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Abstract

In this paper we give new bounds on the bisection width of random 3-regular
graphs on n vertices. The main contribution is a new lower bound of 0.103295n
based on a first moment method together with a structural analysis of the graph,
thereby improving a 27-year-old result of Kostochka and Melnikov. We also give
a complementary upper bound of 0.139822n by combining a result of Lyons with
original combinatorial insights. Developping this approach further, we obtain a
non-rigorous improved upper bound with the help of Monte Carlo simulations.

Mathematics Subject Classifications: 05C80, 68R10, 05D40, 05C30

1 Introduction

Given a graph G = (V,E) with even number of vertices (denoted by n), a bisection of G
is a partition of the vertex set of G into two equal parts, that is, subsets of equal sizes.
A bisection is a minimum bisection if the number of edges having endpoints in different

∗Dieter Mitsche has been supported by grant GrHyDy ANR-20-CE40-0002 and by Fondecyt grant
1220174.
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parts is minimized. The bisection width of a graph G, denoted by bw(G), is the number
of edges going between A and B in a minimum bisection.

The minimum bisection problem has received a lot of attention in mathematics, theo-
retical computer science and physics due to its applications in a number of graph layout
and embedding problems such as the routing performance of a network [15]. The al-
gorithmic problem of finding a minimum bisection is well known to be NP-complete in
general [22] and even in the particular case of 3-regular graphs [7]. Moreover, even ap-
proximating the bisection width up to a constant factor is hard (see for example [29]
and the references therein). On the positive side, O(log2 n)-approximation algorithms in
polynomial time exist [18], and exact polynomial time algorithms are available for graphs
of bounded treewidth [25].

In the context of random regular graphs, the minimum bisection problem has also
received quite a bit of attention. In this setting, one usually assumes that the number of
vertices tends to infinity, and the following results all hold only with probability tending
to 1 as n → ∞.

Regarding the bisection width of random 3-regular graphs, the first lower bound of
1
11
n ≈ 0.0909n was given by Bollobás [4], and this was later improved by Kostochka

and Melnikov to 0.10101n [31]. Since then, during the last 27 years, to the best of our
knowledge, no further improvements have been made. On the other hand, Kostochka and
Melnikov [30] proved an upper bound of 1

4
n+o(n) on the bisection width of any 3-regular

graph, which was later improved to 1
6
n for all sufficiently large 3-regular graphs by Monien

and Preis [34]. For random 3-regular graphs, a slightly weaker but simpler algorithmic
upper bound of 0.1740n was given by Dı́az, Do, Serna and Wormald [14]. This bound
was then improved by Lyons [33] to 0.16226n.

Concerning random d-regular graphs, the first lower bound for fixed d  3 was given by
Bollobás [4] who showed that the bisection width is at least (d

4
−

√
d log 2
2

)n. Independently,
Clark and Entringer [8] observed that the bisection width is at least (d

4
+od(d))n as d → ∞.

On the other hand, Alon [1] provided an upper bound of (d
4
− c

√
d)n for some sufficiently

small positive constant c and any d  3. To our knowledge, the currently best known
upper bound for d with 5  d  12 is due to Dı́az, Serna and Wormald [16], while for all

other d  3, Lyons [33] gave an upper bound of d
2π

arccos(2
√
d−1
d

)n < (d
4
−

√
d
π
)n. The case

d → ∞ was recently settled by Dembo, Montanari and Sen [13]. Therein, the authors

showed that the bisection width of a random d-regular graph is (d
4
− P∗


d
2
+ od(

√
d))n

where P∗ ≈ 0.7632 denotes the ground state energy of the Sherington-Kirkpatrick model.
For the Erdős-Rényi graph G(n, p) with p = c

n
for some constant c > 0, Luczak and

McDiarmid [32] identified a phase transition: they showed that for c < log 4, the largest
component has size less than 1

2
n and the bisection width of G(n, p) is 0, whereas for

c > log 4, the bisection width is already Ω(n). For denser graphs with p = c
n
and c → ∞,

Dembo, Montanari and Sen [13] later showed that the bisection width of G(n, p) has value
c
4
− P∗


c
4
+ oc(

√
c)

n with P∗ as above.

Regarding more general results, it is well known (at least since the 70’s, see Fiedler [19])
that λ2

4
n is a lower bound for the bisection width for any graph where λ2 is the second
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eigenvalue of the Laplacian of the graph. For random d-regular graphs, using Friedman’s
result [20], this translates into a lower bound of (d

4
−

√
d−1
2

)n (in particular, giving 0.0428n
for random 3-regular graphs). Later, several improvements using spectral techniques have
been made: for example, Bezroukov, Elsässer, Monien, Preis and Tillich [3] gave a lower
bound of 0.082n on the bisection width of 3-regular Ramanujan graphs.

A different line of research focused on estimating the bisection width in a planted
bisection model. More precisely, given an unknown partition of the vertex set into two sets
of equal sizes (corresponding to a planted bisection), add an edge between two vertices of
the same part with probability p+, and add an edge between two vertices of different parts
with probability p− < p+, independently for different edges. An asymptotic formula for
the bisection width in this setup was found by Coja-Oghlan, Cooley, Kang and Skubch [9]
when the difference between p+ and p− is sufficiently large. This result was further
extended by Sen [35] (for more references on the planted bisection problem, see [23]).
Closely related to the minimum bisection problem on random 3-regular graphs is also the
prominent conjecture of Zdeborová and Boettcher [38] who conjectured that the bisection
width of a random 3-regular graph is equal to the number of edges not crossing a maximum
cut up to o(n). Unfortunately, our paper does not shed light on this conjecture. Weak
indications in its favor come from the fact that the upper bound on the bisection width
in Theorem 1 is the same as the upper bound for the edges not crossing a maximum
cut from [21]. For recent advances on the maximum cut of random 3-regular graphs, see
also [10].

In this paper we focus on improving the results on random 3-regular graphs. Denote
by Gd(n) the set of all d-regular (multi)graphs. Note that graphs in Gd(n) can have loops
and multiple edges; graphs without loops and without multiple edges are called simple.
Denote also by G(n, 3) the random 3-regular graph with n vertices following the uniform
distribution over the set G3(n).

For a sequence of probability spaces (Ωn,Fn,Pn)n1 and a sequence of events (An)n1

where An ∈ Fn for every n  1, we say that (An)n1 happens asymptotically almost
surely or a.a.s., if lim

n→+∞
Pn(An) = 1. The sequence of events (An)n1 itself is said to be

asymptotically almost sure or again a.a.s.

Theorem 1. A.a.s. 0.103295n  bw(G(n, 3))  0.139822n.

Since the proof of the main theorem is rather cumbersome and relatively long, we
provide a detailed overview with pointers to different observations in the introduction. In
order to be precise, we first introduce the necessary notation.

1.1 Notation

We denote by N the set of all positive integers and by Z0 the set of all non-negative
integers. For every d ∈ N, we denote by [d] the set of integers {i | 1  i  d}.

For a graph H = (V,E) and U ⊆ V , we denote by H[U ] the subgraph of H induced
by the vertices in U . For a vertex v ∈ V , we denote by N(v) the neighborhood of v in
H, that is, N(v) = {u ∈ V : uv ∈ E}, and N [v] = v ∪N(v). The lowercase letters u, v, w
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will be reserved to denote vertices and the lowercase letters e, f will be reserved to denote
edges, possibly with some lower or upper indices. The order of a graph H is the number
of vertices in H, and the size of H is the number of edges of H. For k ∈ N, the k-core
Ck(H) of a graph H is the (unique) largest subgraph of H with respect to inclusion in
which every vertex is of degree at least k.

A subdivision of an edge e = uv in a graph H is an operation of deleting the edge e and
adding one new vertex w together with the edges uw and vw. Consecutive subdivisions
of the edges of a graph H produce a new graph H from H. By abuse of terminology we
call the graph H itself subdivision of the graph H. For a subdivision H of H, an edge
e and a vertex w as above, we say that the vertex w subdivides the edge e in H. For a
graph H = (V,E), we say that three vertices u, v, w ∈ V form a cherry with center v and
endpoints u, w if uv ∈ E and vw ∈ E. For a vertex v in H, we say that v is a leaf of
H if v is of degree one in H. Moreover, given a vertex v ∈ V and a non-negative integer
r, we denote by BH(v, r) the ball with center v and radius r consisting of all vertices at
(graph) distance at most r from v in H.

For a positive integer k, the k-star is the complete bipartite graph with parts of size
1 and k. A graph is a star if it is a k-star for some k  1. In a subdivision of a star, a
branch is a path that starts from its center and ends at some of the leaves.

A cut (V1, V2) of a graph H = (V,E) is a partition of V into two non-empty sets with
V1 ∪ V2 = V . Finally, the size of a cut (V1, V2), denoted by e(V1, V2), is the number of
edges with one endvertex in V1 and one endvertex in V2.

1.2 Detailed overview of the proofs.

The main contribution of this paper is the lower bound of Theorem 1.
The most difficult part of the proof of the lower bound is dedicated to a detailed char-

acterization of structural properties that a minimum bisection typically possesses. On a
high level, we show that if certain (forbidden) substructures appear, then one could switch
vertices between the parts of the bisection and thus reduce the total number of edges going
between these two parts. We use this to do a refined first moment computation.

The structural characterization goes as follows. To begin with, we show that a.a.s. the
random graph G(n, 3) is usual meaning that its bisection width is at least 0.1n by the
result of Kostochka and Melnikov (Theorem 7), and it has at most log n vertices in cycles
of length at most 20 (we remark that in the above definition, any linear lower bound on
the bisection width is sufficient for our purposes.) Given a minimum bisection (V1, V2) in
a usual graph G, we show (via some elementary analysis of the local structure of the two
parts) that for both i = 1, 2, Vi contains a linear number of vertex pairs u, v such that both
vertices u, v are of degree 2 in G[Vi], and u and v are at (graph) distance at most 4 from
each other in G[Vi] (Lemma 12). This allows us to deduce that up to O(1) vertices, G[Vi]
and its 2-core coincide (Lemma 13). Exchanging the vertices outside the 2-cores provides
a cut (U1, U2) which is almost a bisection (the differences of the two parts is O(1)), has
minimum size among the cuts (W1,W2) with |W1| − |W2| = |U1| − |U2| (Lemma 14 and
Corollary 15), and both G[U1] and G[U2] coincide with their 2-cores. We will then deal
with such minimum “almost” bisections with parts U1 and U2.
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Once the cut (U1, U2) is defined, for both i = 1, 2, we encode the graph G[Ui] by a
weighted 3-regular graph G3,i where the weight of each edge corresponds to the number
of times the edge was subdivided in the construction of G[Ui] (see Definition 16, where
we also define the subgraph G+

3,i of G3,i consisting of the edges of positive weight). By
using that the cut (U1, U2) cannot be reduced by keeping the sizes of U1 and U2 fixed, we
show in Observations 17 and 18 that two cases emerge.

In the first case, there is i ∈ {1, 2} such that the sum of weights of the edges in G3,i

having weight at least three is more than seven. Then, G+
3,3−i has O(1) vertices of degree

three and O(1) edges of weight at least two. This gives rise to a first type of cuts (U1, U2)
where G+

3,3−i essentially contains only paths and cycles of edges of weight one while the
structure of G3,i remains unresticted.

In the second case, both G+
3,1 and G+

3,2 have O(1) edges of weight at least three. For

both i = 1, 2, we define the weighted graph G2
3,i as the subgraph of G+

3,i obtained by

deleting these edges (again, see Definition 16). We call a vertex in G2
3,i critical if it either

has degree three or is incident to an edge of weight two, and define Si ⊆ V (G[Ui]) as
the set of all critical vertices in G2

3,i (seen in G[Ui]) together with the vertices in G[Ui]

that subdivide the edges, which are incident to the critical vertices in G2
3,i . At the end of

Section 3 we show that for both i = 1, 2 and every ℓ  2, either |Si|  52ℓ+ 1091 or one
may delete O(1) edges from G2

3,3−i to ensure that no path of length ℓ/3 and consisting of
edges of weight 1 connects two critical vertices (Corollary 33). Finally, assuming without
loss of generality that |S1|  |S2|, we study the cases |S1|  log2 n (bisections of type
one, which also cover the first case described in the previous paragraph) and |S1|  log2 n
(bisections of type two).

For both types of bisections, we perform a first moment method. In Section 4, we deal
with bisections of type one. First, we count the number of possible skeletons for the graph
Gpc,1 = G+

3,1 \ S1 of order βn for some β ∈ [0.1, 0.5]. Then, we fix one possible skeleton
and label its vertices. Once this labeling is constructed, we bound from above the number
of extensions of Gpc,1 to G[U1], and consequently to G. Finally, we optimize with respect
to the parameter β to get that bisections of type one and size at most 0.1069n are a.a.s.
not contained in G(n, 3).

In Section 5, we deal with bisections of type two. In this (slightly harder) case,
we first define an auxiliary graph that very much resembles G2

3,i for both i = 1, 2 and
only consists of paths with at most one edge of weight two, cycles with edges of weight
one, subdivisions of 3-stars with edges of weight one, and o(n) further edges. Then, we
apply the first moment method to count bisections according to the form of the auxiliary
graph associated to G2

3,1 and to G2
3,2, respectively (which then can be transferred to a

first moment method for the original graph). Since we want to count graphs instead of
bisections, we also use an additional lemma (that may be of independent interest), which
allows us to reduce the first moment: in Lemma 48, we show that in a bipartite graph
H of maximal degree two with parts H1 and H2, there exists an independent set having
roughly |V (H1)|/2 vertices in H1 and also |V (H2)|/2 vertices in H2. This allows us to
derive that one choice of auxiliary graphs gives rise to many different bisections of the
same size, and therefore, we may divide by the corresponding overcounting factor.
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The complementary upper bound of Theorem 1 has two main ingredients. It is based
on an idea of Lyons [33] using a result of Csóka, Gerencsér, Harangi and Virág [11].
Knowing that the sequence of random regular graphs (G(n, 3))n1 a.s. locally converges

to T3, Lyons used a sequence of Gaussian processes (X
(n)
v )v∈V (G(n,3)) that converges in

distribution to the Gaussian wave function associated to the second largest eigenvalue of
the transition operator of the (infinite) 3-regular tree T3. Then, he defined a cut of the
graph G(n, 3) (that a.a.s. bisects it up to o(n) vertices) based on the sign of the variables

(X
(n)
v )v∈V (G(n,3)), and used some local improvements to deduce a bisection of size approx-

imately 0.16226n. We refine this strategy by using more complicated local modifications
based on the structural insights from the proof of the lower bound. More precisely, we
define an auxiliary bipartite graph whose vertices are centers of border cherries (that is,
cherries whose leaves both have the opposite sign to the center of the cherry) and whose
edges cross the cut described above (see also Figure 17). Then, using Lemma 48 again,
we show that we may switch certain centers of border cherries, thereby reducing the size
of the constructed bisection. We conclude with a non-rigorous improvement obtained by
switching vertices based on an even more complicated substructure (unfortunately we are
not able to compute the associated integral, not even numerically).

1.3 Organization of the paper.

In Section 2 we introduce basic concepts and lemmas used in the proof of the lower bound.
In Section 3 we describe several forbidden subgraphs that do not appear in a minimum
bisection of a typical 3-regular graph, ending with a characterization of two types of
candidates for a minimum bisection. In Section 4 we compute the expected number of
minimum bisections of type one. In Section 5 we do the same for minimum bisections of
type two, this time with an additional regrouping with respect to the underlying 3-regular
graph they originate from. Section 6 is devoted to the proof of the upper bound.

