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Abstract

A perfect coloring (equivalent concepts are equitable partition and partition
design) of a graph G is a function f from the set of vertices onto some finite set (of
colors) such that every node of color i has exactly S(i, j) neighbors of color j, where
S(i, j) are constants, forming the matrix S called quotient. If S is an adjacency
matrix of some simple graph T on the set of colors, then f is called a covering of the
target graph T by the cover graph G. We characterize all coverings by the infinite
square grid, proving that every such coloring is either orbit (that is, corresponds to
the orbit partition under the action of some group of graph automorphisms) or has
twin colors (that is, two colors such that unifying them keeps the coloring perfect).
The case of twin colors is separately classified.

Mathematics Subject Classifications: 05C15, 05B99

1 Introduction

This work is focused on the problem of classification of perfect colorings of the infinite
square grid G(Z2). We classify an important subcase of perfect colorings when there are
no two nodes of the same color at distance one or two from each other. Separately, we
characterize bipartite perfect colorings in the case when two colors can be merged keeping
the perfectness of the coloring.

Perfect colorings (equivalent concepts are equitable partitions, regular partitions, par-
tition designs) of graphs are usually considered as objects of algebraic combinatorics,
see, e.g., [15, 9.3], because of their connection with the eigenspaces of graphs, which
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determine many of their properties. While perfect colorings can be considered for any
graph or even multigraph, the most natural classes of graphs to study from this point
of view are distance-regular graphs [7] and vertex-transitive graphs. Perfect colorings of
vertex-transitive infinite grids can be considered as combinatorial analogs of crystals.

One of motivations of the study of perfect colorings is that they naturally generalize
more special classes of objects with similar regular properties. The list of concepts that
can be defined as perfect colorings with special parameters includes perfect codes, MDS
codes (maximum distance separable codes [22, Ch. 11], not necessarily linear) and MRD
(maximum rank distance) codes [14] with distance 2 or 3, latin squares [12] and latin hy-
percubes [23], Steiner triple and quadruple systems [9], some other types of combinatorial
designs and their subspace analogues [6], Cameron–Liebler line classes [8], intriguing sets
[11] (which are essentially perfect 2-colorings). For some subclasses of classical objects,
their equivalence to perfect colorings with corresponding parameters are less straight-
forward and the study of such connections can be considered as a notable direction in
discrete mathematics. For example, orthogonal arrays [17] and error-correcting codes [22]
whose parameters attain certain bounds are equivalent to perfect colorings with certain
parameters (see e.g. [13], [25], [20, Th.1], [19], [5]), Boolean bent functions are equivalent
to perfect 4-colorings of Grassmann graphs [26, Th. 2], some optimal edge cuts in a regular
graphs correspond to perfect 2-colorings [16, Th. 2.4].

Perfect colorings of G(Z2) were studied in the following preceding papers. The most
important result was proved by Puzynina, who showed in [27] that every such coloring
is either periodic (in two independent directions), or has so-called binary diagonals and
can be made periodic by shifting some of them. In [4, 28, 18], perfect colorings of G(Z2)
up to, respectively, 2, 3, and 9 colors are listed (the last result is computational). In [3],
there is a characterization of completely regular codes in G(Z2), i.e., sets C of vertices
such that the distance coloring with respect to C is perfect.

Similar results on perfect colorings of other notable infinite grids are worth mention-
ing. A partial analogs of the result of [27] was obtained in [29], where it was proved
that for every perfect coloring of the hexagonal or triangular grid (of degree 3 and 6, re-
spectively), there is a periodic (in two directions) perfect coloring with the same quotient
matrix. Completely regular codes in the hexagonal or triangular grids were described in [1]
and [31], [32] respectively. In [24], perfect colorings of the infinite hexagonal grid with
three colors were described. Some results on completely regular codes in n-dimensional
square grid were obtained in [2]. A systematic study of perfect colorings of infinite one-
dimensional periodic graphs (finite-degree periodic graphs on Z: infinite circulant graphs,
infinite multipath graphs, etc.) is carried out by Avgustinovich, Lisitsyna, and Parshina,
see one of the latest works [21] and references there. That study is also related to perfect
colorings of infinite grids because some of those graphs are quotient graphs of one of the
grids mentioned above.

Consider the set Z2 of pairs [x, y] of integers x, y. For convenience, the elements
of Z2 will be called nodes and pictured as squares. Pictures that show a fragment of Z2

with colored nodes are very frequent in this paper and formally can be considered as
mathematical expressions, which can be a part of a sentence. For example, the phrase
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“a coloring F contains the fragment

1 2

2 1 ” means “there are integers x and y
such that F([x, y+ 1]) = F([x+ 3, y]) = 1 and F([x+ 1, y]) = F([x+ 4, y+ 1]) = 2”. In
such pictures the first coordinate x grows in the right (sometimes, right-down) direction,
while the second, y, grows in the upward (sometimes, up-right) direction. If a picture is
implied to show a coloring of the whole grid (or of some of the nodes, for example only
the even nodes), see, e.g., Fig. A, B, . . . , then the whole coloring is reconstructed from
the shown fragment by translations with periods that are obvious from the picture.

A node [x, y] is even (odd) iff the number x+ y is even (odd). We define the distance
between two nodes v̄ = [x, y] and v̄′ = [x′, y′] as d(v̄, v̄′) , |x′ − x| + |y′ − y|. Two nodes
at distance one from each other are adjacent or neighbors. In such a manner, an infinite
graph G(Z2) is defined, called the infinite square grid (sometimes, infinite rectangular
grid). The neighborhood of a node is the set of all (four) its neighbors. We say that two
nodes [x, y] and [x′, y′] are placed diagonally from each other iff |x′ − x| = |y′ − y| = 1.
For a node [x, y] the set {[x+ i, y + i] | i ∈ Z} is called the R-diagonal through [x, y]; the
set {[x+ i, y− i] | i ∈ Z} is called the L-diagonal through [x, y]. By definition, a diagonal
is an R-diagonal (R is for “right”) or an L-diagonal (L is for “left”). Two R-diagonals
(L-diagonals) through neighbor nodes are also called neighbor.

Let G = (V (G), E(G)) be a simple graph; let Σ = (1 , 2 , . . . , n ) be some fixed col-
lection of distinct elements, which will be referred to as colors ; and let S = (Sij)ij be an
n× n nonnegative integer matrix. A surjective function F : V (G)→ Σ is called a perfect
coloring (of G) with (quotient) matrix S iff for every i and j from 1 to n every node
v ∈ V (G) such that F(v) = i has exactly Sij neighbors colored with j .

The convenient term semicoloring, suggested in [21], refers to any function from a part
of a bipartite graph to a finite set of colors.

Two colorings F ,G : Z2 → Σ (or semicolorings) are called equivalent, F ∼ G, iff
F(·) ≡ πG(τ(·)) where π is a permutation of the colors, τ is an adjacency-preserving
transformation of Z2 (an automorphism of G(Z2)), i.e., translation, rotation, reflection,
or a sliding symmetry (the composition of a reflection and a translation).

Next, we define three important classes of perfect colorings: bipartite perfect colorings,
coverings, and perfect colorings with twin colors.

A perfect coloring is called bipartite iff the set of nodes of each color consists of nodes of
the same parity (even or odd). Every perfect coloring F (of G(Z2) or any other bipartite
graph) can be treated as a bipartite perfect coloring: if F is not bipartite itself, then each
color can be split into the even subcolor and the odd subcolor, resulting in a bipartite
perfect coloring F . Note that F ∼ G neither means that F and G are equivalent, nor that
they have the same quotient matrix (up to permutation of colors). On the other hand,
some bipartite perfect colorings do not correspond to any non-bipartite ones.

If the quotient matrix of a perfect coloring F of G is a {0, 1}-matrix with zero diagonal,
then it is the adjacency matrix of some graph T on the set of colors. In this case, F is
known as a covering of the target graph T by the cover graph G.

Assume that we have a perfect coloring with an n-by-n quotient matrix S. Two
different colors a and b are called twin (twin colors or just twins) iff identifying them
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results in a perfect coloring F ′ with n − 1 colors. Equivalently, two different colors a
and b are twin if and only if Saj = Sbj for all j 6= a, b (however, Sja and Sjb might be
distinct, and the “densities” of two twin colors in a perfect coloring can be different).

Remark. In preceding papers, twin colors were called “equivalent”. However, equivalence
is a general mathematical concept: any reflexive, symmetric, and transitive relation is an
equivalence. In this paper, a specific term “twin” is suggested for that reason.

In this paper, we (1) characterize coverings by G(Z2), and (2) classify all bipartite
perfect colorings of G(Z2) with twin colors.

In the next section, some additional concepts and two main theorems are introduced.
Sections 3 and 4 contain proofs of the theorems. In Section 5, we briefly discuss the
existence of non-orbit perfect colorings. Appendix A completes Theorem 1 by describing
the subgroups of the automorphism group of the infinite square grid whose orbit coloring
is a covering of a simple graph. Appendix B contains a catalogue of perfect colorings
that, together with Theorem 2, form the classification of perfect colorings of the infinite
square grid with twin colors.

2 Main results

Assume that some perfect coloring F with n×n matrix S = (Sij)ij is fixed. Let a and b
be some colors, C some set of colors. We say that v̄ ∈ Z2 is an a -node (or v̄ is colored
with a , or v̄ has color a ) iff F(v̄) = a . We say that v̄ ∈ Z2 is a C-node iff F(v̄) ∈ C.

A diagonal (R-diagonal, L-diaginal) is called an a b -diagonal (a b -R-diagonal or a b -
L-diaginal, depending on its direction) iff it consists of {a, b}-nodes and, moreover, the
colors alternate on the diagonal, i.e., all its nodes of type [2i, ·] (i ∈ Z) are a -nodes and
all its nodes of type [2i+ 1, ·] (i ∈ Z) are b -nodes, or vice versa. An a b -diagonal is called
a binary diagonal iff a 6= b . The following simple fact is crucial for the rest of the article,
and it will be used without explicit references.

Claim ([27, Proposition 6]). If there is an a b -diagonal with a 6= b , then a and b are
twins.

Proof. Assume without loss of generality that

F([0, 0]) = F([2, 2]) = F([4, 4]) = a and F([1, 1]) = F([3, 3]) = F([5, 5]) = b .

Denote by Na and Nb the union of the neighborhoods of [0, 0], [2, 2], [4, 4] and [1, 1], [3, 3],
[5, 5], respectively. For a color i , the number of i -nodes in Na is 3Sai, and the number of
i -nodes in Nb is 3Sbi. Since |Na\Nb| = |Nb\Na| = 2, the difference between 3Sai and 3Sbi

cannot be larger than 2. Hence, Sai = Sbi.

By shifting a binary a b -diagonal we mean swapping the colors a and b on that
diagonal. Such operation does not change the perfectness of the coloring of the whole grid.
Two colorings or semicolorings are shifting equivalent iff one of them is equivalent to a
coloring (respectively, semicoloring) obtained from the other by shifting binary diagonals.
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A coloring of a graph G is called orbit, if there is a subgroup Φ of the automorphism
group Aut(G) of G such that

• any two nodes x̄ and ȳ have the same color if and only if x̄ = ϕ(ȳ) for some ϕ in Φ
(i.e., x̄ and ȳ belong to the same orbit under the action of Φ).

It is straightforward and well known that every orbit coloring is a perfect coloring.
We are now ready to state the main results of the paper.

Theorem 1. Every perfect coloring of G(Z2) with quotient {0, 1}-matrix with zero diag-
onal (that is, the coloring is a covering of a simple graph) is either orbit or has a binary
diagonal (and, hence, twin colors).

Two corollaries (5 and 6) of the next theorem, of independent interest, complete
Theorem 1 by characterizing coverings with binary diagonals.

Theorem 2. Every bipartite perfect coloring of G(Z2) with at least one pair of twin
colors is either shifting equivalent to one of the colorings listed in Fig. A–W with the
corresponding matrices (see Appendix B) or can be obtained from such a coloring by
merging groups of (two, three, or four) mutually twin colors.

A special case in the claim of Theorem 2 should be highlighted because of the risk
to be forgotten. The only case that satisfies the hypothesis of the theorem with twin
colors of different parity is the chessboard coloring, obtained from the coloring in Fig. I
by merging two groups (even and odd) from four mutually twin colors.

Remark 3. Each of the infinite families of colorings shown in Fig. K–W has one or two
small-parameter cases that are included in other, finite, families. In each of such cases,
the coloring has binary diagonals of both directions, in contrast to the other colorings of
the corresponding infinite family. For example the coloring in Fig. M(n = 6) is equivalent
to a coloring in Fig. I with shifted L-diagonals and some merged colors. That coloring
has an additional pair (3 , 4) of twin colors and binary 3 4-L-diagonals, which are not
illustrated in the general diagram (Fig. M). By this reason, one can find natural to exclude
such special cases from the infinite series (which keeps Theorem 2 complete). To make
this easy, such special cases are explicitly indicated by the reference to a finite family in
the parenthesis after the corresponding number of the colors, see the description to each
of Fig. K–W.

Remark 4. The coloring shown in Fig. A has intersecting binary diagonals, which can-
not be shifted independently. Actually, any shifting R-diagonals, except shifting all R-
diagonals (which has the same effect as renaming colors 4 ↔ 5) results in a coloring
without binary L-diagonals. Since the original coloring has an automorphism (horizon-
tal reflection plus swapping colors 5 ↔ 6) that changes the roles of R-diagonals and
L-diagonals, it is safe to say that we can use only R-diagonal shifts and ordinary equiv-
alence transformations (automorphisms of the grid and renaming colors) to exhaust the
shifting equivalence class of the coloring shown in Fig. A.
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A similar situation is with Fig. I. However, in that case there are L-diagonals and R-
diagonals of both parities. Shifting some (but not all) 1 2-diagonals or some (but not all)
3 4-diagonals breaks all L-diagonals of the same parity, but does not affect the diagonals
of the opposite parity. Similar “nontrivial” shifting 1 3- and 2 4-diagonals breaks all
R-diagonals of the same parity. Similarly, for 5 7- and 6 8-diagonals and for 5 6- and
7 8-diagonals. It is not difficult to conclude that the shifting equivalence class is the union
of two families. One family is obtained by shifting only diagonals of the same direction
(say, R-diagonals); the second family is obtained by shifting only even diagonal of the same
direction (say, R-diagonals) and odd diagonals of the opposite direction (respectively, L-
diagonals). The two families intersect in the colorings equivalent to the one shown in
Fig. I.

If Fig. J, both binary R-diagonals and binary L-diagonals can be found, but they do
not intersect and can be shifted independently.

Corollary 5. Every bipartite perfect colorings of G(Z2) with quotient {0, 1}-matrix and
twin colors is shifting equivalent to a coloring shown in Fig. I, Fig. K, or Fig. T. All such
colorings have binary diagonals.

Any non-bipartite perfect coloring F of G(Z2) with equal rows in the quotient matrix
corresponds to a bipartite perfect coloring F (with the number of colors twice larger than
in F) with twin colors. Using this fact and Theorem 2, we can derive the following.

Corollary 6. Every non-bipartite perfect colorings of G(Z2) whose quotient matrix is
a {0, 1}-matrix with zero diagonal and two equal rows is shown in Fig. K, where n =
6, 10, 14, . . . in the non-bipartite case. All such colorings have binary diagonals.

