow, then usw,; shares the same color with one of vouy, uyw; and usv,. Hence,
VU V3WeUsw V1 1S a rainbow copy of Gy, by Case 1, we can find a rainbow copy of Cf“m.
Similarly, with the help of the red edge that is showed in G7 and Gy (see Figure 7), one
can always find a rainbow copy of C™ if there is a rainbow copy of G7 or Gg. O

Now we are able to prove Theorem 5.

Proof of Theorem 5. Lower bound: We color the edges of K, ,,, n, as follows. First,
color all edges between V; and V5 rainbow. Second, for each vertex v € V3, color all the
edges between v and V; with one new distinct color. Finally, assign a new color to all
edges between V5 and V3. In such way, we use exactly nins + ng + 1 colors, and there is
no rainbow CIulti,

Upper bound: We prove the upper bound by induction on n; + ny + n3. By Theo-
rem 3, we have ar(K,, n, 1, CT"%) < ex(K, np1, CP) = nyny + 2, the conclusion holds
for n3 = 1. Let ng > 2, suppose the conclusion holds for all integers less than ny 4+ ny +ns.
We suppose there exists an (niny + ns + 2)-edge-coloring ¢ of K, n, n, such that there is
no rainbow C in it. We take a representing subgraph G.

Claim 8. G contains two vertex-disjoint triangles.
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Proof of Claim 8. Recall that Theorem 4 says that ex(K, ny.ns, {Cs, CT9}) = nyng+ns.
Since e¢(G) = niny + n3 + 2 and G contains no CT" G contains at least two triangles
Ty and Ty. If |[V(Ty) NV (Ty)| = 2, then Ty U Ty contains a CW8 a contradiction. If
|\V(T1) NV (Ty)| = 1, then T} UT; is a copy of C3 A C3. By Lemma 7, we can find a
rainbow CI™ g contradiction. Thus, T} and T5 are vertex-disjoint. O

Let the two vertex-disjoint triangles be T} = z1y12121 and Ty = xoy229x9, Where
{xlaxZ} g ‘/17 {yhyQ} g ‘/2 and {21722} g ‘/é DenOte % = {1'1735279173/2,21722} and
U=WViul,uVs)\ V.

Claim 9. ¢(G[Vp]) < 7.

Proof of Claim 9. If e(G[Vy]) = 8, then e(V(T1),V(Tz)) > 2. Without loss of gener-
ality, assume that z1y, € E(G), we claim that xi29, 2921, y122, 9221 ¢ E(G), otherwise
T1YaXo2oX1, T1YoX221T1, T1lYeZoy1T1 OT X1Ys21y1x; would be a rainbow C’}fmlti. Thus,
we have xoy; € E(G). We claim that c(yi122) = c(y222), otherwise at least one of
{2191 2021, Toy1 22Yo T} is a rainbow CTW Thus, G[Vy] — 9220 + y120 is rainbow and
contains a C3 A C3. By Lemma 7, we find a rainbow C a contradiction. n

If U = (), that is n; = ny = ng = 2, then 8 = ¢(G) = e(G[Vy]) < 7, by Claim 9, a

contradiction. Thus we may assume that U # ().

Claim 10. For allv e U, e(v,Vy) < 2

Proof of Claim 10. If there is a vertex v € U, such that eg(v,Vy) > 3, then G[V, U {v}]
contains a C™ a contradiction. O

Claim 11. nz > 3.