2 Preliminaries

In this section we introduce a few basic concepts that will be used in the sequel.

Observation 2. In a graph of maximum degree three, two cycles are vertex-disjoint if
and only if they are edge-disjoint.

Proof. Two vertex-disjoint cycles are clearly edge-disjoint. On the other hand, if two
cycles have a common vertex but no common edge, then the degree of this common
vertex must be at least four, thus contradicting the maximum degree condition in the
statement.

We now introduce the probability space we will be working in until the end of this
paper. For two sequences of probability measures (Pn)n1 and (Qn)n1 defined on sequence
of spaces (Ωn,Fn)n1 respectively, we say that (Pn)n1 is contiguous to (Qn)n1 if for every
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sequence of measurable properties (An)n1, limn→∞ Pn(An) = 0 implies limn→∞ Qn(An) =
0.

Configuration model. Given positive integers d, n with dn even, consider dn points
(Pi,j)1id,1jn regrouped into n buckets according to their second index. The configura-
tion model is the probability space of all perfect matchings of these dn points equipped
with the uniform probability measure. It was introduced by Bender and Canfield [2] and
further developed by Bollobás [6] and Wormald [36].

We call configuration a perfect matching of (Pi,j)i∈[d],j∈[n]. We also call partial configu-
ration a matching of (Pi,j)i∈[d],j∈[n] which is not necessarily perfect. In order to transition
from configurations to graphs, identify the buckets with the n vertices of G(n, d), and
connect vertices v and v′ by k edges if the configuration contains k pairs consisting of one
point in the bucket v and one point in the bucket v′ (in particular, one might add loops
as well). It is well known that for any fixed value of d, this model is contiguous to the
uniform distribution on simple d-regular graphs, see [26].

The following lemma is a standard result in the field of random graphs.

Lemma 3 ([37], Theorem 2.6 and [5]). For every ℓ  1 and d  3, the number of cycles
of length ℓ in a random d-regular graph converges in distribution to a Poisson random
variable.

The next well-known observation explains how to algorithmically construct the 2-core
of a graph. For the sake of completeness, we give the proof of it as well.

Observation 4. The 2-core of a graph H is well-defined and may be obtained by consec-
utive deletions of the vertices of degree zero and one.

Proof. In the end of the deletion process, one obviously obtains a subgraph H ′ of H of
minumum degree at least two. On the other hand, suppose for the sake of contradiction
that there is another graph H ′′ ∕⊆ H ′ which has minimal degree at least two. Then,
H ′∪H ′′ is also a subgraph of H of minimum degree at least two. Let v be the first vertex
of H ′′ \ H ′ that has been deleted throughout the construction of H ′. At the moment of
its deletion, since v ∈ H ′′, v had degree at least two, which is a contradiction. Thus,
every subgraph of H of minimal degree at least two is contained in H ′, which proves the
observation.

Bounds on the number of partitions. We first state a weak version of the Hardy-
Ramanujan theorem on the number of integer partitions that will be sufficient for our
purposes.

Theorem 5 ([24]). The number of partitions of an integer n is exp(Θ(
√
n)) as n → ∞.

The next lemma is an application of the previous theorem.

Lemma 6. For every integer M  3, the number of unlabeled forests on n vertices in
which every connected component is a subdivision of a star with at most M leaves, is
exp(o(n))).
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Proof. To construct a forest, one may first partition its n vertices into subsets that induce
the trees of the forest, and then decide on the structure of each tree separately. Since
the number of partitions of n is exp(o(n)) by Theorem 5, we only need to prove that,
for a fixed partition, the number of ways to form a forest of the above type is at most
exp(o(n)). Observe that the number of unlabeled stars of order t with at most M leaves
is given by the number of partitions of t− 1 into at most M parts. This number is equal
to the number of non-negative integer solutions of the equation x1 + · · · + xM = t − 1,
which is at most (t− 1)M < tM .

On the other hand, for every t  1, let ct be the number of sets of size t in the partition
of n. First, consider the vertex sets of size at least log n. The number of forests induced
by these vertices is bounded above by


tlogn t

ctM where


tlogn tct  n. We conclude
that



tlogn

tctM = exp




tlogn

(log t)ctM


 exp


max
tlogn

M log t

t

 

tlogn

tct


= exp(o(n)).

(1)
Next, for the smaller parts, we need to refine the previous upper bound. As before,

the number of stars on t vertices remains at most tM . We count the number of ways
to partition the ct sets of size t into groups where one group consists of the vertex sets
inducing a particular star. As every group has size between 0 and ct, and there are at
most tM groups, the number of partitions as above is at most (ct+1)t

M
. This means that

the number of (unlabeled) forests induced by the vertices in the smaller parts is at most

logn

t=1

(ct + 1)t
M 

logn

t=1

n
t
+ 1

tM

 (n+ 1)(logn)
M+1

= exp(o(n)). (2)

Combining (1) and (2) finishes the proof.

3 Structural properties of minimum bisections of the random
3-regular graph

The aim of this section is to give a detailed description of the structure of minimum
bisections of the random 3-regular graph. In the proof, we use the already mentioned
lower bound of Kostochka and Melnikov [31].

Theorem 7. The bisection width of G(n, 3) is a.a.s. at least 10
99
n ≈ 0.101n.

First, we define some concepts used in the proof of Theorem 1. Let G = (V,E)
be a graph and let (V1, V2) be a cut of G. We will aim to decrease the size of the cut
(V1, V2) while keeping the sizes of the sets V1 and V2 unchanged. For some i ∈ {1, 2}
and ℓ ∈ N, a set S ⊆ Vi is called (i, ℓ)-winning (with respect to the cut (V1, V2)) if
e(V1, V2) − e(Vi \ S, V3−i ∪ S) = ℓ. For ℓ ∈ N, a subset S of V is ℓ-winning or simply
winning if there is i ∈ {1, 2} such that S is entirely contained in Vi and S is an (i, ℓ)-
winning set. See Figure 1.
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V1 V2S

Figure 1: An illustration of a 1-winning set S.

A subset S of V is indifferent if there is i ∈ {1, 2}, for which S ⊆ Vi and e(V1, V2) =
e(Vi \ S, V3−i ∪ S). A set S ⊆ Vi is (i, ℓ)-losing if e(V1, V2) − e(Vi \ S, V3−i ∪ S) = −ℓ,
and ℓ-losing (or just losing) if it is (i, ℓ)-losing for some i ∈ {1, 2} and ℓ ∈ N. Finally, an
improvement of the cut (V1, V2) is an operation of exchanging two sets S1 and S2, with
|S1| = |S2|, S1 ⊆ V1 and S2 ⊆ V2, for which

e(V1, V2)− e(S2 ∪ (V1 \ S1), S1 ∪ (V2 \ S2))  1.

Thus, the operation of improvement of a given cut creates a new cut of smaller size. More-
over, it does not change the sizes of the two sets participating in the cut. In particular, if
the cut is a bisection, improvements also produce a bisection.

In the sequel, we call a 3-regular graphG of order n usual if the following two conditions
are both satisfied:

• the bisection width of G is at least 0.10n,

• there are at most log n vertices in cycles of length at most 20.

We remark that the choice of 20 in the second point of the above definition is somehow
arbitrary – it could be replaced by every large enough positive integer.

Observation 8. A.a.s. G(n, 3) is usual.

Proof. First, the bisection width of a uniformly chosen graph is a.a.s. at least 0.10n due
to Theorem 7. Second, by Lemma 3, the number of cycles of fixed length converges in
distribution to a Poisson random variable. Thus, the number of vertices in cycles of length
at most 20 converges in distribution to a tight random variable, and is therefore less than
log n a.a.s. Thus, a.a.s. both properties in the definition of a usual graph are satisfied.

From now on, we fix a minimum bisection (V1, V2) in a usual graph G.

Observation 9. For both i = 1 and i = 2, each of the following holds.
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1. For every vertex u of degree two in G[Vi] and for every d  0, |BG[Vi](u, d)| 
2d+1 − 1. Moreover, if all vertices at distance at most d from u have degree three in
G[Vi] and none of them participates in cycles of length at most 2d, the above bound
is sharp.

2. For every vertex u of degree one in G[Vi] and for every d  0, |BG[Vi](u, d)|  2d.
Moreover, if all vertices at distance at most d have degree three in G[Vi] and none
of them participates in cycles of length at most 2d, the above bound is sharp.

Proof. The first point follows from a strong induction showing that for every i  1, there
are at most 2i vertices at distance at most i from u in G[Vi] with equality if the i-th
neighborhood of u in G[Vi] is a binary tree of height i. The second point follows in a
similar way.

The previous lemma yields the following corollary.

Corollary 10. For both i = 1 and i = 2 and for every large enough n, there are two
vertices of degree at most two and at distance at most eight in G[Vi].

Proof. We argue by contradiction. By assumption, the balls of radius four around the
vertices of degree one or two in G[Vi] are disjoint. Since G is usual, first, there are at
least 0.05n vertices of degree one or two in G[Vi], and second, the number of vertices
participating in cycles of length at most 8 is at most log n. Therefore, the balls of radius
four around at least 0.05n − 8 log n of the vertices of degree one or two in G[Vi] contain
at least min(25 − 1, 24) = 16 vertices. In total, this shows that the vertices in G[Vi] are
at least 16(0.05n − 8 log n) = 0.8n − o(n), which is a contradiction. The corollary is
proved.

Corollary 11. For both i = 1 and i = 2 and for every large enough n, the number of
vertices of degree 0 or 1 in G[Vi] is at most 19.

Proof. Fix i ∈ {1, 2}. Since (V1, V2) is a minimum bisection of G, there is no improvement
of (V1, V2) in G. By Corollary 10 there is a path (vj)

s
j=0 in G[V3−i] where s  8 and v0, vs

are both of degree at most 2 in G[V3−i]. Then, the vertices (vj)
s
j=0 form a (3 − i, s − 1)-

losing set. We show that there cannot exist s + 1 vertices in Vi of degree at most one
in G[Vi] outside the neighborhood of the path (vj)

s
j=0 in G. Indeed, such a set would be

(i, ℓ)-winning for some ℓ  s+1, and exchanging it with the vertices (vj)
s
j=0 in V3−i would

lead to an improvement of (V1, V2) in G. On the other hand, (vj)
s
j=0 have at most s + 3

neighbors in Vi in G (at most one for each of (vj)
s−1
j=1, and at most two for v0 and vs), so

in total the number of vertices of degree one in G[Vi] is at most s+ (s+ 3)  19.

Lemma 12. For every large enough n and for both i = 1 and i = 2, there are at least
n

4000
disjoint pairs of vertices of degree 2 in G[Vi] at distance at most 4.
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u

v

w1
w2

w3

w4

G[Vi]

Figure 2: In the figure, the thick black vertices are the ones of degree two in G[Vi] and the
others are of degree one or three in G[Vi]. Note that some edges of G[Vi] are not drawn to
preserve the clarity of the figure. The vertices of V ′

i are the ones contained in the smallest
of the three nested regions (encircled in red). The vertices u and v are at distance less
than five from V ′

i , but do not participate in V ′
i . The vertices w1, w2, w3 and w4 are at

distance at least five from V ′
i and therefore the balls of radius two in G[Vi] around them

are disjoint.

Proof. We argue by contradiction. Call a pair of vertices in G[Vi] good if both have degree
2 and are at distance at most 4 in G[Vi], and suppose that there are no n

4000
disjoint good

pairs. Let us construct a set V ′
i ⊂ Vi as follows: as long as Vi \ V ′

i contains a good
pair u, v, add both u and v to V ′

i . In particular, |V ′
i |  n

2000
and for every good pair,

at least one of its vertices belongs to V ′
i . Moreover, by maximality of V ′

i , every vertex
v ∈ Vi of degree 2 and at distance at least 5 from V ′

i in G[Vi] is such that BG[Vi](v, 4)
contains only vertices of degree 3 in G[Vi]. We conclude that the balls of radius 2 around
vertices of degree 2 in G[Vi], which are at distance at least 5 from V ′

i , are disjoint, see
Figure 2. Since G is a usual 3-regular graph and (V1, V2) is a minimum bisection of G by
Corollary 11 the total number of vertices of degree 2 in G[Vi] is at least

n
10

− 3 · 19 (every
vertex participates in at most 3 edges between V1 and V2) and out of these vertices of
degree 2 at least n

10
− 3 · 19 − (1 + 2) · 19 = n

10
− 114 are at distance at least 3 from all

leaves in G[Vi]. Moreover, G contains at most log n vertices in cycles of length at most 4.
By Observation 9, the number of vertices in Vi \ V ′

i should be at least

 n

10
− 114− 4 log n− |V ′

i |(25 − 1)

(23 − 1)  7n

10
− 217n

2000
− 28 log n− 798  55n

100
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S1
S2

S3

S4

S5

G[Vi]

Figure 3: A possible choice of sets S1, S2, S3, S4, S5 from the proof of Lemma 13 for a
given graph G[Vi]

for every large enough n. This is a contradiction since |Vi| = n
2
.

Next, we show that for both i ∈ {1, 2}, almost all vertices in Vi belong to the 2-core
of G[Vi].

Lemma 13. For both i = 1 and i = 2 and for all sufficiently large n, the graph
G[Vi] \ C2(G[Vi]) contains at most five vertices.

Proof. We argue by contradiction. Starting from the leaves of G[Vi], we consecutively
construct sets S0 = ∅ ⊂ S1 ⊂ S2 ⊂ S3 ⊂ S4 ⊂ S5 such that:

• ∀j ∈ [5], |Sj| = j,

• for every j ∈ [5] there is ℓ  j, for which Sj is an (i, ℓ)-winning set with respect to
(V1, V2).

More precisely, for every j ∈ [5], we construct Sj from Sj−1 by adding a leaf or an
isolated vertex of G[Vi] \ Sj−1. Notice that this construction is possible for every j ∈ [5]
by our assumption and Observation 4, see Figure 3.

Now, note that there are at most 5(34− 1) = O(1) vertices at distance at most 4 from
S5 in G. Thus, by Lemma 12, for every sufficiently large n there is a pair of vertices u, v of
degree 2 and at distance d  4 in G[V3−i] such that no vertex on a shortest path between
u and v is connected to S5 in G. Denoting by P the set of vertices on a shortest path
between u and v, we see that P is a (3− i, d− 1)-losing set without edges towards Sd+1.
Hence, exchanging P and Sd+1 leads to an improvement, a contradiction.

Now, given a minimum bisection (V1, V2) of G, let us first move all vertices in G[V1] \
C2(G[V1]) to V2, thus forming a set V2. Then, move the vertices in

G[V2] \ C2(G[V2]) back to V \ V2, thus forming a cut (U1, U2) of G.
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Note that G[U2] is a graph with minimum degree 2. Moreover, G[U1] may be obtained
from C2(G[V1]) by consecutively attaching vertices of degree at least 2 (corresponding to

consecutive deletions of vertices of degree 0 or 1 in G[V2]). Thus, both G[U1] and G[U2]
coincide with their 2-cores. Another easy observation is that ||U1| − |U2||  10: indeed,

the vertices in V2 outside the 2-core of G[V2] either belong to V1 (and were sent to V2

during the first exchange) or belong to V2 but remain outside the 2-core of G[V2]. By
Lemma 13, this number of vertices is at most 10.

The following lemma shows that, roughly speaking, the minimality assumption for the
size of the bisection (V1, V2) remains correct for the cut (U1, U2).

Lemma 14. For every large enough n, the cut (U1, U2) obtained from (V1, V2) has minimal
size among the family of cuts {(W1,W2) | |W1|− |W2| = |U1|− |U2|}.