Corollary 7. There are two quotient matrices admitting perfect colorings of G(Z2) both
with binary diagonals and without binary diagonals. These matrices are shown in Fig. C
(Fig. J) and Fig. E (Fig. W, n = 10).

3 Proof of Theorem 2: cases and subcases

Let us consider a bipartite perfect coloring F with twin colors 1 and 2. We start the
proof with a very simple observation.

Claim 8. Either F is the chessboard coloring (i.e., obtained from the coloring in Fig. I by
merging the groups {1 , 2 , 3 , 4} and {5 , 6 , 7 , 8} of twin colors) or all the {1 , 2}-nodes
are of the same parity.

Proof. Since F is bipartite, there are no two neighbor nodes of the same color. Therefore,
either 1 -nodes have only 2-neighbors and 2-nodes have only 1-neighbors (hence the
coloring is chessboard), or both 1-nodes and 2-nodes have neighbors of some third color,
say 3 . If the 3-nodes are even then the {1 , 2}-nodes are odd and vice versa.

the electronic journal of combinatorics 30(2) (2023), #P2.4 6



Since the chessboard coloring satisfies the conclusion of Theorem 2, we further assume
w.l.o.g. that the {1 , 2}-nodes are even. We will say that a node is of type k:l iff it is
adjacent to exactly k 1-nodes and l 2-nodes. Clearly, nodes of the same color are of the
same type. Moreover, nodes of the same color are adjacent to the same number of nodes
of some fixed type.

From the definition of twin colors we directly get the following fact. A node is adjacent
to a 1-node if and only if it is adjacent to a 2-node. To put it differently, there are no
nodes of type 0:k or k:0, where k > 0. On the other hand, the number of 1 -nodes and
the number of 2 -nodes that are adjacent to a given node can be different.

We divide the situation into the following cases.

1. There exists a node of type 3:1 or 1:3. W.l.o.g., we can consider only the first case.

2. There exists a node of type 2:1 or 1:2. W.l.o.g., we can consider only the first case.

3. All the neighbors of a {1 , 2}-node are of type 2:2.

4. Every {1 , 2}-node has two neighbors of type 2:2 and two neighbors of type 1:1.

5. Every {1 , 2}-node has one neighbor of type 2:2 and three neighbors of type 1:1.

6. All the neighbors of a {1 , 2}-node are of type 1:1.

It is easy to see that if a node has three neighbors of type 2:2 then the fourth neighbor
can not be of type 1:1. So, the completeness of the case list is obvious. Before starting to
prove Theorem 2 for each of the cases, we introduce one convenient tool related with the
number of paths of special color types in a perfect coloring.

Assume that F is a perfect coloring of G(Z2) (or any finite-degree graph G) with
quotient n × n matrix S = (Sij)i,j∈{1,...,n}. For a node v̄0 of color b , a positive integer
k, and colors b1 , . . . , bk denote by dv̄0(b , b1 , . . . , bk ) the number of k-tuples (v̄1, . . . , v̄k)
such that v̄i−1 and v̄i are adjacent in G and F(v̄i) = bi for every i ∈ {1, . . . , k}; denote
by dkv̄0(b , bk ) the number of k-tuples (v̄1, . . . , v̄k) such that v̄i−1 and v̄i are adjacent in G
for every i ∈ {1, . . . , k} and F(v̄k) = bk . The following straightforward statement is well
known.

Lemma 9. The value dkv̄(b , bk ) does not depend on the choice of the b -node v̄.

Proof. It is clear that

dkv̄(b , bk ) =
n∑

b1=1

· · ·
n∑

bk−1=1

dv̄(b , b1 , . . . , bk ).

By induction, dv̄(b , b1 , . . . , bk ) equals Sb,b1Sb1,b2 · · ·Sbk−1,bk and does not depend on the
choice of the b -node v̄. (The induction base and step are straightforward from the defi-
nition of perfect coloring.)
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As dkv̄(b , bk ) does not depend on v̄, we will use the notation dk(b , bk ) instead.
We will also need the following fact.

Lemma 10 ([28, Claim 9]). There are positive rational numbers P1, . . . , Pn (the “den-
sities” of the corresponding colors) such that

∑n
i=1 Pi = 1 and SijPi = SjiPj for all

i, j ∈ {1, . . . , n}.

Remark 11. The density Pi equals the limit of the portion of the i -nodes in a square of
growing size.

I There exists a node of type 3:1

We assume that a node of type 3:1 has color 3 .

Claim 12. Every node is of type 0:0 or of type 3:1.

Proof. By Lemma 10, for any color i we have

S1,3S3,2S2,iSi,1 = S3,1S2,3Si,2S1,i.

Since S1,3 = S2,3, S2,i = S1,i, S3,1 = 3, and S3,2 = 1, we get Si,1 = 3Si,2. Hence, either
Si,1 = Si,2 = 0, or Si,1 = 3 and Si,2 = 1.

It is easy to see that all even nodes are {1 , 2}-nodes. Note that there are only 1-nodes
at the distance 2 from any 2-node. Consider two possibilities.

I.a) 2 -nodes are placed periodically with periods [2, 2] and [2,−2].

1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 1

2 1 2 1 2 1 2 1

1 1 1 1 1 1 1 1

1 2 1 2 1 2 1 2

1 1 1 1 1 1 1 1

2 1 2 1 2 1 2 1

1 1 1 1 1 1 1 1

I.b) In some 2-node v̄ one of the periods is broken, i.e., F(v̄ + d̄) = 1, where

I.b’) d̄ = [2, 2], or d̄ = [−2,−2], or

I.b”) d̄ = [2,−2], or d̄ = [−2, 2].

Without loss of generality, we assume v̄ = [0, 0] and d̄ = [2, 2].
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1 1

1 1

1 2 1

1 1

1

=⇒

1 1

1 2 1

1 1 1

1 1 2 1

1 2 1 1

1 1 1

1

=⇒

·· ·
1 1· · · 1 2 1

2 1 1 1

1 1 2 1

1 2 1 1

1 1 1
· · ·

1 2 · · ·

From Claim 12 we get that [1, 3] and [3, 1] are 2-nodes; then, [−2, 2] and [2,−2] are 2-
nodes, and, by induction, k[−2, 2] and k[−2, 2] + [3, 1] are 2-nodes for any integer k.
Further, if [4, 4] is a 2-node, then in a similar manner we have that k[−2, 2] + [4, 4] is
a 2-node for any k; otherwise the nodes k[−2, 2] + [4, 4] + [−1, 1] are 2-nodes. In both
cases we have one more 1 2-L-diagonal. In a similar manner, by induction, we get that
for each integer n either the nodes k[−2, 2]+n[2, 2] or the nodes k[−2, 2]+[−1, 1]+n[2, 2]
are 2-nodes. So, we can conclude the following.

Proposition 13. A coloring corresponding to subcase I.b can be obtained from a coloring
corresponding to subcase I.a by shifting 1 2 -L-diagonals or by shifting 1 2 -R-diagonals
(but not both).

So, the colors of the even nodes are described. Every odd node is adjacent to a 1-
node, and hence, the quotient matrix S is completely determined by the colors in the
neighborhood of a 1-node. Up to renaming the colors, S is one of the following:

 0 0 4
0 0 4
3 1 0

 ,


0 0 3 1
0 0 3 1
3 1 0 0
3 1 0 0

 ,


0 0 2 2
0 0 2 2
3 1 0 0
3 1 0 0

 ,


0 0 2 1 1
0 0 2 1 1
3 1 0 0 0
3 1 0 0 0
3 1 0 0 0

 ,


0 0 1 1 1 1
0 0 1 1 1 1
3 1 0 0 0 0
3 1 0 0 0 0
3 1 0 0 0 0
3 1 0 0 0 0

 .

If S is the first matrix, then the odd nodes are colored with one color. If the second
one, then we can change the roles of the even and odd nodes to see that the colors of the
odd nodes are also described by Proposition 13 (with colors 3 and 4 instead of 1 and
2). For the last three matrices, we also see that every two odd colors are twin, but after
changing the roles of the even and odd nodes we get one of cases that will be considered
later, namely, in cases II, III, and VI. To help structuring the proof, we will state the
following lemma as the summary of these cases. The corollary of the lemma finalizes the
proof of Theorem 2 for cases I, II, III, and VI.a.

Lemma 14. Assume that every two nodes of the same parity are colored with the same
or twin colors. Then the coloring of the even (similarly, odd) nodes is equivalent to a
semicoloring obtained from the following semicoloring H by shifting R-diagonals and/or
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merging colors (two, three, or all four colors, or two groups of two colors):

3 2 3 2 3 2

1 4 1 4 1 4

2 3 2 3 2 3

4 1 4 1 4 1

3 2 3 2 3 2

1 4 1 4 1 4

2 3 2 3 2 3

4 1 4 1 4 1

�←→

3 4 3 4 3 4 3 4 3

1 2 1 2 1 2 1 2 1

3 4 3 4 3 4 3 4 3

1 2 1 2 1 2 1 2 1

3 4 3 4 3 4 3 4 3

1 2 1 2 1 2 1 2 1

Proof. If there is only one even color, then the claim is trivial. If there are at least two
even colors, 1 and 2 , then they are twin and all odd nodes are of the same type by the
hypothesis of the lemma. Depending on the type, 3:1, 2:1, 2:2, or 1:1, the situation falls
into the scope of cases I, II, III, VI, respectively.

The claim of the lemma is proved in Proposition 13 for case I, Proposition 19(a)
for case II, Proposition 20 for case III, Propositions 26(ii,iii) and 32(a) for subcases VI.a
and VI.d of case VI, while in the other subcases, the claim of Theorem 2 is proved directly,
which also means that either the claim of the lemma is true (Fig. I) or its hypothesis is
not satisfied (Fig. A–H, J–W).

Applying Lemma 14 to both even and odd nodes, we get

Corollary 15. Under the hypothesis of Lemma 14, the conclusion of Theorem 2 holds
with the corresponding Fig. I.

II There exists a node of type 2:1

Similarly to Claim 12, we have

Claim 16. Every node has one of the types 0:0, 2:1.

It is not difficult to see that the type 0:0 nodes are the even nodes and all the odd
nodes have the type 2:1 (indeed, if, seeking a contradiction, we assume that an odd node ū
is of type 0:0, then ū + [±1,±1] are also type 0:0; by induction, all odd nodes are type
0:0). Consider a new coloring G with

• G(v̄) = F(v̄) if F(v̄) ∈ {1 , 2},

• G(v̄) = 4 if v̄ is odd,

• G(v̄) = 3 otherwise.
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By the definition, G is a bipartite perfect coloring with the matrix
0 0 0 4
0 0 0 4
0 0 0 4
2 1 1 0

 .

Joining together twin colors 1 and 3 (or 1 and 2), we get the situation of case I. Hence,
the location of the 2-nodes (respectively, 3 -nodes) is described by subcases I.a and I.b.

Claim 17. The coloring G has a period (2, 2) or (2,−2).

Proof. If the set of 2 -nodes corresponds to subcases I.a, then it has both periods (2, 2)
and (2,−2); if it corresponds to subcases I.b’, then it has period (2,−2); if it corresponds
to subcases I.b”, then it has period (2, 2). The same can be stated for the set of 3 -nodes.
It remains to show that subcases I.b’ and I.b” cannot happen simultaneously for the
2-nodes and the 3-nodes (or, similarly, for the 3-nodes and the 2-nodes) respectively.
Seeking a contradiction, assume that the 2-nodes correspond to subcases I.b’ and the
3-nodes correspond to subcases I.b”. This means that for some even v̄ = [x, y],

G([x+ 2i, y − 2i]) = G([x+ 3 + 2i, y + 1− 2i]) = 2 , for all i ∈ Z, (1)

and, similarly, for some even [x′, y′],

G([x′ + 2j, y′ + 2j]) = G([x′ + 3 + 2j, y′ − 1 + 2j]) = 3 , for all j ∈ Z. (2)

Now, at least one of the four pairs
(

y−x−y′+x′

4
, y+x−y′−x′

4

)
,
(

y−x−y′+x′−2
4

, y+x−y′−x′+4
4

)
,(

y−x−y′+x′+4
4

, y+x−y′−x′−2
4

)
,
(

y−x−y′+x′+2
4

, y+x−y′−x′+2
4

)
is integer; denote it (i0, j0). Sub-

stituting i = i0 in (1) and j = j0 in (2), we find that the same node has color 2 and 3
(for example, if (i, j) is equal to the first pair, then [x + 2i, y − 2i] = [x′ + 2j, y′ + 2j]).
The contradiction obtained proves the claim.

See Proposition 13 for the placement of nodes with colors 2 and 3. Moreover, if we
assume that G has period [2,−2], then we find that up to equivalence, the coloring G can
be obtained by shifting L-diagonals from one of the following two colorings:

3 4 2 4 3 4 2 4 3 4 2 4 1 4 2 4 1 4 2 4 1 4 2 4

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 3 4 1 4 3 4 1 4 3

2 4 3 4 2 4 3 4 2 4 3 4 2 4 1 4 2 4 1 4 2 4 1 4

4 1 4 1 4 1 4 1 4 1 4 1 4 3 4 1 4 3 4 1 4 3 4 1

3 4 2 4 3 4 2 4 3 4 2 4 1 4 2 4 1 4 2 4 1 4 2 4

4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 3 4 1 4 3 4 1 4 3

2 4 3 4 2 4 3 4 2 4 3 4 2 4 1 4 2 4 1 4 2 4 1 4

4 1 4 1 4 1 4 1 4 1 4 1 4 3 4 1 4 3 4 1 4 3 4 1
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Claim 18. One of the following assertions is true.
a) The color 3 of the coloring G corresponds to one color of the coloring F .
b) The color 3 of the coloring G corresponds to two colors of the coloring F and the
corresponding nodes are placed periodically with periods [0, 4] and [4, 0].

Proof. 1. Assume the placement of 3 -nodes corresponds to case I.b. Then the coloring G
contains (up to reflection) the fragment

· · ·
a· · · 3

3 b a

a 3

3 b a

a
· · ·

3 · · ·

1.1. Consider the values d2(a, x ) for the coloring F and each color x that corresponds
to the color 3 of G. Using Lemma 9 we get that there are not more than two such colors
(say, 3 and 3′ ), moreover, their nodes alternate with period [4,−4].

· · ·
a· · · 3

3′ b a

a 3′

3 b a

a
· · ·

3′ · · ·

1.2. Considering the values d2(b , 3′ ) for two b -nodes we get that 3 and 3′ are the
same color.

2. Assume the placement of 3 -nodes corresponds to the case I.a. Then by arguments
similar to p. 1.1 we get that one of the statements a), b) holds.

Now we can conclude (with a similar argument than the one given in the proof of
Claim 18) that the following proposition is true.

