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Abstract

Dirac and Lovász independently characterized the 3-connected graphs with no
pair of vertex-disjoint cycles. Equivalently, they characterized all 3-connected graphs
with no prism-minors. In this paper, we completely characterize the 3-connected
graphs with no edge that is contained in the union of a pair of vertex-disjoint cycles.
As applications, we answer the analogous questions for edge-disjoint cycles and for
4-connected graphs and we completely characterize the 3-connected graphs with no
prism-minor using a specified edge.

Mathematics Subject Classifications: 05C40, 05C75, 05C83

1 Introduction

Results about vertex-disjoint and edge-disjoint cycles have received extensive attention by
researchers in graph theory. There are two main lines of research in this area. One line of
research provides results that give a sufficient condition for a graph to contain a certain
number of vertex-disjoint or edge-disjoint cycles (see, for example, [3, 4, 6, 8, 9, 10, 11,
12, 13, 22]). Another line of research provides results that classify graphs with no pairs of
vertex-disjoint cycles (see, for example, [7] and [15]). We give some results of the latter
type here. Such results are particularly useful in the study of graph structure.

All graphs in this paper contain no loops nor parallel edges and we think of an edge as
the unordered pair of its endvertices. We use K−5 to denote the graph obtained by deleting
an edge from the complete graph on five vertices. All paths we consider are simple, i.e.
they do not repeat vertices. The graphs K ′3,n, K ′′3,n, and K ′′′3,n are obtained by adding,
respectively, one, two, or three edges to a partite class of size three in the graph K3,n.
We denote by Wn the wheel with n spokes. The following result is independently due to
Dirac [7] and Lovász [15]:
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Theorem 1. A 3-connected graph has no pair of vertex-disjoint cycles if and only if it is
isomorphic to Wn, K5, K

−
5 , K3,n, K ′3,n, K ′′3,n, or K ′′′3,n for some integer n exceeding two.

If e = uv is an edge of a graph G, we define the contraction of e in G as the
graph G/e obtained by identifying u and v into a single vertex. Rigorously: V (G/e) :=
(V (G) − {u, v}) ∪ {w}, where w is an element not in V (G) − {u, v} and E(G/e) :=
E(G− {u, v}) ∪ {xw : xu ∈ E(G− v) or xv ∈ E(G− u)}. If X = {e1, . . . , en}, we denote
by G/X the graph obtained by contracting the edges of X one by one (the order of the
contractions does not matter).

We say that a graph H is a minor of a graph G if H is obtained from G by contracting
edges, deleting edges and deleting vertices. An H-minor of a graph G is a minor of G
that is isomorphic to the graph H. The prism is the graph obtained from two disjoint
triangles by adding a perfect matching connecting the vertices of the different triangles. It
follows from Menger’s Theorem that Theorem 1 is equivalent to the following result:

Theorem 2. A 3-connected graph has a prism-minor if and only if it is not isomorphic
to Wn, K5, K

−
5 , K3,n, K ′3,n, K ′′3,n, or K ′′′3,n for some integer n exceeding two.

We generalize both Theorems 1 and 2. First we discuss the generalization of Theorem
2. We say that a minor H of a graph G uses an edge uv ∈ E(G) if H has an edge xy
such that each z ∈ {x, y} either is in {u, v} or is obtained by the identification of a set
of vertices intersecting {u, v} when making the contractions to obtain H. Some authors
call this a minor rooted on uv. Determining when a class of graphs (resp. matroids)
has a minor using specified edges (resp. elements) is often useful and important in the
study of structure of graphs and matroids. For instance, Seymour [18] established a result
on K4-minors rooted on pairs of edges and derived results on disjoint paths on graphs.
Results on the existence of U2,4-minors rooted on one or two elements on matroids with
U2,4-minors (Bixby [2] and Seymour [17], retrospectively) are classic results in matroid
theory; a property like this is called roundedness and has some variations, for instance,
3-connected graphs with a minor isomorphic to K4, K

−
5 e or K5 have a minor rooted on

the edge set of each triangle provided they have a minor isomorphic to these respective
graphs [5, 19] and 3-connected graphs with K3,3-minors have a K3,3-minor rooted on each
set of three edges incident to a common degree-3 vertex [21]. Our first main result is the
following generalization of Theorem 2:

Theorem 3. Suppose that G is a 3-connected graph on at least six vertices and uv is an
edge of G. Then G has no prism-minor using uv if and only if

(a) for some n > 3, G ∼= Wn, K3,n, K ′3,n, K ′′3,n or K ′′′3,n or

(b) G has a vertex w such that {u, v, w} is a vertex-cut of G and each connected
component of G− {u, v, w} is a tree with a unique vertex of NG(w).

A proof of Theorem 3 will be given in Section 6. There are variants of Theorem 1,
including [20, Theorem 1.2], [16, Theorem 1.1], and [14, Theorem 1.3]. Motivated by
Theorem 1, we consider a much larger class of graphs. The graphs in this class may contain
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vertex-disjoint cycles, but they do not contain vertex-disjoint cycles whose union contains
a specified edge. Equivalently, those are the graphs with an edge e with the property that,
for each cycle C containing e, G− V (C) is a forest. The full and detailed characterization
is made in Theorem 8, in the end of this introduction. The statement of this theorem
though requires a somewhat complicated definition, a structure we call a rope bridge.
Although its statement is not intuitive at first sight, the description given by Theorem 8 is
relatively easy to use and this theorem has practical applications and is of independent
interest. Indeed, it is used to prove all other main results in this paper. A more succinct
and intuitive description of the graphs with no pair of vertex-disjoint cycles whose union
contains a specified edge is given in Theorem 6; although Theorem 6 might not be very
suitable for producing rigorous proofs, it had its uses in the heuristic aspect and provided
important insights for many results in this paper.

We also consider a more strict class within the class of graphs with no pair of vertex-
disjoint cycles containing a specified edge, the class of graphs with no pair of edge-disjoint
cycles containing a specified edge, which admits a simpler characterization. Theorems 4
and 5 completely characterizes the 3-connected and 2-connected graphs within this class.

Theorem 4. If G is a 3-connected graph with an edge e = u1u2, then G contains no
edge-disjoint cycles using e if and only if G\e has internally disjoint (u1, u2)-paths α =
u1, v1, . . . , vn, u2 and β = u1, w1, . . . , wn, u2, both not containing e, and there is a family
P of pairwise disjoint pairs of consecutive elements of {1, . . . , n} such that

(a) V (G) = V (α) ∪ V (β) and

(b) E(G) = {viwj, vjwi : {i, j} ∈ P}∪{vkwk : k is in no member of P}∪E(α)∪E(β)∪
{e}.

v1 v2 v3 v4 v5 v6 v7 v8 v9

w1 w2 w3 w4 w5 w6 w7 w8 w9

e

u1 u2

Figure 1: An example for Theorem 4 with n = 9 and P =
{
{2, 3}, {6, 7}, {8, 9}

}
.

If G1, . . . , Gn are (not necessarily disjoint) graphs, we define the union of these graphs,
denoted by G1 ∪ · · · ∪ Gn, as the graph G such that V (G) = V (G1) ∪ · · · ∪ V (Gn) and
E(G) = E(G1) ∪ · · · ∪ E(Gn). If G is a graph and e is an unordered pair of vertices of G
we denote by G+ e the graph with same set of vertices as G and E(G) ∪ {e} as edge-set.
The following theorem generalizes Theorem 4 for 2-connected graphs.

Theorem 5. Suppose that G is a 2-connected graph and e is an edge of G. Then G has no
pair of edge-disjoint cycles whose union contains e if and only if, for some integer n > 1,
G has subgraphs G1, . . . , Gn and an (n+ 1)-element set of vertices U := {u0, . . . , un} such
that all of the following assertions hold:
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(a) G = (G1 ∪ · · · ∪Gn) + e and e /∈ E(Gi) for i = 1, . . . , n;

(b) e = u0un;

(c) u0 ∈ G1 and un ∈ Gn;

(d) for 1 6 i < j 6 n, V (Gi)∩V (Gj) = ∅ if j > i+ 1 and V (Gi)∩V (Gi+1) = {ui}; and

(e) for each i = 1, . . . , n, one of the following assertions holds:

(e1) Gi
∼= K2 with V (Gi) = {ui−1, ui},

(e2) Gi is a cycle, or

(e3) Gi + ui−1ui is a subdivision of a 3-connected graph with no pair of edge-disjoint
cycles whose union contains ui−1ui.

Now we state the results concerning the class of graphs with no pair of vertex-disjoint
cycles containing a specified edge. The next theorem is a shorter form of Theorem 8.

Theorem 6. Let G be a 3-connected graph with at least six vertices and e = u1u2 be an
edge of G. Then G contains no pair of vertex-disjoint cycles whose union contains e if
and only if one of the following assertions hold:

(a) G− {u1, u2} is a cycle and both u and v have degree at least four;

(b) G has a vertex w such that {u1, u2, w} is a vertex-cut of G and each connected
component G− {u1, u2, w} is a tree with a unique vertex of NG(w); or

(c) G is a 3-connected minor using using e of a graph as in one of Figures 2, 3, or 4.

. . .

. . .

e

Figure 2: The first family of graphs relative to item (c) of Theorem 6. Fans are shaded in
grey for better vizualization.

For 4-connected graphs, we have a strengthening of Theorem 6 as follows.
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. . .

. . .

e

Figure 3: The second family of graphs relative to item (c) of Theorem 6. Fans are shaded
in grey for better vizualization.

. . .

. . .

e

Figure 4: The third family of graphs relative to item (c) of Theorem 6. Fans are shaded
in grey for better vizualization.

Theorem 7. Let G be a 4-connected graph with a fixed edge uv. Then, either G contains
a pair of vertex-disjoint cycles containing uv or G− {u, v} is a cycle and both u and v are
adjacent to all other vertices of G.

For a path σ in a graph, we denote by Int(σ) the set of the non-extreme vertices of
σ. For A,B ⊆ V (G), an (A,B)-path of G is a path with an extreme in A, the other
extreme in B and no inner vertex in A ∪B.

Next we define the main structure used to describe the graphs in our fundamental and
last main result. It is a apparently complex structure and it is hard to have an intuition
on it on a first glimpse, but the properties that define this structure raises naturally when
trying to characterize the graphs satisfying item (b) of Lemma 17, which appear when
describing the graphs we are studying.

A graph R with distinct vertices u, x, and y is an (u, x, y)-rope bridge with ropes
ρx and ρy and family of steps S, if the following properties hold:

(RB0) dR(v) > 3 for all v ∈ V (R)− {u, x, y}.

(RB1) ρx and ρy are paths from u to x and y respectively with V (ρy) ∩ V (ρx) = {u}.
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(RB2) S is a family of internally disjoint (V (ρx) − u, V (ρy) − u)-paths (whose members
we call steps). We denote by xα and yα the extremities of the step α in ρx and ρy
respectively. We say that a step α crosses a step β if for some {s, t} = {x, y}, sα
and sβ are distinct and appear in this order in ρs, while tβ and tα are distinct and
appear in this order in ρt.

(RB3) Each step crosses at most one other step.

(RB4) Each vertex in V (R)− V (ρy ∪ ρx) is in some step.

(RB5) Each edge not in a member of S ∪ {ρx, ρy} is incident to u.

(RB6) Let z ∈ {x, y} and v ∈ ρz. Suppose that two steps have extremities in Int(u, ρz, v).
Then, uv /∈ E(R) and each step with extremity in v has no inner vertices.

Theorem 8. Let G be a 3-connected graph with |G| > 6 and e := u1u2 ∈ E(G). There is
no pair of disjoint cycles of G whose union contains e if and only if one of the following
assertions holds.

(a) G has a vertex w such that {u1, u2, w} is a vertex-cut of G and each connected
component G− {u1, u2, w} is a tree with a unique vertex of NG(w).

(b) G−{u1, u2} is a cycle, dG(u1), dG(u2) > 4, G\e is 3-connected, and each 4-vertex-cut
S+ of G containing {u1, u2} has the property that G−S+ has a connected component
with a neighbor of each vertex in {u1, u2}.