Proof. We argue by contradiction. Let (W1,W2) be a cut with |W1|− |W2| = |U1|− |U2|
and of smaller size than (U1, U2). Assume without loss of generality |U1|  |U2|, and note

that moving a vertex from V1 to V2 or from V2 back to the first part (strictly) decreases
the size of the cut. Hence, using that at least (|U1|− |U2|)/2 vertices changed their part
during the exchange, the size of (U1, U2) is at most e(V1, V2) − (|U1| − |U2|)/2. Notice
that the cut (W1,W2) contains at least n/10−15 edges since otherwise sending any set of
(|W1|−|W2|)/2  5 vertices from W1 to W2 would lead to two parts with the same number
of vertices, which form a bisection of size less than n/10 in the usual graph G. We conclude
that there is a set of at least n/30 − 5 vertices in W1 with an edge to W2 in G. Notice
that every vertex with an edge in the cut is of degree at most two in the graph induced by
its part. Therefore, by Observation 9, there is a set of at least n/90− 2 non-neighboring
vertices of degree at most two in G[W1]. Sending any (|W1| − |W2|)/2 of them to W2

produces a bisection of size e(W1,W2) + (|W1|− |W2|)/2 < e(U1, U2) + (|U1|− |U2|)/2 
e(V1, V2). This is a contradiction with the minimality of the size of the bisection (V1, V2),
which proves the lemma.

Corollary 15. The cut (U1, U2) of the graph G does not admit improvements.

Since any constant difference between the sizes of the two parts will not alter sub-
sequent ideas and calculations, we abuse terminology and call bisections these “almost
balanced” cuts as well. However, we will keep the notation (U1, U2) for such almost bal-
anced cuts and (V1, V2) for true bisections.

Definition 16. For both i = 1 and i = 2, we define:

• G3,i as the unique 3-core whose edges may be subdivided to obtain the graph G[Ui].
Moreover, we define a weight for every edge of G3,i equal to the number of times
this edge should be subdivided in the construction of G[Ui]. The weight of the edge
e in G3,i will be denoted by p(e), see Figure 4.

• G+
3,i as the graph obtained from G3,i by deleting the edges of weight 0.
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G[Ui]

G3,i

G+
3,i

e1
e2

e3

e4

e5
e6

Figure 4: Top figure: An example of the graph G[Ui]. Middle figure: the corresponding
graph G3,i. Bottom figure: the graph G+

3,i. In it, the weight of the edges e2, e4, e5 is one,
the weight of e1 and e6 is two and the weight of e3 is three.
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• G2
3,i as the graph obtained from G+

3,i by deleting all edges of weight more than 2.

Observation 17. For both i = 1 and i = 2, at most one of the following happens:

1. The sum of the weights of the edges

{e ∈ E(G3,i) | p(e)  3}

is more than five.

2. G3,3−i contains at least nine edges of weight at least two.

Proof. We argue by contradiction. Suppose that each of the above two events happens
for some i ∈ {1, 2}. We consider two cases: either there are two edges e1, e2 in G3,i with
p(e1)  3 and p(e2)  3 or there is an edge e3 in G3,i with p(e3)  6. We define (wi)1i6

as follows:

• In the first case, (wi)1i3 are consecutive vertices subdividing the edge e1 and
(wi)4i6 are consecutive vertices subdividing the edge e2 in G3,i (see the left part
of Figure 5).

• In the second case, (wi)1i6 are consecutive vertices subdividing the edge e3 in G3,i.

By assumption there are edges (fj)1j9 in G3,3−i, each of weight at least two. More-
over, there are at least three of these edges that are subdivided by vertices, none of which
is adjacent to any of (wi)1i6. Let f

′
1, f

′
2, f

′
3 be one such choice of edges among (fj)1j9.

Then, exchanging the set of vertices (wi)1i6 in Ui and three pairs of neighboring vertices
of degree two in G[U3−i] subdividing f ′

1, f
′
2 and f ′

3 respectively, leads to an improvement
of the cut (U1, U2). This is a contradiction with Corollary 15, which proves the observa-
tion.

Observation 18. For both i = 1 and i = 2, at most one of the following happens:

1. The sum of the weights of the edges

{e ∈ E(G3,i) | p(e)  3}

is more than seven.

2. G+
3,3−i contains at least 21 vertices of degree three.

Proof. Suppose that each of the two events above happens for some i ∈ {1, 2}. Let
(ej)1js be a set of at most three edges in G3,i of weights p(e1)  . . .  p(es)  3 and



1js

p(el)  8.

There are three cases.
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Figure 5: To the left: the first case from the proof of Observation 17. To the right: the
first case from the proof of Observation 18. Only the edges contained in the two parts of
the bisection are given. Edges between the two parts are not depicted, however, in both
cases there is no edge between the two sets of vertices exchanged between U1 and U2.

• In the first case, s = 3 and there are three connected sets of vertices (wi)1i3,
(wi)4i6 and (wi)7i8 in G[Ui], subdividing e1, e2 and e3 respectively in G3,i (see
the right part of Figure 5).

• In the second case, s = 2 and there are two connected sets of vertices, regrouped
either as (wi)1i4 and (wi)5i8 or as (wi)1i5 and (wi)6i8, subdividing e1 and
e2 respectively in G3,i.

• In the third case, s = 1 and there is a connected set of vertices (wi)1i8, subdividing
e1.

Let also (vi)1i21 be vertices of degree three in G+
3,3−i. Out of these 21 vertices, at

least five are at distance at least three from the set (wi)1i8 in G. Indeed, every vertex
of degree three in G[U3−i] at distance at most two from the set (wi)1i8 in G must be
adjacent to some of the eight neighbors of the vertices (wi)1i8 in U3−i. Moreover, out
of this subset of five vertices there are two vertices v′1 and v′2, which are not adjacent in
G+

3,3−i.
Let u1, u2, u3 and u4, u5, u6 be the vertices at distance one to v′1 and v′2 in G[U3−i],

respectively. Exchanging (wi)1i8 and (ui)1i6 ∪ {v′1, v′2} between U1 and U2 would
lead to an improvement of (U1, U2) – contradiction with Corollary 15, which proves the
observation.

If for i = 1 or for i = 2, the first point from the statement of Observation 18 holds,
then G+

3,3−i must contain predominantly chains and cycles with edges of weight one. We
deal with this case in Section 4. There, we show that the proportion of graphs possessing
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G[Ui]v1

v2

u1

u2

Figure 6: The set S from the proof of Observation 19 is the union of the vertices in the
two encircled regions.

a bisection of this type of size between 0.1n and 0.1069n tends to zero as n tends to
infinity.

From now on we concentrate on the setting, in which the sum of the weights of the
edges {e ∈ E(G3,i) | p(e)  3} is at most seven for both i = 1 and i = 2. In particular,
there are at most two edges of weight at least three in both G+

3,1 and G+
3,2.

For both i = 1 and i = 2, recall the graph G2
3,i from Definition 16. We call a vertex in

G2
3,i critical if it is either of degree three in G2

3,i , or if it is incident to an edge of weight

two. For example, in Figure 4 the graph G2
3,i is obtained from G+

3,i by deleting the leaf

in G+
3,i incident to the edge e3, and the critical vertices in G2

3,i are the endvertices of the
edges e1 and e6.

Observation 19. For both i = 1 and i = 2 and for every ℓ  2, at most one of the
following happens:

1. In G2
3,i , there are two (not necessarily disjoint) pairs of critical vertices, (v1, v2) and

(u1, u2), connected by two paths p1 and p2 satisfying the following conditions:

• The sum of the lengths of p1 and p2 is at most ℓ.

• Both paths contain only edges of weight one in G2
3,i .

2. There are at least 3ℓ+ 27 edges in G2
3,3−i of weight two.

Proof. We argue by contradiction. Suppose that each of the above two events happens
for some i ∈ {1, 2}. By choosing the two paths in G2

3,i satisfying the above conditions and
with the smallest sum of lengths, one may assume that p1 and p2 intersect in at most one
vertex. Moreover, if p1 and p2 have a common vertex, it must be an endvertex for each
of them.

Let S ′ be the set of vertices in G[Ui] that subdivide the edges in G2
3,i , which are incident

to some of the vertices v1, v2, u1, u2 from the first statement. Define S ⊆ V (G[Ui]) as the
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union of S ′ and the set of vertices contained in the subdivisions of p1 and p2 in G[Ui]. See
Figure 6. Of course, the subdivisions of the two paths contain both vertices of degrees
two and three in G[Ui]. Then S is an (i, ℓ′)-winning set of size |S|  2ℓ+18, where ℓ′  2.
Indeed, the subdivisions of the paths p1 and p2 contain at most 2ℓ+ 2 vertices and every
endvertex is incident in G2

3,i to at most two edges of weight at most two. Then, among

the 3ℓ + 27 edges of weight two in G2
3,3−i there are ℓ + 9, for which the pairs of vertices,

which subdivide these edges in G[U3−i], contain no vertex incident to a vertex in S. Then,
an improvement of the bisection (U1, U2) is given by exchanging S in G[Ui] with

• |S|/2 of the above pairs of vertices in G[U3−i], if |S| is even.

• (|S| − 1)/2 of the above pairs of vertices in G[U3−i] together with some additional
vertex of degree two in G[U3−i], not connected to the set S by an edge in G, if |S|
is odd.

This is a contradiction, which proves the observation.

Observation 20. For any two cycles c1 and c2 in a graph H containing a common edge,
there are cycles c′1 and c′2 contained in c1 ∪ c2, for which c′1 ∩ c′2 is a path.

Proof. If some of the cycles c1 and c2 has length two, the claim is trivial. Otherwise,
let p be a shortest path with endvertices u, v ∈ c1 ∩ c2 contained in c2 and sharing no
common edges with c1. Then, c1 ∪ p consists of three disjoint paths p, p1, p2 between u
and v. Choosing c′1 = p ∪ p1 and c′2 = p ∪ p2 finishes the proof.

Observation 21. For both i = 1 and i = 2 and for every ℓ  2, at most one of the
following happens:

1. There are at least two cycles c1 and c2 in G2
3,i , whose union contains at least two

vertices of degree three in G2
3,i , and the sum of whose lengths is at most ℓ.

2. There are at least 3ℓ+ 27 edges in G2
3,3−i of weight two.

Proof. Suppose that each of the above two events happens for some i ∈ {1, 2} and some
ℓ  2. If the two cycles have a common edge, by Observation 20 one can find two cycles
c′1 and c′2 in G2

3,i whose intersection is a path p with endvertices u and v, see the left
part of Figure 7. Then, one may find without difficulty two paths (possibly some of them
of length zero, for example when all edges in c′1 ∪ c′2 have weight two) between critical
vertices in G2

3,i without common interior vertices and containing only edges of weight one,
one starting from v and contained in c′1 \p and one starting from u and contained in c′2 \p.
We obtain a contradiction by Observation 19.

If the cycles are edge-disjoint, by Observation 2 they are vertex-disjoint as well. If one
cycle, say c1, contains at least two vertices of degree three, we directly apply Observa-
tion 19 (again, paths of length zero may occur) for the subdivision of c1 in G2

3,i . If both
cycles contain exactly one vertex of degree three and one of them, say c1, contains an edge
of weight two in G2

3,i , then, again, we directly apply Observation 19 for the subdivision of
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G[Ui]

G2
3,i

u

v

u

v
Figure 7: The cycles in the proofs of Observation 21 (on the left) and Observation 22 (on
the right). The edges of weight two in G2

3,i are thickened.

c1. It remains the case when c1 and c2 are disjoint and each contains exactly one vertex
of degree three and no edges of weight two. Then, the set S of vertices in G[Ui] contained
in the subdivisions of the two cycles is 2-winning and has size 2ℓ + 2. Thus, there are
ℓ+1 pairs of vertices of degree two in G2

3,3−i, none of which is adjacent to S. Exchanging
S with this set of pairs leads to an improvement of (U1, U2) in G – contradiction.

Observation 22. For both i = 1 and i = 2 and for every ℓ  2, at most one of the
following happens:

1. There are two cycles c1 and c2 in G2
3,i , whose union contains at least two edges of

weight two, and the sum of whose lengths is at most ℓ.

2. There are at least 3ℓ+ 27 edges in G2
3,3−i of weight two.

Proof. We argue by contradiction. If the two cycles have a common vertex, they also
have a common edge by Observation 2 and therefore they contain at least two vertices of
degree three in G2

3,i . One may directly apply Observation 21 in this case.
If the cycles are edge-disjoint and some of them contains at least two edges of weight

two, then we directly apply Observation 19 (again, paths of length zero may occur). If
both of them contain exactly one edge of weight two, then the set S of vertices in G[Ui]
contained in the subdivisions of the two cycles is winning and has even size, which is at
most 2ℓ+2, see the right part of Figure 7. Thus, there are ℓ+1 pairs of vertices of degree
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two in G2
3,3−i, none of which is adjacent to S. Exchanging S with this set of pairs leads

to an improvement of (U1, U2) in G – contradiction.

Remark 23. The same conclusion holds in the case of two cycles containing at least one
vertex of degree three in G2

3,i and at least one edge of weight two.

Corollary 24. For both i = 1 and i = 2 and for every ℓ  2, at most one of the following
happens:

1. There are two cycles c1 and c2 in G2
3,i , each of length at most ℓ/2 and each containing

either an edge of weight two or a vertex of degree three, or both.

2. There are at least 3ℓ+ 27 edges in G2
3,3−i of weight two.

Corollary 25. Suppose that there are at least 3ℓ + 27 edges in G2
3,3−i of weight two.

Then, by deleting at most six edges in G2
3,i , one may construct a graph G′′

3,i, which does
not contain two critical vertices connected by a path of length at most ℓ/2, which contains
only edges of weight one.

Proof. If there is a cycle of length at most ℓ/2, containing either a a vertex of degree
three, or an edge of weight two, then:

1. in the first case, delete one of the edges incident to the vertex of degree three and
participating in the cycle.

2. in the second case, delete the edge of weight two participating in the cycle.

By Corollary 24 one may conclude that after the deletion, in each of the two cases, no
cycle of length at most ℓ/2 contains a vertex of degree three or an edge of weight two.

If after the deletion there is no path of length at most ℓ/2 between two critical vertices
containing only edges of weight one, then we are done. In any other case, let p be a
path of minimal length between some pair of critical vertices v1, v2. By minimality of p, p
contains only vertices of degree two in G2

3,i and only edges of weight one, and has length

at most ℓ/2. Deleting all edges in G2
3,i outside p that are incident to v1 and v2, and one

edge from p, ensures that there remains no pair of critical vertices at distance at most ℓ/2.
Indeed, deleting the edges incident to v1 and v2 outside p disconnects the path p from the
rest of G2

3,i . Deleting further one edge in p means that if there is a path of length at most

ℓ/2 between two critical vertices in the new graph, it would be disjoint from p in G2
3,i ,

which would contradict Observation 19. The corollary is proved.

Note that Observations 19, 21, 22, Remark 23 and Corollary 24 all deal with edges of
weight two in G2

3,i , whose subdivisions in either G[U1] or in G[U2] play the role of minimal
indifferent sets in the bisection (U1, U2). These results have natural counterparts for the
other minimal indifferent sets in G[U1] and G[U2] – the 3-stars. We continue by presenting
these analogous results.
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Observation 26. In a graph of maximal degree three that contains at least m vertices of
degree three, one may find an independent set I of at least m/4 vertices of degree three.

Proof. Such an independent set can be constructed by consecutively adding a vertex of
degree three to I, which does not yet have a neighbor in I. At every step, this decreases
the number of vertices that could be added to I by at most four.

For a graph H and a vertex v in H, we define the (closed) degree two neighborhood
N2

H [v] as the set of vertices that may be attained from v by a path in H, containing no
vertex of degree more than two except possibly v itself.