Proposition 19. In case II, F is equivalent to a coloring obtained by shifting L-diagonals
from a colorings of the following three types, where the colors of any two a-nodes (b-nodes)
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are either twin or the same:

(a′) 2 a 3 a 2 a 3 a

a 1 a 1 a 1 a 1

2 a 3 a 2 a 3 a 2 a

a 1 a 1 a 1 a 1 a 1

3 a 2 a 3 a 2 a 3 a

a 1 a 1 a 1 a 1 a 1

2 a 3 a 2 a 3 a 2 a

a 1 a 1 a 1 a 1 a 1

(a′′) 2 a 1 a 2 a 1 a

a 3 a 1 a 3 a 1

2 a 1 a 2 a 1 a 2 a

a 3 a 1 a 3 a 1 a 3

1 a 2 a 1 a 2 a 1 a

a 1 a 3 a 1 a 3 a 1

2 a 1 a 2 a 1 a 2 a

a 3 a 1 a 3 a 1 a 3

(b) 2 a 3 a 2 a 3 a

b 1 a 1 b 1 a 1

2 b 4 b 2 b 4 b 2 b

a 1 b 1 a 1 b 1 a 1

3 a 2 a 3 a 2 a 3 a

a 1 b 1 a 1 b 1 a 1

2 b 4 b 2 b 4 b 2 b

a 1 b 1 a 1 b 1 a 1

Proposition 19(a’,a”) confirms the claim of Lemma 14 with the following correspon-
dence of colors:

(a′) : 1 2 3
H : 1 ∪ 4 2 3

,
(a′′) : 1 2 3
H : 1 ∪ 2 3 4

.

Corollary 15 finalizes the proof of Theorem 2, case II in subcases (a’) and (a”) (according
to the conclusion of Proposition 19). In subcase (b), the claim of Theorem 2 holds
corresponding to Fig. A in accordance to the following table:

(b) : 1 2 3 4 a b
Fig. A : 5 ∪ 6 4 1 9 2 ∪ 3 7 ∪ 8

.

III All the neighbors of a {1 , 2}-node are of type 2:2

Consider two subcases.

III.a) The coloring F is of the following type, where the odd nodes are colored with not
more than four pairwise twin colors:

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

III.b) The coloring F contains up to reflection the following fragment:

2

1 2

1
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In the last subcase, by the hypothesis of case III we get

• the fragment is uniquely extended to two 1 2-R-diagonals,

• the set of all even nodes consists of 1 2-R-diagonals.

2

1 2

1
=⇒

·· ·
1 · · ·

2 1

1 2

2 1

· · · 2

· · ·

=⇒

·· · · · ·· · · a · · ·· · · b 1 · · ·· · · a 2 1 · · ·
b 1 2 d

· · · 2 1 c
· · ·

· · · 2 d
· · ·

· · · c
· · ·

· · ·
· · ·

{a, b} = {c, d} = {1, 2}

So, we have the following fact.

Proposition 20. A coloring corresponding to subcase III.b can be obtained from a coloring
corresponding to subcase III.a by shifting 1 2 -R-diagonals or by shifting 1 2 -L-diagonals
(but not both).

Again, we see that the claim of Lemma 14 is confirmed by Proposition 20 in the
considered case, where the colors 1 and 2 in Proposition 20 correspond to the merged 1
and 3 and merged 2 and 4 in Lemma 14. Corollary 15 finalizes the proof of Theorem 2
in this case.

IV Every {1 , 2}-node has two neighbors of type 2:2 and two neighbors of
type 1:1

Consider any 1-node. Let its neighbors of type 2:2 have colors a and b (it is possible that
a = b ). Note that these neighbors must be placed diagonally from each other, otherwise
the other two neighbors cannot be of type 1:1. By the same reason, a fragment like

2

1 a 2

1 b

is impossible. Hence we have two possibilities up to rotation and reflection.

2

2 a 1

1 b 2

2

2

1 a 1

2 b 2

1
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In the both cases the fragment is uniquely extended to two 1 2-diagonals and a b -diagonal.
The rest of the proof of the conclusion of Theorem 2 in Case IV is contained in the

following proposition, which reflects a more general situation and will be repeatedly used
in Section VI.

Proposition 21. If a bipartite perfect coloring F of G(Z2) has neighbor a b and e f
diagonals, where a , b , e , f are some colors, not necessarily distinct, then F is equivalent
to a coloring obtained from a coloring in Fig I, Fig K, or Fig L by shifting R-diagonals
and merging some groups of twin colors.

Proof. Without loss of generality, we assume that F is a bipartite perfect coloring with
two neighbor binary or one-color R-diagonals.

Claim 22. Every R-diagonal is either binary or one-color.

Indeed, consider the nodes [1, 0] and [0,−1]. Their neighbors have colors a , b ,
F([1,−1]), F([2, 0]) and a , b , F([1,−1]), F([0,−2]), respectively. Since [1, 0] and [0,−1]
are of the same or twin colors, we conclude F([2, 0]) = F([0,−2]). Similarly, by induction
on |i|, we get F([i, j]) = F([i+ 2, j + 2]) for every i, j ∈ Z, which proves Claim 22.

We now consider two subcases.
(i) For every two R-diagonals, the sets of their colors coincide or do not intersect. In

this case, for an R-diagonal, its set of colors uniquely determines the sets of colors of the
two neighbor diagonals. In other words, we have a perfect coloring of the infinite path
graph G(Z), where the node [j] is colored with the set of colors of the diagonal through
[j, 0] in the coloring F . It is easy to find (see, e.g., [21, Lemma 4]) that there are only
two classes of bipartite perfect colorings of G(Z):

(a) cyclic colorings · · · c1 c2 · · · cs c1 c2 · · · cs c1 c2 · · · (the number s of colors is even
because the coloring is bipartite);

(b) mirror colorings · · · c2 c1 c2 · · · cs−1 cs cs−1 · · · c2 c1 c2 · · · (any number s of colors).

Once we fix the coloring of G(Z), the colors of the one-color R-diagonals of F are de-
termined, and the colors of the binary R-diagonals of F are determined up to shifting.
If there are only binary R-diagonals, then F is obtained by shifting from the coloring in
Fig. K (the case n = 8 is shown separately in Fig. I, and the case n = 4 is obtained from
Fig. I by merging twins 1 and 3, 2 and 4, 5 and 6, 7 and 8) or in Fig. L (again the
case n = 4 is obtained from Fig. I by merging twin colors as above, and the case n = 6 is
obtained from Fig. I by merging 5 and 6, 7 and 8), for subcases (a) and (b) respectively.

(ii) There are two R-diagonals, say a b - and a c -diagonals, whose sets of colors are
different but with non-zero intersection, i.e., b 6= c . Clearly, the colors from {a, b , c}
are pairwise twin. We assume w.l.o.g. that c 6= a , F([0, 0]) = a , the R-diagonal through
[0, 0] is an a b -diagonal, and the R-diagonal through [1, 0] is an e f -diagonal. Denote
g = F([−1, 0]), h = F([0, 1]), (hence, the whole diagonal through the last two nodes
is a g h -diagonal). Since a and c are twins (this is the only place where we use the
existence of an a c -diagonal), every e -node has a c -neighbor. Therefore, the diagonal
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through [2, 0] is a c d -diagonal for some d . Similarly, the diagonal through [−2, 0] is a
c d′ -diagonal for some d′ . The colors from {a, b , c , d , d′ } are mutually twin, and we see
that the diagonal through [0, 3] is a g h -diagonal and the diagonal through [0,−3] is an
e f -diagonal. Similarly (by induction on |i|), for every i ∈ Z the colors of the diagonal
through [2i, 0] are equal or twin to a and the diagonal through [2i+1, 0] is an e f - or g h -
diagonal, depending on the parity of i. In particular, every odd node is an {e , f , g , h}-
node, where e and f are equal or twin, g and h are equal or twin. By shifting some
of R-diagonals, we can make a e g -L-diagonal. Therefore, any two different colors from
{e , f , g , h} are twins. It follows that d = d′ and for every even (odd) i the R-diagonal
through [2i, 0] is an a b -diagonal (a c d -diagonal, respectively). We now see that if all
colors a , b , c , d , e , f , g , h are pairwise different, then F is shifting equivalent to the
coloring in Fig. I. If there are some equalities between them, then F is shifting equivalent
to a coloring obtained from the one in Fig. I by merging twin colors.

V Each {1 , 2}-node has one neighbor of type 2:2 and three neighbors of
type 1:1

Denote by 3 the color of the type 2:2 nodes. Up to rotation the coloring contains one of
the following fragments.

1

1 3 2

2

1

2 3 2

1

It is easy to see that the first fragment contradicts the condition of case V. Directly from
this condition we get that the second fragment uniquely determines the placement of the
{1 , 2 , 3}-nodes:

1 2 1 2

. . . .
2 1 2 1

2 1 3 1 2 3 2 1 3 1 2 3

2 1 2 1

. . . .
1 2 1 2

1 2 3 2 1 3 1 2 3 2 1 3

1 2 1 2

. . . .

Denote by E the set of the colors of the even nodes excluding 1 and 2.

Claim 23. |E| 6 2. If |E| = 2, then d3(3 , e ) = 12 for each e in E.
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Proof. First we note that∑
e∈E

d2(1 , e ) = 6,
∑
e∈E

d2(2 , e ) = 6,

and
d2(1 , e ) > 2, d2(2 , e ) > 2 for all e ∈ E (3)

(the last follows from the fact that every E-node is at [±1,±1] from some 1-node). Then,

d3(3 , e ) = 2d2(1 , e ) + 2d2(2 , e ) ≡ 0 mod 3 (4)

(indeed, there are exactly 3 paths of length 3 from every 3-node to every nearest E-node,
each path containing exactly one {1 , 2}-node); hence, d3(3 , e ) is even, not less than 8,
and divisible by 3. Since ∑

e∈E

d3(3 , e ) = 24. (5)

the only possibilities for d3(3 , e ) are 12 (with |E| = 2) and 24 (with |E| = 1).

Proposition 24. In case V, the coloring F either
(a) is equivalent to the coloring shown in Fig. B, or
(b) F can be obtained from the coloring shown in Fig. A by shifting 4 5 - or 4 6 -

diagonals (but not both), unifying the colors 7 and 8 , unifying two or three colors from
{4 , 5 , 6}, and/or renaming colors.

Proof. (a) We first consider the subcase when |E| = 2, say E = {7 , 8} (in agree with
Fig. B), and an odd node of type 0:0 has two non-opposite neighbors of the same color.

2

2 1 3 1 2

2 7

7 .

We see that d2(1 , 7) > 3 and d2(2 , 7) > 3. From this, d3(3 , 7) = 12 (Claim 23), and
d3(3 , 7) = 4 · d2(1 , 7), we find

d2(1 , 7) = d2(2 , 7) = 3, and d2(1 , 8) = d2(2 , 8) = 3. (6)

With the last equations, the colors of all nodes at distance 3 from the 3-node are uniquely
reconstructed.

1

2

2 1 3 1 2

2 7

7

1

⇒

1

8

2 8

2 1 3 1 2

8 2 7

8 7

1

⇒

1

7 8

7 2 8

2 1 3 1 2

8 2 7

8 7

1
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Next, we see that the cells at distance 2 from the 3-cell are uniquely colored with three
new colors. From this point, the fragment considered is continued in a straightforward
manner, resulting in the coloring in Fig. B.

(b’) Next, we consider the subcase when |E| = 2, say E = {7 , 8} and any two non-
opposite neighbors of each odd node of type 0:0 have different colors. We have a fragment
like the following:

2 ȳ

1 3 1 2

2 8

x̄ 7 9 7

1 8

We claim that F(x̄) = 8 and similarly F(ȳ) = 7. Indeed, if F(x̄) = 7, then d2(1 , 7) > 4
and d2(2 , 7) > 4, which means d3(3 , 7) > 16 and contradicts Claim 23.

In a similar manner, we can now determine the colors of all nodes except those at
distance 2 from the 3-nodes. In the picture below, these nodes are marked by the labels
a, b, and c.

b 8 c 1 b 7 c 2 b 8 c 1 b 7 c 2

7 9 7 a 8 9 8 a 7 9 7 a 8 9 8 a

c 8 b 2 c 7 b 1 c 8 b 2 c 7 b 1

2 a 1 3 1 a 2 3 2 a 1 3 1 a 2 3

b 7 c 2 b 8 c 1 b 7 c 2 b 8 c 1

8 9 8 a 7 9 7 a 8 9 8 a 7 9 7 a

c 7 b 1 c 8 b 2 c 7 b 1 c 8 b 2

1 a 2 3 2 a 1 3 1 a 2 3 2 a 1 3

Clearly, the remaining nodes are colored with one, two, or three mutually twin colors.
Moreover, it is easy to see that S1,i = S2,i = S7,i = S8,i for every color i of a node marked
by a, b, or c. Hence, 7 and 8 are twins.

If the nodes marked by a are of the same color, then it is not difficult to find that the
same is true for the nodes marked by b and for the nodes marked by c. Then p. (b) of the
proposition takes place.

Otherwise, there are two a-nodes z̄ and z̄′ of different colors and with difference z̄′−z̄ =
[2,±2]. W.l.o.g., assume z̄ = [0, 0], z̄ = [2,−2], F(z̄) = 4, F(z̄) = 5.

8 2

4 7 9 7
. 2 8

1 3 1 5

8 2 .

⇒

. 8 2

4 7 9 7

5 2 8 .

1 3 1 5

8 2 4

⇒

5 8 2 4

4 7 9 7 5

5 2 8 4

4 1 3 1 5

5 8 2 4

Since 1 and 2 are twins, the neighbors of each of the nodes [0,−1], [1,−2] (underlined
in the picture above) have colors 3 , 4 , 5 , and F([1,−1]), independently on the value
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F([1,−1]) (it can be 4 , 5 , or a new color, say 6). We see that F([−1,−1]) = 5 and
F([1,−3]) = 4. Similarly, considering the neighborhoods of the {7 , 8}-nodes [1, 0] and
[2,−1], we see F([1, 1]) = 5 and F([3,−1]) = 4. Processing in a similar way, we find
that the both R-diagonals through [0, 0] and [2,−2] are 4 5-diagonals.

The same argument show that the R-diagonal through [4,−4] is a 4 5-diagonal, in-
dependently on the value F([4,−4]), which can be 4 or 5 . Similarly, by induction, for
every i the R-diagonal through [2i,−2i] is a 4 5-diagonal. It remains to note that all
nodes marked by b, i.e., of form [2 + 2i+ 2j, 2i− 2j] are colored with the same color, 4 ,
5 , or a new color 6 .

(b”) The subcase |E| = 1 is considered similarly to (b’).

VI All the neighbors of a {1 , 2}-node are of type 1:1

We divide the case into the following four subcases.

Claim 25. One of the following four assertions takes place.

VI.a. The {1, 2}-nodes are all the nodes with even coordinates or all the nodes with odd
coordinates (without loss of generality, we consider the even subcase).

VI.b. The coloring F contains the following fragment, up to rotation and reflection:

1 2

2 1

VI.c. The coloring F contains the following fragment, up to rotation and renaming the
colors 1 and 2 :

2

1

2 1

2 1

VI.d. The coloring F contains a 1 2 -diagonal.

Proof. At first, if every type 1:1 node has opposite 1 - and 2-neighbors, then we obviously
have subcase VI.a.

Thus, we can assume that there are two {1 , 2}-neighbors of a type 1:1 node that are
placed diagonally from each other. W.l.o.g., assume F([0, 0]) = 2 and F([−1, 1]) = 1. Let
us consider the diagonal through these two nodes.