(c) G− {u1, u2} is 2-connected and there is a 2-vertex-cut {x, y} of G\e. Moreover, for
each such vertex-cut {x, y} and for each i ∈ {1, 2}:

(c.1) there is an (ui, x, y)-rope bridge Ri such that V (R1) ∩ V (R2) = {x, y}, G =
(R1 ∪R2) + e and R1 and R2 are induced subgraphs of G; and

(c.2) if there is more than one connected component of G − {u1, u2, x, y} meeting
NG(ui), then each such a connected component K is a path with one extreme
adjacent to x and ui, the other adjacent to y and ui, and each inner vertex w
satisfying NG(w)− V (K) = {ui}.

One last remark is that the analogous questions for disjoint cycles containing a specified
vertex is reduced to Dirac’s characterization, as we can see in the next proposition.

Proposition 9. Let G be a 3-connected graph and v ∈ V (G). If G has no pair of
vertex-disjoint cycles using v, then G has no pair of vertex-disjoint cycles.

Proof. Suppose that G and v contradict the proposition. Let C and D be vertex-disjoint
cycles of G. So v /∈ V (C)∪V (D). By Menger’s Theorem, there are three (v, V (C)∪V (D))-
paths in G meeting only in v. We may assume that two of them have an endvertex in C.
Note that the union of C with those two paths contains a cycle containing v and avoiding
D, a contradiction.
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This paper is structured as described next. In section 2 we establish some terminologies
and a few short lemmas. In section 3 we prove more specific properties of rope bridges.
Sections 4, 5, and 6 are respectively dedicated to prove Theorems 8, 6 and 7; 4 and 5; and
3.

2 Terminologies and Preliminaries

In this section we establish most of the terminologies that will be used along the paper
and establish a few preliminary results. The paths we consider are simple, i.e. they
do not repeat vertices, we think of paths (and cycles) both as subgraphs and (cyclic)
sequences of vertices. The number of vertices and edges in a graph G are denoted by |G|
and ‖G‖ respectively. We denote by V (e) the set of the endvertices of an edge e. For
vertices v1, . . . , vn and a subgraph H of a graph G, we say that a cycle of the form
v1, . . . , vk, H, vk+1, . . . , vn, v1 is a cycle that begins in v1, follows through v1, . . . , vk, then,
through a path of H, and, then, returns to v1 through vk+1, . . . , vn. For a path γ, we denote
by Int(γ) the set of its inner vertices, i.e. its non-extreme vertices. For A,B ⊆ V (G),
an (A,B)-path of G is a path with an extreme in A, the other extreme in B and no
inner vertex in A ∪ B. For u, v ∈ V (G), we use the terms “(A, u)-path”, “(u,A)-path”
and “(u, v)-path” to abbreviate the respective terms “(A, {u})-path”, “({u}, A)-path” and
“({u}, {v})-path”. For a subgraph H of G and X ⊆ V (G)− V (H), we define the sum of
H and X, denoted by H + X, as the graph obtained from H by adding the vertices of
X and all edges of G linking the vertices of X with vertices of V (H) ∪X. Equivalently,
H +X is obtained from G[V (H) ∪X] by deleting the edges in E(G[V (H)])− E(H) that
are not incident to vertices of X. We denote by V (e) the set of vertices incident to the
edge e. For any set X and element x, we simplify the notations X ∪ {x} and X − {x} by
X ∪ x and X − x respectively. The opperation of splitting a vertex in a graph, is the
opposite of the contraction operation; pecisely, if when contracting an edge uv in a graph
G, we identify u and v into a single vertex w to form G/uv, then we say that G is obained
from G/uv by spliting w into u and v.

Let e be a fixed edge of a graph G. We say that G is an e-Dirac graph if G contains
no vertex-disjoint cycles using e. In such a case we say that e is a Dirac edge of G. An
elementary observation about the class of e-Dirac graphs is that it is closed under minors
that use e. Our classification is based on the study of a minimum-sized vertex-cut of G
containing V (e). The next lemma establishes that such a vertex-cut exists for e-Dirac
graphs with an unique exception up to isomorphisms. We denote by K1,1

3,3 the graph
obtained from K3,3 by adding two edges with no common incident vertex.

Lemma 10. Let e be an edge in a 3-connected graph G and suppose that V (e) is contained
in no vertex-cut of G. Then G − V (e) is complete. Moreover, if G is e-Dirac, then
G ∼= K1,1

3,3 and dG(u) = dG(v) = 3.

Proof. Suppose that V (e) is in no vertex cut of G. If u, v ∈ V (G)− V (e) and uv /∈ V (G),
then NG(u) ∪ V (e) is a vertex-cut of G separating u from v. Hence G− V (E) is complete.
This proves the first part of the lemma.
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For the second part let us first prove that |G| = 6. Suppose that |G| > 7. Let e = uv.
As G has minimum degree at least three, there are different vertices x ∈ NG(u) and
y ∈ NG(v). As G− V (e) is complete, it follows that u, v, y, x, u is a cycle of G avoiding
G− {u, v, x, y} which is complete with more than two vertices and, therefore, has a cycle.
This implies that G is not e-Dirac. So |G| = 6. If u and v have a common neighbor
w, then G[{u, v, w}] and G− {u, v, w} are disjoint cycles. So u and v have no common
neighbor and now it is clear that G ∼= K1,1

3,3 and dG(u) = dG(v) = 3.

We will usually denote a minimum-sized vertex-cut containing V (e) by S+ and also
denote S := S+ − V (e). We will call the size of this vertex cut the e-width of G and
denote it by w(e,G) provided such a vertex-cut exists. Other; in this case., we will use
the convention that w(e,G) = 4 as G will behave as graphs with w(e,G) = 4.

Lemma 11. Let G be an e-Dirac graph and suppose that S+ is a minimum-sized vertex-cut
of G in respect to containing V (e). Then each vertex of S := S+ − V (e) has a neighbor in
each connected component of G\S+.

Proof. If x ∈ S has no neighbor in a connected component K of G\S+, then S+ − x
separates K from the other connected components of G\S+, a contradiction to the
minimality of |S+|.

Lemma 12. Let G be an e-Dirac graph with more than five vertices. Each vertex of
V (G)− V (e) has at least w(e,G)− 2 neighbors in G− V (e).

Proof. The result is clear if G ∼= K1,1
3,3 . So we may assume that G has a minimum-sized

vertex cut S+ in respect to containing V (e). Define S := S+−V (e). Now |S+| = w(e,G) =
|S|+ 2.

Suppose for a contradiction that u ∈ V (G)− V (E) and u has n 6 |S| − 1 neighbors
in G − V (e). Thus X := NG(u) ∪ V (e) has n + 2 6 |S| + 1 elements. As S+ is a
vertex-cut, then |G| > |S+| + 2 = |S| + 4. Hence V (G) − (X ∪ u) has a vertex v. But
NG(u) ⊆ X. So, X separates u from v and, therefore, X is a vertex-cut containing V (e).
But |X| = n+ 2 6 |S|+ 1 < |S+|, a contradiction to the minimality of S+.

The next lemma has an elementary proof, which we omit.

Lemma 13. Let G be an e-Dirac graph and let D be a cycle of G such that e ∈ E(D) and
H be a subgraph of G such that H − V (D) is connected. Suppose that f is an edge of G
incident to x ∈ V (H)− V (D) but such that f /∈ E(H). Then, each (x, V (H))-path γ of G
beginning with f intersects D. In particular, γ has an endvertex in V (D) if V (D) ⊆ V (H).

Lemma 14. Let H be a 3-connected graph, uv be an edge of H and X be a subset of
V (H) avoiding {u, v} with at least 3 elements. Then, for some x ∈ {u, v}, there are
(X, {u, v})-paths α, β, and γ of G such that V (α) ∩ V (γ) = V (β) ∩ V (γ) = ∅ and
V (α) ∩ V (β) = {x}.
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Proof. By Menger’s Theorem there are (X, {u, v})-paths α1, α2 and α3 such that V (αi) ∩
V (αj) ⊆ {u, v} for 1 6 i < j 6 3. We may assume that V (αi)∩{u, v} = {v} for i = 1, 2, 3
because we are done otherwise. This implies that dH(v) > 4. Consider a graph K with
minimum degree at least 3 obtained from H by splitting v into vertices v1 and v2. It is
well known and easy to check that K is 3-connected. By Menger’s Theorem, K has three
vertex-disjoint (X, {u, v1, v2})-paths. The desired paths are the corresponding paths in
H.

Lemma 15. Let u be a vertex in a vertex-cut X of a graph H. If u has 3 neighbors in
some connected component K of H −X, then H[V (K) ∪ u] has a cycle containing u with
more than 3 vertices.

Proof. Let x, y, z be distinct neighbors of u in K. As K is connected, there is an (x, y)-path
and an (y, z)-path in K. If one of these paths has more than one edge, we are done.
Otherwise, both have one edge and u, x, y, z, u is the cycle we seek.

3 Rope Bridges

In this section we establish more specific properties of rope bridges that will be used on
the proofs.

Lemma 16. Suppose that R is an (u, x, y)-rope bridge with ropes ρx and ρy and that
w ∈ Int(ρy). Let t be the vertex that follows w in ρy, η := t, ρy, y and σ1, . . . , σk be the
steps meeting η. Then, the graph R′ obtained from R − (V (η) ∪ Int(σ1), . . . , Int(σk)) by
suppressing the degree-two vertices in Int(ρx) is an (u, x, w)-rope bridge.

Proof. Define W = V (η∪Int(σ1)∪· · ·∪Int(σk)). For some F ⊆ E(ρx), up to isomorphisms,
we have R′ = (R −W )/F . Consider ρ′x := ρx/F and ρw := ρy − V (ρ) as ropes for R′.
When contracting the edges of F , preserve the labels of the vertices with degree exceeding
two in R −W . Now consider as steps of R′ the steps of R with exception of σ1, . . . , σk
(the steps we chose are indeed in R′ because of our choice of labels). Now, its is easy to
verify that R′ with such ropes and steps inherits each one of the properties (RB0)-(RB6)
from R.

The next lemma makes evident the importance of rope-bridges in our main results.
This lemma will play an important role when proving Theorem 8.

Lemma 17. Let R be a connected graph with vertices u, x, y and paths ρx and ρy from u
to x and y respectively, satisfying V (ρy) ∩ V (ρx) = {u}. Suppose that dR(v) > 3 for all
v ∈ V (R)− {u, x, y}. Then, the following assertions are equivalent:

(a) R is an (u, x, y)-rope bridge with ropes ρx and ρy.

(b) If z ∈ {x, y} and C is a cycle of R− {u, z}, then R has no (u, z)-path disjoint from
C.
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Proof. Conditions (RB0) and (RB1) are given in the hypothesis. So, we have to prove
that (b) is equivalent to (RB2)-(RB6) for some family of steps S, which we will define
ahead. Suppose that (b) holds.

First we prove that each v ∈ V (R)− (V (ρx) ∪ V (ρy)) is in a (V (ρx), V (ρy))-path σv
avoiding u. If v is in a cycle of R− u, then, by (b), this cycle must meet ρx and ρy and
this implies the existence of σv. So, we may assume that v is in no cycle of R − u. As
dR−u(v) > 2, this implies that R− {u, v} has different connected components K1 and K2,
each one with a unique neighbor of v. If ρx − u and ρy − u are each one in a different
component in {K1, K2}, then the existence of σv is straightforward. So, we may assume
that K1 avoids ρx and ρy. Let w1 be the unique neighbor of v in K1. As dR−u(w1) > 2, K1

has more than one vertex. But, for all w ∈ V (K1)−w1, dR−{u,v}(w) > 2. This implies that
K1 has a cycle, which must avoid ρx and ρy, contradicting (b). This proves the existence
of σv.

Now, we define to be the elements of S the paths σv with v ∈ V (R)− V (ρx ∪ ρy) and
the (V (ρx)− u, V (ρy)− y)-paths of length one. We will call steps the members of S. For
each step α, we denote by xα and yα the endvertices of α in ρx and ρy respectively.

To establish (RB2) we shall prove that the steps are internally disjoint. Indeed, suppose
for a contradiction that a step α intersects a step β in an inner vertex v. As α 6= β, we
may assume that xα, α, v 6= xβ, β, v. This implies that, xα, α, v, β, xβ, ρx, xα contains a
cycle avoiding ρy, a contradiction to (b). Thus, the steps are internally disjoint and (RB2)
holds.