Observation 27. For both i = 1 and i = 2 and for every ℓ  2, at most one of the
following happens:

1. There are three pairs of critical vertices in G2
3,i , (v1j , v

2
j )1j3, connected by three

paths (pj)1j3 such that:

• the sum of their lengths is at most ℓ,

• containing only edges of weight one in G2
3,i .

2. There is an independent set I of at least 5ℓ/2+55 vertices of degree three in G2
3,3−i.

Proof. We argue by contradiction. Suppose that each of the above two events happens
for some i ∈ {1, 2} and some ℓ  2. Notice that up to choosing the paths p1, p2 and
p3 such that the sum of their lengths is minimal, we may assume that p1, p2 and p3
do not share common interior vertices since otherwise one may always shorten at least
one of the three paths. We remark that the subdivision of p1 ∪ p2 ∪ p3 together with

1j3


N2

G[Ui]
[v1j ] ∪N2

G[Ui]
[v2j ]


in G[Ui] forms an ℓ′-winning set Si for some ℓ′  3 – this

follows directly by an elementary case by case analysis of the positions of the endvertices
of the paths p1, p2 and p3: Indeed, together p1, p2 and p3 may form:

• two cycles, which intersect in a common path;

• one cycle containing two of the paths and intersecting the third path;

• one cycle containing two of the paths that is disjoint from the third path;

• a subdivision of a 3-star;

• a longer path consisting of p1, p2 and p3, composed one after the other in some order
in a sequential manner;

• a path consisting of two of p1, p2 and p3, composed one after the other in some order
in a sequential manner, and a third disjoint path; this is the case from Figure 8;

• three disjoint paths.
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Now, on the one hand, the number of vertices in Si is at most (ℓ+6 · 2 · 2)+ (ℓ+3) =
2ℓ + 27. On the other hand, there are at most 2(ℓ + 6 · 2 · 2) = 2ℓ + 48 vertices in I,
which may have a neighbor in G[U3−i], adjacent to a vertex in Si. Indeed, every vertex
in G[U3−i] with a neighbor in Si must have degree at most two in G[U3−i]. There remain
at least ℓ/2 + 7 vertices in I at distance at least three from Si in G, for which the balls
of radius one in G[U3−i] are two by two disjoint. Thus, one may choose ⌊|Si|/4⌋ of these
balls together with one, two or three vertices from another ball in G[U3−i] with center in
I to form an indifferent, a 1-losing or a 2-losing set S3−i ⊆ U3−i with |Si| = |S3−i| and no
edge between Si and S3−i in G. Exchanging Si and S3−i between Ui and U3−i leads to an
improvement of the bisection (U1, U2) – contradiction. The observation is proved.

We directly deduce the following corollary of Observation 27:

Corollary 28. For both i = 1 and i = 2 and for every ℓ  2, at most one of the following
happens:

1. There are three connected components in G2
3,i , each of them containing a path:

• of length at most ℓ/3,

• containing only edges of weight one in G2
3,i ,

• starting and ending with critical vertices in G2
3,i .

2. There is an independent set I containing at least 5ℓ/2 + 55 vertices of degree three
in G2

3,3−i.

The next observation is in the same spirit.

Observation 29. For both i = 1 and i = 2 and for every ℓ  2, at most one of the
following happens:

1. There are three vertex-disjoint cycles in G2
3,i , each of length at most ℓ/3 and each

containing a critical vertex in G2
3,i .

2. There is an independent set I containing at least 5ℓ/2 + 55 vertices of degree three
in G2

3,3−i.

Proof. The proof is analogous to the one of Observation 27 by choosing v1i = v2i for every
i ∈ [3].

Corollary 30. For both i = 1 and i = 2 and for every ℓ  2, at most one of the following
happens:

1. There are two cycles in G2
3,i , each of length at most ℓ/3, which share a common

edge.

2. There is an independent set I containing at least 5ℓ/2 + 55 vertices of degree three
in G2

3,3−i.
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G[Ui]

G2
3,i

v11

p1

v21 ≡ v12

p2

v22

v13

p3

v23

Figure 8: The three paths p1, p2 and p3 from the proof of Observation 27. The edges of
weight two are thickened.
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Proof. We argue by contradiction. Suppose that each of the above two events happens
for some i ∈ {1, 2} and some ℓ  2. Let c1 and c2 be two cycles as described in the first
assertion. By applying Observation 20 one deduces that there are two cycles c′1 and c′2
such that c′1 ∪ c′2 ⊆ c1 ∪ c2 and p = c′1 ∩ c′2 is a path. Then each of the paths p, c′1 \ p
and c′2 \ p in G2

3,i is of length at most ℓ/3, and they share common endvertices, which are

therefore critical in G2
3,i (in case the cycles contain edges of weight two, one may shorten

the paths so that all three of them contain only edges of weight one. Note that this may
possibly lead to paths of length zero.). This is a contradiction by Observation 27. The
observation is proved.

Corollary 31. Suppose that there are at least 10ℓ+220 vertices of degree three in G2
3,3−i.

Then, by deleting at most 20 edges in G2
3,i one may construct a graph G′′

3,i, which does not
contain two critical vertices, connected by a path of length at most ℓ/3 of edges of weight
one.

Proof. We argue by contradiction. By Observation 26 there is an independent set of at
least 5ℓ/2+55 vertices of degree three in G2

3,3−i. Then, by Observation 29 and Corollary 30

there are at most two cycles of length at most ℓ/3 in G2
3,i , which contain a critical vertex

in G2
3,i , and, if present, they must be (vertex-)disjoint. Moreover, in each of the cycles

there are at most:

• two edges of weight two and no vertex of degree three in G2
3,i , or

• one edge of weight two and one vertex of degree three in G2
3,i , or

• two vertices of degree three in G2
3,i .

Indeed, if a cycle contains at least, say, two edges of weight two and a vertex of degree
three in G2

3,i , one may find three edge-disjoint paths between critical vertices (some of

which may be reduced to a single vertex), containing only edges of weight one in G2
3,i –

contradiction with Observation 27. All other cases are treated analogously. We conclude
that one may delete at most eight edges – at most four edges to disconnect the cycles
containing critical vertices from the rest of G2

3,i , and at most four more edges to disconnect

all paths of positive length between critical vertices in G2
3,i containing only edges of weight

one. See Figure 9.
It remains to deal with the paths of length at most ℓ/3 between critical vertices, which

consist of edges of weight one. There are at most two paths p1 and p2 of this type by
Observation 27. Notice also that the paths p1 and p2 cannot have common interior vertices
and may only share common endvertices – otherwise one would be able to decompose p1
and p2 into at least three paths of length at most ℓ/3 of edges of weight one, contradicting
Observation 27. For the same reason all interior vertices of these paths are of degree two
in G2

3,i . Suppose that the paths p1 and p2 have endpoints the critical vertices (v1, v2) and

(u1, u2). Then, by deleting all (at most twelve) edges G2
3,i , incident to v1, v2, u1 and u2

we obtain a graph without critical vertices at distance ℓ/3. Indeed, if there remains some
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G[Ui] G2
3,i G′′

3,i

Figure 9: Deleting edges incident to cycles, containing critical vertices, in the proof of
Corollary 31. Edges of weight two in G2

3,i and G′′
3,i are thickened. In the figure, three edges

are sufficient to disconnect the paths of edges of weight one between critical vertices.

path of length at most ℓ/3 between two critical vertices in the obtained graph, containing
only edges of weight one, it will be disjoint from the first two and this would contradict
Observation 27. The observation is proved since we deleted in total at most 8 + 12 = 20
edges in G2

3,i .

Lemma 32. Suppose that there are at least 13ℓ + 273 critical vertices in G2
3,3−i. Then,

one may delete at most 20 edges in G2
3,i to obtain a graph G′′

3,i, which does not contain a

path of length at most ℓ/3 between two critical vertices in G2
3,i , which contains only edges

of weight one.

Proof. Out of these at least 13ℓ+273 critical vertices, either at least 6ℓ+54 are incident
to edges of weight two and thus the number of these edges is at least 3ℓ + 27 in G2

3,3−i,

or there are at least 10ℓ+ 220 vertices of degree three in G2
3,i . In the first case, we apply

Corollary 25. In the second case, we apply Corollary 31. The lemma follows.

The results in this section suggest the following idea. For both i = 1 and i = 2, let

Si =


v is critical in G2
3,i

N2
G[Ui]

[v]. (3)

In words, Si is the union of the set of critical vertices in G2
3,i together with the vertices

in G[Ui], which subdivide the edges, incident to the critical vertices in G2
3,i . See Figure 10.

Corollary 33. Suppose that |S3−i|  52ℓ+1092. Then, one may delete at most 20 edges
in G2

3,i to obtain a graph G′′
3,i, which does not contain a path of length at most ℓ/3 between

two critical vertices in G2
3,i , which contains only edges of weight one.
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Figure 10: The figure depicts an example of the subdivision of the graph G2
3,i included in

G[Ui]. The big black vertices are the critical ones in V (G2
3,i ) ⊆ V (G[Ui]). The big white

vertices are the non-critical ones in V (G2
3,i ) ⊆ V (G[Ui]). The small black vertices are the

ones that subdivide the edges of G2
3,i in G[Ui]. Finally, the set Si consists of the vertices

in the union of the encircled regions.

Proof. Every vertex in S3−i, which subdivides an edge in G2
3−i, is at distance one to at

least one critical vertex. On the other hand, every critical vertex in G2
3−i is at distance

one in G[U3−i] to at most three vertices in S3−i. Thus, the number of critical vertices in
G2

3,3−i is at least |S3−i|/4  13ℓ+ 273. It remains to apply Lemma 32.

In the rest of the paper we assume without loss of generality that |S1|  |S2|.

Lemma 34. For both i = 1 and i = 2, at most one of the following happens:

1. The sum of the weights of the edges

{e ∈ E(G3,i) | p(e)  3}

is at least 34.

2. |S3−i|  129.

the electronic journal of combinatorics 30(2) (2023), #P2.40 26



Proof. We argue by contradiction. Suppose that each of the above events happens for
some i ∈ {1, 2}. Then, by Observation 17 and Observation 18 we know that there are at
most eight edges of weight two and at most 20 vertices of degree three.

Suppose that there is an edge e in G+
3,3−i of weight at least three and let u, v, w be three

consecutive vertices subdividing this edge in G[U3−i]. Then, by the pigeonhole principle,
either there are four edges in G3,i of weight at least three or there is one edge in G3,i of
weight at least twelve. In both cases, one may find three consecutive vertices u′, v′, w′ in
G[Ui], subdividing an edge of G+

3,i and none of them being adjacent to any of u, v and
w. Therefore, one may exchange u, v, w in U3−i with u′, v′, w′ in Ui and thus improve the
bisection (U1, U2), which is a contradiction. See Figure 11. Therefore, all edges in G3,3−i

have weight at most two. In total, this would mean that |S3−i|  8×2×3+20×4 = 128,
which is a contradiction. The observation is proved.

Figure 11: The improvement from the proof of Lemma 34. The large vertices are the ones
in G2

3,1 ∪ G2
3,2. The small vertices are the subdivision vertices of the edges of G2

3,1 ∪ G2
3,2

in G[U1] ∪G[U2].

Corollary 35. If the sum of the weights of the edges

{e ∈ E(G3,1) | p(e)  3}

is at least 34, then |S1|  128.
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Proof. This follows from Lemma 34 and the assumption that |S1|  |S2|.

We partially characterized the structure of a minimum bisection. In the next two
sections we do first moment computations for two types of bisections (U1, U2) depending
on |S1|:

1. Bisections (U1, U2) of type one: |S1|  log2 n. This case is treated in Section 4.

2. Bisections (U1, U2) of type two: log2 n  |S1|. This case will be considered in
Section 5.

4 Bisections of type one

In this case, we count bisections with |S1|  log2 n with S1 defined in (3).
We define the skeleton Sk(H) of a labeled graph H to be the unlabeled graph obtained

from H by deleting the labels of the vertices of H.
Recall that by Observation 8, a.a.s. G(n, 3) is a usual graph, so the results from

Section 3 hold a.a.s. for G(n, 3). Thus, our aim in this section is to count the number
of bisections (U1, U2) of type one in usual 3-regular graphs. We begin by counting the
number of possible skeletons of G+

3,1. Then, we count the ways to give labels to the vertices
in G[U1] in the subdivisions of these skeletons. Finally, we count the extensions of these
subdivisions of G+

3,1 to G[U1], and consequently to G.
Let β  0.1 be such that e(U1, U2) = βn. Then, G[U1] contains βn vertices of degree

two. Since |S1|  log2 n, all but at most log2 n of the edges of G+
3,1 have weight one, and

at most log2 n vertices in G+
3,1 have degree three.

Observation 36. By deleting the vertices of S1 in G+
3,1, we obtain a graph whose connected

components are paths and cycles with edges of weight one.

Proof. The maximum degree in this graph is two, and all vertices, incident to edges of
weight more than one, have been deleted. The observation follows.

Observation 37. The number of unlabeled graphs containing at most βn edges and of
maximal degree two is exp(o(n)) as n → ∞.

Proof. Any graph of the above type consists of paths and cycles. Thus, for any t  βn
and k, ℓ ∈ N with k + ℓ = t, the number of graphs with k edges in paths and ℓ edges
in cycles is given by exp(o(k) + o(l)) by Theorem 5. Summing over all pairs (k, ℓ) with
k + ℓ  βn, we obtain an upper bound of n2 exp(o(n)) = exp(o(n)) on the number of
unlabeled graphs of maximal degree two and at most βn edges. The lemma is proved.

The main object in this section will be the graph

Gpc,1 = G+
3,1 \ S1. (4)

Let also Gpc,1 have β
′n  βn−3 log2 n edges. Our goal is to bound from above the number

of possibilities for the graph G in which (U1, U2) is a minimal bisection of size βn. To do
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this, we first construct the skeleton of Gpc,1 and label its vertices. Then, we bound from
above the number of extensions of Gpc,1 to G[U1] and consequently to G. After that, we
optimize with respect to the parameter β.

Let ti = ti(n) be the number of paths of length i in Gpc,1 and let ci = ci(n) be the
number of cycles of length i edges in Gpc,1.

Lemma 38. The number of automorphisms of the graph Gpc,1 are




i1

2titi!


× c1!× 2c2c2!×



i3

(2i)cici!.

Proof. First, the paths (respectively the cycles) of the same length are indistinguishable.
Second, a path has two symmetries and a cycle has one symmetry, if it is of length one,
two symmetries, if it is of length two, and 2i symmetries, if it is of length i  3. This
proves the lemma.

Now, we count the number of bisections (U1, U2) of size βn. By Observation 37, the
number of possible (unlabeled) graphs for Gpc,1 is subexponential. We conclude that the
sum over all possibilities for (ti)i1 and (ci)i1 must be dominated, up to a subexponential
factor, by the number of extensions of the unlabeled graph Gpc,1, which has the largest
number of extensions among all unlabeled graphs of maximum degree two on at most βn
vertices. Thus, maximizing over (ti)i1 and (ci)i1 will give us the correct exponential
order of growth of the number of extensions in general. This is what we do in the sequel.
For the same reason, we ignore the fact that the size of U1 is between n/2−5 and n/2+5,
since summing over all possible sizes of U1 does not make a difference on an exponential
scale.

We now explain our counting procedure step by step. Since G is a 3-regular graph on
n vertices, n is even and therefore n/2 ∈ N.

1. Choose in


n
n/2


ways the labels of the vertices participating in U1 and the labels of

the vertices participating in U2.