If it is a 1 2-diagonal, then we have case VI.d.
Otherwise, there is an integer i with the minimum absolute value such that the node

x̄ = [i,−i] is not a {1 , 2}-node. Depending on the sign and the parity of i, we have one
of the four situations:
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1 ∗
2 ȳ

x̄

2

1

x̄

x̄

2

1

x̄

1

2

We consider only the first one, as the other three are similar. We observe that the node
[i,−i+ 2], marked by ∗ in the picture, is not a {1 , 2}-node, by the condition of case VI.
The node ȳ = [i,−i+1] is of type 1:1, and the only place for its 1 -neighbor is [i+1,−i+1]:

1 ∗ z̄

2 1

x̄

The node z̄ = [i + 1,−i + 2] is also of type 1:1, and there are two possibilities for its
2 -neighbor:

1 ∗ z̄ 2

2 1

x̄ or

2

1 ∗ z̄

2 1

x̄

The first possibility leads to subcase VI.b. In the remaining case, considering similarly
the type 1:1 nodes ȳ′ = [i − 1,−i] and z̄′ = [i − 2,−i − 1], we find that subcase VI.b or
subcase VI.c takes place:

2

1

2 1

ȳ′ x̄

z̄′ 1

2 or

2

1

2 1

ȳ′ x̄

2 z̄′ 1

In the following four subsections, we show that the claim of Theorem 2 holds in each
of the four subcases.

VI.a All the {1 , 2}-nodes are all the nodes with even coordinates

1 2 1 2 1 2
. .

2 1 2 1 2 1
. .

1 2 1 2 1 2

2 1 2 1 2 1
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Proposition 26. In case VI.a, either the coloring F is equivalent to one of the colorings
in Fig. A, C, D, E where some twin colors can be merged, or the coloring of the even
vertices is equivalent to one of the following two semicolorings:

(i) 1 2 1 2

3 3 3 3

2 1 2 1

3 3 3 3

1 2 1 2

3 3 3 3

2 1 2 1

3 3 3 3

(ii) 1 2 1 2

3 4 3 4

2 1 2 1

4 3 4 3

1 2 1 2

3 4 3 4

2 1 2 1

4 3 4 3

Proof. Up to equivalence, there are seven ways to color the four nodes placed diagonally
from a 1-node:

(i) (ii) (iii) (iv) (v) (vi) (vii)

3 3

1

3 3

3 4

1

4 3

3 3

1

4 4

3 3

1

4 3

3 4

1

5 3

3 3

1

5 4

3 4

1

6 5

In case (i), all non-{1 , 2} even nodes have color 3 , corresponding to p. (i) of the claim.
In case (ii) each neighbor of a 1-node has odd node has one 1-, one 2-, one 3-, and

one 4-neighbor. And this is true for every odd node. It is not difficult to see that the
coloring of the even nodes is uniquely determined. Since every odd node is a neighbor of
a 1-node,

Now consider case (iii). We denote the colors of the 1-node neighbors at the picture
as follows, where each of a , a′ is different from 5 and 6 but it is possible that a = a′ :

3 5 3

2 a 1 a′ 2

4 6 4
⇒

3 5 3 5

2 a 1 a′ 2 a 1

4 6 4 6
⇒

3 5 3 5 3

2 a 1 a′ 2 a 1

4 6 4 6 4
⇒ · · ·

Since 1 and 2 are twins, the rightest 2 -node in the picture has neighbors of colors 5 ,
6 , a , and a′ . The only places for the 5- and 6-neighbors are above and below the
considered 2-node, respectively. Now, this last 5 -node must have a second 3-neighbor,
and the only place is at the right (because of the 1- and 2-neighbors in the vertical
direction). Similarly, all nodes in the three horizontal rows are uniquely colored. The
whole coloring is now uniquely determined, whether a = a′ or a 6= a′ , see Fig. C.

Case (iv) leads to a contradiction when trying to reconstruct the coloring, which is
straightforward but not too short. We will use more intuitive arguments. It follows
from Lemma 9 that there are exactly three 3-nodes at distance 2 from every 1-node and
exactly two 1-nodes at distance 2 from every 3-node. Considering a sufficiently large

the electronic journal of combinatorics 30(2) (2023), #P2.4 21



square, we find (Remark 11) that the densities P1 and P3 of the colors 1 and 3 are
related as P1 : P3 = 2 : 3. On the other hand, it is easy to see that there are no nodes
that have more than 2 neighbors of the same color. It follows from Lemma 10 that the
quotient of the densities of any two colors is a power of two, a contradiction.

Now consider case (v). We denote the colors of the 1-node neighbors at the picture as
follows, where {a, a′ } and {b , b′ } are disjoint but it is possible that a = a′ or b = b′ :

3 a 4

2 b′ 1 a′ 2

5 b 3
=⇒

3 a 4 a

2 b′ 1 a′ 2 b 1

5 b 3 b′
⇒

3 a 4 a 3

2 b′ 1 a′ 2 b 1

5 b 3 b′ 5
⇒ · · ·

Let us determine the colors of the neighbors of the rightest 2 -node in the picture. The
neighbor above has color a because {b , b′ }-nodes have no 4-neighbors. The neighbor
below has color b′ because by Lemma 10 S1b = S1b′ implies S3b = S3b′ . So, arguing as
in case (iii), we reconstruct the colors in the three horizontal rows and then in the whole
grid, obtaining the coloring corresponding to Fig A as follows:

F : 1 2 3 4 5 a a′ b b′

Fig. A: 6 5 4 9 1 7 8 2 3
.

In each of cases (vi), (vii), the 1-node has neighbors of four distinct colors, and
with the same strategy as in cases (iii) and (v) the coloring is uniquely reconstructed,
corresponding to Fig. D or Fig. E, respectively.

We see that in subcases (i) and (ii) in Proposition 26 the even colors are pairwise twin
(we remember that twin colors might have different densities like 1 and 3 in subcase (i)).
The same is true for the odd colors (if there are more than one such colors) because the
neighborhoods of all odd nodes are colored with the same colors. Proposition 26 confirms
the claim of Lemma 14 and Corollary 15 finalizes the proof of Theorem 2 in the considered
case VI.a.

VI.b The coloring F contains the fragment

1 2

2 1

Without loss of generality, we assume that the 1-nodes of the fragment are [−2, 2] and
[1, 1] and the 2-nodes are [−1, 1] and [2, 2]. By the condition of the case VI the colors
of the nodes [0, 0], [−2, 0], [2, 0], [3, 1], [0, 2], [−1, 3], [1, 3], [0, 4], [−3, 1] differ from 1 and
2. Denote by 3 and 4 the colors of [0, 0] and [0, 3] respectively. At the pictures, an even
node marked by ∗ is not a {1 , 2}-node.

∗
∗ 4 ∗

1 ∗ 2
∗ 2 1 ∗
∗ 3 ∗
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Using the condition of case VI, we see that [−1,−1] is a 1-node, [1,−1] is a 2-node,
[0,−2] is not a {1 , 2}-node.

∗
∗ 4 ∗

1 ∗ 2
∗ 2 1 ∗
∗ 3 ∗

1 2
∗

From the picture above, we see
d3(2 , 4) > 0. (7)

If [2,−2] is not a 1-node, then [3,−1] and [1,−3] are 1-nodes, by the condition of case VI.

∗
∗ 4 ∗

1 ∗ 2
∗ 2 1 ∗
∗ 3 ∗

1 2 1?

∗ 1?/

1?

But then we have a contradiction with (7), because there is no room to place a 4-node at
distance 3 from the 2-node [1,−1] (taking into account that the 4-nodes are of type 0:0).
Hence, the color of [2,−2] is 1 .

∗
∗ 4 ∗

1 ∗ 2
∗ 2 1 ∗
∗ 3 ∗ ∗

1 2 ∗
∗ 1

We see that d2(1 , 3) = 2, d2(2 , 3) = 2, and d2(2 , 1) = 4. Applying the last two equalities
to [2, 2] and noting that a 3-node cannot be neighbor to a type 0:0 node, we find that
there is only one way to color the nodes [2, 4], [3, 3], and [4, 2]:

the electronic journal of combinatorics 30(2) (2023), #P2.4 23



∗ 1
∗ 4 ∗ 3

1 ∗ 2 1
∗ 2 1 ∗
∗ 3 ∗ ∗

1 2 ∗
∗ 1

Directly from the condition of case VI, we find two more 2-nodes:

2
∗ 1

∗ 4 ∗ 3

1 ∗ 2 1
∗ 2 1 ∗ 2
∗ 3 ∗ ∗

1 2 ∗
∗ 1

Now, by analogy, we can recover the placement of all the {1 , 2 , 3}-nodes.

2 1 2 1 2 1 2 1

a 3 a 3 a 3 a 3

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

3 4 3 4 3 4 3 4

2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1

a 3 a 3 a 3 a 3

d 1 2 1 2 1 2 1 2

1 b 2 e 1 2 1 2 1 2
c 3 c 4 3 4 3 4 3 4

2 b 1 2 1 2 1 2 1

Moreover, since d3(1 , 4) = 3 or d3(1 , 4) = 6, we see that there are at most two colors of
odd type 0:0 nodes and these nodes are colored periodically with periods [6, 0] and [0, 6].
Applying the definition of a perfect coloring to the neighborhoods of 1 - and 2-nodes, we
conclude that the opposite neighbors of a 3-node must have the same color. We separate
five subcases, according to the equalities between the colors of the marked nodes in the
last picture:

(i) a = 4, b = c , d = e ;

(ii) a = 4, b = c , d 6= e ;
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(iii) a = 4, b 6= c , d = e ;

(iv) a = 4, b 6= c , d 6= e ;

(v) a 6= 4 (it follow that b 6= c and d 6= e ).

Leaving the further arguments as an exercise, we formulate the result.

Proposition 27. In subcase VI.b, the coloring F is equivalent to one of the following five
colorings:

(i) the coloring shown at Fig. F, with merged colors 6 and 7 ;

(ii) the coloring shown at Fig. F;

(iii) the coloring shown at Fig. G, with merged colors 7 and 8 ;

(iv) the coloring shown at Fig. G;

(v) the coloring shown at Fig. H.

VI.c The coloring F contains the following fragment:

2

1

2 1

2 1

�−→

1 — diagonal D0
— diagonal D1

2 2 2 — diagonal D2
— diagonal D3

1 1 — diagonal D4

In this subsection, we will draw the grid 45◦ rotated and give indexed names to R-diagonals
as illustrated in the figure above.

By the hypothesis of case VI, all neighbors of a {1 , 2}-node are of type 1:1. Subse-
quently applying this condition to the nodes of the diagonals D1 and D3, we uniquely
reconstruct all {1 , 2}-nodes in the diagonals D0, D2, and D4:

· · · 1 1 1 1 1 1 1 · · ·

· · · 2 2 2 2 2 2 2 · · ·

· · · 1 1 1 1 1 1 · · ·

Claim 28. The diagonal D0 is binary.

Proof. Assume the contrary. Then D0 contains two nodes of different colors, say 3 and 4,
at distance 4 from each other.

1 1 3 1 4 1 1

2 2 2 2 2

1 1 1 1
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Considering the central 2 -node of the diagonal D2 in the diagram above, we see that
d2(2 , i ) is odd for i = 3 , 4 and even for any other i . Since 1 and 2 are twins, the
same holds for d2(1 , i ). Considering the other 2-nodes of D2, we see that the colors of
the diagonal D0 alternate like 1 , 3 , 1 , 4 , 1 , 3 , 1 , 4 , . . . (we will talk about a 1 3 1 4-
diagonal in this case). Considering the 1-nodes of the diagonal D4 (recall that d2(1 , 3)
and d2(1 , 3) are odd), we see that the diagonal D6 is a 2 3 2 4-diagonal, and the situation
is, up to the reflection, as in the following figure:

· · · 1 4 1 3 1 4 1 3 1 4 1 3 1 · · ·

· · · 2 2 2 2 2 2 2 · · ·

· · · 1 1 1 1 1 1 · · ·

· · · 3 2 4 2 3 2 4 2 3 2 4 2 3 · · ·

As we see from the diagonal D0, d2(1 , 3) and d2(1 , 4) are not less than 2. Since they are
known to be odd, at least one of these two values is 3. Let, w.l.o.g., d2(1 , 3) = 3. Then
d2(2 , 3) = 3 too. Considering these values for the bold 1-node ū + [3, 1] and 2-node
ū+ [1, 1] from the diagonals D2 and D4, see the diagram

· · · 1 4 1 3 1 4 1 3 1 4 1 3 1 · · ·

· · · 2 2 ū 2 2 2 · 2 2 · · ·

· · · w̄ 1 1 1 v̄ 1 1 1 · · · ·

· · · 3 2 4 2 3 2 4 2 3 2 4 2 3 · · ·

we find the following:

Claim 29. A node ū from D2 has color 3 if and only if v̄ is a 3 -node too, where v̄ =
ū+ [4, 2] (similarly, for w̄ = ū− [4, 2]).

Starting from an arbitrary 3-node in D2 or D4 and applying Claim 29, we inductively
derive that the 3-nodes of the diagonal D2, as well as of D4, are placed with period [6, 6]:

· · · 1 4 1 3 1 4 1 3 1 4 1 3 1 · · ·
! ? ?

· · · 2 2 3 2 2 2 3 2 2 · · ·
? ?

· · · 3 1 1 1 3 1 1 1 3 · · ·

· · · 3 2 4 2 3 2 4 2 3 2 4 2 3 · · ·

Now we see an obvious contradiction with the definition of a perfect coloring: there are
nodes with the neighbors of colors 1 , 2 , 3 , 3 ; but there is a 2-node that is not adjacent
with such a node. The contradiction proves the statement.
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Thus, there is a binary diagonal. Well, it is not a 1 2-diagonal, but nevertheless, its
colors are twin and hence the situation is described in some other considered case, I, II,
III, or VI.d.

VI.d The coloring F contains a 1 2-diagonal

Without loss of generality, we assume that F contains a 1 2-R-diagonal through [0, 0].

· · · 1 2 1 2 1 2 1 2 1 2 1 2 1 · · ·

Proposition 30. Either the coloring is periodic with period [2, 2] or [4, 4], or the two
diagonals at distance 4 from the given “main” 1 2 -diagonal are 1 2 -diagonals too.

Proof. We first note that if some nodes [x, x+ 1] and [x+ 1, x] have colors a and b , then
[x + 2, x + 3] and [x + 3, x + 2] have, respectively, the colors a and b or b and a ; the
same is true for [x− 2, x− 1] and [x− 1, x− 2]:

a a

b b
1 2 1 2 1 2 or

a b

b a
1 2 1 2 1 2

If both diagonals neighbor to the considered diagonal are periodic with period [4, 4], then
the coloring is periodic too. Otherwise there is one of the following two fragments:

a c a c b

b d b d a
1 2 1 2 1 2 1 2 or

a c a d b

b d b c a
1 2 1 2 1 2 1 2

where a 6= b but other equalities are allowed. We see that in both cases d2(c , a ) > 4
and d2(c , b ) > 3; hence, there are {a, b}-nodes at distance 3 from the main diagonal.
It follows that there are {1 , 2}-nodes at distance 4 from the main diagonal. By the
hypothesis of case VI, such a node must belong to a 1 2-diagonal. Similarly, there is an
“opposite”, with respect to the main diagonal, 1 2 -diagonal.

We separate Case VI.d into two subcases.