Proof of Claim 11. Suppose ng = 2. Since U # ), we have n; > 3 = ng + 1. If there is a
vertex v € Vj such that d(v) < ng, then e(G—v) = ning+n3+2—d(v) = (n;—1)ng+nsz—+2.
By the induction hypothesis, we have

|C (K inamy = )] 2 €(G = v) = (n1 = )na +ng +2 = ar(Kn, 1055, CF) + 1,

thus K, n,.ns — v contains a rainbow CP% | a contradiction. Thus we assume that d(v) >
ny + 1 for all v € V4. By Claim 8, we have e(V3, V3) > 2. Hence, we have

e(G) = e(Vi,VaUVs) +e(Vo, V3) = Zd ) +e(Va, V) = ni(na+1) 4+ 2 = nyng +ny + 2,

veV]
and this contradicts to the fact that e(G) = ning + n3 + 2. O
Claim 12. e(G[Vp]) +e(Vo,U) = 2ny + 2ny — 1.
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Proof of Claim 12. If e(G[Vo]) + e(Vo, U) < 2ny + 2ny — 2, then

e(GIU]) = e(G) — (e(G[Vo]) + e(Vo,U)) = ning + nz + 2 — (2ny + 2ny — 2)
=(n1—2)(ng —2)+ (n3 —2) + 2.

By Claim 11, ng — 2 > 1. By the induction hypothesis, we have

|C (K nons — Vo)| = e(G[U]) = (n1 — 2)(n2 — 2) + (n3 — 2) +2
= ar(Kp, 252,52, CF) + 1,

thus K, n,n; — Vo contains a rainbow Cmulti 5 contradiction. O

Denote Uy = {v € U : e(v, V) = 2}. By Claim 10, we have e(U, Vp) < |Up| + |U|. By
Claim 9, we just need to consider the following two cases.

Case 1. ¢(G[Vp)) =T.

Without loss of generality, let z125 be the unique edge of G[V;] between Ty and Ts.
By Claim 12, we have e(U,Vy) = 2ny + 2ns — 1 — e(G[Vo]) = 2ny + 2ny — 8. Since
|U| = ny + ny + n3 — 6 and e(U, Vo) < |Uo| + |U|, we have |Up| = ny +ng —ng —2 > 1.
Take a vertice v € Uy, we consider the following two subcases to show that G[Vy U {v}]
contains one rainbow copy of some graph in F (see Figure 4). By Lemma 7, there is a
rainbow CJ™ | a contradiction.

Case 1.1 v e V3 UVs.

Without loss of generality, we may assume that v € Vi, the orange edges in G[VoU{v}]

(see Figure 8) forms a copy of some graph in F (see Figure 4).

S b B B B B

Figure 8: Illustration of Case 1.1.

Case 1.2 v € V;.
The orange edges in G[Vy U {v}] (see Figure 9) forms a copy of some graph in F (see

Figure 4).

m\ A
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Case 2. e(G[Vp]) = 6.



By Claim 12, we have e(U,Vy) > 2ny + 2ny — 1 — e(G[Vo]) = 2ny + 2ny — 7. Since
|U| = ni+ny+n3—6 and e(U, V) < |Up|+ |U|, we have |Ug| = ny+ns—ng—1>n;1—1 >
n1 — 2. Thus, Uy contains at least two vertices v; and vy which come from distinct parts.
Without loss of generality, assume that v; € V| and vy € V5. We consider the following
three subcases to show that G[Vy U {v1,v2}] contains one rainbow copy of some graph in
F (see Figure 4). By Lemma 7, there exists a rainbow CJ™! a contradiction.

Case 2.1 N(v) NV C V3.
The orange edges in G[Vy U {vy,v2}] (see Figure 10) forms a copy of some graph in F

(see Figure 4).
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Case 2.2 |[N(v))NVoNVo| = |N(v1) NVoN V3| = 1.

If N(vi)NVp C V(T1) or N(vq)NVy C V(T3), then G[V (T1) U{v1}] or G[V (T%) U{v,}]
contains a CP%. Thus, we assume that |N(vy) N V(T1)| = |N(vy) N V(Ty)| = 1, the
orange edges in G[Vy U {vy,v2}] (see Figure 11) forms a copy of some graph in F (see
Figure 4).

Figure 11: Tlustration of Case 2.2.

20& 2N

Figure 12: Illustration of Case 2.3.

Case 2.3 N(v) NV, C Vs.

The orange edges in G[Vy U {v1, v2}] (see Figure 12) forms a copy of some graph in F

(see Figure 4). O
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