2. Choose the βn labels of the vertices of degree two in G[U1] in

0.5n
βn


= exp(o(n))


0.5n
β′n



ways. Out of these, choose in

βn
β′n


= exp(o(n)) ways which of these vertices must

subdivide the edges of Gpc,1.

3. Assign the labels to the vertices in (β′n)!(βn− β′n)! = exp(o(n))(β′n)! ways.

4. Choose Tn :=


i1(i+1)ti labels for the vertices of degree three in U1 participating
in the paths in Gpc,1 and Cn :=


i1 ici labels for the vertices of degree three in U1

participating in the cycles in Gpc,1 in


(0.5− β)n

Tn,Cn, (0.5− T − C − β)n


= exp(o(n))


(0.5− β′)n

Tn,Cn, (0.5− T − C − β′)n



ways. Here, T = T (n) and C = C(n) are functions of n.
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5. Assign the labels to the vertices in (Tn)!(Cn)! ways.

6. Divide by the size of the automorhpism group of Gpc,1, which by Lemma 38 is




i1

2titi!


× c1!× 2c2c2!×



i3

(2i)cici!,

since different ways to distribute the labels might lead to the same final (labeled)
graph.

7. Extend the labeled copy of the optimal skeleton in

((1.5− 4β′ − β)n)!!

22(T+C−β′)n+(β−β′)n6(0.5−(β+T+C))n
= exp(o(n))

((1.5− 5β′)n)!!

22(T+C−β′)n6(0.5−(β′+T+C))n

ways to a graph G[U1]. The exponent of 2 in the formula comes from the fact that
the number of paths in Gpc,1 is exactly (T +C−β′)n since, first, every cycle contains
the same number of edges and vertices, and second, every path contains one vertex
more than edges. Moreover, every path of length at least 1 contains two vertices of
degree one.

8. Choose βn labels for the vertices of degree two in U2 in

0.5n
βn


= exp(o(n))


0.5n
β′n



ways.

9. Form the matching between the vertices of degree two in G[U1] and G[U2] in (βn)! =
exp(o(n))(β′n)! ways.

10. Construct the graph G[U2] in

((1.5− β)n)!!

2βn6(0.5−β)n
= exp(o(n))

((1.5− β′)n)!!

2β′n6(0.5−β′)n
.

11. Multiply by 6n to count configurations instead of graphs.

12. Finally, divide by the total number of 3-regular configurations (3n− 1)!! to find an
upper bound on the proportion of bisections of type one.

The final formula is given by

eo(n)


n
0.5n


0.5n
β′n


(β′n)!


(0.5−β′)n

Tn,Cn,(0.5−β′−T−C)n


(Tn)!(Cn)!

((1.5 − 5β′)n)!!

22(T+C−β′)n6(0.5−(β′+T+C))n


0.5n
β′n


(β′n)!

((1.5 − β′)n)!!

2β
′n6(0.5−β′)n

6n


i1 2ti ti!


× c1! × 2c2c2! ×


i3(2i)

cici!

(3n − 1)!!

.

Before proceeding with explicit optimization computation, we observe that the numerator
depends only on T + C as a function of T and C. We define a cycle transformation of
some unlabeled graph H of degree at most two to be the unlabeled graph containing the
exact same multiset of paths as H and in which each of the remaining vertices participates
in one common cycle. Remark that neither the number of vertices in H nor the number
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of edges changes by applying this transformation and therefore both T +C and β′ remain
unchanged. Then, the denominator becomes




i1

2titi!


× 2(β′n−



i1

iti)× (3n− 1)!!.

Since the term 2(β′n−


i1 iti) = exp(o(n)), we may include it in the exp(o(n)) term
in the beginning of the formula and thus simplify the expression, leaving only the terms
in (ti)i1 and T . Moreover, taking one edge out of the large cycle (which decreases β′n by
one) and transforming it into a path changes the number of extensions by at most Θ(n).
Therefore, one may suppose in this optimization part that we optimize over the unlabeled
graphs H, which consist of a multiset of paths. The final formula simplifies to

exp(o(n))


n
0.5n


0.5n
β′n


(β′n)!


(0.5−β′)n

Tn


(Tn)!

((1.5− 5β′)n)!!

22(T−β′)n6(0.5−(β′+T ))n


0.5n
β′n


(β′n)!

((1.5− β′)n)!!

2β′n6(0.5−β′)n
6n


i1 2

titi!

(3n− 1)!!

. (5)

Now we maximize the above formula over the parameters (ti)i1 under the conditions

1.
Tn−



i1

ti = β′n ⇐⇒


i1

ti = (T − β′)n.

2. 

i1

(i+ 1)ti = Tn ⇐⇒


i1

iti = β′n,

where the second equivalence uses the left equality in the first one. Our first main goal is
the minimize the product 

i1

ti!

itself for fixed T and β′ since


i1 2
ti = 2(T−β′)n.

Lemma 39. There is a sequence (t
(n)
i )i1, which minimizes the function (ti)i1 →


i1 ti!

under the conditions 1 and 2, such that for all but at most one i  1 we have t
(n)
i  t

(n)
i+1.

Moreover, for this exceptional i we may only have t
(n)
i = 0, t

(n)
i+1 = 1 and t

(n)
i+2 = 0.

Proof. Let (ti)i0 be a minimizing sequence for


i1 ti! under the two conditions above.
Let (t′i)i0 be a sequence such that {t′i}i1 ≡ {ti}i1 as multisets of non-negative integers
and (t′i)i1 is decreasing.

Then, first,


i1 ti =


i1 t
′
i = (T − β′)n and


i1 ti! =


i1 t

′
i!. Moreover, let

m = max{i ∈ N, t′i  1}. Now, define (t
(n)
i )i1 as follows:

t
(n)
i =






t′i if i /∈ {m,m+ β′n−


i1 it
′
i}

t′i − 1 if i = m,

1 if i = m+ β′n−


i1 it
′
i.
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1 2 3 4 1 2 3 4
i i

ti t
(n)
i

. . . 10

Figure 12: An example of a sequence (ti)i1 being transformed into (t
(n)
i )i1 (in this

example β′n−


i1 it
′
i = 6).

See Figure 12. One may easily verify that the product


i1 t
(n)
i ! can only decrease and

this time (t
(n)
i )i1 satisfies both conditions given above.

Observation 40. In the sequence (t
(n)
i )i1, the second-largest i  1, for which t

(n)
i  1,

is less than
√
2β′n.

Proof. Notice that all indices j  i to the left of this second-largest i satisfy t
(n)
j  1. For

this second-largest i we have

β′n 


1ji

jt
(n)
j  i(i+ 1)

2
,

so 2β′n  i2.

Corollary 41. t
(n)
1  (T−β′)n−1√

2β′n
.

Proof. Let i be the second-largest index, for which t
(n)
i  1. We have that


2β′nt

(n)
1  it

(n)
1 



1ji

t
(n)
j = (T − β′)n− 1.

We distinguish two cases. First, let us treat the sequences (t(n))i1, for which t
(n)
1 = 1

(and therefore for every i  1 one has t
(n)
i ∈ {0, 1}). In this case, by the proof of

Corollary 41, we have that
√
2β′n+ 1  (T − β′)n. Then, one may rewrite (5) as

exp(o(n))


n
0.5n


0.5n
β′n


(β′n)!


(0.5−β′)n

β′n


(β′n)!

((1.5− 5β′)n)!!

6(0.5−2β′)n


0.5n
β′n


(β′n)!

((1.5− β′)n)!!

2β′n6(0.5−β′)n
6n

(3n− 1)!!
.
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By Stirling’s formula we deduce that the above expression can be rewritten as

exp(o(n))


(1.5− 5β′)

1.5−5β′
2 (1.5− β′)

1.5−β′
2 63β

′

2β′31.5(0.5− β′)0.5−β′(0.5− 2β′)0.5−2β′

n

.

One may easily check that the maximum of the function

β′ ∈ [0, 0.25) → (1.5− 5β′)
1.5−5β′

2 (1.5− β′)
1.5−β′

2 63β
′

2β′31.5(0.5− β′)0.5−β′(0.5− 2β′)0.5−2β′

over the interval [0, 0.25) is strictly less than one. We deduce that at most an exponentially

small fraction of the configurations have bisections with t
(n)
1 = 1.

We now treat the second case, in which t
(n)
1  2.

Observation 42. For every j  ⌈2
√
2n+ 2⌉, we have that t

(n)
j = 0.

Proof. We argue by contradiction. Suppose that t
(n)
j  1 for some j  ⌈2

√
2n+2⌉. Then,

define (s
(n)
ℓ )ℓ0 as follows:

s
(n)
ℓ =






t
(n)
ℓ if ℓ /∈ {1, 1 + ⌈

√
2n⌉, j − ⌈

√
2n⌉, j}

t
(n)
1 − 1 if ℓ = 1,

1 if ℓ = 1 + ⌈
√
2n⌉,

1 if ℓ = j − ⌈
√
2n⌉,

0 if ℓ = j.

Using Lemma 39 and Observation 40, one may easily verify that


ℓ1 t

(n)
ℓ !


ℓ1 s

(n)
ℓ !

= t
(n)
1  2,

which is a contradiction, since (s
(n)
ℓ )ℓ1 satisfies both conditions 1 and 2 and (t

(n)
ℓ )ℓ1 is a

sequence minimizing the function (ti)i1 →


i1 ti! with these properties.

Since for our purposes a subexponential factor in the formula (5) does not matter,

by abuse we forget about this largest isolated positive term of the sequence (t
(n)
i )i1, if it

exists. Indeed, by Observation 42, it contributes at most ⌈2
√
2n+2⌉ to the sum


i1 it

(n)
i

and at most one to the sum


i1 t
(n)
i . From now on, we consider the sequence (t

(n)
i )i1

to be decreasing.
Let m = m(n) = max{i ∈ N, t(n)i  1}. By Observation 42 we have that

m(n)  2
√
2n+ 2. For the terms (t

(n)
i )1im, we bound t

(n)
i ! from below by


t
(n)
i

e

t
(n)
i 

2πt
(n)
i .
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We remark that the product of the terms


2πt

(n)
i for i ∈ [m] is at most (

√
2πn)m 

(
√
2πn)2

√
2n+2 = exp(o(n)), so it is absorbed by the exp(o(n)) term in the beginning of

the formula. Since


1im exp(−t
(n)
i ) = exp((β′ − T )n) depends only on

m
i=1 t

(n)
i but

not on any of the individual terms t
(n)
i , we need to minimize the quantity



1im

t
(n)
i

t
(n)
i
.

under the constraints 1 and 2. We rewrite this as

n(


i1 t
(n)
i )






1im


t
(n)
i

n

 t
(n)
i
n





n

= n(β′−T )n






1im


t
(n)
i

n

 t
(n)
i
n





n

. (6)

Define the function

fm : (ti)1im ∈ [0, 1]m →


1im

ti ln(ti) ∈ R.

By extending t ∈ (0, 1] → t log t ∈ R at zero by continuity to the value zero, fm may be
seen as a projection of the function

f : (ti)i1 ∈ [0, 1]N →


1im

ti ln(ti) ∈ R ∪ {−∞}

onto its first m coordinates.
Clearly under the conditions 

i1

ti = T − β′ (7)

and 

i1

iti = β′, (8)

the minimum of the function fm = fm(n) is larger than the minimum of the function

f . On the other hand, f
|R
|(0,1]N is a convex and infinitely differentiable function on an

infinite-dimensional Banach space, and therefore by ([12], Theorem 1) and [17] we know
that if there is some critical point in the interior of the domain, it must be unique and
it must be a global minimum for the function f . This allows us to apply the method of
Lagrange multipliers for the function f under the constraints (7) and (8) for any fixed n
in the infinite-dimensional setting.

Let
F ((ti)i1,λ1,λ2) := f((ti)i1)− λ1



i1

ti − λ2



i1

iti.

the electronic journal of combinatorics 30(2) (2023), #P2.40 34



Differentiating with respect to ti and setting the derivative to zero gives

1 + ln(ti)− λ1 − iλ2 = 0 ⇐⇒ ti = exp(λ1 − 1 + iλ2).

Therefore, we solve the following system to find λ1 and λ2:





exp(λ1 + λ2 − 1)

1− exp(λ2)
= T − β′,

exp(λ1 + λ2 − 1)

(1− exp(λ2))2
= β′.

Solving this system gives 




exp(λ1) =
e(T − β′)2

2β′ − T
,

exp(λ2) =
2β′ − T

β′ .

Thus, we have that

∀i  1, ti =
(T − β′)2

2β′ − T


2β′ − T

β′

i

is the argument where the absolute minimum of f is attained. The value of this minimum
is

f((ti)i1) =


log


(T − β′)2

β′


− 2β − T

β′ log


(T − β′)2

2β′ − T


β′.

Plugging in this minimum consecutively into (6) and then into (5) leads to the formula

exp(o(n))





(1.5 − 5β′)
1.5−5β′

2 24β
′−2T 32β

′+T−1.5(1.5 − β′)
1.5−β′

2

(0.5 − β)0.5−β′
(0.5 − β′ − T )0.5−β′−T exp


β′


log


(T − β′)2

β′


−

2β′ − T

β′ log


(T − β′)2

2β′ − T







n

.

Taking the logarithm of the n−th root of the entire formula and letting n → ∞, we
obtain the following expression, which remains to be maximized as a function of β′ and
T :

0.5(1.5− 5β′) ln(1.5− 5β′) + (4β′ − 2T ) ln(2) + (2β′ + T − 1.5) ln(3)

+0.5(1.5− β′) ln(1.5− β′)− (0.5− β′) ln(0.5− β′)− (0.5− β′ − T ) ln(0.5− β′ − T )

−β


log


(T − β′)2

β′


− 2β′ − T

β′ log


(T − β′)2

2β′ − T








(9)

One may easily observe that in the range β′ ∈ [0.1, 0.1069] the above function is well
defined for every T ∈ (β′, 2β′) and may be extended by continuity at the values T = β′

and T = 2β′. Maximizing this function in the range {(β′, T ) : β ∈ [0.10, 0.1069], β′ 
T  2β′} gives a maximum of −3.713 × 10−5, which is attained at the point (β′, T ) =
(0.1069, 0.1802). This calculation is confirmed by the graphing calculator Desmos - see
Figure 13. It proves that the proportion of 3-regular graphs containing a bisection of size
β  0.1069n of type one is exponentially small.
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Figure 13: In both figures, the horizontal axis represents the β′-coordinate, and the
vertical axis stands for the T -coordinate. In the top figure, the curve represents the set
of coordinates (β′, T ), for which the expression (9) is equal to zero. The exterior of the
encircled region is the set where (9) is negative, and its interior corresponds to the set
where (9) is positive. The bottom figure is a zoomed copy of the top one around the point
on the curve with minimal β′.
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u

v

u

v

we

w1,e

w2,e

Figure 14: The transformation of an edge of weight two into a 4-star

5 Bisections of type two

This section is dedicated to counting the bisections of type two. Recall S1 and S2 from (3).
In this section, we suppose that log2 n  |S1|  |S2|.

Lemma 43. For both i = 1 and i = 2, the number of edges in E(G+
3,i)\E(G2

3,i ) is at most

12. Moreover, the number of extensions of the skeleton of the graph G2
3,i to the skeleton

of the graph G+
3,i is exp(o(n)).

Proof. By Lemma 34 one may conclude that, for both i = 1 and i = 2 and for every large
enough n, the sum of the weights of the edges

{e ∈ E(G3,i) | p(e)  3}

is at most 34. This means in particular that, for both i = 1 and i = 2, E(G+
3,i) \ E(G2

3,i )

contains less than ⌈34/3⌉ = 12 edges and therefore the number of ways to extend G2
3,i to

G+
3,i is less than 

0i12

n2i = exp(o(n)).