VI.d.1 The coloring F is not periodic with period [4, 4] or [2, 2]

By Proposition 30, the 1 2-diagonals in F occur with period [2,−2]. The other even
nodes also constitute R-diagonals that occur with period [2,−2].
Claim 31. Every even R-diagonal is colored in such a way that the color of every of its
nodes x̄ uniquely determines the unordered pair of colors of nearest diagonal nodes x̄−[1, 1]
and x̄ + [1, 1] (in other words, we have a perfect coloring of the diagonal considered as a
chain graph).
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Proof. For every two colors i and j occuring on the considered diagonal, the value d2( i , j )
does not depend on the choice of the initial i -node x̄. Moreover, it coincides to the number
of j -nodes among x̄− [1, 1] and x̄+ [1, 1] (indeed, the two R-diagonals at distance 2 from
x̄ have no j -nodes).

Proposition 32. In subcase VI.d, one of the following takes place.
(i) The hypothesis and the conclusion of Lemma 14 (and hence, of Corollary 15) are

satisfied both for even and odd nodes.
(ii) The coloring is equivalent, up to shifting 1 2 - and 3 4 - diagonals, to the coloring

in Fig. J.

Proof. We already know that 1 2-R-diagonals occur at distance 4 from each other. Let
us focus on an R-diagonal at distance 2 from a 1 2-diagonal. As shown above (see the
proof of Proposition 30), there is a fragment like the following:

a c a b

b d b a
1 2 1 2 1 2 1 2

Now consider the neighbors of the a -nodes. If the fragment expands like

b d b a
1 2 1 2 1 2 1 2

a c a b
e f e f

for some (maybe equal) e and f , then by Claim 31 there is an e f -diagonal. It follows
immediately that all even R-diagonals are either 1 2 or e f . Then all colors of nodes of
the same parity are mutually twin, and p. (i) of the proposition statement takes place.

It remains to consider the following case, where f 6= e :

b d b a
1 2 1 2 1 2 1 2

a c a ∗ b
f e e f

Since the c -nodes have no f -neighbors, the node marked by ∗ at the figure above is a
d -node:

b d b a
1 2 1 2 1 2 1 2

a c a d b
f e e f

=⇒

e e
b d b c a

1 2 1 2 1 2 1 2
a c a d b

f e e f
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Since d2(e , f ) = 2, we get

f e e f
b d b c a

1 2 1 2 1 2 1 2
a c a d b

f e e f

Now we see that a b -node has neighbors of colors e and f . By Claim 31, a e e f f -
diagonal is uniquely reconstructed:

f e e f
b d b c a

· · · 1 2 1 2 1 2 1 2 · · ·
a c a d b

· · · f f e e f f e e · · ·

It is easy to see now that the whole coloring, up to equivalence and shifting binary
diagonals, is as in p. (ii) of the proposition statement.

VI.d.2 The coloring F is periodic with period [4, 4]

In this subcase, F has a 1 2-R-diagonal and is periodic with period [4, 4]. We further
divide this subcase depending on the colors of nodes at distance 1 and 2 from the 1 2-
diagonal.

VI.d.2.i There is an a b-diagonal neighbor to a 1 2-diagonal

In this subcase, the conclusion of Theorem 2 holds by Proposition 21.
VI.d.2.ii There is an a b-diagonal at distance 2 from a 1 2-diagonal

Let us consider the diagonal between the a b -diagonal and the 1 2-diagonal. If it is
binary or one-color, then subcase VI.d takes place. Otherwise, it contains two nodes at
distance 4 colored with different colors, say c and d :

· · · b a b a · · ·
c d

· · · 1 2 1 2 · · ·
=⇒

d c
· · · b a b a · · ·

c d
· · · 1 2 1 2 · · ·

Since a and b are either the same or twins, we find that there are {c , d}-nodes at
distance 3 from the 1 2-diagonal. Hence, there are {1 , 2}-nodes at distance 4 from the
1 2-diagonal; of course, they belong to a 1 2-diagonal because neighbors of {1 , 2} nodes
are of type 1:1. Similarly, there is an a b -diagonal at distance 4 from the considered a b -
diagonal. Now we can see that all odd colors are mutually twin and we get the situation
described in Proposition 32(i), with the only nonessential difference that now there is the
period [4, 4].
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In the following subcases we automatically assume that the R-diagonals at distance 2
from every 1 2-diagonal are not one-color or binary.
VI.d.2.iii There is an a a a b-diagonal neighbor to a 1 2-diagonal, a 6= b

b a a a b a a
· · · 1 2 1 2 1 2 1 2 · · ·

It is easy to find that the diagonal next to the a a a b -diagonal (at distance 2 from the
1 2-diagonal) is one-color or binary.
VI.d.2.iv There is an a a b c-diagonal neighbor to a 1 2-diagonal, a 6= b 6=

c 6= a

b c a a b c a
· · · 1 2 1 2 1 2 1 2 · · ·

We have:
· · · d f d e d f d e · · ·

b c a a b c a
· · · 1 2 1 2 1 2 1 2 · · ·

where f 6= e (otherwise, we obtain a d e -diagonal and return to subcase VI.d). We see
that a d -node has neighbors of all three colors a , b , and c . This means that there are
two {1 , 2}-diagonals at distance 2 from a d -node:

· · · 1 2 1 2 1 2 1 2 · · ·

d f d e d f d e
b c a a b c a

· · · 1 2 1 2 1 2 1 2 · · ·

Since d2(d, f ) = 2 6= d2(e , f ), we see that d is different from e . Similarly, since
d2(d, e ) = 2 6= d2(f , e ), we have d 6= f . Since {b , c}-nodes do not have e -neighbors,
every e -node has four a -neighbors (looking to the neighborhoods of {1 , 2}-nodes, we
find that there are only three odd colors). Then the whole coloring can be reconstructed
up to shifting 1 2-diagonals:

1 2 1 2 1 2 1 2 1 2 1 2
a a b c a a b c a a b

d e d f d e d f d e d f
a a c b a a c b a a c

1 2 1 2 1 2 1 2 1 2 1 2
c b a a c b a a c b a

d f d e d f d e d f d e
b c a a b c a a b c a

1 2 1 2 1 2 1 2 1 2 1 2
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We get the coloring shown in Fig. A with the following color correspondence:

F : 1 2 a b c d e f
Fig. A : 4 5 7 ∪ 8 2 3 6 9 1

Remark 33. The colors b and c are twin, and we considered colorings with such two twin
colors in Case V, which also leads to the coloring in Fig. A in one of the subcases.

VI.d.2.v There is an a a b b-diagonal neighbor to a 1 2-diagonal, a 6= b

b b a a b b a
1 2 1 2 1 2 1 2 =⇒

b b a a b b a
1 2 1 2 1 2 1 2
a a b b a a b

It is immediately follows that the 1 2-diagonal is surrounded by two a a b b -diagonals, as
in the figure. Next, a diagonal, which is not binary or one-color, at distance 2 from the
1 2-diagonal must be a a c d e d -diagonal for some distinct c , d , and e .

Proposition 34. In subcase VI.d, the coloring has the following structure, up to renaming
colors. Every 1 2 -diagonal is surrounded by two 3 3 4 4 -diagonals. Each of the 3 3 4 4 -
diagonals is followed by a 5 6 7 6 -diagonal. Then, a 8 8 9 9 -diagonal can follow; then a
10 11 12 11 -diagonal, and so on, until we meet one of the following fragments:

(a)
· · · k k j j k k j · · ·
m n m n m n m n

· · · j j k k j j k · · ·
or

· · · k k j j k k j · · ·
m m m m m m m m

· · · j j k k j j k · · ·

(b)
· · · k k j j k k j · · ·
m n m l m n m l

· · · k k j j k k j · · ·

(c)
· · · i j k j i j k · · ·
m n m n m n m n

· · · k j i j k j i · · ·
or
· · · i j k j i j k · · ·
m m m m m m m m

· · · k j i j k j i · · ·

(d)
· · · i j k j i j k · · ·
m m n n m m n n

· · · i j k j i j k · · ·

After that, the same diagonals follow in the reverse order, until a 1 2 -diagonal; then the
situation repeats.

The corresponding colorings are shown in Fig. M–P.

Proof. We use induction on i, the distance to the 1 2-diagonal. We assume that every 1 2-
diagonal is surrounded by two 3 3 4 4-diagonals. Each of the 3 3 4 4-diagonals is followed
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by a 5 6 7 6-diagonal. Then, a 8 8 9 9-diagonal and a 10 11 12 11-diagonal, and so on,
until we have colored a diagonal at distance i away from the initial 1 2-diagonal. We
also assume that the colors have not been exhausted, that is, we have not yet crossed the
diagonal where the pattern folds and the colors start to repeat (those diagonals correspond,
as will see, to cases (a)–(d) in the statement of the proposition). In what follows we will
show what the possibilities are for the diagonal at distance i + 1. The arguments above
the proposition provide the induction base, and now we can assume i > 2. Consider two
cases according to the parity of i.

(A) i is even. We consider two neighbor v v w w - and x y z y -diagonals at distance
i − 1 and i from a 1 2-diagonal, respectively. Considering the neighbors of y -nodes, we
see that the diagonal next to the x y z y -diagonal must be an a b - or a a b b -diagonal for
some (maybe equal) a , b .

At first, assume that it is an a b -diagonal.

· · · b a b a b a b · · ·
y z y x y z y x

· · · w w v v w w v · · ·

The colors a and b are the same or twins, and considering the neighborhoods of the
corresponding nodes, we find positions of some {x, z }-nodes; then we uniquely color the
neighborhoods of these nodes:

· · · v v w w v v w · · ·
∗ x ∗ z ∗ x ∗ z

· · · b a b a b a b · · ·
y z y x y z y x

· · · w w v v w w v · · ·

We note that a, b 6∈ {v , w} (indeed, each {v , w}-node has two non-{x, y , z } neigh-
bors). Now we see that the nodes marked by ∗ in the figure must be colored with y (as
we see from the four previous diagonals, y has no twins). So, we obtain fragment (c).

Now consider the second variant:

· · · b b a a b b a · · ·
y z y x y z y x

· · · w w v v w w v · · ·

where a 6= b . It is not difficult to see that either a = v and b = w or a and b are
“new” colors (that is, they do not occur between the x y z y -diagonal and the nearest
1 2-diagonal). Indeed, if a is an old color, then a = v because all other old colors have
no x -neighbors. Similarly, if b is old, then b = w . If a is new, then we see d2(w, a ) = 1
while d2(b , a ) > 2; so, b 6= w and hence b is new too. Similarly, if b is new, then a is
new.

In the first case, we have fragment (b); in the second, we move to the next step and
consider the x y z y - and a a b b -diagonals, see p. (B) of the proof.

(B) i is odd. We consider two neighbor u v w v - and x x y y -diagonals at distance
i − 1 and i from a 1 2-diagonal, respectively. Considering the neighbors of y -nodes, we
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see that the diagonal next to the x x y y -diagonal must be an a b c b -diagonal for some
a , b , c .

· · · a b c b a b c · · ·
x x y y x x y y

· · · u v w v u v w · · ·

At first, assume a = c , i.e., we have an a b -diagonal, where a and b are the same color
or twins. As every {a, b}-node has two x - and two y -neighbors, the next diagonal is
uniquely colored. We get fragment (a).

Then, assume c = b :

∗
· · · a b b b a b b · · ·

x x y y x x y y
· · · u v w v u v w · · ·

Considering the neighborhoods of b -nodes, we find that the node marked by ∗ has the
color y . Since the y -nodes have neighbors of colors v , w , b only, we conclude that
a = b ; hence, a = c , which case was considered above.

The last possibility is a 6= b 6= c 6= a . If {a, b , c} ∈ {u, v , w}, then the color
of a {a, b , c}-node is uniquely determined by the occurence of x - or y -nodes in its
neighborhood. Namely, a = u , b = v , c = w . We get fragment (d). Otherwise, a , b ,
and c are new colors, and we continue considering the x x y y and a b c b–diagonals with
p. (A) of the current proof.

As the number of colors is finite, we have to meet one of the fragments (a)–(d) at some
step.

VI.d.2.vi There is an a b c b-diagonal neighbor to a 1 2-diagonal, a 6= b 6=
c 6= a

a b c b a b c b
· · · 2 1 2 1 2 1 2 · · ·

=⇒
· · · d e e d d e e · · ·

a b c b a b c b
· · · 2 1 2 1 2 1 2 · · ·

Considering the neighborhoods of the b -nodes, we find that the next diagonal is a
d d e e -diagonal for some different d and e (recall that we avoid the possibility for this
diagonal to be binary or one-color, considered in subcase VI.d). We see that every {1 , 2}-
node has neighbors of colors a , b , and c . This allows us to reconstruct the colors of the
following nodes:

· · · d e e d d e e · · ·
a b c b a b c b

· · · 2 1 2 1 2 1 2 · · ·
c ∗ a ∗ c ∗ a ∗

· · · e d d e e d d · · ·

If the nodes marked by ∗ have a color different from b , then there are b -nodes at dis-
tance 3 from the 1 2-diagonal, and, hence, there are {1 , 2}-nodes at distance 4 from the
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1 2-diagonal. We finally obtain the situation of Proposition 32(ii), i.e. the coloring is
equivalent, up to shifting of 1 2-diagonals, to the coloring of Fig. J.

Otherwise, we have the situation as follows, which can be solved similarly to sub-
case VI.d:

· · · d e e d d e e · · ·
a b c b a b c b

· · · 2 1 2 1 2 1 2 · · ·
c b a b c b a b

· · · e d d e e d d · · ·

Proposition 35. In the subcase VI.d, the coloring either is described in Proposition 32
or has the following structure, up to renaming colors: Every 1 2 -diagonal is surrounded
by two 3 4 5 4 -diagonals. Each of the 3 4 5 4 -diagonals is followed by a 6 6 7 7 -diagonal.
Then, a 8 9 10 9 -diagonal can follow; then a 11 11 12 12 -diagonal, and so on, until we
meet one of the fragments (a)–(d) of Proposition 34. After that, the same diagonals follow
in the reverse order, until a 1 2 -diagonal; then the situation repeats.

The corresponding colorings are shown in Fig. O, S, Q, and R (the special case n = 7
corresponds to in Fig. J with merged colors 3 and 4).

VI.d.2.vii There is an a b c d-diagonal neighbor to a 1 2-diagonal; a–d
are pairwise distinct

b c d a b c d a
1 2 1 2 1 2 1 2 1 =⇒

b c d a b c d a
1 2 1 2 1 2 1 2 1
d a b c d a b c

This subcase is considered similarly to the previous two subcases, resulting in:
Proposition 36. In the subcase VI.d, the coloring has the following structure, up to
renaming colors. Every 1 2 -diagonal is surrounded by two 3 4 5 6 -diagonals. Then, every
a b c d -diagonal is followed by an e f g h -diagonal, where h = g + 1 = f + 2 = e + 3 =
d+ 4 = c+ 5 = b+ 6 = a+ 7 ≡ 2 mod 4, until we meet one of the following fragments:

(a)
· · · m n k l m n k l · · ·

p q p q p q p q p
· · · k l m n k l m n · · ·

(b)
· · · k n m l k n m l · · ·

p p q q p p q q p
· · · k l m n k l m n · · ·

(c)
· · · l k n m l k n m · · ·

p o p q p o p q p
· · · k l m n k l m n · · ·

(d)
· · · k l m n k l m n · · ·

q p o r q p o r q
· · · k l m n k l m n · · ·
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(where all symbols denote different colors except maybe p and q in (a)). After that, the
same diagonals follow in the reverse order, until a 1 2 -diagonal; then the situation repeats.