Suppose that (RB3) does not hold. So, there is a step α crossing different steps β
and γ. First we assume that xα precedes both xβ and xγ in ρx; in this case the cycle
xβ, ρx, xγ, γ, yγ, ρy, yβ, β, xβ avoids the path u, ρx, xα, α, yα, ρy, y, a contradiction to (b).
Now we assume that xα succeeds xβ and xγ in ρx; as α crosses β and γ, this implies
that yα precedes yβ and yγ in ρy and we can use the same argument as in the preceding
reversing the roles of the paths ρx and ρy to reach a contradiction. So we may assume
without loosing generality that xβ, xα, and xγ appear in this order in ρx. Hence, yγ, yα,
and yα appear in this order in ρy. Now β crosses both α and γ and we may apply the
same argument as in the first case reversing the roles of α and β. Now (RB3) holds.

By construction, each vertex of V (R)− V (ρx ∪ ρy) is in a step and we have (RB4).
To prove (RB5) suppose that f = vw is an edge of R − u not in ρx ∪ ρy. We have

to prove that f is in a step. If {v, w} ⊆ V (ρx), then there is a cycle in ρx + f avoiding
ρy, contradicting (b). So, {v, w} * V (ρx) and, analogously, {v, w} * V (ρy). If {v, w}
meet both ρx and ρy then f is in a step and (RB5) holds; so assume the contrary. Now
{v, w} * V (ρx) ∪ V (ρy) and we may assume that v /∈ V (ρx) ∪ V (ρy). By (RB4), v is in
the interior of a step σ. If w is in σ then either f ∈ E(σ) and (RB5) holds or σ + f has a
cycle avoiding one of ρx or ρy, contradicting (b). So assume that w is not in σ. If w is
in ρx or ρy, say the former, then w, v, σ, xσ, ρx, w is a cycle avoiding ρy, contradicting (b).
Thus, w is in the interior of a step α 6= σ. Now w, v, σ, xσ, ρx, xα, α, w is a cycle avoiding
ρy, a contradiction. So (RB5) holds.

Now, we prove (RB6). Let z ∈ {x, y} and v ∈ ρz and suppose that two steps α and β
have extremities in Int(u, ρz, v). Say z = x. If uv ∈ E(R), then the path u, v, ρx, x avoids
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the cycle C := xα, α, yα, ρy, yβ, β, xβ, ρx, xα, a contradiction. So, uv /∈ E(R). If a step σ
with extremity in v has an inner vertex w, then, as dR(w) > 3, there is an edge incident to
w not in σ, and by (RB5), this edge is uw. Now u,w, σ, v, ρx, x avoids C, a contradiction.
So, (RB6) holds and (b) implies (a).

Suppose that R is a graph for which (a) holds but (b) does not hold. Choose R with
|V (R)| as small as possible. Consider z ∈ {x, y} such that there is a cycle C of R− {u, z}
and a (u, z)-path γ disjoint from C as short as possible. Say that z = x. Let v be the
vertex of γ such that v, γ, x is contained in ρx and v, γ, x is as long as possible. It follows
from (RB2), (RB4) and (RB5) that G− V (ρx) and G− V (ρy) have no cycles. Hence C
meets ρx and ρy and this implies that C meets at least two steps. Those steps have their
extremities in x preceding v in ρx. This implies that v 6= u and, therefore, there is a vertex
w preceding v in γ.

Let us check that w ∈ V (ρy) − u. As there are two steps arriving in Int(u, ρx, v) it
follows by (RB6) that uv /∈ E(G) and w 6= u. It is also a consequence of (RB6) that all
steps arriving in v have no inner vertices, so it suffices to check that vw is in a step to
conclude that w ∈ V (ρy) − u. If this is not the case, then, by (RB5), wv is in ρx and
w contradicts the choice of v such that v, γ, x is contained in ρx and v, γ, x is as long as
possible. So wv is in a step and w ∈ V (ρy)− u.

If w = y, then u, γ, w violates the minimality of γ (for z = y), a contradiction. Let t
be the vertex following w in ρy. If C meets η := t, ρy, y, then, at least two steps contained
in C have endvertices in η, but these steps also have endvertices in Int(u, ρx, v) and,
therefore, cross the step v, w, contradicting (RB3). So, C does not meet η. Let R′ be
obtained from R by deleting V (η) and all inner vertices of steps with endpoints in η and,
then, suppressing the degree-2 vertices. By Lemma 16, R′ is an (u, x, w)-rope bridge with
less vertices than R. But, the path induced by u, γ, w and the cycle induced by C in R′

contradict (b). This is a contradiction to the minimality of |V (R)|.

The rest of this section is dedicated to prove lemmas that will be used to prove Theorem
6.

We say that a step in a rope bridge is short if it has no inner vertices and long
otherwise. A vertex v in a rope ρ of an (u, x, y)-rope bridge is clean if all steps arriving in
v are short and uv /∈ E(G)− E(ρ). Note that (RB6) says that for the rope ρ containing
v, v is clean if two steps arrive in Int(u, ρ, v). The following lemma follows directly from
(RB0)-(RB6)

Lemma 18. Let R be an (u, x, y)-rope bridge with ropes ρx and ρy. Write, for z ∈ {x, y},
z0 := u and ρz := z0, z1, . . . , zn(z).

(a) Suppose that, for m > 2 and t > 1, α1, . . . , αm are the steps arriving in xt. Let
yk(i) := yαi

and suppose k(1) 6 · · · 6 k(m). Let R1 be the graph obtained from R by
splitting xt into vertices v and w in such a way that:

• xt−1v ∈ E(R1),

• either xt 6= x and xt+1w ∈ E(R1) or xt = x and we consider w = x,
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• for some 1 6 l < m, the paths corresponding to α1, . . . , αl arrive in v and the
ones corresponding to αl+1, . . . , αm arrive in w in R1 and

• uw /∈ E(R1) and uv ∈ E(R1) if and only if uxt ∈ E(R1).

Suppose that all steps arriving in xt+1, . . . , xn(x) are short. Then, R1 is an (u, x, y)-
rope bridge if one of the following assertions hold:

(a1) αl+1, . . . , αm are short, or

(a2) t = l = 1.

Moreover, a similar construction with x and y playing swapped roles also results in
an (u, x, y) rope bridge.

(b) Suppose that α is a step with endvertices in xa and yb, xa, . . . , xn(x), yb, . . . , yn(y) are
all clean, α crosses no other step, and no other step has an endvertex in xa or yb. Let
R2 be the graph obtained from R by deleting the edge of α, splitting xa into vertices
v1 and v2 and yb into w1 and w2, then, adding the edges v1w2 and v2w1 as steps in
such a way that:

• xa−1v1, yb−1w1 ∈ E(R2),

• either xa 6= x and xa+1v2 ∈ E(R2) or xa = x and we consider v2 = x and

• either yb 6= y and yb+1w2 ∈ E(R2) or yb = y and we consider w2 = y.

Then R2 is an (u, x, y)-rope bridge.

Lemma 19. If R is an (u, x, y)-rope bridge then, up to the labels of elements other than
u, x and y, R is a minor of a graph as in Figures 5 or 6 (paths that contracts to the ropes
are drawn in thick lines and fans are shaded in gray).

u

x

y

· · ·
· · ·

Figure 5:

u

x

y

· · ·
· · ·

Figure 6:
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Proof. Suppose that R′ is a graph contradicting the lemma. Let R be a graph obtained
from R′ using the operations of Lemma 18 up to the point that they can no longer be
performed. If we prove the lemma for R, it will also hold for R′. If all vertices in the
ropes are clean the result is clear. So, we may assume that there is a non-clean vertex.
Write ρz = u, z1, . . . , zn(z) for each z ∈ {x, y}. Consider the smallest index c(z) such that
all vertices zc(z)+1, . . . , zn(z) are clean. By (RB6), 1 6 c(z) 6 2.

If c(z) < t 6 n(z), there is a unique step arriving in zt since operation (a) of Lemma
18 cannot be performed and (a1) would hold otherwise. In particular, the step arriving in
zt must cross another step since operation (b) of Lemma 18 also cannot be performed.

Also, there is a unique step αz arriving in z1, as we prove next. If c(z) = 2, this follows
from (RB6). If c(z) = 1, this follows from the fact that item (a1) of Lemma 18 does not
hold.

If there are no long steps, x2 and y2 are the unique possibly non-clean vertices and the
result holds. So, we may assume that there is some long step.

If c(x) = 1, then x1 is the unique non-clean vertex of ρx and, as a unique step arriving
at x1, αx is the unique long step. If αy = αx, R is a minor of a graph as in Figure 5,
otherwise it is a minor a graph as in Figure 6.

So, we may assume that c(x) = 2 and, analogously, that c(y) = 2. If αx = αy, then R
is a minor of a graph as in Figure 5. Otherwise, as each step cross at most one other, αx
has an endvertex in y2 and αy has an endvertex in x2. It follows that R is a minor of a
graph as in Figure 6.

4 Proofs of Theorems 6, 7 and 8

In the end of this section we prove Theorems 8, 6, and 7 in this order. Next we establish
some specific lemmas towards this purpose.

Lemma 20. Suppose that G is an e-Dirac graph on more than six vertices and let e := u1u2.
Suppose that w(e,G) > 5 and dG(u1), dG(u2) > 4. Let S+ be a minimum-sized vertex-cut
of G containing V (e) and let G1, . . . , Gκ be the connected components of G− S+.

Suppose that there are i ∈ {1, 2} and k ∈ {1, . . . , κ} such that |NG(ui) ∩ V (Gk)| > 2,
then

(a) κ = 2 and

(b) NG(u3−i) ⊆ V (G3−k) ∪ ui.

Proof. We begin with some definitions before proving items (a) and (b). Let us denote
S := S+ − V (e). As w(e,G) > 5, |S| > 3. We may assume without loss of generality
that k = i = 1. As |NG(u1) ∩ V (G1)| > 2, there is a cycle C in G1 + u1 meeting u1. As
w(e,G) > 5, G− {u1, u2} is 3-connected. Next we will define three (S, V (C)− u1)-paths
α1, α2 and α3 of G− {u1, u2} considering the two possible cases itemized next:

• If |C| = 3, then, by Lemma 14 applied on the edge of C − u1, we conclude that
G−{u1, u2} have (S, V (C)−u1)-paths α1, α2 and α3 such that α3 does not intersect
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α1 nor α2 and that α1 and α2 intersect only in their endvertex in C − u1. For each
l ∈ {1, 2, 3}, let al be the endvertex of αl in C − u1; note that a1 = a2 in this case.

• If |C| > 4, then Menger’s Theorem implies that G−{u1, u2} has three vertex-disjoint
(S, V (C) − u1) paths α1, α2 and α3, arriving in the respective vertices a1, a2 and
a3 of C. In this case, we pick all these labels in such a way that {a1, a3} separates
u1 from a2 in C, or, equivalently, u1, a1, a2, a3, u1 appear in this order if we follow a
specific cyclic ordering of C.

For each l ∈ {1, 2, 3}, we define vl to be the endvertex of αl in S. Next we define the
following paths of C:

• β1 is the (u1, a1)-path of C − a3.

• β21 is the (a1, a2)-path of C − u1. Note that if |C| = 3 then β21 is a trivial path with
only one vertex a1, which is equal to a2 in this case.

• β23 is the (a2, a3)-path of C − u1.

• β3 is the (a3, u1)-path of C − a1.

Note that a cyclic ordering of C is given by the path u1, β1, a1, β21, a2, β23, a3, β3, u1.
Moreover, ‖β1‖, ‖β23‖, ‖β3‖ > 1 and ‖β21‖ > 1 if and only if |C| > 4. Now we prove the
items of the lemma.

Proof of item (a). Suppose for a contradiction that κ > 3.
First we will establish that there is no edge from u2 to G1. Suppose for a contradiction

that such an edge exists. This implies that G1 + {u1, u2} has a cycle D containing e. Now
for different vertices u and v in S, Lemma 11 implies that there are edges from both u
and v to both G2 and G3 and, therefore, (G2 ∪G3) + {u, v} has a cycle. This cycle must
avoid D as (G2 ∪G3) + {u, v} and G1 + {u1, u2} are vertex-disjoint. This contradicts the
fact that G is e-Dirac. So, there is no edge from u2 to G1.