Indeed, knowing G2
3,i , the number of ways to add a new edge is always at most n2. The

lemma is proved.

Since our counting strategy will be similar to that in Section 4, polynomial factors will
not be of any importance for us. Hence, we may and do assume that |U1| = |U2| = n/2
(recall that ||U1|− |U2||  10 in general).

By Corollary 33 we know that, for both i = 1 and i = 2, by deleting at most 20 edges
from G2

3,i we can obtain a graph in which the minimal length of a path of edges of weight

one between critical vertices is at least log2 n−1092
3·52 . We call this graph Gld,i. This graph

inherits the weights of the edges that come from G2
3,i .

Definition 44 (The graphs G′
ld,i and G′′

ld,i). For i ∈ {1, 2}, define the graph G′
ld,i from

Gld,i as follows: for every edge e = uv of Gld,i of weight two, delete e and add three
vertices we, w1,e, w2,e together with the edges wev, weu, wew1,e, wew2,e.

By definition, the distance between every pair of vertices of degree three or four in

G′
ld,i is at least

log2 n−1092
3·52 . Construct the graph G′′

ld,i by deleting every edge of weight one
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in G′
ld,i with endvertices at distance exactly


log2 n−1092

2·3·52


− 2 and


log2 n−1092

2·3·52


− 1 from a

vertex of degree three or four in G′
ld,i.

Roughly speaking, the construction of G′
ld,i replaces every edge of weight two in Gld,i

by a 4-star (see Figure 14), while the construction of G′′
ld,i ensures that every connected

component contains at most one vertex of degree more than two.

Observation 45. Given the skeleton of the graph G′
ld,i, there is a unique weighted unla-

beled graph H = Sk(Gld,i) such that Sk(G′
ld,i) is obtained from H by the operation from

Definition 44.

Proof. Consider a vertex of degree four in G′
ld,i and denote its four neighbors by w1, w2,

w3, w4. We consider three cases.

• If two of w1, w2, w3, w4, say w1 and w2, are of degree at least two, then the star came
from an edge w1w2 of weight two.

• If only one of w1, w2, w3, w4 is of degree at least two, say w1, then the star came from
an edge of weight two with endvertices w1 and some leaf in Gld,i. Since skeletons
are unlabeled graphs, this leaf may be an arbitrary vertex among w2, w3 or w4.

• If none of w1, w2, w3, w4 is of degree at least two, then the star came from an isolated
edge in Gld,i of weight two.

Finally, there is a unique way to reconstruct G′
ld,i in each of the cases, as desired.

Observation 46. For every large enough n, the number of deleted edges of G′
ld,i in the

construction of G′′
ld,i is at most 624n

log2 n
.

Proof. For every edge in G′
ld,i to be deleted in the construction of G′′

ld,i, associate to it the
shortest path from some of its endvertices to a vertex of degree three or four. Notice that
these paths are well defined and edge-disjoint since, first, in G′

ld,i all pairs of vertices of

degree three or four are at distance at least log2 n−1092
3·52 , and second, each of these paths has

length exactly

log2 n−1092

2·3·52


− 1 (the edge to be deleted is counted as an edge of the path).

We conclude that for every large enough n, the total number of deleted edges must be at
most

3n/2
log2 n−1092

2·3·52


− 1

 2 · 3 · 52 · 2n
log2 n

=
624n

log2 n
.

The observation is proved.

Corollary 47. The number of possible skeletons for the graph G′′
ld,i is exp(o(n)).

Proof. First, recall that all connected components in G′′
ld,i contain at most one vertex

of degree three or four. Moreover, by construction Sk(G′′
ld,i) is the union of a forest

F on N  n vertices, and a 2-regular graph H. By Lemma 6 with M = 4, there
are exp(o(N)) = exp(o(n)) choices for F . Moreover, Theorem 5 implies that there are
exp(Θ(

√
n−N)) = exp(o(n)) choices for H. Since Sk(G′′

ld,i) is determined by the pair
(F,H) (which can also be chosen in exp(o(n)) ways), the corollary follows.
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By applying the reverse transformation of the graph G′′
ld,i of 4-stars into edges of weight

two (see Figure 14), we conclude that the connected components in the skeleton of the
graph Gld,i can be:

• paths with at most one edge of weight two,

• cycles with edges of weight one,

• subdivisions of 3-stars with edges of weight one, and

• at most 624n
log2 n

+ 12 more edges due to Lemma 43 and Observation 46.

We will base our first moment computation on this decomposition. Since we are in
fact interested in counting graphs containing a bisection of size βn and not bisections
themselves, we will divide by a factor, which ensures that the same graph is not counted
separately for too many bisections. In the next lemma (that might be of independent
interest), let H be a bipartite graph with parts H1 and H2 of maximal degree two.

Lemma 48. H contains an independent set I, which contains at least

|V (H1)|

2


−1 vertices

in H1 and at least

|V (H2)|

2


− 1 vertices in H2.

Proof. Since isolated vertices of H may always be added to any independent set, suppose
without loss of generality that there are none. The components of the graph H are paths
and even cycles. Let p1, p2, . . . , pk′ be the paths of even length containing one more vertex
ofH1 than ofH2 with 2  |p1|  |p2|  . . .  |pk′ | and also let q1, q2, . . . , qk′′ be the paths of
even length containing one more vertex of H2 than of H1 with 2  |q1|  |q2|  . . .  |qk′′ |.
Suppose without loss of generality that k′  k′′. Since the property from the statement
of the lemma is decreasing, one may add edges to H to form cycles from the paths of
odd length and also to form one long cycle by consecutively joining the endvertices of the
paths pk′−k′′+1, q1, pk′−k′′+2, q2, . . . , pk′ , qk′′ , pk′−k′′+1 in this order while keeping the sets H1

and H2 independent (see Figure 15). Let the new bipartite graph be called G with parts
H1 and H2 and define k = k′ − k′′. Let I be the empty set in the beginning. We consider
two cases:

• The number of vertices of H1 in


1ik

pi is at most

|V (H1)|

2


− 1. Add these to I and

then start exploring the cycles vertex by vertex in the following way: First, choose
a cycle c = v0v1 . . . v2s−1v0, a vertex (say v0) in H1 ∩ c and a direction. Then, start
adding to I the vertices v2, v4, . . . consecutively. If the vertex v2s−2 is added to I,

and I still contains less than

|V (H1)|

2


− 1 vertices of H1, then choose another cycle

and iterate. When this number of vertices of H1 in I is reached, then either jump
over the next vertex of H1 in the cycle we are just exploring and start in the same
way adding vertices of H2 to I, if possible, or go to another cycle and do the same
(for H2). This ensures that in total the number of vertices from H2 added to I is
at least

|V (G)|−2
2

−


|V (H1)|
2


− 1





|V (H2)|

2


− 1,
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Figure 15: Joining the paths of even length in the proof of Lemma 48. The vertices of H1

are black, and the vertices of H2 are white. The dashed edges are added to form cycles.

which is enough to conclude.

• The number of vertices of H1 in


1ik

pi is more than

|V (H1)|

2


− 1. Then, start

exploring the paths of p1, p2, . . . , pk in this order. For a path p, add to I one of
the endvertices of p and then continue adding vertices of H1 in order until either
we explore p to the other endvertex (in which case we redo the exploration process

with the next path) or the number of vertices of H1 in I reaches

|V (H1)|

2


− 1. We

add the vertices of H2 outside the neighborhood of I ∩H1 in G to I and prove that
this independent set I satisfies the condition of the lemma. Let ℓ1, ℓ2, . . . , ℓk be the
lengths of the paths p1, p2, . . . , pk respectively, and suppose that there are exactly ℓ
edges in cycles. Suppose that, for some i ∈ [k], for every j  i− 1, all vertices from
H1 in the path pj are in I, and there are b vertices from H1 in the path pi in I.
On the one hand, the number of vertices in H2 outside the neighborhood of H1 ∩ I
is exactly 1

2
(ℓ+ ℓi+1 + . . . ℓk +max{0, ℓi − 2b}). On the other hand, since at most

half of the vertices in H1 have been added to I,



1ji−1


ℓj
2
+ 1


+ b  1

2


ℓ

2
+



1jk


ℓj
2
+ 1


.

We deduce that



1ji−1

(ℓj + 2) + 2b  ℓ+


i+1jk

(ℓj + 2) + ℓi + 2− 2b.
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Therefore

1

2
(ℓ+ ℓi+1 + · · ·+ ℓk +max{0, ℓi − 2b})

 1

2
(ℓ+ ℓi+1 + · · ·+ ℓk + ℓi − 2b)

 1

2
(ℓ1 + · · ·+ ℓi−1 + 2b+ 2(i− 1)− 2(k − i+ 1))

=
1

2
(ℓ1 + · · ·+ ℓi−1 + 2b+ 2(i− (k − i)− 2)).

However, there are at most 1
2
(ℓ1 + · · · + ℓi−1 + 2b) vertices in the neighborhood of

H1 ∩ I that belong to H2. Moreover, i  k − i, since by definition the number of
vertices from H1 in the union of the paths p1, p2, . . . , pi plus one must be at least as
large as the number of vertices from H1 in the union of the paths pi+1, . . . , pk (recall
that 2  |p1|  |p2|  . . .  |pk|). Therefore, the number of vertices from H2 added
to I is at least the number of vertices from H2 in the neighborhood of H1 ∩ I minus
two.

This finishes the proof of the lemma.

We will be interested in an upper bound on the number of 3-regular graphs, containing
a bisection of size βn, coming from a first moment computation. As we shall see below,
as in Section 4, only the exponential order in this upper bound will be of any importance.
Therefore, by Corollary 47 it is sufficient to count the extensions of the skeleton of G′′

ld,i,
which contains the largest number of them.

To characterize this particular skeleton, we do a new transformation, which was already
presented in Section 4. We merge all cycles in this unlabeled graph into one very large
cycle. This transformation changes neither the number of vertices of any degree in G′′

ld,i

nor the number of edges in G′′
ld,i. We conclude that the number of extensions of the newly

obtained graph to G3,i remains the same as the number of extensions of the original
graph G′′

ld,i itself. Moreover, as already observed, a constant number of edges contributes
exp(o(n)) to the counting given by the first moment. Therefore, after merging the cycles
in G′′

ld,i one may delete one edge from the obtained very long cycle, and thus we are left
only with paths and subdivisions of stars. By abuse of notation, we denote by G′′

ld,i the
graph after the transformation as well.

Let β′
1n (respectively β′

2n) be the number of vertices of degree two in G[U1] (respec-
tively in G[U2]), which subdivide the paths and the 3-stars in G′′

ld,1 (respectively in G′′
ld,2),

and let βn be the total number of vertices of degree two on both sides. Note that β, β′
1

and β′
2 are functions of n with max{(β − β′

1)n, (β − β′
2)n}  624n

log2 n
+ 12. For i, j, ℓ ∈ N

with ℓ  j  i, let x′
i be the number of paths containing no edge of weight two of length

i in G′′
ld,1, x

′
j,i be the number of paths with an edge of weight two in position j  i+1

2
in

G′′
ld,1 and of length i, and y′i,j,l be the number of stars with branches of length i, j, ℓ in

G′′
ld,1. Let also x′′

i be the number of paths containing no edge of weight two of length i in
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G′′
ld,2, x

′′
j,i be the number of paths with edge of weight two in position j  i+1

2
in G′′

ld,2 and
of length i, and y′′i,j,l be the number of stars with branches of length i, j, l in G′′

ld,1.
Now, for any given β, we give an upper bound, up to exp(o(n)), of the number of graphs

that contain a bisection of type two of size βn. To this end, we find the skeleton of G′′
ld,i,

whose subdivision admits a maximal number of extensions, up to a exp(o(n))−factor,
to G[Ui] by maximizing the first moment. We now explain the factors appearing in the
counting in this first moment, as in the previous section.

1. Choose the n/2 labels of the vertices in U1 (and respectively in U2) in


n

n/2



ways.

2. Choose βn labels for the vertices in U1, which are going to be vertices of degree two
in G[U1], and another βn labels for the vertices in U2, which are going to be vertices
of degree two in G[U2], in


n/2

βn

2

= exp(o(n))


n/2

β1n


n/2

β2n



ways. Furthermore, choose the labels of the vertices of degree two in the subdivision
of G′′

ld,1 in

βn
β′
1n


= exp(o(n)) ways and choose labels of the the vertices in the

subdivision of G′′
ld,2 in


βn
β′
2n


= exp(o(n)) ways. Here we use that for every constant

c > 0, by Stirling’s formula


cn

log2 n


! = o


cn

log2 n

 cn
log2 n


= exp(o(n)).

3. Distribute the labels of the vertices of degree two on the edges of the unlabeled
graph G′′

ld,1 in
((β − β′

1)n)!(β
′
1n)! = exp(o(n))(β′

1n)!

ways. Also, distribute the labels of the vertices of degree two on the edges of the
unlabeled graph G′′

ld,2 in

((β − β′
2)n)!(β

′
2n)! = exp(o(n))(β′

2n)!

ways.

4. Divide by the product of the sizes of the automorphism groups of G′′
ld,1 and G′′

ld,2,
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which is given by



i1

2x
′
i(x′

i)!2
x′′
i (x′′

i )!


i1,(i+1)/2j1

(x′
j,i)!(x

′′
j,i)!



i1,i odd

2
x′
i+1
2 ,i



i1,i odd

2
x′′
i+1
2 ,i



lji1

(y′i,j,l)!


l>j1

2y
′
j,j,l



j>i1

2y
′
i,j,j



j1

6y
′
j,j,j



ℓji1

(y′′i,j,l)!


l>j1

2y
′′
j,j,l



j>i1

2y
′′
i,j,j



j1

6y
′′
j,j,j .

5. For i = 1, 2, we introduce the parameters ti, the number of connected components
in G′′

ld,i, ki, the number of edges of weight two in G′′
ld,i, and li, the number of leaves

in G′′
ld,i. Thus we have



i1,(i+1)/2j1

x′
j,i = k1n;



i1,(i+1)/2j1

x′′
j,i = k2n;



i1

x′
i +



i1,(i+1)/2j1

x′
j,i +



lji1

y′i,j,l = t1n;



i1

x′′
i +



i1,(i+1)/2j1

x′′
j,i +



lji1

y′′i,j,l = t2n;



i1

ix′
i +



i1,(i+1)/2j1

(i+ 1)x′
j,i +



lji1

(i+ j + l)y′i,j,l = β′
1n;



i1

ix′′
i +



i1,(i+1)/2j1

(i+ 1)x′′
j,i +



lji1

(i+ j + l)y′′i,j,l = β′
2n;



i1

2x′
i +



i1,(i+1)/2j1

2x′
j,i +



lji1

3y′i,j,l = ℓ1n;



i1

2x′′
i +



i1,(i+1)/2j1

2x′′
j,i +



lji1

3y′′i,j,l = ℓ2n.

6. Express the number of vertices of degree three in G[U1] participating in G′′
ld,1 (the

same computation holds for G′′
ld,2 and G[U2], respectively). Note that this number

is equal to the number of vertices of degree two in the subdivision of G′′
ld,1, plus a

“correction” of one vertex per connected component without edge of weight two. In
total this yields (β′

1 + t1 − k1)n vertices in G′′
ld,1 and (β′

2 + t2 − k2)n vertices in G′′
ld,2.