The corresponding colorings are shown in Fig. T, U, V, and W.

4 Proof of Theorem 1

We start with an obvious claim, then prove two lemmas, considering two special cases,
then give a proof of Theorem 1, which consists of crucial Proposition 41 and a short
concluding part.

Claim 37. For a perfect coloring of G(Z2) with quotient {0, 1}-matrix with zero diago-
nal and without equal rows, any two nodes with difference in { [0,±1], [±1, 0], [±1,±1],
[0,±2], [±2, 0], [±2,±2] } are colored with different colors.

Proof. The only non-trivial case is with the difference of form [±2,±2]. If, w.l.o.g.,
F([0, 0]) = F([2, 2]) = 1 and F([1, 1]) = 2, then each of [0, 1], [0, 1], [1, 2], [2, 1] is
adjacent to a 1-node and to a 2-node. Since the colors of [0, 1], [0, 1], [1, 2], [2, 1] are
pairwise different, we see that the 1st and 2nd rows of the quotient matrix coincide,
contradicting the hypothesis of the claim.

Lemma 38. If a bipartite perfect coloring F of G(Z2) with quotient {0, 1}-matrix contains
the fragment

5

4 B 1

6 A 0 C 6

3 D 2

5

then F , up to equivalence, is one of the following two colorings, with periods, respectively,
[4, 0] and [0, 4], [4, 0] and [0, 8].

7 G 5 H 7 G 5 H 7

E 4 B 1 E 4 B 1 E

6 A 0 C 6 A 0 C 6

F 3 D 2 F 3 D 2 F

7 G 5 H 7 G 5 H 7

E 4 B 1 E 4 B 1 E

6 A 0 C 6 A 0 C 6

F 3 D 2 F 3 D 2 F

7 G 5 H 7 G 5 H 7

7 H 5 G 7 H 5 G 7

E 4 B 1 E 4 B 1 E

6 A 0 C 6 A 0 C 6

F 3 D 2 F 3 D 2 F

7 G 5 H 7 G 5 H 7

E 1 B 4 E 1 B 4 E

6 C 0 A 6 C 0 A 6

F 2 D 3 F 2 D 3 F

7 H 5 G 7 H 5 G 7

Proof. The only 1-node in the fragment cannot be adjacent to an A - or D -node; so, its
right neighbor has a color, say E , different from A , B , C , D . The same can be said
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about the right neighbor of the 2-node, denote its color by F .

5

4 B 1 E

6 A 0 C 6

3 D 2 F

5

The fourth neighbor of the right 6-node has color A . In its turn, this A -node has a
0-neighbor, and it can be only the right neighbor.

5

4 B 1 E

6 A 0 C 6 A 0

3 D 2 F

5

There are only two possibilities for the neighborhood of the right A -node. In each case,
the neighborhood of the right 0-node is uniquely colored:

(a)

5 5

4 B 1 E 4 B 1

6 A 0 C 6 A 0 C 6

3 D 2 F 3 D 2

5 5

or (b)

5 5

4 B 1 E 3 D 2

6 A 0 C 6 A 0 C 6

3 D 2 F 4 B 1

5 5

The same situation takes place in the vertical direction

(c)

5

4 B 1

6 A 0 C 6

3 D 2

G 5 H

4 B 1

6 A 0 C 6

3 D 2

5

or (d)

5

4 B 1

6 A 0 C 6

3 D 2

G 5 H

1 B 4

6 C 0 A 6

2 D 3

5

Each of (a), (b) can be combined with each of (c), (d), see e.g. (a)+(c) and (a)+(d) in
the first two pictures below, except (b)+(d), see the contradiction at the third picture
(the color of the node marked with “?” must be F because of the 4-node at the left; on
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the other hand, it cannot be F because the 7-node above already has an F -neighbor).

5 5

4 B 1 E 4 B 1

6 A 0 C 6 A 0 C 6

3 D 2 F 3 D 2

G 5 H 7 5

4 B 1

6 A 0 C 6 (a)+(c)

3 D 2

5

5 5

4 B 1 E 4 B 1

6 A 0 C 6 A 0 C 6

3 D 2 F 3 D 2

G 5 H 7 5

1 B 4

6 C 0 A 6 (a)+(d)

2 D 3

5

5 5

4 B 1 E 3 D 2

6 A 0 C 6 A 0 C 6

3 D 2 F 4 B 1

G 5 H 7 5

1 B 4 ?

6 C 0 A 6 (b)+(d)

2 D 3

5

In cases (a)+(c) and (a)+(d), it is easy to see that the quotient matrix and the whole
coloring are uniquely reconstructed. Cases (a)+(d) and (b)+(c) result in equivalent col-
orings.

Next, we consider the case where two nodes with difference in {[±3,±1], [±1,±3]}
(w.l.o.g., [3, 1]) have the same color.

Lemma 39. Let F be a perfect coloring with quotient {0, 1}-matrix with zero diagonal
and without equal rows. If F(x̄) = F(x̄+ [3, 1]) for some x̄ ∈ Z2, then either

(a) F has 3β colors, β ∈ {3, 4, 5, . . .}, periods [6, 0] and [0, β], and satisfies F(i, j) ≡
F(i+ 3,−j + 1), or

(b) F has α colors, α ∈ {5, 7, 8, 9, . . .}, and periods [α, 0] and [3, 1].

In both cases, F is an orbit coloring.

Proof. Without loss of generality, assume F([0, 0]) = F([3, 1]) = 1.

·
· 1 2

1 2 ·

Denote by 2 the color of [1, 0]. By Claim 37, the 2-neighbor of [3, 1] is not [2, 1], [3, 0], or
[3, 2]. Hence, it is [4, 1]. Similarly, the colors of [−1, 0] and [2, 1] coincide. By induction,
we have

F([i, 0]) = F([i+ 3, 1]) for all i ∈ Z. (8)

Denote by α the first positive integer such that F([i, 0]) = F([i + α, 0]) for some i.
From F([i, 0]) = F([i+ 3, 1]) and Claim 37, we see α > 5. We consider two cases.

(a) α = 6. Without loss of generality, F([0, 0]) = F([6, 0]).

1 A 2 B 3 C

1 A 2 B 3 C 1
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Similarly to (8), we have

F([i, 1]) = F([i+ 3, 0]) for all i ∈ Z,

and we know the coloring of the two rows

· · · 2 B 3 C 1 A 2 B 3 C 1 A · · ·
· · · C 1 A 2 B 3 C 1 A 2 B 3 · · ·

Claim 40. There are no {1 , 2 , 3 , A , B , C }-nodes in the row [i, 2], i ∈ Z.

W.l.o.g., we will show this for 1 -nodes. If i is even or i ≡ 3 mod 6, then the claim
follows from Claim 37. Seeking a contradiction in the remaining case, we assume without
loss of generality that F([1, 2]) = 1.

1 3 x̄ ?

2 B 3 C 1 A 2 B

C 1 A 2 B 3 C 1

Then [3, 2] is a 3-node, x̄ = [4, 2] is an {A, B , C }-node, and [5, 2] is an {1 , 2 , 3}-node.
However, F([5, 2]) ∈ {2 , 3} contradicts Claim 37, while F([5, 2]) = 1 contradicts the fact
that the 1-node [3, 1] is not adjacent to any 2-node. The contradiction obtained proves
Claim 40.

It immediately follows that the row [i, 2], i ∈ Z, is colored periodically with period [6, 0]
with new colors. We divide this situation into two subcases, depending on the number of
different colors in this row.

(a’) The row [i, 2] is colored with less than 6 colors. Then it contains two nodes of
the same color at distance 3 from each other. W.l.o.g., F([0, 2]) = F([3, 2]) = X ; denote
Y = F([2, 2]), Z = F([1, 2]).

X Z Y X

2 B 3 C 1 A

C 1 A 2 B 3
⇒

1 B

X Z Y X

2 B 3 C 1 A

C 1 A 2 B 3
⇒

1 A 2 B

X Z Y X

2 B 3 C 1 A

C 1 A 2 B 3

The right X -node at the picture must have a B -neighbor, which has three {1 , 2 , 3}-
neighbors. The node [2, 3] abobe the Y -node can only be a 2-node. Similarly, [1, 3] is an
A -node. Now (see the last picture above) the quotient matrix is completely determined,
and it is easy to see that the coloring is uniquely reconstructed and meets assertion (a)
of the lemma with β = 3.

(a”) The row [i, 2] is colored with exactly 6 colors.

· · · D 6 E 4 F 5 D 6 E 4 F 5 · · ·
· · · 2 B 3 C 1 A 2 B 3 C 1 A · · ·
· · · C 1 A 2 B 3 C 1 A 2 B 3 · · ·
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It is easy to see that the row [i, 3], i ∈ Z, has no {1 , 2 , 3 , A , B , C }-nodes (for example,
a 1-node cannot have a {4 , 5 , 6 , D , E }-neighbor, and an F -node cannot have two 1-
neighbors). So, there are two possibilities for that row.

1. It can have a {4 , 5 , 6 , D , E , F }-node, w.l.o.g., a 4 -node. According to Claim 37,
that 4-node can only be above a D -node, and by arguments similar as above we have
F([i, 3]) = F([i− 3, 2]) for all i ∈ Z.

· · · 4 F 5 D 6 E 4 F 5 D 6 E · · ·
· · · D 6 E 4 F 5 D 6 E 4 F 5 · · ·
· · · 2 B 3 C 1 A 2 B 3 C 1 A · · ·
· · · C 1 A 2 B 3 C 1 A 2 B 3 · · ·

From these four rows, we know the quotient matrix, and the coloring is uniquely recon-
structed and satisfies the statement of the lemma with β = 4.

2. In the other subcase, the row [i, 3], i ∈ Z, is colored with new colors so that
F([i, 3]) = F([i + 6, 3]). If the number of those new colors is less than 6, the arguments
similar to (a’) show that this number is 3 and that assertion (a) of the lemma holds with
β = 5. Otherwise, we have six new colors.

In its turn, the next row [i, 4], i ∈ Z, either satisfies F([i, 4]) = F([i− 3, 3]), i ∈ Z, or
colored with new three of six colors.

In the last case, we apply the same argument to the row [i, 4], then [i, 5], and so
on, until the colors are exhausted after some row [i, γ] in the sense that the number of
remaining colors is less than 6. If at least one new color remains, then similarly to (a’)
the next row [i, γ + 1] is colored with period [3, 0] and assertion (a) of the lemma holds
with β = 2γ + 1. Otherwise, the only possibility is F([i, γ + 1]) = F([i − 3, γ]), i ∈ Z.
From the γ + 2 rows [i, 0], . . . , [i, γ + 1], the quotient matrix and the coloring is uniquely
reconstructed and satisfies assertion (a) of the lemma with β = 2γ.

(b) α = 5 or α > 7.
The colors of [0, 0], [1, 0], . . . , [α − 1, 0] are pairwise distinct, by the definition of α.

The node [α, 0] (the right 1-node in the picture below) is colored with 1 .

1 2 3 4 5 · · · l

1 2 3 4 5 · · · l m n 1 ?

We see that the neighborhood of a 1-node has colors 2 , 4 , l , n . The color of [α + 1, 0]
(marked by ?) cannot be l or n . And it cannot be 4 , because F([3, 0]) = F([α + 1, 0])
contradicts the definition of α. So, it is 2 . Analogously, the color of [2, 1], and hence,
of [−1, 0], is n . Using similar arguments, we can prove by induction that F([i, 0]) =
F([i+ α, 0]) for any i ∈ Z, i.e., the row [i, 0] (and hence, [i, 1]) is colored with α colors in
a cyclic way.

Next, we see that a 4-node has a 1-neighbor. Also we know that F([6, 0]) 6= 1 because
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α 6= 6. Considering the 4-node [6, 1], we find that the color of [6, 2] is 1 :

1 2 3 4 5

1 2 3 4 5 6 1 ⇒

1

1 2 3 4 5

1 2 3 4 5

Therefore, F([i, 2]) = F([i− 3, 1]) = F([i− 6, 0]) for every i ∈ Z. Similarly, F is periodic
with period [3, 1].

Given a perfect coloring F of G(Z2), we say that two subsets M and N of Z2 are
colored similarly if ϕ(M) = (N) and F(ϕ(·)) ≡ F(·) for some automorphism ϕ of G(Z2).

Proposition 41. Let F be a perfect coloring of G(Z2) with quotient {0, 1}-matrix with
zero diagonal and without equal rows. Then every two radius-2 balls centered in nodes of
the same color are colored similarly.

Proof. Consider a radius-2 ball and denote colors of its nodes as follows:

e

d B a

h A 0 C f

c D b

g

We consider different cases depending on the equalities that can take place between the
colors a–f (independently of equalities that can occur between the colors of nodes of
different parities, for example, a = D or e = C ).

By Claim 37, two nodes of the same color cannot have difference in { [±1,±1], [0,±2],
[±2, 0], [±2,±2] }.

If there are two nodes of the same color with difference in { [±1,±3], [±3,±1] }, then
the statement holds by Lemma 39.

So, we can assume that all colors a–f are mutually different with maybe one or two
exceptions from e = g , f = h .

Now, if f 6= h (the case e 6= g is similar), then the statement is obvious: for any
0-node, the A - and C -neighbors at distance 1 from it must be opposite, and the colors
of the nodes at distance 2 from it are uniquely determined by the four {A, B , C , D}-
neighbors.

Consider the last remaining case: assume that the colors a–f are pairwise distinct
with two exceptions e = g and f = h . If the coloring F is bipartite, then it is one of
two colorings in the statement of Lemma 38. If F is not bipartite, then the corresponding
bipartite coloring F (each color is subdivided into two subcolors in accordance with the
parity of the node) satisfies the hypothesis of Lemma 38 and hence is one of the two
colorings in the conclusion of Lemma 38. The original coloring F is obtained from F by
identifying each color from 0–7 with one of A–H .
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Consider the right coloring (in further discussion, we refer the picture in Lemma 38).
Clearly, 0 cannot be identified with one of its neighbor colors A , B , C , D . Next, 0
cannot be identified with G or H (indeed, every {G, H }-node has 7 different colors at
distance 2 from it, while a 0-node has only 6). We assume it is identified with F (the
case of E is similar).

Consider the left coloring. Again, 0 cannot be identified with A , B , C , or D . The
remaining four cases (E , F , G , H ) are similar, and we again assume that 0 is identified
with F .

The rest of the proof is common for the both colorings. For every i from 1 to 6 ,
it holds d2(0 , i ) > 0, while for i = 7 this is not true: d2(0 , 7) = 0. Similarly, B is a
distinguished color with respect to F : d2(F , B ) = 0, while d2(F , j ) > 0 for any other
color j of the same parity. It follows that 7 is identified with B . Now, let us take a look
to the neighborhood of an F -node.

5 up to reflection←→
4 B 1 E

6 A 0 C 6 · · · C 6 A

3 D 2 · · · D 2 F 3 D

5 H 7 G
up to reflection←→ E

The neighbors of an F -node have colors 2 , 6 , 3 , 7 , and they should be identified with
the neighbor colors of a 0-node, i.e., with A , B , C , D , in some order. We already
know that 7 and B are identified. There is only one possibility for the other three colors,
taking into account that there is no two neighbor nodes of the same color. Therefore,

B 7

A 0 C = 2 F 3

D 6
, and finally we have

5

4 7 1 5

6 2 0 3 6 · · · 3 6 2

3 6 2 · · · 6 2 0 3 6

5 4 7 1

5

So, we have convinced that the conclusion of the proposition holds for two 0-nodes not
only of the same parity (which is immediate from Lemma 38), but also of different parities.