As dG(u2) > 4, we may assume that there is an edge linking u2 and G2 + (S−{v1, v2}),
which is connected and contains v3. By Lemma 11 again, both v1 and v2 have neighbors
in G3. Now, we have a cycle of the form

u1, u2, (G2 + (S − {v1, v2})), v3, α3, a3, β3, u1

containing e and avoiding a cycle of the form

a1, β21, a2, α2, v2, G3, v1, α1, a1,

a contradiction. So, κ = 2 and item (a) holds.

Proof of item (b). Now suppose that (b) fails. We make the choice for a counter-example
to (b) and the structures we defined before proving (a) satisfying the following conditions:
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(C1) The counter-example maximizes |NG(ui) ∩ V (Gk)|. We still may assume without
losing generality that i = k = 1.

(C2) Subject to (C1), we choose C such that |C| is maximized.

(C3) Subject (C1) and (C2), we choose α1, α2, and α3 in such a way that ‖β1‖ is minimized.

Define a subgraph X of G by X := C ∪ α1 ∪ α2 ∪ α3. First we check:

(20.1). If ζ is an (u2, V (X)− u1)-path of G1 + (S ∪ u2), then either

(i) |C| = 3 and ζ has an endvertex in V (α1) ∪ V (α2) or

(ii) |C| > 4 and ζ has an endvertex in V (α2).

Let u2 and z be the endvertices of ζ. First we check that z ∈ A := V (α1)∪V (β21)∪V (α2).
Suppose the contrary. As ζ is an (u2, V (X) − u1)-path and A ⊆ V (X), ζ avoids A. As
z is a vertex of X − A, a connected graph containing u1, there is a cycle D containing
e of the form u1, u2, ζ, z,X − A, u1. By Lemma 11, both v2 and v1 have neighbors in G2.
Hence, G2 + A is a graph with a cycle, which avoids D, contradicting that G is e-Dirac.
So, z ∈ A.

If |C| = 3, ‖β21‖ = 0 and A = V (α1) ∪ V (α2). So, (i) holds.
Now, assume that |C| > 4. As z ∈ A, analogously, z ∈ B := V (α3) ∪ V (β23) ∪ V (α2).

Therefore, z ∈ A ∩B = V (α2). So, (ii) holds. ♦

As (b) fails, u2 has some neighbor in G1 ∪ S. By Lemma 11, each vertex of S has a
neighbor in G1 and, therefore, G1 + (S ∪ u2) is connected. This implies that G1 + (S ∪ u2)
has an (u2, V (X)− u1)-path δ. We put the following condition when choosing δ:

(C4) Subject to (C1), (C2), and (C3), pick δ minimizing |V (δ) ∩ S|.

By (20.1), we may assume that δ has an endvertex d in α2 (α1 and α2 play similar
roles if |C| = 3). A consequence of (C4) is:

(20.2). If u2 has a neighbor in G1 then V (δ) ∩ S = ∅.

For each i = 1, 3 and each (u2, V (X)− u1)-path ζ of G1 + (S ∪ u2) with an endvertex
z in α2, we define the following cycle containing e:

Cζ,i := u1, u2, ζ, z, α2, a2, β2i, ai, βi, u1.

Now we prove:

(20.3). v1 has at least two neighbors in V (G1).

Suppose the contrary. As δ is an (u2, V (X)− u1)-path arriving in d ∈ V (α2), δ avoids
V (X)− d; in particular δ avoids v1 and this implies that Cδ,1 avoids v1.

If v1 has two neighbors in G2 + (S − V (δ)), then by Lemma 11, G2 + (S − (V (δ)∪ v1))
is connected, and, therefore, G2 + (S − V (δ)) has a cycle. But this cycle avoids Cδ,1,
contradicting that G is e-Dirac. Thus v1 has at most one neighbor in G2 + (S − V (δ)).
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By Lemma 12, v1 has at least w(e,G)−2 > 3 neighbors in G−{u1, u2} = (G1∪G2)+S.
As v1 has at most one neighbor in each one of G1 and G2 + (S − V (δ)), it follows that v1
has a neighbor v in S ∩ V (δ).

Now, by (20.2), u2 has no neighbors in G1. As dG(u2) > 4, u2 has a neighbor
w ∈ V (G2) ∪ (S − {v, v1}). By Lemma 11, either w ∈ V (G2) or w has a neighbor in G2.
By Lemma 11 again, v3 has a neighbor in G2. This implies that G2 + {w, v3} is connected.
So, there is a cycle D containg e of the form

u1, u2, G2 + {w, v3}, α3, a3, β3, u1.

Since δ is an (u2, V (X)− u1)-path arriving in d ∈ α2, it follows that v3 /∈ V (δ). Thus
D avoids the cycle

v1, v, δ, d, α2, a2, β21, a1, α1, v1.

Hence G is not e-Dirac, a contradiction. ♦

By (20.3), v1 has a neighbor v′1 ∈ V (G1) such that v1v
′
1 /∈ E(α1). Let σ be a

(v1, V (X) ∩ V (G1))-path of G1 + v1 beginning with v1v
′
1 and let s be the other endvertex

of σ. Next we establish:

(20.4). Let ζ be an (u2, V (X)− u1)-path of G1 + (S ∪ u2) arriving in z ∈ V (α2). Then σ
intersects ζ.

Assume the contrary. Let H0 be the subgraph of G obtained from G2 ∪X by adding the
edges that connects {v1, v2, v3} to G2. Note that H0 − V (Cζ,1) is connected and, as the
only edge of H0 from v1 to G1 is in α2, it follows that the edge v1v

′
1 is not in H0. Now

we apply Lemma 13 for D = Cζ,1, H = H0, x = v1, and f = v1v
′
1 to conclude that σ

intersects Cζ,1.
As σ is a (v1, V (X) ∩ V (G1))-path, it follows that s is the unique common vertex of ζ

and X.
If s ∈ Int(β1), then σ, α2 and α3 contradict the choice of α1, α2 and α3 minimizing

‖β1‖ required in (C3). So, s /∈ Int(β1) and σ avoids Int(β1).
As (H0 − Int(β1)) − V (Cζ,3) is connected, we may apply Lemma 13 for D = Cζ,3,

H = H0 − Int(β1), f = v1v
′
1, x = v1 and γ = σ to conclude that σ intersects Cζ,3.

Now σ intersects Cζ,j for j = 1, 3. As σ avoids ζ, σ meets V (Cζ,j) − V (ζ) ⊆ V (X).
As σ is a (v1, V (X) ∩ V (G1))-path, s ∈ V (Cζ,j)− V (ζ). This implies that s ∈ (V (Cζ,1) ∩
V (Cζ,3))− V (ζ) = V (z, α2, v2)− z.

Now we have the cycle a2, α2, s, σ, v1, α1, a1, β21, a2 avoiding a cycle of the form

u1, u2, ζ, z, α2, v2, G2, v3, α3, a3, β3, u1,

contradicting that G is e-Dirac. ♦

By (20.4) σ intersects δ in a vertex s′, we define the cycle

B := v1, σ, s
′, δ, d, α2, a2, β21a1, α1, v1.

Note that B is a cycle of G1 + v meeting X only in α1 ∪ α2 ∪ β21.
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(20.5). NG(u2) ⊆ V (G1) ∪ {u1, v1}. Moreover, δ is a path of G1 + u2.

Suppose for a contradiction that v is a neighbor of u2 in V (G2) ∪ (S − v1). By Lemma
11, G2 + v is connected and contains a neighbor of v3. Now B avoids a cycle of the form
u1, u2, G2 +{v, v3}, α3, a3, β3, u1, contradicting that G is e-Dirac. This proves the first part
of the claim. As dG(u2) > 4, u2 has a neighbor in G1 and now the second part of the claim
follows from (20.2). ♦

(20.6). |C| > 4 and a1 6= a2.

Suppose that |C| 6 3. By (C2) and by Lemma 15, u1 has at most two neighbors in G1.
Hence, u1 has a neighbor w1 ∈ V (G2) ∪ S.

Let us prove that u2 also has a neighbor in V (G2) ∪ S. Suppose that this is false.
BY (20.5), as dG(u2) > 4, it follows that u2 has three neighbors in G1. Now picking
(i, k) = (2, 1) would contradict the choice of (i, k) = (1, 1) in order to satisfy the minimality
required in condition (C1) since u1 has at most two neighbors in G1; this is a contradiction.
Hence u2 has a neighbor w2 in V (G2) ∪ S.

As |S| > 3, there is v ∈ S − {w1, w2}. By Lemma 11 each one of v, w1, and w2 either
is in G2 or has a neighbor in G2. So G2 + {w1, w2} is connected. If v has two different
neighbors in G1, then a cycle of G1 + v avoids a cycle of the form u1, u2, G2 + {w1, w2}, u1,
a contradiction. So, by Lemma 12, v has two different neighbors in G2 + S, which has
a cycle, therefore; but this cycle avoids Cδ,1 since δ is a path of G1 + u2 by (20.5), a
contradiction to the fact that G is e-Dirac. Hence, |C| > 4. By the definition of a1 and a2,
we have a1 6= a2. This proves the claim. ♦

As G is 3-connected, G − u1 is 2-connected and, by Menger’s Theorem, has two
(u2, V (X) − u1)-paths ζ1 and ζ2 that only meet in u2. Let l ∈ {1, 2}. Let zl be the
endvertex of ζl other than u2.

If σ intersects Int(ζl) in a vertex sl, then, as a1 6= a2 by (20.6) and as Int(ζl) avoids X
because ζl is an (u2, V (X)− u1)-path, it follows, by Lemma 11 that the cycle

u1, u2, ζl, sl, σ, v1, α1, a1, β1, u1

avoids a cycle of the form

a2, α2, v2, G2, v3, α3, a3, β23, a2,

a contradiction. Hence, σ avoids Int(ζl).
If ζl meets G2 + (S − v1), which is connected by Lemma 11, as σ avoids Int(ζ) and

V (B) ⊆ V (X) ∪ V (σ), it follows that B avoids a cycle of the form

u1, u2, ζl, G2 + (S − v1), v3, α3, a3, β3, u1,

a contradiction. So, ζl is a path of G1 + {v1, u2}. This implies that the endvertex zl of ζl
other than u2 is in α2 by (20.1) and (20.6). As σ avoids Int(ζl), by (20.4), σ contains zl.
As σ is an (v1, V (X) ∩ V (G1))-path and zl ∈ V (X), s = zl. Now we have z1 = s = z2, a
contradiction. This proves item (b) and finishes the proof of the lemma.
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Lemma 21. Let G be an u1u2-Dirac graph with dG(u1), dG(u2) > 4. Then w(u1u2, G) 6 4.

Proof. Suppose the contrary. Let e := u1u2, let S+ be a minimum-sized vertex-cut of G
containing V (e) and define S := S+ − V (e). As the lemma fails, |S+| > 5 and |S| > 3. As
G\S+ has more than one connected component, |G| > 7. Let G1, . . . , Gκ be the connected
components of G− S+. Let us prove some assertions next.

(21.1). Each one of u1 and u2 has at most one neighbor in each connected component of
G− S+.

Suppose the contrary. We may assume without loosing generality that u1 have two different
neighbors in G1. By Lemma 20, κ = 2 and NG(u2) ⊆ V (G2). But this implies that the
hypothesis of Lemma 20 also holds for i = k = 2. Hence NG(u1) ⊆ V (G1). For l = 1, 2, as
dG(ul) > 4, by Lemma 15, there is a cycle Cl of Gl +ul containing ul with more than three
vertices. As w(e,G) > 5 and G is 3-connected, it follows that G− {u1, u2} is 3-connected.
So, there are three vertex-disjoint (C1 − u1, C2 − u2)-paths in G− {u1, u2} by Menger’s
Theorem. Together with the path u1, u2, we have four vertex-disjoint (C1, C2)-paths. Now
it is easy to check that there are vertex-disjoint cycles covering these paths. Hence, we
have two disjoint cycles with one of them containing e, a contradiction to the fact that G
is e-Dirac. ♦

(21.2). u1 and u2 have no common neighbor in S.

If w contradicts (21.2), then u1, u2, w, u1 is a cycle containing e that, for some distinct
x, y ∈ S − w, avoids a cycle of the form x,G1, y, G2, x by Lemma 11. Hence G is not
e-Dirac, a contradiction. ♦

(21.3). κ = 2.