Thus, choose the labels of these vertices on the two sides in


(0.5− β)n

(β′
1 + t1 − k1)n


(0.5− β)n

(β′
2 + t2 − k2)n


= exp(o(n))


(0.5− β′

1)n

(β′
1 + t1 − k1)n


(0.5− β′

2)n

(β′
2 + t2 − k2)n



ways and distribute them in the skeleton in

((β′
1 + t1 − k1)n)!((β

′
2 + t2 − k2)n)!
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ways.

7. Choose the remaining edges completing the graphs G[U1] and G[U2] in


((1.5− 4β′

1 − β + 2k)n)!!

2(ℓ1+β−β′
1)n6(0.5−β−β′

1−(t1−k1))n


((1.5− 4β′

2 − β + 2k)n)!!

2(ℓ2+β−β′
2)n6(0.5−β−β′

2−(t2−k2))n



=exp(o(n))


((1.5− 5β′

1 + 2k1)n)!!

2ℓ1n6(0.5−2β′
1−(t1−k1))n


((1.5− 5β′

2 + 2k2)n)!!

2ℓ2n6(0.5−2β′
2−(t2−k2))n



ways.

8. Multiply by (βn)! = exp(o(n))


(β′
1n)!(β

′
2n)! for the matching between the two

parts.

9. Multiply by 6n to count configurations instead of graphs.

10. Divide by the total number of (3n − 1)!! configurations to transform the counting
into a probabilistic upper bound.

11. Up to now, we counted only bisections and did not take into consideration the fact
that these may come from the same graph. Now, we make one step further, partially
regrouping the bisections according to the 3-regular graph G they come from.

Consider the vertices of degree two in G[U1] and G[U2], which have a neighbor of
degree two on the same side. These vertices are exactly the ones which subdivide
in G[U1] and G[U2] the edges of weight at least two in G+

3,1 and G+
3,2, respectively.

We concentrate on the pairs of vertices subdividing edges of weight two in G′′
ld,1 and

G′′
ld,2. Contracting each of these pairs to a single vertex and considering the graph

induced by the edges in the cut, which are incident to at least one vertex in the
contracted pairs, leads to a bipartite graph of maximal degree two, see Figure 16.
We also know the number of vertices in each part of this graph, these are k1n and
k2n, respectively. By Lemma 48 one may form an independent set in this graph
with


k1n
2


− 1 vertices from the first part and


k2n
2


− 1 vertices from the second

part. Now, notice that to form a bisection of G, it is sufficient to put the vertices
in any


k1n
2


− 1 of the contracted pairs into U1 and the remaining pairs into U2 to

form a minimal bisection of G. This makes a total of

⌈k1n/2⌉+ ⌈k2n/2⌉ − 2

⌈k1n/2⌉ − 1



choices, which correspond to different bisections of the same size coming from the
same graph.

Using that ℓ1 = 2t1 +


lji1 yi,j,l and ℓ2 = 2t2 +


lji1 yi,j,l, the final formula
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Figure 16: The formation of the bipartite graph of maximal degree two from the pairs of
vertices subdividing the edges of weight two in G′′

ld,1 and G′′
ld,2. The only edges in the cut

on the left that are depicted, are the ones that participate in the bipartite graph.

reads

exp(o(n))


n

n/2


n/2

β′
1n


n/2

β′
2n


(β′

1n)!(β
′
2n)!

×






i1

2x
′
i(x′

i)!


i1,(i+1)/2j1

(x′
j,i)!



i1,i odd

2
x′

i+1
2

,i


lji1

(y′i,j,l)!


l>j1

2y
′
j,j,l



j>i1

2y
′
i,j,j



j1

6y
′
j,j,j




−1

×






i1

2x
′′
i (x′′

i )!


i1,(i+1)/2j1

(x′′
j,i)!



i1,i odd

2
x′′

i+1
2

,i


lji1

(y′′i,j,l)!


l>j1

2y
′′
j,j,l



j>i1

2y
′′
i,j,j



j1

6y
′′
j,j,j




−1

×


(0.5− β′
1)n

(β′
1 + t1 − k1)n


(0.5− β′

2)n

(β′
2 + t2 − k2)n


((β′

1 + t1 − k1)n)!((β
′
2 + t2 − k2)n)!

×

((1.5− 5β′

1 + 2k1)n)!!

2ℓ16(0.5−2β′
1−(t1−k1))n


((1.5− 5β′

2 + 2k2)n)!!

2ℓ26(0.5−2β′
2−(t2−k2))n



×

(β′

1n)!(β
′
2n)!

6n

(3n− 1)!!


⌊k1n/2⌋+ ⌊k2n/2⌋ − 3

⌊k1n/2⌋ − 1

−1

Similarly to Section 4, we use the method of Lagrange multipliers to minimize the
product of the order of the automorphism group of G′′

ld,1 and 2ℓ1 = 22t1+


lji1 y
′
i,j,l in

the first case, and the product of the order of the automorphism group of G′′
ld,2 and 2ℓ2 =

22t2+


lji1 y
′′
i,j,l in the second case, under the constraints given in point 5 of the counting

procedure above. The calculation is the same for (x′
i)i1, (x

′
j,i)i1,(i+1)/2j1, (y

′
i,j,l)lji1

and for (x′′
i )i1, (x

′′
j,i)i1,(i+1)/2j1, (y

′′
i,j,l)lji1, so we only do it for the first set of vari-

ables.
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Let

xi =
x′
i

n
, xj,i =

x′
j,i

n
and yi,j,l =

y′i,j,l
n

.

Stirling’s formula and the constraints in point 5 above directly imply that one needs
to maximize the expression



i1

2xixxi
i



i1,(i+1)/2j1

x
xj,i

j,i



i1,i odd

2
x i+1

2 ,i


ℓji1

y
yi,j,l
i,j,l



l>j1

2yj,j,l


j>i1

2y
′′
i,j,j



j1

6y
′′
j,j,j

×


i1

22xi



i1,(i+1)/2j1

22xj,i



lji1

23yi,j,l

as a function of (xi)i1, (xj,i)i1,(i+1)/2j1, (yi,j,l)lji1.
Let f be a logarithm of the above expression, that is,

f((xi)i1, (xj,i)i1,(i+1)/2j1, (yi,j,l)lji1) =

i1

xi ln(2) + xi ln(xi) +


i1,(i+1)/2j1

xj,i ln(xj,i) +


i1,i odd

x i+1
2

,i ln(2)+

+


lji1

yi,j,l ln(yi,j,l) +


l>j1

yj,j,l ln(2) +


j>i1

yi,j,j ln(2) +


j1

yj,j,j ln(6)+

+


i1

2xi ln(2) +


i1,(i+1)/2j1

2xj,i ln(2) +


lji1

3yi,j,l ln(2).

Viewing t1, t2, k1, k2, β
′
1, β

′
2 as parameters, note that f contains all terms depending on

the variables of xi, xj,i, yi,j,l. Moreover, f is a strictly convex and infinitely differentiable
function over its feasible domain. Therefore, by ([12], Theorem 1) and [17] the method of
Lagrange multipliers may be applied to find the global minimum of f (which is its unique
critical point by convexity) even in infinite-dimension.

The optimization will be performed under the constraints






Λ′
1 :


i1,(i+1)/2j1 xj,i = k1;

Λ′
2 :


i1 xi +


i1,(i+1)/2j1 xj,i +


lji1 yi,j,l = t1;

Λ′
3 :


i1 ixi +


i1,(i+1)/2j1(i+ 1)xj,i +


lji1(i+ j + l)yi,j,l = β′

1.

The Lagrange objective function is
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F ((xi)i1, (xj,i)i1,(i+1)/2j1, (yi,j,l)lji1)

=f((xi)i1, (xj,i)i1,(i+1)/2j1, (yi,j,l)lji1)

−λ′
1






i1,(i+1)/2j1

xj,i − k1





−λ′
2






i1

xi +


i1,(i+1)/2j1

xj,i +


lji1

yi,j,l − t1





−λ′
3






i1

ixi +


i1,(i+1)/2j1

(i+ 1)xj,i +


lji1

(i+ j + l)yi,j,l − β′
1



 .

Direct calculation gives

3 ln(2) + 1 + ln(xi)− λ′
2 − iλ′

3 = 0 ⇒ xi =
exp(λ′

2 + iλ′
3)

8e
,

for j ∕= i+ 1

2
: 2 ln(2) + 1 + ln(xj,i)− λ′

1 − λ′
2 − (i+ 1)λ′

3 = 0 ⇒ xj,i =
exp(λ′

1 + λ′
2 + (i+ 1)λ′

3)

4e
,

for j =
i+ 1

2
: 1 + 3 ln(2) + ln(xj,i)− λ′

1 − λ′
2 − (i+ 1)λ′

3 = 0 ⇒ xj,i =
exp(λ′

1 + λ′
2 + (i+ 1)λ′

3)

8e
,

for l > j > i : 1 + 3 ln(2) + ln(yi,j,l)− λ′
2 − (i+ j + l)λ′

3 = 0 ⇒ yi,j,l =
exp(λ′

2 + (i+ j + l)λ′
3)

8e
,

for l = j > i : 1 + 4 ln(2) + ln(yi,j,j)− λ′
2 − (i+ 2j)λ′

3 = 0 ⇒ yi,j,j =
exp(λ′

2 + (i+ 2j)λ′
3)

16e
,

for l > j = i : 1 + 4 ln(2) + ln(yj,j,l)− λ′
2 − (2j + l)λ′

3 = 0 ⇒ yj,j,l =
exp(λ′

2 + (2j + l)λ′
3)

16e
,

for l = j = i : 1 + 3 ln(2) + ln(6) + ln(yj,j,j)− λ′
2 − 3jλ′

3 = 0 ⇒ yj,j,j =
exp(λ′

2 + 3jλ′
3)

48e
.

Inversing the system this time is more difficult, but at the same time we would
like to have β′

1 as a parameter and not as a function of λ′
1,λ

′
2 and λ′

3. There is an
easy solution – we keep λ′

1,λ
′
3 and β′

1 as parameters and express t1, k1 and λ′
2 as func-

tions of these parameters. This is not difficult since each of xi, xj,i and yi,j,l can be
represented as exp(λ′

2)g(λ
′
1,λ

′
3) for some function g depending on the term. An anal-

ogous computation may be done for t2, k2, β
′
2 with Lagrange multipliers λ′′

1,λ
′′
2,λ

′′
3. A

numerical optimization with Maple shows that, optimizing over λ′
1,λ

′′
1,λ

′
3,λ

′′
3 in the in-

terval (β′
1, β

′
2) ∈ [0.1, 0.103295], the maximum is attained at λ′

1 = λ′′
1 = 0.002428,

λ′
3 = λ′′

3 = −1.412768, yielding the value of 0.999996. We conclude that the propor-
tion of 3-regular graphs of order n with bisection of size at most 0.103295n tends to zero
exponentially fast with n (the maple code for the maximization can be found on the au-
thors’ webpages). Together with the results of the previous section, the lower bound of
Theorem 1 follows.
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6 An upper bound

In this section we show a complementary asymptotically almost sure upper bound on the
bisection width of a random 3-regular graph. The approach is very much inspired by
the works of [11] and [33], together with combinatorial observations from the previous
sections. In order to explain it, we need a few definitions: first, define a rooted graph
as a couple (G, ρ), with G some graph and ρ a distinguished vertex of G called root. A
finite rooted graph (G, ρ) is said to be uniformly rooted if ρ is a vertex chosen uniformly
at random among the vertices of G. Thus, one may consider (G, ρ) as a probability space
equipped with the uniform measure. A sequence of uniformly rooted graphs (Gn, ρn)n1

is said to converge locally (in the Benjamini-Schramm sense) if for every fixed r > 0 and
every fixed graph H, limn→∞ P(BGn(ρn, r)

∼= H) exists. Indeed, local convergence for
sequences of graphs is a particular case of weak convergence of probability measures (of
course, formally, one needs to embed the sequence of probability spaces into a common
probability space and then argue on the basis of it). Since one often comes up with a
simple description of the limit measure (let us call it µ) in terms of the empirical frequency
of the balls of any radius in a given infinite graph G∞, µ is usually abusively identified
with G∞.

The following lemma is well known (and follows from the observation that there are
a.a.s. at most o(log n) cycles of any constant length):

Lemma 49. Let Gn be a random 3-regular graph on n vertices, uniformly rooted at ρn.
The sequence (Gn, ρn)n1 converges locally to the infinite 3-regular tree T3.

In order to use the previous lemma, we first define the concept of a factor of iid
process. Suppose that, for a (possibly infinite) graph G, a family of standard normal
random variables (Zv)v∈V (G) is assigned to the vertices of G. A factor of iid process on a
graph G is a family of random variables (Xv)v∈V (G) such that:

1. for every v ∈ V (G), Xv is a measurable function of the random variables (Zv)v∈V (G),
and

2. the joint distribution of the family (Xv)v∈V (G) is invariant under permutation of the
indices induced by the action of any automorphism on V (G).

Let F be the class of factors of iid processes (φv)v∈V (T3) on T3 with values φv ∈ {0, 1},
for which P(φρ = 0) = 1

2
. The proof of Theorem 4.1 in [33] shows that

lim sup
n→∞

{bw(Gn)/|V (Gn)|}  inf
φ∈F

E(|{v ∼ ρ : φv ∕= φρ)}|)/2, (10)

where (Gn, ρn) is any sequence of graphs converging locally to T3. By Lemma 49, in
particular, this also applies to the random 3-regular graph. Hence, for an upper bound on
the scaled bisection width it suffices to find a suitable factor of iid process φ on T3 having
values in {0, 1}, and for which the probability that the root obtains value 0 is 1/2.

We say that a process (Xv)v∈V (G) is a linear factor of iid process (Zv)v∈V (G) on a
graph G if there exist α0,α1, . . . such that Xv =


u∈V (G) αdG(v,u)Zu for all v ∈ V (G).
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Note that Xv is always a centered Gaussian random variable. We call a collection of
random variables (Yv)v∈V (G) a Gaussian process on G if they are jointly Gaussian and Yv

is centered for every v ∈ V (G). We say that a Gaussian process (Yv)v∈V (G) is invariant if
the distribution of the family (Yv)v∈V (G) is invariant under the action of any automorphism
of G on the index set V (G). We use the following theorem, proven in [11]:

Theorem 50. For any real number λ with |λ|  3 there exists a non-trivial invariant
Gaussian process (Yv)v∈V (T3) on T3 that satisfies the eigenvector equation with eigenvalue
λ, i.e. (with probability 1), for every vertex v it holds



u∈N(v)

Yu = λYv.

Moreover, the joint distribution of such a process is unique under the additional condition
that, for every v ∈ V (T3), the variance of Yv is 1. We will refer to this (essentially unique)
process as the Gaussian wave function corresponding to the eigenvalue λ.

Let ((Gn, ρn))n1 be any sequence of uniformly rooted graphs converging locally to T3.
It was shown by Kesten (see [28]) that the spectrum of the transition operator for the
simple random walk on T3 is contained in the interval [−2

√
2, 2

√
2]. Moreover, Csóka,

Gerencsér, Harangi and Virág showed in [11] the following theorem:

Theorem 51. For any real number λ with |λ|  2
√
2, there exists a sequence of linear

factors of iid processes (X
(n)
v )v∈V (Gn) that converges in distribution to the Gaussian wave

function (Yv)v∈V (T3) corresponding to the eigenvalue λ.