Proof of Theorem 1. The case when the coloring is bipartite and has twin colors is solved
by the characterization in Theorem 2 and Corollary 5.

If the coloring, F , is not bipartite and has two equal rows in the quotient matrix, then
the corresponding bipartite coloring F has twin colors and the quotient is a {0, 1}-matrix.
As in the paragraph above, F has a binary diagonal, and hence F has a binary diagonal
too.
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Assume we have a coloring F satisfying the hypothesis of the theorem without two
equal rows in the quotient matrix. We need to proof that the coloring is orbit, which, by
the definition, is equivalent to the following assertion.

Claim 42. For any two nodes x̄ and ȳ of the same color, there is an automorphism ϕ
of G(Z2) such that ϕ(x̄) = ȳ and for all ū ∈ Z2

F(ϕ(ū)) = F(ū). (9)

We prove the claim by induction on the distance l between x̄ and ū. By Proposition 41,
it holds if d(x̄, ū) 6 2, with some automorphism ϕ. Suppose (9) holds with the same ϕ
for every ū at distance less than l from x̄, where l > 3.

Consider ū at distance l from x̄. Consider a node x̄′ between x̄ and ū such that
d(x̄, x̄′) = l − 2 and d(x̄′, ū) = 2. By the induction hypothesis, F(ϕ(x̄′)) = F(x̄′) and,
moreover

F(ϕ(ū′)) = F(ū′) for all ū′ at distance 1 from x̄′, (10)

because all such ū′ satisfy d(x̄, ū′) 6 d(x̄, x̄′) + d(x̄′, ū′) = l − 1. Now, consider the
nodes x̄′ and ȳ′ = ϕ(x̄′). They have the same color, and by Proposition 41 there is an
automorphism ψ of G(Z2) such that ψ(x̄′) = ȳ′ and for all ū ∈ Z2

F(ψ(ū′)) = F(ū′) for all ū′ at distance at most 2 from x̄′. (11)

Now we see ϕ(x̄′) = ψ(x̄′). Moreover, from (10) and (11) we find that both ϕ and ψ
preserve the color of each neighbor of x̄′. Since the neighbors of x̄′ have pairwise different
colors, it follows that the values of ϕ and ψ coincide on the neighborhood of x̄′. Since an
automorphism of the grid G(Z2) is uniquely determined by its action on the neighborhood
of a node, we have ψ ≡ ϕ. Then, substituting ū′ = ū in (11), we obtain (9), which
completes the induction step and the proof of the theorem.

5 Non-orbit perfect colorings

Here, we provide examples of non-orbit perfect colorings of G(Z2), answering some natural
questions. At first, we observe that in the colorings shown in Fig. M–P and T–W merging
all groups of twin colors results in non-orbit bipartite perfect colorings without twin colors
(for example in Fig. M, a 1-node has two 4-neighbors in opposite directions, which is not
true for the two 4-neighbors of a 2-node; after merging, such nodes become of the same
color but cannot be in the same orbit), providing an infinite number of such examples.
One can ask if there are another examples (in particular, that cannot be obtained by
merging twin colors). Up to now, we know a finite number of examples of non-orbit perfect
colorings of G(Z2) without a binary or single-color diagonal. Here we list the numbers
of such colorings up to 9 colors, according to the catalogue [18]: 2-5, 2-7(1), 3-6, 3-8(1),
3-9(1), 3-14, 3-15, 3-17(2), 3-17(3), 3-20(1), 4-7, 4-13, 4-14(2), 4-16, 4-18, 4-29, 4-32(1),
4-32(2), 4-36, 4-37, 4-38(1), 4-41(1), 5-29, 5-36(1), 5-36(2), 5-42*, 5-43(1)*, 5-45, 6-22,
6-23, 6-36(1), 6-58(2), 6-67(1), 6-80(2)*, 6-81*, 6-83(1), 6-89(3)*, 8-32, 8-45, 8-49, 8-122,
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8-123(2), 8-150(1)*, 9-127; the underlined numbers correspond to bipartite colorings, the
symbol * indicates that the quotient matrix is a {0, 1}-matrix. Each bipartite coloring
from those examples is either of form G for some non-bipartite perfect colorings G, or
obtained from Theorem 2 by merging (not necessarily all) twin colors. Below, we show
two non-bipartite examples.

• 3-17(2,3): Examples of non-orbit perfect colorings with twin colors. Note that the
quotient matrix (the same for the two colorings) has no equal rows, and hence the
corresponding bipartite perfect colorings have no twin colors; so, the hypothetical
future characterization of non-bipartite perfect colorings of G(Z2) with twin colors
cannot be derived straightforwardly from Theorem 2.

1 3 3 2 1 3 3 2 1 3 3 2

1 3 3 2 1 3 3 2 1 3 3 2

2 2 1 1 2 2 1 1 2 2 1 1

3 1 2 3 3 1 2 3 3 1 2 3

3 1 2 3 3 1 2 3 3 1 2 3

2 2 1 1 2 2 1 1 2 2 1 1

1 3 3 2 1 3 3 2 1 3 3 2

1 3 3 2 1 3 3 2 1 3 3 2

1 3 3 2 1 3 3 2 1 3 3 2

1 2 1 2 1 2 1 2 1 2 1 2

3 2 1 3 3 2 1 3 3 2 1 3

3 1 2 3 3 1 2 3 3 1 2 3

2 1 2 1 2 1 2 1 2 1 2 1

2 3 3 1 2 3 3 1 2 3 3 1

1 3 3 2 1 3 3 2 1 3 3 2

1 2 1 2 1 2 1 2 1 2 1 2

• 8-150(1,2): An example of two colorings with the same {0, 1}-matrix, the first col-
orings is not orbit, the second one is orbit.

5 2 2 6 5 2 2 6 5 2 2 6

8 6 5 8 8 6 5 8 8 6 5 8

7 3 4 7 7 3 4 7 7 3 4 7

4 1 1 3 4 1 1 3 4 1 1 3

5 2 2 6 5 2 2 6 5 2 2 6

8 6 5 8 8 6 5 8 8 6 5 8

7 3 4 7 7 3 4 7 7 3 4 7

4 1 1 3 4 1 1 3 4 1 1 3

5 2 2 6 5 2 2 6 5 2 2 6

8 6 5 8 8 6 5 8 8 6 5 8

5 6 3 4 5 6 3 4 5 6 3 4

8 8 7 7 8 8 7 7 8 8 7 7

6 5 4 3 6 5 4 3 6 5 4 3

2 2 1 1 2 2 1 1 2 2 1 1

5 6 3 4 5 6 3 4 5 6 3 4

8 8 7 7 8 8 7 7 8 8 7 7

6 5 4 3 6 5 4 3 6 5 4 3

2 2 1 1 2 2 1 1 2 2 1 1

5 6 3 4 5 6 3 4 5 6 3 4

8 8 7 7 8 8 7 7 8 8 7 7

The number of colors (nine) for which the perfect colorings of G(Z2) are characterized is
relatively small to make convincing conjectures, but clearly, the problem of characteriza-
tion of all such colorings includes the following question:

Question. Is the number of non-orbit perfect colorings of G(Z2) without a binary or
single-color diagonal finite?
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A Appendix. Wallpaper groups and orbit colorings

The concept of orbit coloring plays a fundamental role in our study. Here, we briefly men-
tion the classification of subgroups of the automorphism group of G(Z2) of finite index
(i.e., with finite number of orbits), mainly focused on subgroups whose orbit partitions fit
the hypothesis and conclusion of Theorem 1. The set of nodes of G(Z2) can be naturally
treated as a set points of the Euclidean plain, forming a square lattice. Every automor-
phism of the square grid is continued to an isometry of the Euclidean plain. A group
of isometries of the Euclidean plain whose translation subgroup is additively spanned by
two linearly independent vectors (any group of automorphisms of G(Z2) of finite index
satisfies this condition) is called a wallpaper group. It is known that the wallpaper groups
are divided into 17 families (see, e.g., [10, Ch. 2]), where the groups in the same family
are conjugate to each other in the group of affine transformations of the plane. Of the 17
families, only 12 include subgroups of the automorphism group of G(Z2) (the groups from
the remaining 5 families contain a 120◦-rotation, and hence cannot be such a subgroup).
The groups are parameterized with three vectors ū, v̄, and ō. The vectors ū and v̄ are
periods that generate the translation subgroup; ō is some point of the plain that defines
the positions of the rotation centers and/or reflection (glide reflection) axes (some groups
do not depend on ō or depend only on one coordinate component of it).

There are three kinds of non-translation elements in wallpaper groups: rotations;
reflections; glide reflections (a glide reflection is the composition of a reflection and a
translation along the reflection axe).

The group of all automorphisms of G(Z2) is a wallpaper group of the type called p4m.
All its finite-index subgroups are listed in [30], as well as the wallpaper subgroups of each
of the 17 wallpaper groups.

It is easy to see that if a group of automorphisms of G(Z2) contains a rotation or
a reflection, then there is an orbit of nodes with the minimum distance 1 or 2 between
different elements. This means that the quotient matrix contains a non-zero element on
the main diagonal or an element larger than 1 anywhere. Hence, such orbit coloring cannot
be a covering of a simple graph. Below, we describe the two families (named p1 and pg)
of wallpaper groups that do not have reflections and rotations. The description of each
group is followed (after a bullet) by the restrictions on the parameters that are necessary
and sufficient for the group to be a subgroup of the automorphism group of G(Z2).

p1. The group does not have non-translation elements.

• For a p1 -group to consist of automorphisms of G(Z2), the translations must be
integer. For the orbit coloring of the nodes of G(Z2) to be a covering, all translations
must be different from [0,±1], [0,±2], [±1,±1]. The orbit coloring is bipartite if
and only if all translations are even.

pg. The translation subgroup is generated by two perpendicular vectors ū and v̄; the
non-translation elements are glide reflections with axes along ū through the points
ō+ j

2
v̄, j ∈ Z.
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• There are two possibilities for a pg-group to consist of automorphisms of G(Z2).

(a) Diagonal glide reflections: ū = [s, s], v̄ = [t,−t] or ū = [s,−s], v̄ = [t, t],
s, t ∈ Z+. For the orbit coloring of the nodes of G(Z2) to be a covering, s must
be at least 3 and t at least 2. There are additional restrictions:

(a0) if s is even, then ō is either integer or has two non-integer coordinate
components (and hence the reflection axes contain integer points); the
orbit coloring is bipartite in this case;

(a1) if s is odd, then ō has exactly one integer component (and hence the
reflection axes do not contain integer points); the orbit coloring is not
bipartite.

(b) Horizontal or vertical reflections: ū = [0, 2s], v̄ = [t, 0] or ū = [2s, 0], v̄ = [0, t],
s, t ∈ Z+. Case (b) is divided into three subcases:

(b0) all reflection axes contain integer points (even t);

(b1) there are reflection axes both containing and not containing integer points
(odd t);

(b2) none of reflection axes contains an integer point (even t).

Only subcase (b0) with even s and subcase (b2) with odd s correspond to
bipartite orbit colorings. For the orbit coloring of the nodes of G(Z2) to be a
covering, t must be at least 3 and s at least 2 for (b0) and (b1) and at least 1
for (b2).

B Appendix. Perfect colorings with twin colors

Here we describe 23 types of perfect colorings that, according to Theorem 2, exhaust the
bipartite perfect of G(Z2) with twin colors. Each type is represented with the coloring
shown in one of Fig. A–W, and the other colorings of the same type are obtained by
applying automorphisms of G(Z2), renaming colors, shifting binary diagonals, and/or
merging groups of twin colors.

Fig. K–W show infinite parameterized series, where n = m+ 1 = l + 2 = . . . = c+ 11
is the number of colors. The arrows show the direction in which the colors increase with
increment 2 (Fig. K–L), 5 (M–S), or 4 (T–W); the number of steps depends on n. Each
of Fig. K–W is accompanied with an analytic description of the corresponding coloring.

To simplify some descriptions, we introduce three colorings with infinite number of
colors. The coloring F23, F32, and F44 (partially illustrated in Fig. M–P, Fig. Q–S, and
Fig. T–W, respectively) are defined by the period [−4, 4] for F23, F32 and [4, 4] for F44

and the following equalities for each α ∈ {1, 2, 3, . . .}, γ ∈ {0, 1, 2, 3}:

F23([0, 0]) = F23([−2, 2]) = 1 , F23([−1, 1]) = F23([−3, 3]) = 2 ,

F23

(
± [α + γ − 1, α− γ]

)
= 5α− 1

2
− |γ − 3

2
| ,

F23

(
± [α + γ + 1, α− γ − 1]

)
= 5α + |2− γ| .
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F32([0, 0]) = F32([−2, 2]) = 1 , F32([−1, 1]) = F32([−3, 3]) = 2 ,

F32

(
[1
2
,−1

2
]± [α + β − 3

2
, α− β + 1

2
]
)

= 5α− |γ − 2| ,

F32

(
[1
2
,−1

2
]± [α + β − 1

2
, α− β + 1

2
]
)

= 5α + 5
2
− |γ − 3

2
| .

F44([0, 0]) = F44([2, 2]) = 1 , F44([1, 1]) = F44([3, 3]) = 2 ,

F44([α + γ, γ]) = F44([2 + γ, α + 2 + γ]) = 4α + γ − 1 .

9 8 4 7 9 7 4 8 9 8 4 7 9 7 4 8

7 5 3 6 8 5 2 6 7 5 3 6 8 5 2 6

4 2 1 2 4 3 1 3 4 2 1 2 4 3 1 3

8 6 3 5 7 6 2 5 8 6 3 5 7 6 2 5

9 7 4 8 9 8 4 7 9 7 4 8 9 8 4 7

8 5 2 6 7 5 3 6 8 5 2 6 7 5 3 6

4 3 1 3 4 2 1 2 4 3 1 3 4 2 1 2

7 6 2 5 8 6 3 5 7 6 2 5 8 6 3 5

9 8 4 7 9 7 4 8 9 8 4 7 9 7 4 8

7 5 3 6 8 5 2 6 7 5 3 6 8 5 2 6

4 2 1 2 4 3 1 3 4 2 1 2 4 3 1 3

7 6 2 5 8 6 3 5 7 6 2 5 8 6 3 5

2 2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2 2

Fig. A (Sunflower field). Twins: 2 , 3 ; 4 , 5 , 6 ; 7 , 8 . Periods: [8, 0], [4, 4].