Suppose the contrary. First we suppose that u1v ∈ E(G) for some v ∈ S.
If NG(u2) ⊆ S ∪ u1, then, as dG(u2) > 4, by (21.2), it follows that there is a 3-

subset {x1, x2, x3} of NG(u2) − {u1, v}. By Lemma 11, there are cycles of the forms
u1, u2, x1, G1, v, u1 and x2, G2, x3, G3, x2 avoiding each other, a contradiction.

So u2 has neighbors out of S ∪ u1 and we may assume that there is an edge from u2
to G1. By Lemma 11, for distinct x, y ∈ S − v, cycles of the forms u1, u2, G1, v, u1 and
x,G2, y, G3, x avoid each other, a contradiction. Hence, u1 has no neighbor in S and,
analogously, neither has u2.

If both u1 and u2 have neighbors in a common component of G− S+, say G1, then,
by Lemma 11, we have, for distinct x, y ∈ S, cycles of the forms u1, u2, G1, u1 and
x,G2, y, G3, x avoiding each other, a contradiction.

Therefore, u1 and u2 have no neighbors in S nor in a same connected component of
G− S+. By (21.1), κ > 4 and we may assume that ui has a neighbor in Gi for i = 1, 2.
Now, by Lemma 11, for distinct x, y, z ∈ S, cycles of the forms u1, u2, G2, z, G1, u1 and
x,G3, y, G4, x avoid each other, a contradiction. This establishes (21.3). ♦

Let k ∈ {1, 2}. By (21.1) and (21.3), uk has a neighbor vk ∈ S as dG(uk) > 4. Let
x ∈ S − {v1, v2}. If x has two neighbors in G1, then G1 + x has a cycle avoiding a cycle of
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the form u1, u2, v2, G2, v1, u1 by Lemma 11, a contradiction. Hence, By Lemma 11, x has
only one neighbor in G1 and, analogously, only one neighbor in G2. By Lemma 12, x has
a neighbor y ∈ S. If y /∈ {v1, v2}, by Lemma 11, a cycle of the form u1, u2, v2, G1, v1, u1
avoids a cycle of the form x, y,G2, x, a contradiction. So, we may assume that y = v1. As
dG(u1) > 4, there is w ∈ NG(u1)− {u2, v1}. By Lemma 11 and (21.3), for some i ∈ {1, 2},
either w ∈ Gi or w has a neighbor in Gi, and, therefore Gi + w is connected. Now, by
Lemma 11, a cycle of the form x, v1, G3−i, x avoids a cycle of the form u1, u2, v2, (Gi+w), u1,
a contradiction.

Lemma 22. Let G be an e-Dirac graph with w(e,G) = 4 and let S+ be a minimum-sized
vertex-cut containing V (e). Suppose that G − S+ has a connected component J with
neighbors of both endvertices of e. Then G − S+ has a unique connected component K
other than J and, for S := S+ − V (e), G[V (K) ∪ S] is a path with endvertices in S.
Moreover, each vertex of K has a neighbor in V (e).

Proof. Define {x, y} := S. Note that J + V (e) has a cycle C containing e. If G− S+ has
two different connected components K and K ′ differing from J , by Lemma 11, C avoids a
cycle of the form x,K, y,K ′, x, a contradiction. This establishes the uniqueness of K.

Now we prove that P := G[V (K)∪ S] is an (x, y)-path. By Lemma 11, P is connected.
As C avoids P and G is e-Dirac, P is a tree. By Lemma 11, P − x is connected, and,
therefore, x is a leaf of P . Analogously, y is a leaf of P .

Suppose for a contradiction that l is a leaf of P differing from x and y. As dG(l) > 3,
V (e) ⊆ NG(l). As l is a leaf of P , P − l is connected. By Lemma 11 x and y have neighbors
in J . Now the cycle u1, u2, l, u1 avoids a cycle of the form x, P, y, J, x, a contradiction.
Hence x and y are the only leaves of P and P is an (x, y)-path and the first part of the
lemma holds.

For the second part, simply observe that, as each inner vertex of P has degree two in
P , it must have a neighbor in V (e) in order to have degree at least three in G.

The next lemma gives a full characterization of the e-Dirac graphs when w(e,G) = 3.

Lemma 23. Let G be a 3-connected graph. Suppose that e := uv ∈ E(G) is an edge of G
and w ∈ V (G) is such that {u, v, w} is a 3-vertex cut of G. Then the following assertions
are equivalent:

(a) G is e-Dirac.

(b) Each connected component K of G− {u, v, w} is a tree with |NG(w) ∩ V (K)| = 1.

Proof. Suppose (a). As G is 3-connected each vertex of {u, v, w} has at least one neighbor
in each connected component of G − {u, v, w}. Let K and L be different connected
components of this graph. Suppose for a contradiction that either K is not a tree or K
has more than one neighbor of w. In both cases K + w has a cycle, which avoids a cycle
of the form u, L, v, u, a contradiction to (a). This implies (b).

Conversely, if (b) holds, it is easy to check that G−{u, v} is a tree and G is e-Dirac.
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Let G be an u1u2-Dirac graph with w(u1u2, G) = 4. Let X be a 4-vertex-cut of G
containing {u1, u2}. We say that X is two-sided if, for each component K of G − X,
there is {i, j} = {1, 2} such that there is an edge from ui to K but no edge from uj to K;
note that X is two sided if and only if X − {u1, u2} is a vertex cut of G\u1u2. We say
that X is one-sided if, for each component K of G −X, there are edges from both u1
and u2 to K. We say that X is no-sided if X is neither one-sided nor two-sided.

Lemma 24. Let G be an e-Dirac with w(e,G) > 4 and write u1u2 := e. Let S be pair of
vertices in V (G)− V (e). The following conditions are equivalent.

(a) S is a vertex-cut of G\e and

(b) either

(b1) for some {i, j} = {1, 2}, NG(ui) = S ∪ uj; or

(b2) S ∪ V (e) is a two-sided vertex-cut of G.

Proof. Suppose that (a) holds and (b1) fails. As G−S is connected, G\e−S = (G−S)\e
has exactly two connected components K1 and K2 with ui ∈ V (Ki) for i = 1, 2. As (b1)
fails, ui has a neighbor out of S ∪ u3−i, which must be in Ki, implying that Ki − ui is
nonempty. Now each connected component of G− (V (e) ∪ S) = G\e− (V (e) ∪ S) is, for
some i ∈ {1, 2}, a connected component of Ki − ui and, therefore, meets NG(ui) but not
NG(u3−1). Now (b2) holds and (a) implies (b).

If (b1) holds, as w(e,G) > 4, |G| > 6; so there is v ∈ V (G) − NG(ui). Observe now
that S separates ui from v in G\e because NG\e(ui) = S and (a) holds. So (b1) implies
(a).

It is left to prove that (b2) implies (a). Suppose (b2). Let, for i = 1, 2, Ui be the union
of the vertices in components of G − (V (e) ∪ S) with a neighbor of ui. As S ∪ V (e) is
two-sided, U1∩U2 is empty and U2∪U2 = V (G)− (V (e)∪S). Now, for i = 1, 2, G[Ui∪ui]
is the connected component of G\e− S containing ui and (a) holds.

Lemma 25. Suppose that G is an e-Dirac graph on more than five vertices, w(e,G) = 4,
the endvertices of e has degree at least four, and all 4-vertex-cuts of G containing V (e) are
no-sided. Then G− V (e) is a cycle.

Proof. Suppose that the lemma fails. Denote {u1, u2} := V (e). It follows from Lemma
22 that, for each 4-vertex-cut X containing V (e), G − X has exactly two connected
components.

Now, for each 2-subset S of V (G) − V (e) such that S ∪ V (e) is a 4-vertex cut of G,
S∪V (e) is no-sided by hypothesis. The connected component of G− (S∪V (e)) containing
neighbors of both u1 and u2 will be called the S-double component and denoted by D(S),
while the component containing neighbors of only one element of V (e) will be called the
S-single component and denoted by D∗(S). Choose S maximizing |D∗(S)|. Say that u1
has a neighbor in D∗(S) and u2 does not.

Write S = {v1, v2}. By Lemma 22, G[D∗(S)∪ S] is an (v1, v2)-path with all vertices in
the neighborhood of u1. If |D(S)| = 1, the lemma follows from Lemma 11. So, |D(S)| > 2.
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(25.1). For i = 1, 2, vi has at least two neighbors in D(S). Moreover, v1u2, v2u2, v1v2 /∈
E(G) and u2 has at least three neighbors in D(S).

For the first part, first suppose for a contradiction that v1 has at most one neighbor in
D(S). By Lemma 11, v1 has a unique neighbor x in D(S). For A := {x, v2}, A ∪ V (e)
separates D∗(S) + v1 from D(S) − x, which is nonempty as we already verified that
|D(S)| > 2. By Lemma 11, D∗(S) + v1 is connected. By Hypothesis, A ∪ V (e) is no-sided
and, by Lemma 22, G− (A ∪ V (e)) has only two connected components. Hence D(S)− x
is connected. If u2v1 /∈ E(G), then, as u2 has no neighbor in D∗(S), there are no edges
from u2 to D∗(S)+v1 and D∗(A) = D∗(S)+v1; this contradicts the maximality of |D∗(S)|.
Thus u2v1 ∈ E(G). So, both u1 and u2 have neighbors in D∗(S) + v1. This implies that
D(A) = D∗(S)+v1 and D∗(A) = D(S)−x. By Lemma 22, G[D∗(S)∪S] is a (v1, v2)-path.
By Lemma 22 again, but now with A playing the role of S, G[D∗(A) ∪A] = G[D(S) ∪ v2]
is a (v2, x)-path. Recall that x is the unique neighbor of v1 in D(S). Hence G− V (e) is a
cycle and the lemma holds in this case, a contradiction. Therefore, v1 has at least two
neighbors in D(S) and, analogously, so does v2. This proves the first part of (25.1).

Now, suppose for a contradiction that v2u2 ∈ E(G). Since there are two neighbors
of v1 in D(S), D(S) + v1 has a cycle, which, by Lemma 11, must avoid a cycle of the
form u1, u2, v2, D

∗(S), u1, a contradiction. So, v2u2 /∈ E(G). Similarly v1u2 /∈ E(G). As
dG(u2) > 4, u2 has at least 3 neighbors in D(S). We already saw that v1v2 /∈ E(G), since
G[D∗(S) ∪ S] is a (v1, v2)-path. So (25.1) holds. ♦

(25.2). D(S) is a tree.

Suppose for a contradiction that C is a cycle of D(S). By Lemma 24, G\e is 3-connected.
By Menger’s Theorem, there are three pairwise disjoint ({v1, v2, u1}, V (C))-paths α1, α2

and α3 in G\e. As {u1, v1, v2} separates D∗(S) from C in G\e, none of these paths meet
D∗(S).

Say that {v1, a1}, {v2, a2} and {u1, a3} are the respective pairs of endvertices of α1,
α2 and α3. Consider also (u2, V (C))-paths β1 and β2 of the 2-connected graph G − u1
intersecting only in u2 and let b1 and b2 be the respective endvertices of β1 and β2 in C.

If for some j ∈ {1, 2} and i ∈ {1, 2, 3}, βj meets αi out of C, then G has an
(u2, {v1, v2, u1})-path γ avoiding C and, as a consequence, by Lemma 11, C avoids a
cycle of the form u1, u2, γ,D

∗(S) + {v1, v2, u1} containing e, a contradiction. So, αi and
βj do not meet out of C. In particular, u2 /∈ V (αi) for i = 1, 2, 3.

Let δ and ε be the (a1, a2)-paths of C meeting and avoiding a3 respectively. If βj has
an endvertex in Int(δ), then, the cycle u1, u2, βj, bj, δ, a3, α3, u1 avoids a cycle of the form
v1, α1, a1, ε, a2, v2, D

∗(S), v1, a contradiction. So, b1 and b2 are in ε and we may assume
that b1 is closer to a1 than b2 in ε. See an illustration in Figure 7.

We define H as the subgraph of G in Figure 7, more precisely, for edges e1, e2, and e3
linking v1, v2 and u1 to D∗(S) (which exist by Lemma 11):

H := (D∗(S) ∪ C ∪ α1 ∪ α2 ∪ α3 ∪ β1 ∪ β2) + {e1, e2, e3}.

By (25.1), v1 has two different neighbors in D(S) and there is a (v1, V (H))-path ϕ of
D(S) + v1 beginning with an edge out of H. Let x be the other endvertex of ϕ. Next we
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Figure 7: An illustration of the proof of (25.2).

consider, for i = 1, 2, the following cycle:

Di := u1, u2, βi, bi, ε, ai, δ, a3, α3, u1.

Note that H − V (Di) is connected for i = 1, 2. By Lemma 13, x ∈ V (Di) for i = 1, 2.
Hence, x ∈ V (D1) ∩ V (D2) ∩ V (D(S)) = V (α3) − u1. Now, v1, α1, a1, δ, a3, α3, x, ϕ, v1
avoids a cycle of the form u1, u2, β2, ε, a2, α2, v2, D

∗(S), u1, a contradiction. ♦

(25.3). u1 and u2 have no common neighbor as a leaf of D(S).

Suppose that l is a leaf contradicting (25.3). By (25.1), v1 and v2 have neighbors in
D(S) − l, which is connected as l is a leaf. Then, by Lemma 11, a cycle of the form
v1, D(S)− l, v2, D∗(S), v1 avoids the cycle u1, u2, l, u1, a contradiction. ♦

(25.4). Let l be a leaf of D(S). Then, u2l /∈ E(G), u1l ∈ E(G) and there is a unique
index i ∈ {1, 2} such that lvi ∈ E(G).

First let us prove that there is no leaf l of D(S) such that lv1, lv2 ∈ E(G). Suppose that
l is such a leaf. If u1 has a neighbor in V (D(S))− l, then by (25.1), so does u2 and, by
Lemma 11, cycles of the form u1, u2, (D(S)− l), u1 and v1, l, v2, D

∗(S), v1 avoid each other,
a contradiction. Hence l is the unique neighbor of u1 in D(S). As we can repeat the same
argument to any other leaf l′ of D(S) in the neighborhood of both v1 and v2 to conclude
that u1l

′ ∈ E(G) and l′ is the unique neighbor of u1 in D(S), we conclude that:

l is the unique leaf of D(S) incident to both v1 and v2. (1)

By (25.1), |D(S)| > 2, so D(S) has a leaf l′ differing from l. As NG(u1) ∩D(S) = {l}, we
have NG(l′) −D(S) ⊆ {u2, v1, v2} and, as dG(l′) > 3, we may assume that l′v1 ∈ E(G).
By (1), it follows that l′v2 /∈ E(G) and, therefore, l′u2 ∈ E(G). By (25.1), v2 has a
neighbor in D(S) − l. Now, since v1l

′ ∈ E(G), (1) implies that v2 has a neighbor in
D(S)− {l, l′}. So, (D(S)− l′) + v2 has a cycle, which, by Lemma 11, avoids a cycle of the
form u1, u2, l

′, v1, D
∗(S), u1, a contradiction. So, no leaf of D(S) is a common neighbor to

v1 and v2.
By (25.3), this implies that each leaf of D(S) is adjacent to a unique element of {u1, u2}

and a unique element of {v1, v2}. Let us prove that no leaf is adjacent to u2. Suppose
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that some leaf l′′ is adjacent to u2. As l′′ is adjacent to a unique vertex of {v1, v2} we may
assume that l′′v1 ∈ E(G) and l′′v2 /∈ E(G). By (25.1), v2 has at least two neighbors in
D(S)− l′′ and, by Lemma 11, cycles of the form v2, D(S)− l′′, v2 and u1, u2, l

′′, v1, D
∗(S), u1

avoid each other, a contradiction. This implies (25.4). ♦

(25.5). D(S) has exactly two leaves.

Suppose the contrary. Then, D(S) has a vertex w with dD(S)(w) > 3. Furthermore,
D(S)− w has different connected components K1, K2 and K3, each one containing a leaf
of D(S). Let t ∈ {1, 2, 3}. By (25.4), Kt has a neighbor of u1 and a neighbor of some
wt ∈ {v1, v2}. By (25.1), u2 has a neighbor in D(S)−w, so, we may assume that u2 has a
neighbor in K1 and, therefore, K1 + {u1, u2} has a cycle C containing e. By Lemma 11,
D∗(S) + {v1, v2} is connected, and as each one of K2 and K3 has an edge to {v1, v2}, there
are two edges linking D∗(S) + {v1, v2} to (K2 ∪K3) + w, which is also connected. This
implies that there is a cycle in (D∗(S)∪K2 ∪K3) + {w, v1, v2} avoiding C, a contradiction.
♦

Now, we may write D(S) as a path w1, . . . , wn. By (25.4), u1w1, u1wn ∈ E(G). By
(25.1) and (25.4), there are 1 < a < b < n such that wa, wb ∈ NG(u2). Also by (25.1)
and (25.4), there are edges from H := D∗(S) + {v1, v2} to w1, wn and a vertex wd with
1 < d < n. If d < b, then a cycle of the form w1, . . . , wd, H, w1 avoids u1, u2, wb, . . . , wn, u1,
a contradiction. Thus d > b. But, symmetrically, we have d 6 a, a contradiction.

Proof of Theorem 8: Let us first prove that if (a), (b) or (c) holds, then G is e-Dirac.
This is clear if (b) holds. If (a) holds, this follows from Lemma 23. So, assume that (c)
holds. Suppose for a contradiction that C and D are vertex-disjoint cycles of G with
e ∈ E(D). Note that D\e is an (R1, R2)-path and, therefore, D\e meets {x, y}. We may
assume that x ∈ D. Note that {y} is a vertex-cut of G − V (D) separating R1 − V (D)
from R2 − V (D); hence C is entirely contained in one of these graphs. Say that C is
cycle of R1 − V (D). Note that δ := D ∩ V (R1) is an (u1, x)-path avoiding C, which is
a cycle of R1 − {u1, x}. Since G is 3-connected, G\e is 2-connected and, by Menger’s
Theorem has internally disjoint (u1, u2)-paths ζx and ζy. As {x, y} separates u1 from u2
in G\e, we may assume that z ∈ V (ζz) for each z ∈ {x, y}; define ρz := ζz ∩R1. As G is
3-connected, each vertex of R1 − {x, y, u1} has degree at least 3 in G, and as {x, y, u1}
separates R1 − {x, y, u1} from the other vertices of G, the vertices of R1 − {x, y, u1} also
have degree at least 3 in R1. Now δ and C contradict Lemma 17. This proves one of the
implications of the theorem.

For the other implication, suppose that G is e-Dirac and let us prove that one of the
assertions (a), (b) or (c) holds.

First suppose that G has no vertex cut containing V (e). By Lemma 10, G ∼= K1,1
3,3 and

the endvertices of e have degree three. For {x, y} = NG(u1)− u2 we have item (c). So we
may assume that G has a vertex-cut containing V (e).

If w(e,G) = 3, (a) follows from Lemma 23. So, we may assume that w(e,G) > 4. Now
we split the proof into two cases.

Case 1. dG(u1), dG(u2) > 4 and G has no two-sided 4-vertex cuts.
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As dG(u1), dG(u2) > 4, Lemma 21 implies that w(e,G) = 4. If all vertex-cuts containing
V (e) are no-sided, the result follows from Lemma 25. So we may assume that there is
a one-sided 4-vertex-cut S+ := {u1, u2, x, y}. By Lemma 22, G − S+ has exactly two
connected components K1 and K2 and K1 + {x, y} and K2 + {x, y} are (x, y)-paths. This
implies that G − {u1, u2} is a cycle. Finally, by Lemma 24, G\e is 3-connected. This
establishes (b).

Case 2. Either some endvertex of e has degree 3 or G has a two-sided vertex cut S+

containing V (e).
By Lemma 24, G\e has a 2-vertex-cut {x, y} and, as w(e,G) = 4, G − {u1, u2} is

2-connected. Now we have to prove that (c.1) and (c.2) hold.
Define {u1, u2, x, y} := S+. Let Ki be the union of the connected components of

G− S+ intersecting NG(ui). In Case 2 each connected component of G− S+ intersects
only one of the sets NG(u1) or NG(u2), hence V (K1) and V (K2) are disjoint. Define
Ri := G[V (Ki) ∪ {ui, x, y}]. We have to prove that Ri is an (ui, x, y)-rope bridge for
i = 1, 2 to establish (c.1).

Note that {u2, x, y} separates u1 from V (R2) in G. This implies that {x, y} separates
u1 from V (R2) in G − u2. By Menger’s Theorem, there is a pair of (u1, V (R2))-paths
in G − u2. As x, y ∈ V (R2), it follows that x and y are end-vertices of these paths and
these paths lay in R1. Now R1 satisfies the hypothesis for Lemma 17. Suppose for a
contradiction that R1 is not an (ui, x, y)-rope bridge. By Lemma 17, there is z ∈ {x, y}, a
cycle C of R1−{u1, z} and an (u1, z)-path γ of R1 avoiding C. By Lemma 11, C avoids a
cycle of the form u1, γ, z, R2, u2, u1, a contradiction. Hence, R1 is an (u1, x, y)-rope bridge.
Analogously, R2 is an (u2, x, y)-rope bridge and (c.1) holds.

To prove (c.2) we may assume that there are two different connected components H1

and H2 of G− S+ meeting NG(u1).
Let us prove that H1 +x is a tree. Suppose for a contradiction that H1 +x is not a tree.

By Lemma 11, each connected component of G− S+ meet both NG(x) and NG(y). Hence
H1 + x is connected and one of its cycles avoids a cycle of the form u1, u2, R2, y,H1, u1.
This implies that G is not e-Dirac, a contradiction. So H1 + x is a tree. Analogously,
H1 + y, H2 + x, and H2 + y are trees.

As H1 is connected and H1 +x is a tree, this implies that H1 has a unique neighbor of x
and, analogously, a unique neighbor of y. For each leaf l of H1, NG(l)−V (H) ⊆ {x, y, u1},
and therefore l is adjacent to x or y. By the uniqueness of the neighbors of x and y in H1,
this implies that H1 + {x, y} is an (x, y)-path. As each one of its inner vertices has degree
at least three, this implies that the inner vertices are adjacent to u1. this proves (c.2) and
concludes the proof of the theorem. �

Proof of Theorem 6: If items (a) or (b) of Theorem 8 hold, then items (b) or (a) of
Theorem 6 hold respectively. So Assume that item (c) of Theorem 8 holds; for i = 1, 2
consider the (ui, x, y)-rope bridge Ri as in that theorem. By Lemma 19, Ri is a minor
of a graph R′i as in Figure 5 or 6 replacing the label of u by ui. We may pick R′i with
V (R′1) ∩ V (R′2) = {x, y}. Now item (c) of Theorem 6 holds. Indeed, the graph in Figure
2 is obtained by concatenating two mirrored copies of the graph in Figure 5 and adding
the edge e. Idem for Figures 3 and 6. Figure 4 is obtained by the concatenation of a
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mirrored version of Figure 6 on the left side with a copy of Figure 5 on the right side and
the addition of the edge e. �

Proof of Theorem 7: Suppose that the result fails. As G is 3-connected G does not satisfy
items (a) nor (c) of Theorem 8; hence item (b) holds. So G− {u, v} is a cycle. As G is
4-connected, all vertices in G− {u, v} have degree at least 4 and, therefore are adjacent to
u and v. This establishes the theorem. �

5 Proofs of Theorems 4 and 5

In the end of this section we prove Theorems 4 and 5. Next we establish some lemmas and
terminologies. If G contains no edge-disjoint cycles using e, then G is said to be strongly
e-Dirac. It is clear that all e-Dirac graphs are strongly e-Dirac, by the main results the
converse is not true. Although the class of e-Dirac graphs is closed under minors that use
e, the same is not true for the class of strongly e-Dirac graphs; this class is closed under
deletions but not under contractions of other edges than e. For example, when G is the
prism, and e and f are edges not belonging to triangles, then G is strongly e-Dirac, but
G/f is not.

Lemma 26. If G is an e-Dirac graph with |G| > 6 satisfying item (a) of Theorem 8, then
G is not strongly e-Dirac.

Proof. Suppose that G is a graph contradicting the lemma and let e = u1u2. Consider
a 3-vertex-cut S := {u1, u2, w} of G as in item (a) of Theorem 8. If G − S has three
distinct connected components K1, K2 and K3, then G has edge-disjoint cycles of the
form u1, u2, K1, u1 and u2, K2, w,K3, u2, a contradiction. Thus G − S has exactly two
connected components, K and K ′. As |G| > 6, we may assume that |K| > 2. So, there
are two leaves l1 and l2 in K. According to item (a) of Theorem 8, we may suppose that
wl1 /∈ E(G). As dG(l1) > 3, l1u1, l1u2 ∈ E(G). As dG(l2) > 3, l2 has a neighbor in {u1, u2},
say l2u1 ∈ E(G). Consider the (l1, l2)-path γ of K. Now, G has the cycle u1, l1, γ, l2, u1
edge-disjoint from a cycle of the form u1, K

′, u2, u1, a contradiction.