9 7 4 8 10 8 4 7 9 7 4 8 10 8 4 7

7 5 3 6 8 6 2 5 7 5 3 6 8 6 2 5

4 2 1 2 4 3 1 3 4 2 1 2 4 3 1 3

8 6 3 5 7 5 2 6 8 6 3 5 7 5 2 6

10 8 4 7 9 7 4 8 10 8 4 7 9 7 4 8

8 6 2 5 7 5 3 6 8 6 2 5 7 5 3 6

4 3 1 3 4 2 1 2 4 3 1 3 4 2 1 2

7 5 2 6 8 6 3 5 7 5 2 6 8 6 3 5

9 7 4 8 10 8 4 7 9 7 4 8 10 8 4 7

7 5 3 6 8 6 2 5 7 5 3 6 8 6 2 5

4 2 1 2 4 3 1 3 4 2 1 2 4 3 1 3

7 5 2 6 8 6 3 5 7 5 2 6 8 6 3 5

2 2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 2 0

1 1 0 2

1 2 0 1 0

1 0 2 0 1

4 0

0 4

Fig. B (Poppy field). Twins: 2 , 3 . Periods: [8, 0], [4, 4].
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1 7 2 8 1 7 2 8 1 7 2 8 1 7 2 8 1 7

5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3

2 8 1 7 2 8 1 7 2 8 1 7 2 8 1 7 2 8

6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4

1 7 2 8 1 7 2 8 1 7 2 8 1 7 2 8 1 7

5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3

2 8 1 7 2 8 1 7 2 8 1 7 2 8 1 7 2 8

6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 4

1 7 2 8 1 7 2 8 1 7 2 8 1 7 2 8 1 7

5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3

1 1 1 1

1 1 1 1

2 0 1 1

0 2 1 1

1 1 2 0

1 1 0 2

1 1 1 1

1 1 1 1

Fig. C (Mountain lake). Twins: 1 , 2 ; 7 , 8 . Periods: [4, 0], [0, 4].
The quotient matrix is similar to that in Fig. J.

1 7 2 8 1 7 2 8 1 7 2 8 1 7 2 8 1 7

6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3

2 8 1 7 2 8 1 7 2 8 1 7 2 8 1 7 2 8

9 5 9 4 9 5 9 4 9 5 9 4 9 5 9 4 9 5

1 8 2 7 1 8 2 7 1 8 2 7 1 8 2 7 1 8

6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3

2 7 1 8 2 7 1 8 2 7 1 8 2 7 1 8 2 7

9 4 9 5 9 4 9 5 9 4 9 5 9 4 9 5 9 4

1 7 2 8 1 7 2 8 1 7 2 8 1 7 2 8 1 7

6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3

1 1 1 1

1 1 1 1

2 1 1 0

0 2 0 2

0 0 2 2

1 1 2 0 0

1 1 1 1 0

1 1 1 0 1

1 1 0 1 1

Fig. D (Beach). Twins: 1 , 2 . Periods: [4, 0], [0, 8].

6 1 4 2 6 1 4 2 6 1 4 2 6 1 4 2 6 1

10 5 9 5 10 5 9 5 10 5 9 5 10 5 9 5 10 5

6 2 4 1 6 2 4 1 6 2 4 1 6 2 4 1 6 2

7 3 8 3 7 3 8 3 7 3 8 3 7 3 8 3 7 3

6 1 4 2 6 1 4 2 6 1 4 2 6 1 4 2 6 1

10 5 9 5 10 5 9 5 10 5 9 5 10 5 9 5 10 5

6 2 4 1 6 2 4 1 6 2 4 1 6 2 4 1 6 2

7 3 8 3 7 3 8 3 7 3 8 3 7 3 8 3 7 3

6 1 4 2 6 1 4 2 6 1 4 2 6 1 4 2 6 1

10 5 9 5 10 5 9 5 10 5 9 5 10 5 9 5 10 5

1 1 1 1

1 1 1 1

1 1 1 1 0 0

1 1 0 1 1 0

1 1 0 0 1 1

1 1 1 0 0 1

2 0 0 2

2 2 0 0

0 2 2 0

0 0 2 2

Fig. E (Spring). Twins: 1 , 2 . Periods: [4, 0], [0, 4].
The quotient matrix is similar to that in Fig. W(n = 10).
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6 4 7 3 8 2 6 4 7 3 8 2 6 4 7 3

4 5 4 8 1 8 4 5 4 8 1 8 4 5 4 8

7 4 6 2 8 3 7 4 6 2 8 3 7 4 6 2

2 8 3 7 4 6 2 8 3 7 4 6 2 8 3 7

8 1 8 4 5 4 8 1 8 4 5 4 8 1 8 4

3 8 2 6 4 7 3 8 2 6 4 7 3 8 2 6

6 4 7 3 8 2 6 4 7 3 8 2 6 4 7 3

4 5 4 8 1 8 4 5 4 8 1 8 4 5 4 8

7 4 6 2 8 3 7 4 6 2 8 3 7 4 6 2

2 8 3 7 4 6 2 8 3 7 4 6 2 8 3 7

8 1 8 4 5 4 8 1 8 4 5 4 8 1 8 4

0 0 0 4

0 1 1 2

0 1 1 2

1 1 1 1

0 0 0 4

0 1 1 2

0 1 1 2

1 1 1 1

Fig. F (Street basketball). Twins: 2 , 3 ; 6 , 7 . Periods: [6, 0], [0, 6].

8 5 7 3 10 2 8 5 7 3 10 2 8 5 7 3

4 6 4 9 1 9 4 6 4 9 1 9 4 6 4 9

7 5 8 2 10 3 7 5 8 2 10 3 7 5 8 2

2 10 3 7 5 8 2 10 3 7 5 8 2 10 3 7

9 1 9 4 6 4 9 1 9 4 6 4 9 1 9 4

3 10 2 8 5 7 3 10 2 8 5 7 3 10 2 8

8 5 7 3 10 2 8 5 7 3 10 2 8 5 7 3

4 6 4 9 1 9 4 6 4 9 1 9 4 6 4 9

7 5 8 2 10 3 7 5 8 2 10 3 7 5 8 2

2 10 3 7 5 8 2 10 3 7 5 8 2 10 3 7

9 1 9 4 6 4 9 1 9 4 6 4 9 1 9 4

0 0 0 2 2

0 1 1 1 1

0 1 1 1 1

1 1 1 1 0

1 1 1 0 1

0 0 0 2 2

0 1 1 1 1

0 1 1 1 1

1 1 1 1 0

1 1 1 0 1

Fig. G (Beach volleyball). Twins: 2 , 3 ; 7 , 8 . Periods: [6, 0], [0, 6].

10 5 10 3 8 2 10 5 10 3 8 2 10 5 10 3

5 9 5 11 1 11 5 9 5 11 1 11 5 9 5 11

10 5 10 2 8 3 10 5 10 2 8 3 10 5 10 2

2 11 3 7 4 7 2 11 3 7 4 7 2 11 3 7

8 1 8 4 6 4 8 1 8 4 6 4 8 1 8 4

3 11 2 7 4 7 3 11 2 7 4 7 3 11 2 7

10 5 10 3 8 2 10 5 10 3 8 2 10 5 10 3

5 9 5 11 1 11 5 9 5 11 1 11 5 9 5 11

10 5 10 2 8 3 10 5 10 2 8 3 10 5 10 2

2 11 3 7 4 7 2 11 3 7 4 7 2 11 3 7

8 1 8 4 6 4 8 1 8 4 6 4 8 1 8 4

0 0 2 0 0 2

0 1 1 0 1 1

0 1 1 0 1 1

1 2 1 0 0 0

0 0 0 1 2 1

0 0 0 4 0

0 1 1 2 0

1 1 1 1 0

0 0 0 0 4

0 1 1 0 1

1 1 1 0 1

Fig. H (Football). Twins: 2 , 3 . Periods: [6, 0], [0, 6].
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1 2 1 2 1 2 1 2 1 2 1
7 8 7 8 7 8 7 8 7 8 7 8

3 4 3 4 3 4 3 4 3 4 3
5 6 5 6 5 6 5 6 5 6 5 6

1 2 1 2 1 2 1 2 1 2 1
7 8 7 8 7 8 7 8 7 8 7 8

3 4 3 4 3 4 3 4 3 4 3
5 6 5 6 5 6 5 6 5 6 5 6

1 2 1 2 1 2 1 2 1 2 1
7 8 7 8 7 8 7 8 7 8 7 8

3 4 3 4 3 4 3 4 3 4 3
5 6 5 6 5 6 5 6 5 6 5 6

1 2 1 2 1 2 1 2 1 2 1
7 8 7 8 7 8 7 8 7 8 7 8

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Fig. I (Fall). Twins: 1 , 2 , 3 , 4 ; 5 , 6 , 7 , 8 . Periods: [2, 2], [2,−2].

7 2 8 2 7 2 8 2 7 2 8
5 5 6 6 5 5 6 6 5 5 6 6

7 1 8 1 7 1 8 1 7 1 8
3 4 3 4 3 4 3 4 3 4 3 4

8 2 7 2 8 2 7 2 8 2 7
6 6 5 5 6 6 5 5 6 6 5 5

8 1 7 1 8 1 7 1 8 1 7
3 4 3 4 3 4 3 4 3 4 3 4

7 2 8 2 7 2 8 2 7 2 8
5 5 6 6 5 5 6 6 5 5 6 6

7 1 8 1 7 1 8 1 7 1 8
3 4 3 4 3 4 3 4 3 4 3 4

8 2 7 2 8 2 7 2 8 2 7
6 6 5 5 6 6 5 5 6 6 5 5

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 2 0

1 1 0 2

1 1 2 0

1 1 0 2

Fig. J (Apples & oranges). Twins: 1 , 2 ; 3 , 4 . Periods: [4, 0], [0, 4].
The quotient matrix is similar to that in Fig. C.
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5 k m 1 3 5 k m 1 3 5

4 6 l n 2 4 6 l n 2 4 6

1 3 5 k m 1 3 5 k m 1 3 5

n 2 4 6 l n 2 4 6 l n 2 4

k m 1 3 5 k m 1 3 5 k m 1

l n 2 4 6 l n 2 4 6 l n

k m 1 3 5 k m 1 3 5 k

6 l n 2 4 6 l n 2 4 6

3 5 k m 1 3 5 k m 1 3 5

2 4 6 l n 2 4 6 l n 2 4 6

m 1 3 5 k m 1 3 5 k m 1 3 5 k m 1 3 5

l n 2 4 6 l n 2 4 6 l n 2 4 6 l n 2 4 6

+2

+2

+2

+2

+2

+2

+2

1 1 · · · 1 1

1 1 · · · 1 1

1 1 1 1 · · ·
1 1 1 1 · · ·

1 1 1 1 · · ·
1 1 1 1

...
...
...
...

. . .
. . .
. . .
. . .
. . .

...
...
...
... 1 1 1 1

· · · 1 1 1 1

· · · 1 1 1 1

· · · 1 1 1 1

1 1 · · · 1 1

1 1 · · · 1 1

Figure K: n = 4(I), 8(I), 12, 16, 20, . . .. Twins: 1 , 2 ; 3 , 4 ; 5 , 6 , . . . . Periods: [2, 2],
[
n
2
, 0
]
.

F([α + β, β]) = 2α + β + 1 , α = 0, 1, . . . , n
2
− 1, β = 0, 1.
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+2
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1 1 1 1

1 1 1 1

1 1 1 1
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. . .
. . .
. . .
. . .
. . .

1 1 1 1

1 1 1 1

2 2

2 2

Figure L: n = 4(I), 6(I), 8, 10, 12, . . ..Twins: 1 , 2 ; 3 , 4 ; 5 , 6 ; . . . .Periods: [2, 2], [n− 2, 0].

F([±α + β, β]) = 2α + β + 1 , α = 0, 1, . . . , n
2
− 1, β = 0, 1.
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Figure M: n = 6(I), 11, 16, 21, 26, . . .. Twins: 1 , 2 ; m, n . Periods: [−4, 4],
[

2n−2
5
, 2n−2

5

]
.

F([x, y]) = F23([x, y]), |x+ y| < 2n−2
5
,

F([n−1
5
−2z−β, n−1

5
+2z+β]) = n−1+β , z ∈ Z, β ∈ {0, 1}.
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Figure N: n = 7(A), 12, 17, 22, 27, . . .. Twins: 1 , 2 . Periods: [−4, 4],
[

2n−4
5
− 2, 2n−4

5
+ 2
]
.

F([x, y]) = F23([x, y]), |x+ y| 6 2n−4
5
.
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Figure O: n = 4(I), 9, 14, 19, 24, . . .. Twins: 1 , 2 ; m, n . Periods: [−4, 4],
[

2n−3
5
, 2n−3

5

]
.

F([x, y]) = F23([x, y]), |x+ y| < 2n−3
5
,

F([n−4
5
−2z−β, n+1

5
+2z+β]) = n−1+β , z ∈ Z, β ∈ {0, 1}.
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Figure P: n = 4(I), 9, 14, 19, 24, . . .. Twins: 1 , 2 . Periods: [−4, 4],
[

2n−3
5
− 2, 2n−3

5
+ 2
]
.

F([x, y]) = F23([x, y]), |x+ y| 6 2n−3
5
.
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Figure Q: n = 7(I), 12, 17, 22, 27, . . .. Twins: 1 , 2 ; m, n . Periods: [−4, 4],
[

2n−4
5
, 2n−4

5

]
.

F([x, y]) = F32([x, y]), |x+ y| < 2n−4
5
,

F
(
[n−2

5
−2z−β, n−2

5
+2z+β]

)
= n−1+β , z ∈ Z, β ∈ {0, 1}.
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Figure R: n = 7(J), 12, 17, 22, 27, . . .. Twins: 1 , 2 . Periods: [−4, 4],
[

2n−4
5
− 2, 2n−4

5
+ 2
]
.

F([x, y]) = F32([x, y]), |x+ y| 6 2n−4
5
.
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Figure S: n = 5(I), 10, 15, 20, 25, . . .. Twins: 1 , 2 . Periods: [−4, 4],
[

2n−5
5
− 2, 2n−5

5
+ 2
]
.

F([x, y]) = F32([x, y]), |x+ y| 6 2n−5
5
.
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Figure T: n = 4(I), 8(I), 12, 16, 20, . . .. Twins: 1 , 2 ; m, n . Periods: [4, 4],
[
n
4
,−n

4

]
.

F([x, y]) = F44([x, y]), |x− y| < n
4
,

F
(
[n

4
+2z+β, 2z+β]

)
= n−1+β , z ∈ Z, β ∈ {0, 1}.
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Figure U: n = 4(I), 8(J), 12, 16, 20, . . .. Twins: 1 , 2 . Periods: [4, 4],
[
n
2
,−n
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]
.

F([x, y]) = F([n
2
+3−x, 3−y]) = F44([x, y]), |x− y| < n

4
,

F
(
[n

4
+4z+2+γ, 4z+2+γ]

)
= F

(
[4z+γ, n

4
+4z+γ]

)
= n−3

2
+|γ−3

2
| , z ∈ Z, γ ∈ {0, 1, 2, 3}.
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Figure V: n = 5(I), 9(A), 13, 17, 21, . . .. Twins: 1 , 2 . Periods: [4, 4],
[
n−1

2
,−n−1

2

]
.

F([x, y]) = F([n−1
2
−x,−y]) = F44([x, y]), |x− y| < n−1

4
,

F
(
[n−1

4
+4z+γ, 4z+γ]

)
= F

(
[4z+2+γ, n−1

4
+4z+2+γ]

)
= n−|2− γ| ,

z ∈ Z, γ ∈ {0, 1, 2, 3}.
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Figure W: n = 6(I), 10, 14, 18, . . .. Twins: 1 , 2 . Periods: [4, 4],
[
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4
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]
.

F([x, y]) = F44([x, y]), |x− y| 6 n−2
4
.
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