Lemma 27. If G is an e-Dirac graph with |G| > 6, satisfying item (b) of Theorem 8, then
G is not strongly e-Dirac.

Proof. Suppose that G contradicts the lemma. Let e = u1u2, and x1, . . . , xn be a cyclic
ordering of the cycle G−{u1, u2} with u1x1 ∈ E(G). By item (ii) of Theorem 8, dG(u1) > 4
and there are indices 1 < a < b 6 n for which u1xa, u1xb ∈ E(G). Let c be an index for
which u2xc ∈ E(G). If c 6 a, then the cycle u1, x1, x2, . . . , xc, u2, u1 avoids the edges of
u1, xa, xa+1, . . . , xb, u1, a contradiction. So c > a. Let C be the cycle u1, x1, x2, . . . , xa, u1
and let α be the (xb, xc)-path of G − V (C). Now C is edge-disjoint from the cycle
u1, xb, α, xc, u2, u1.

We say that an (u, x, y)-rope bridge is strong if all its steps have length one, no pair
of steps have a common endvertex and u is incident only to the edges that start the ropes.
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Lemma 28. A graph R with a 3-subset {u, x, y} ⊆ V (G) is a strong (u, x, y)-rope bridge
with ropes ρx and ρy if and only if R has internally disjoint paths ρx := v0, . . . , vn and
ρy := w0, . . . , wn, with vn = x, wn = y and v0 = w0 = u and there is a family P of pairwise
disjoint pairs of consecutive elements of {1, . . . , n} such that

(a) V (R) = V (ρx) ∪ V (ρy) and

(b) For F = {vawb, vbwa : {a, b} ∈ P}∪{vcwc : c is in no member of P}∪E(ρx)∪E(ρy),
either E(R) = F of E(R) = F − {xy}.

Proof. It is clear that a graph satisfying the given conditions is a strong (u, x, y)-rope bridge
with ropes ρx and ρy. Let us prove the converse. Let ρx := v0, . . . , vm and ρy := w0, . . . , wn
be the ropes with vm = x, wn = y and v0 = w0 = u. By the definition of strong rope
bridge, no pair of steps shares the same endvertices and u is adjacent only to v1 and w1;
as no pair of steps may have a common endvertex in a strong rope bridge, it follows that
m = n. We call σi the step with extremity in vi. Let P be the family of pairs {i, j} such
that σi crosses σj . By (RB3), the members of P are pairwise disjoint. It also follows from
(RB3) that each pair in P contains consecutive indices. Analogously, for a pair {i, j} ∈ P ,
σi and σj also have endvertices that are neighbors in ρy. Now it is a simple induction on k
to verify that the edge of σk is in F and this implies the lemma.

Lemma 29. Let R be a connected graph with vertices u, x, y and paths ρx and ρy from u
to x and y respectively, satisfying V (ρy) ∩ V (ρx) = {u}. Suppose that dG(v) > 3 for all
v ∈ V (R)− {u, x, y}. Then the following assertions are equivalent:

(a) R is a strong (u, x, y)-rope bridge with ropes ρx and ρy.

(b) If C is a cycle of R, then R has no (u, z)-path edge-disjoint from C for each
z ∈ {x, y},.

Proof. It follows from Lemma 28 that (a) implies (b). Suppose (b). This implies item (b)
of Lemma 17. So, R is a (u, x, y)-rope bridge with ropes ρx and ρy. Let us prove the R is
strong as a rope bridge.

First we check that no step has an inner vertex. If σ is a step with an inner vertex z,
then ρx is edge-disjoint from the cycle u, z, σ, yσ, ρy, u, a contradiction to item (b).

Next we check that at most one step arrive at each vertex. If α and β are steps with a
common end-vertex, say xα = xβ, then ρx is edge-disjoint from the cycle

xβ, β, yβ, ρy, yα, α, xα,

a contradiction again to item (b).
Finally let us check that u is only adjacent to the edges in the end-vertices of ρx and

ρy. Suppose that u is incident to an edge uz not in ρx or ρy. As we already proved
that no steps have inner vertices, it follows from (RB4) that z ∈ V (ρx) ∪ V (ρy). Say
z ∈ V (ρx), now ρy is edge-disjoint from the cycle u, ρx, z, u, a contradiction to (b) again.
This establishes (a) and finishes the proof of the lemma.
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Proof of Theorem 4: First note that all graphs described in the theorem are strongly
e-Dirac. Let us prove the converse. Let G be a strongly e-Dirac graph. By Lemmas 27 and
26, G satisfies item (c) of Theorem 8, so consider distinct vertices x, y ∈ V (G)− {u1, u2}
and, for each i ∈ {1, 2}, an (ui, x, y)-rope bridge Ri such that V (R1) ∩ V (R2) = {x, y}
and G = (R1 ∪R2) + e and R1 and R2 are induced subgraphs of G.

Let us prove that R1 is a strong rope bridge. Suppose the contrary. By Lemma 29, there
is a cycle C of R1 and an (u1, z)-path α of R1 edge-disjoint from C for some z ∈ {x, y}.
We may assume z = x. As R2 is an (u2, x, y)-rope bridge it has a rope ρ with an extreme
in x, which avoids y. This implies that xy /∈ E(ρ). As xy is the unique edge that possibly
is in E(R1) ∩ E(R2), it follows that ρ is edge-disjoint from R2 and, consequently, from C.
Now C is edge-disjoint from the cycle u1, u2, ρ, x, α, u1, a contradiction. So R1 is a strong
rope bridge. Analogously, R2 is also a strong rope bridge.

If xy ∈ E(Ri) for some i ∈ {1, 2}, then xy is in E(G) and as Ri is an induced subgraph
of G, xy ∈ E(R1) ∩ E(R2). Now the theorem follows from Lemma 28. So assume that
xy /∈ E(G).

For each ∈ {x, y} and i ∈ {1, 2} let ρiz be the rope of Ri with extreme in z. If both R1

and R2 have no steps arriving in x, by Lemma 28 on R1 and R2, it follows that dG(x) = 2,
a contradiction. So we may assume that R1 has a step α arriving at x. As xy /∈ E(G), by
Lemma 28, α is of the form x, y′ with y′y ∈ E(ρ1y) and x, y′ crosses a step of the form x′, y
with x′x ∈ E(ρ1x). If R2 has no steps arriving in x, Lemma 28 implies the theorem. So
assume that R2 has a step arriving at x. As argued for R1, R2 has vertices x′′ and y′′ such
that x′′x ∈ E(ρ2x), y

′′y ∈ E(ρ2x) and x, y′′ and y, x′′ are steps crossing each other. Now the
cycle x, y′, y, y′′, x is edge-disjoint from the cycle u1, u2, ρ

2
x, x

′′, y, x′, ρ1x, u1, a contradiction.
�

Proof of Theorem 5: Consider a graph G as described in the theorem. By items (a)-(d),
all cycles not contained in one of the Gi’s are the cycles containing U , which are exactly
the cycles containing e. As each Gi + ui−1ui is ui−1ui-Dirac, it follows that G is e-Dirac.
For the converse, suppose for a contradiction that G is a 2-connected strongly e-Dirac
graph not fitting into the description of the theorem minimizing |G|.

The 3-connected strongly e-Dirac graphs, described in Theorem 4, fit trivially in the
description in this theorem. So G is not 3-connected. As the theorem also holds trivially
if |G| 6 3, then G has a 2-vertex-cut {x, y}. This implies that we may write G as the
union of two graphs H and K such that |H|, |K| > 3, V (H)∩ V (K) = {x, y}, H + xy and
K + xy are 2-connected, e ∈ V (H) and xy /∈ E(K).

Let us check that H + xy is a strongly e-Dirac graph. Suppose for a contradiction
that H + xy has a pair of edge-disjoint cycles D1 and D2 with e ∈ E(D1). Then for some
i ∈ {1, 2}, Di is not a cycle of G. So, xy ∈ E(Di)− E(H). Let D be a cycle of K + xy
containing xy. Now (Di ∪D)\xy and D3−i are disjoint cycles of G whose union contains
e, contradicting the fact that G is strongly e-Dirac. So H + xy is a 2-connected strongly
e-Dirac graph. As |H| < |G|, the theorem holds for H + xy. Consider, for H + xy, graphs
G′1, . . . , G

′
n′ and vertices u′0, . . . , u

′
n′ as in the theorem, with e = u′0u

′
n′ .

As K+xy is 2-connected and xy /∈ E(K), then either K has a cycle or K is an xy-path.
In the later case, G is isomorphic to a subdivision of H and as, the theorem holds for H,
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it is straighforward to verify that it also holds for G, so K has a cycle CK .
If H has a cycle CH containing e, then CH and CK are edge-disjoint cycles of G, a

contradiction. So e is in no cycle of H. As H + xy is 2-connected, this implies that
xy /∈ E(H) and {e, xy} is an edge-cut of H + xy. By the description of H + xy as in the
theorem, {x, y} = {u′i−1, u′i} for some index i ∈ {1, . . . , n′} such that V (G′i) = {u′i−1, u′i}.
We may assume without loss of generality that (x, y) = (u′i−1, u

′
i).

Let us check that K + xy is strongly xy-Dirac. Suppose for a contradiction that
K + xy has a pair of edge-disjoint cycles C1 and C2 with xy ∈ E(C1). Then for a cycle
C of H + xy with e, xy ∈ E(C), ((C ∪ C1)\xy, C2) is a pair of edge-disjoint cycles of G
whose union contains e, a contradiction. So K + xy is a 2-connected strongly xy-Dirac
graph. As |K| < |G|, we may apply the theorem on K + xy in respect to the edge xy.
Consider, for K + xy, graphs G′′1, . . . , G

′′
n′′ and vertices u′′0, . . . , u

′′
n′′ as in the theorem with

(x, y) = (u′′0, u
′′
n′′).

Now the graphs

(G1, . . . , Gn) := (G′1, . . . , G
′
i−1, G

′′
1, . . . , G

′′
n′′ , G′i+1, . . . , G

′
n′)

and vertices
(u0, . . . , un) := (u′0, . . . , u

′
i−1, u

′′
1, . . . , u

′′
n′′−1, u

′
i, . . . , u

′
n′)

give a description of G according to the theorem. �

6 Prism-Minors

In this section we prove Theorem 3. The theorem follows straightforwardly from Lemmas
31, 32 and 34.

If G is a graph with a subgraph H ′ isomorphic to the subdivision of a graph H, we
say that an H-minor of H ′ is an H-topological minor of G. If G has an H-topological
minor using an edge e, then it is clear that G has an H-minor using e. The converse
does not hold in general, but it is easy to verify that it is true provided G and H are
3-connected and H is cubic, which is the case in our concern: when H is the prism and G
is 3-connected. We will use this fact with no mentions.

Let G be a 3-connected graph with an edge e. By Menger’s Theorem, G is not e-Dirac
if and only if G has a prism-minor H using e as an edge in a triangle of H. So, our problem
lies within the class of e-Dirac graphs. As the prism minor are topological minor in our
case, the following lemma is valid.

Lemma 30. A 3-connected e-Dirac graph has a prism-minor using e if and only if it has
vertex-disjoint cycles C and D and three vertex-disjoint (V (C), V (D))-paths α1, α2, and
α3 such that e ∈ E(α3).

The next two lemmas proves Theorem 3 for e-Dirac graphs satisfying items (a) and (b)
of Theorem 8.
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Lemma 31. If G is a 3-connected e-Dirac graph with |G| > 6 satisfying item (b) of
Theorem 8, then G has a prism-minor using e.

Proof. Let e = uv. First suppose that |V (G)−{u, v}| > 5. Denote for each {x, y} = {u, v},
Ax := NG(x) − y. Assume without losing generality that |Av| > |Av|. Choose distinct
vertices a, b ∈ Au with the property that |Av − {a, b}| is maximum. As |Au ∪Av| > 5 and
|Au|, |Av| > 3, this maximality implies that |Av − {a, b}| > 3. Hence v has neighbors c
and d with the property that a, b, c and d appear in this order in some cycle ordering of
the cycle G− {u, v}. This implies that G has a subdivision of the prism containing e and
this implies the lemma if |V (G)− {u, v}| > 5.

As |G| > 6, we may assume now that |V (G) − {u, v}| = 4. As dG(v) > 4, there is a
cycle ordering a, b, c, d of G− {u, v} with the property that b, c, and d are neighbors of v
and d is a neighbor of u. As dG(u) > 4, either b or d is a neighbor of u, we may assume
ub ∈ E(G) as swapping the labels of b and d just inverts the cycle ordering. Now {u, a, b}
and {v, c, d} induce triangles in G. But ad, bc and e = uv are edges of G. So e is in a
prism-minor of G. This finishes the proof.

Lemma 32. If G is a 3-connected e-Dirac graph satisfying item (a) of Theorem 8, then
G has no prism-minor using e.

Proof. For e = uv and some vertex w, A := {u, v, w} is a vertex-cut of G and each
connected component of G − A is a tree with a unique neighbor of w. Suppose for a
contradiction that there is a prism-minor of G using e. By lemma 30, G has vertex disjoint
cycles C and D and vertex-disjoint (V (C), V (D))-paths α1, α2 and α3 with e ∈ E(α3).

As the components of G− A are trees, both C and D meet A. Since w has a unique
neighbor in each connected component of G−A, then it is not possible that V (C)∩A = {w}
or V (D) ∩ A = {w}. So, we may assume that u ∈ V (C) and v ∈ V (D).

For i = 1, 2, let ci and di be the endvertices of αi in C and D respectively. Consider
the cycle:

C ′ := c1, C − u, c2, α2, d2, D − v, d1, α1, c1.

As the connected components of G− A are trees, C ′ meets A. But u, v /∈ V (C ′). Hence
V (C ′)∩A = {w}. So V (C ′)−w is entirely contained in a connected component of G−A,
which, therefore, contains the two neighbors of w in C ′, a contradiction.

Lemma 33. Suppose that G is a 3-connected graph with an edge uv with the property that
G− {u, v} is 2-connected. Suppose that C and D are vertex-disjoint cycles of G such that
{u, v} ⊆ V (C) ∪ V (D). Then G has a prism-minor using uv.

Proof. If both u and v are in one of these cycles, say C, then we may choose C in such a
way that uv ∈ E(C); by applying Menger’s Theorem on G to obtain three vertex-disjoint
(V (C), V (D))-paths, we get a subdivision of the prism in G using e. So, assume that
u ∈ C and v ∈ D. As G−{u, v} is 2-connected, we apply Menger’s Theorem on G−{u, v}
to obtain two (V (C) − u, V (D) − v) vertex disjoint-paths that, together with u, v, are
three vertex-disjoint (V (C), V (D))-paths and G has subdivision of the prism containing
uv in all cases. Therefore, G has a prism-minor and the lemma holds.
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Lemma 34. If G is an e-Dirac graph with |G| > 6 satisfying item (c) of Theorem 8, then
either G has a prism-minor using e or G ∼= Wn, K3,n, K ′3,n, K ′′3,n or K ′′′3,n for some n > 3.

Proof. Suppose that the lemma fails. By Theorem 8 (c), G has vertices x and y and
induced subgraphs R1 and R2 such that V (R1) ∩ V (R2) = {x, y} and, for i = 1, 2, Ri

is an (ui, x, y)-rope bridge with ropes ρix and ρiy. Denote, for i ∈ {1, 2} and z ∈ {x, y},
ρiz = ui, z

i
1, . . . , z

i
m(z,i) with zim(z,i) = z. Next we prove:

(34.1). For some i ∈ {1, 2}, dG(ui) = 3.

Suppose the contrary. This implies that R1 and R2 have steps. As dG(ui) > 4, ui has a
neighbor vi in Ri other than xi1 and yi1.

First assume that R1 has a step α with an inner vertex v, which is incident to u1 by
(RB5). Either v2 is in a rope of R2, say ρ2x if it is the case, or v2 is in an inner step of R2

by (RB4). In both cases there is an (u2, V (ρ2x)− u2) path β internally vertex-disjoint from
ρ2x and avoiding ρ2y. This implies that R2 has a cycle C avoiding ρ2y − u2 and containing u2.
Now C is vertex disjoint from u1, v, α, αy, ρ

1
y, u1 and, by Lemma 33, G has a prism-minor

using e, a contradiction. So R1 has no step with an inner vertex. Analogously R2 also has
no step with an inner vertex.

This implies that, for i = {1, 2}, vi is in a rope ρizi . So we have the cycle Ci :=
ui, ρ

i
zi
, vi, ui. If v1 6= v2, C1 and C2 are vertex-disjoint and, by Lemma 33, G has a prism-

minor using e, a contradiction. So v1 = v2. As V (R1) ∩ V (R2) = {x, y}, we may assume
that v1 = x = v2. As v1 6= x11, and dR1(x

1
1) > 3, R1 has a step γ with extreme in x11. Now

C2 is vertex disjoint from the cycle u1, x
1
1, γ, yγ, ρ

1
y, u1 and, again we have a contradiction

to Lemma 33. ♦

Now we may assume that dG(u2) = 3. In particular this allow us to pick {x, y} =
NG(u2)− u1. As R2 is a trivial rope-bridge, now it makes sense simplifying our notation
by ρ1z := ρz, m(z) := m(z, 1) and xk := x1k for each z ∈ {x, y} and i = 1, . . . ,m(z). Also,
when we talk about ropes and steps, is about the structures of R1. In particular, note
that the unique possible step of R2 is x, y, but it is also a step of R1 in this case, so we do
not need to consider the steps of R2 any longer.

(34.2). If a step has an inner vertex, then its end-vertices are x and y.

Suppose that α is a step with an inner vertex z and extreme other than x or y. By (RB4),
u1z ∈ E(G). Say that αx 6= x. As dG(x) > 3, there is a step β with an extreme in x. Now
u2, x, β, yβ, ρy, y, u2 is a cycle vertex-disjoint from u1, z, α, αx. By Lemma 33, there is a
prism-minor using e, a contradiction. ♦

(34.3). Each step has at most one inner vertex.

Suppose that the claim fails. So R1 has a step α with two adjacent inner vertices a and b.
Suppose first that R1 has a step β other than α. Now the cycle u1, a, b, u1 is vertex-

disjoint from the cycle
u2, x, ρx, xβ, β, yβ, ρy, y, u2.
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Now, by Lemma 33, G has a prism-minor using e, a contradiction. So α is the unique step
of R1.

Now ρx = u1, x and ρy = u1, y because the existence of any other vertex in the ropes
would imply the existence of some step arriving at this vertex. Now note that each vertex
of G is a neighbor of u1 and G − u1 is the cycle u2, x, α, y, x. This implies that G is
isomorphic to a wheel and the lemma holds, a contradiction. ♦

(34.4). There is no step with an inner vertex.

Suppose that the claim fails. We will prove that the lemma is valid proving that G ∼= K3,n,
K ′3,n, K ′′3,n, or K ′′′3,n. For this purpose it suffices to prove that NG(v) = {u1, x, y} for each
v ∈ V (G)− {u1, x, y}. This is true for v = u2 by our assumption after proving (34.1).

First suppose that v is an inner vertex of a step, by (34.2) and (34.3), x, y ∈ NG(v).
As dG(v) > 3, v is incident to at least one edge out of the step that v is in. By (RB5), u1v
is the only such an edge. So, we proved that NG(v) = {u1, x, y} for each inner vertex v of
each step.

Now it is left to prove that the vertices in the ropes either are in {u1, x, y} or have this
set as neighborhood. Suppose that v is a vertex in V (ρx)−{u1, x}. As dG(v) > 3, v is the
extreme of a step β. As the claim fails, there is a step α with an inner vertex. By (34.2) x
and y are the extremes of α. By (RB6) applied on α, β is the unique step with an extreme
in Int(ρx). This implies that ρx = u1, v, x. Moreover, by (RB5), this uniqueness of β
implies that the unique neighbor of v other than u1 and x is its neighbor in β, call it w. We
have to prove that w = y. Since β does not have x and y as extremes, by (34.2), β = v, w
and w ∈ V (ρy). If w 6= y, it follows that the cycles u1, v, w, ρy, u1 and u2, x, α, y, u2
are vertex-disjoint, contradicting Lemma 33. Hence β = v, y. So NG(v) = {u1, x, y}.
Analogously this also holds if v ∈ Int(ρy) and the claim holds. ♦

(34.5). There is a pair of crossing steps.

Suppose that the claim fails. By (34.4) each step has only two vertices. If there are
steps xa, yb and xc, yd with a < c and b < d, then we have the vertex-disjoint cycles
u1, ρx, xa, yb, ρy, u1 and u2, x, ρx, xc, yd, ρy, y, u2, contradicting Lemma 33. Hence there is
no such a pair of steps. This fact together with the absence of crossing steps implies that
either all steps arrive in the same vertex of ρx or all steps arrive in the same vertex of
ρy, we may assume the later case. In particular, this implies that ρy = u1, y. Note that
G− y is the cycle u1, ρx, x, u2, u1. This implies that G is a wheel and the lemma holds, a
contradiction. ♦

(34.6). ρz = u1, z1, z for each z ∈ {x, y}

By (34.5), there are steps xa, yb and xc, yd crossing each other. Say that a < c and d < b.
By (34.4), all steps are of the form xi, yj for some indices i and j.

Let xi be a vertex of ρx, let us prove that i ∈ {a, b}. Assume the contrary.
First suppose that i < a. As dG(xi) > 3, there is a step of the form xi, yj. By (RB3),

xc, yd do not cross xi, yj , so j 6 d. Now we have the vertex-disjoint cycles u1, ρx, xi, yi, ρy, u1
and u2, x, ρx, xa, yb, ρy, y, u2 contradicting Lemma 33. So, i > a.
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Next suppose that i > c. By (RB3), xa, yb do not cross xi, yj, so j > b. Now we
have the vertex-disjoint cycles u1, ρx, xc, yd, ρy, u1 and u2, x, ρx, xi, yj, ρy, y, u2 contradicting
Lemma 33. So, a < i < b.

As b > d, either j > d and xi, yj crosses xc, yd or j < b and xi, yj crosses xa, yb. In both
cases we have a contradiction to (RB3). Hence i ∈ {a, b}. This implies that ρx has only
two vertices other than u1 and ρx = u1, x1, x. Analogously ρy = u1, y1, y and the claim
holds. ♦

Now (34.6), (34.4) and (RB4) imply that V (G) = {u1, u2, x1, y1, x, y}.
Note that (34.4) and (34.5) and (34.6) imply that x1, y and x, y1 are steps. By our

assumption after proving (34.1), NG(u2) = {u1, x, y}. Hence u1x1, u1y1, x1x, y1y ∈ E(G).
This implies that G has a subgraph isomorphic to K3,3 with stable sets A := {u1, x, y} and
B := {u2, x1, y1}. If G[A] or G[B] has no edges, then G ∼= K3,3, K

′
3,3, K

′′
3,3 or K ′′′3,3 and

the lemma holds. So both G[A] and G[B] have edges. As NG(u2) = {u1, x, y}, x1y1 is the
unique edge of G[B]. So two steps arrive in x1 and, by (RB6), u1x /∈ E(G). Analogously,
u1y /∈ E(G). Hence xy is the unique edge of G[A]. Now we have the vertex-disjoint cycles
u1, x1, y1, u1 and u2, x, y, u2, contradicting Lemma 33.

Theorem 3 now follows from Lemmas 31, 32 and 34.

Acknowledgements

We thank the anonymous referees for the critiques and suggestions that lead to make this
paper way better written than the submitted version.

References

[1] T. Asano, T. Nishizeki, and P. Seymour. A note on non-graphic 3-connected matroids.
J.Combin. Theory Ser. B 37:290–293, 1984.

[2] R.E. Bixby. l-matrices and a characterization of binary matroids. Discrete Math.
8:139–145, 1974.

[3] S. Chiba, S. Fujita, K.I. Kawarabayashi, and T. Sakuma. Minimum degree conditions
for vertex-disjoint even cycles in large graphs. Adv. in Appl. Math. 54:105–120, 2014.
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