As shown in [11], the joint distribution of a Gaussian process on T3 correspond-
ing to the eigenvalue λ with |λ|  2

√
2 is completely determined by its covariances

(Cov(Yu, Yv))u,v∈V (T3) and satisfies Cov(Yu, Yv) = σdT3 (u,v)
, where

σ0 = 1, 3σ1 − λσ0 = 0 and 2σk+1 − λσk + σk−1 = 0 for every k  1, (11)

and so in particular σ1 = λ/3 and σ2 =
λ2−3
6

. By the general theory of recursive sequences,
the covariances decay exponentially to zero as dT3(u, v) → ∞. Note that due to this decay

of covariances together with Theorem 51 we may (and do) choose the process (X
(n)
v )v∈V (Gn)

to be of the form

X(n)
v =

⌊log logn⌋

i=0



u∈V (Gn), dGn (u,v)=i

σiZu, (12)

where (Zv)v∈V (Gn) is a family of independent standard normal random variables.

We consider the largest eigenvalue for which the theorems apply, that is, λ = 2
√
2,

as already done in [33]. The idea is that the corresponding eigenvector has positive
correlation between neighbors in T3 (since λ > 0), and thus the cut between the set of
vertices {v | Yv  0} and the set of vertices {v | Yv < 0} has relatively few edges going
across. More formally, consider the Gaussian wave (Yv)v∈V (T3) on T3 given in Theorem 50
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associated to the eigenvalue λ = 2
√
2. As before, let ((Gn, ρn))n1 be any sequence

of rooted graphs converging locally to T3. By Theorem 51, there exists a linear factor
of iid process (X

(n)
v )v∈V (Gn) on Gn that converges in distribution to the Gaussian wave

(Yv)v∈V (T3). Since every variable in the Gaussian wave is centered, by setting for each
vertex v of T3, φv = 0 in case Yv < 0 and setting φv = 1 in case Yv  0, we see that
φv ∈ {0, 1} and P(φρ = 0) = 1

2
. Hence, φ ∈ F , and by (10),

lim sup
n→∞

{bw(Gn)/|V (Gn)|}  E(|{v ∼ ρ : φv ∕= φρ)}|)/2.

Now, consider the sequence ((Gn, ρn))n1. We first explain the approach of [33] using

the linear factor of iid process (X
(n)
v )v∈V (G(n,3)) (denoted by (X

(n)
v ) in the sequel to simplify

notation) described above. We consider events regarding cherries. Recall that a cherry
(v1, v, v2) consists of three vertices, v, v1, v2 ∈ V (T3), connected by edges vv1 and vv2.
Here v is said to be the center of the cherry, and v1 and v2 are its endpoints. We also call
a cherry (v1, v, v2) a border cherry if the sign of Xv is different from both the sign of Xv1

and the sign of Xv2 .

Consider the event that a given cherry with center at v is such that X
(n)
v has the same

sign as both X
(n)
v1 and X

(n)
v2 . The probability of this event, in the limit as n → ∞, is given

by

lim
n→+∞

P(X(n)
v  0, X(n)

v1
 0, X(n)

v2
 0) + P(X(n)

v < 0, X(n)
v1

< 0, X(n)
v2

< 0)

= lim
n→+∞

2P(X(n)
v  0, X(n)

v1
 0, X(n)

v2
 0) = 2


1

8
+

1

4π
(2 arcsin r1 + arcsin r2)


,

with
r1 = Corr(Yv, Yv1) = Corr(Yv, Yv2) = Cov(Yv, Yv2)/


Var(Yv)Var(Yv2)

and
r2 = Corr(Yv1 , Yv2) = Cov(Yv1 , Yv2)/


Var(Yv1)Var(Yv2).

Here, we abusively view (v1, v, v2) as a cherry in T3 as well. For the calculation, see for

example (6.22) of [27], or also Subsection 4.1 in [11]. Plugging in the values of σ1 =
2
√
2

3

and σ2 =
5
6
we get that

lim
n→+∞

2P(X(n)
v  0, X(n)

v1
 0, X(n)

v2
 0) = 2


1

8
+

1

4π


2 arcsin

2
√
2

3
+ arcsin

5

6


≈ 0.798611.

Hence, we may conclude that, as n → ∞, with probability tending to 0.798611 none
of the edges of a cherry participates in the cut with parts {v ∈ G(n, 3) |X(n)

v  0} and

{v ∈ G(n, 3) |X(n)
v < 0}. Similarly, as n → ∞, the probability of a cherry (v1, v, v2)
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having exactly one endpoint with a sign, different from the sign of X
(n)
v , is given by

lim
n→+∞

P(X(n)
v  0, X(n)

v1
 0, X(n)

v2
< 0) + P(X(n)

v < 0, X(n)
v1

< 0, X(n)
v2

 0)

+ P(X(n)
v  0, X(n)

v1
< 0, X(n)

v2
 0) + P(X(n)

v < 0, X(n)
v1

 0, X(n)
v2

< 0)

= lim
n→+∞

4P(X(n)
v  0, X(n)

v1
 0, X(n)

v2
< 0)

= 4


1

8
+

1

4π


arcsin

2
√
2

3
+ arcsin

−2
√
2

3
+ arcsin

−5

6


≈ 0.186429.

By analogy, the probability to obtain a border cherry, as n → ∞, tends to

lim
n→+∞

P(X(n)
v  0, X(n)

v1
< 0, X(n)

v2
< 0) + P(X(n)

v < 0, X(n)
v1

 0, X(n)
v2

 0)

= lim
n→+∞

2P(X(n)
v  0, X(n)

v1
< 0, X(n)

v2
< 0)

= 2


1

8
+

1

4π


arcsin

−2
√
2

3
+ arcsin

−2
√
2

3
+ arcsin

5

6


≈ 0.0149586.

We define a partition (V
(n)
1 , V

(n)
2 ) of V (G(n, 3)), where V

(n)
1 = {v ∈ V (G(n, 3)) |Xv 

0} and V
(n)
2 = V (G(n, 3)) \ V (n)

1 .

Observation 52 (Theorem 4.1 in [33]). The minimum bisection in a random 3-regular
graph is of size a.a.s. at most

(0.186429 + 2× 0.0149586)
3n

4
≈ 0.16226n.

Sketch of proof. By summing over all 3n cherries and taking into account that each edge
is counted in four cherries, we get that, as n → ∞, the expected size of the cut (V

(n)
1 , V

(n)
2 )

is equal to (0.186429 + 2× 0.0149586)3n
4
≈ 0.16226n. While this cut is not necessarily a

bisection, by (12), (X
(n)
v ) is a process depending on the set of standard normal variables

corresponding to vertices at distance at most log log n from v in G(n, 3) only. Hence,
since two uniformly chosen vertices in G(n, 3) are at distance Ω(log n) from each other
(which follows by a direct computation), by a standard second moment argument, a.a.s.

|V (n)
1 | − |V (n)

2 | = o(n). Concentration of the number of border cherries, as well as the

number of cherries (v1, v, v2) with X
(n)
v1 and X

(n)
v2 being of different signs, around their

expected values follows from a similar second moment computation.

We now improve on Lyons’ result of Observation 52.

Observation 53. The number of vertices v in G(n, 3), which are centers of at least two
border cherries, is a.a.s. o(n) as n → +∞.
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v

v′

u

u′

Figure 17: The construction of the bipartite graph H(n). The vertices in black belong to
V

(n)
1 , and the vertices in white belong to V

(n)
2 . Since (u′, v, u) is a cherry with black center

and white endpoints, and (v, u, v′) is a cherry with white center and black endpoints,

the vertex v (u, respectively) is included in H
(n)
1 (H

(n)
2 , respectively), and the edge uv is

included in H(n).

Proof. A center v of at least two border cherries with leaves v1, v2, v3 in G(n, 3) must be

attributed the value X
(n)
v whose sign is different from each of X

(n)
v1 , X

(n)
v2 , X

(n)
v3 . Since the

distribution of the process (X
(n)
v )v∈V (G(n,3)) approximates the one of the Gaussian wave on

T3 for the eigenvalue λ = 2
√
2, for a uniformly random vertex v of G(n, 3) with neighbors

v1, v2 and v3 and for every ε > 0, a.a.s.

|2
√
2X(n)

v − (X(n)
v1

+X(n)
v2

+X(n)
v3

)|  ε. (13)

Thus, for v to be a center of at least two border cherries, we must have that either
|X(n)

v |  ε or that (13) does not hold. By choosing ε sufficiently small, the probability of
either event may be made arbitrarily close to 0 as n → ∞, which shows that the expected
number of centers of at least two border cherries in G(n, 3) is o(n). The proof is completed
by Markov’s inequality.

Proof of the upper bound of Theorem 1. We construct the bipartite graphH(n) with parts
W

(n)
1 ⊆ V

(n)
1 and W

(n)
2 ⊆ V

(n)
2 . Its vertices are the centers of border cherries. Its edges

are the ones crossing the cut (V
(n)
1 , V

(n)
2 ), whose endvertices are both centers of border

cherries (see Figure 17). Also, recall from the (sketch of) the proof of Observation 52 that

a.a.s. |V (n)
1 |− |V (n)

2 | = o(n).

Now, for a given cherry, the probability that it is a border cherry with center in V
(n)
1 is

0.0149595
2

+ o(1), and there are a.a.s. 3n/2+ o(n) cherries with centers in V
(n)
1 . Thus, there

are a.a.s. at least 0.0149595 · 3n
2
+o(n) ≈ 0.022438n+o(n) vertices in W

(n)
1 (concentration

around the expected values follows as before). Notice that here, we use Observation 53
to say that a.a.s. |V (H(n))| is, up to o(n), equal to the total number of centers of border
cherries. We conclude by Lemma 48 that a.a.s. there exists an independent set In having
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at least ξn = 0.022438n
2

+ o(n) = 0.011219n+ o(n) vertices of W
(n)
1 and ξn vertices of W

(n)
2 .

Sending the vertices in In ∩ W
(n)
1 to V

(n)
2 and sending back the vertices in In ∩ W

(n)
2

to V
(n)
1 leads a.a.s. to a cut (U

(n)
1 , U

(n)
2 ) with |U (n)

1 | = |U (n)
2 | = n/2 − o(n) and size at

most 0.16226n+ o(n)− 2ξn = 0.139822n+ o(n). After exchanging another o(n) vertices,

(U
(n)
1 , U

(n)
2 ) may be transformed into a bisection, which finishes the proof.

We remark that the value obtained is exactly the same as the one given in [21] for
the number of edges not going through a maximum cut of a random 3-regular graph (the
authors therein prefer to give only two digits after the decimal point). Their result is a
corollary of the paper [11]. It uses a similar approach to our paper to find a maximum cut
based on the eigenvalue λmin = −2

√
2 of the transition operator of the random 3-regular

graph. The numbers appearing in both calculations are the same. From a combinatorial
point of view, the rough intuitive explanation of this phenomenon is the following: in [21]
the authors pick two maximal independent sets on both sides of the cut (of equal sizes)
and then add the remaining vertices in greedy order to the part where they have less
neighbors. From an algorithmic point of view, this is equivalent to choosing arbitrarily
the part of every vertex outside of the two initial independent sets and then switching
vertices having at most one neighbor on the other side, as long as this is possible. We
pick a minimum bisection given by the largest eigenvector and switch vertices having at
least two neighbors on the other side, as long as this is possible. Despite the fact that
this is far from a proof, as mentioned in the introduction, this phenomenon was observed
before – Zdeborová and Boettcher conjectured in [38] that the number of edges crossing a
minimum bisection in a random 3-regular graph is a.a.s. (up to o(n)) equal to the number
of edges not crossing a maximum cut in such a graph.

Non-rigorous improvement. The previous argument does not take into account
that vertices of degree zero in the bipartite graph (H

(n)
1 , H

(n)
2 ) can be freely switched from

one side to the other. Indeed, having once identified the number of these vertices on
each side, they can be switched to reduce the cut, and in the remaining graph consisting
of vertices of degree one or two, Lemma 48 can be applied. In order to compute the
probability that one vertex v4 in, say, V

(n)
2 with neighbors v3, v5 in V

(n)
1 has degree zero in

H(n), we must have for the other two neighbors v1, v2 of v3 and for the other two neighbors
v6, v7 of v5 that X

(n)
v1  0, X

(n)
v2  0, X

(n)
v6  0 and X

(n)
v7  0 (see Figure 18). Analogous

computations hold if the vertex v4 is in V
(n)
1 and all remaining vertices are in V

(n)
2 .

Now, let us compute

P(X(n)
v1

> 0, X(n)
v2

> 0, X(n)
v3

> 0,−X(n)
v4

> 0, X(n)
v5

> 0, X(n)
v6

> 0, X(n)
v7

> 0). (14)

We proceed as before. Using (11), we obtain that the covariance matrix of the random
vector

(X(n)
v1

, X(n)
v2

, X(n)
v3

,−X(n)
v4

, X(n)
v5

, X(n)
v6

, X(n)
v7

)T
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v4

v5

v3

v2

v1

v7

v6

Figure 18: The vertices in black belong to V
(n)
1 , and the vertices in white belong to V

(n)
2 .

In the figure v4 is an isolated vertex in H(n), since neither v3, nor v5 participate in a
border cherry.

converges to the matrix B, given by




1 5/6 2
√
2/3 −5/6 1/

√
2 7/12 7/12

5/6 1 2
√
2/3 −5/6 1/

√
2 7/12 7/12

2
√
2/3 2

√
2/3 1 −2

√
2/3 5/6 1/

√
2 1/

√
2

−5/6 −5/6 −2
√
2/3 1 −2

√
2/3 −5/6 −5/6

1/
√
2 1/

√
2 5/6 −2

√
2/3 1 2

√
2/3 2

√
2/3

7/12 7/12 1/
√
2 −5/6 2

√
2/3 1 5/6

7/12 7/12 1/
√
2 −5/6 2

√
2/3 5/6 1





Using the eigenvalue decomposition of B, we find the matrix V satisfying V V T = B
with approximate entries





0 0 −0.2887 0 −0.4082 0.0676 0.8634
0 0 0.2887 0 −0.4082 0.0676 0.8634
0 0 0 0 −0.2887 −0.0215 0.9572
0 0 0 0 0 0.1962 −0.9806
0 0 0 0 0.2887 −0.0215 0.9572
0 0 0 −0.2887 0.4082 0.0676 0.8634
0 0 0 0.2887 0.4082 0.0676 0.8634





.

In particular, applying V on the left to the standard normal vector

(Zv1 , Zv2 , Zv3 , Zv4 , Zv5 , Zv6 , Zv7)
T

gives us the desired joint distribution of the seven-dimensional vector

(Yv1 , Yv2 , Yv3 ,−Yv4 , Yv5 , Yv6 , Yv7)
T

(by abuse of notation we assume again that the vertices (vi)i1 are included in G(n, 3)

as well as in T3). Indeed, recall that the linear factors of iid (X
(n)
v )v∈V (G(n,3)) converge
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in distribution to the Gaussian wave (Yv)v∈V (T3). More precisely, in order for all seven
coordinates of this resulting vector to be positive, the following inequalities must hold:

Zv7 > −(V1,3Zv3 + V1,5Zv5 + V1,6Zv6)/V1,7 (15)

Zv7 > −(V2,3Zv3 + V2,5Zv5 + V2,6Zv6)/V2,7 (16)

Zv7 > −(V3,5Zv5 + V3,6Zv6)/V3,7 (17)

Zv7  V4,6Zv6/(−V4,7) (18)

Zv7 > −(V5,5Zv5 + V5,6Zv6)/V5,7 (19)

Zv7 > −(V6,4Zv4 + V6,5Zv5 + V6,6Zv6)/V6,7 (20)

Zv7 > −(V7,4Zv4 + V7,5Zv5 + V7,6Zv6)/V7,7 (21)

Defining LB to be the maximum of all lower bounds corresponding to inequalities (15,
16, 17, 19, 20, 21) for Xv7 , and UB = max{LB, the right hand side of (18)}, computing
the desired probability (14) is thus equivalent to computing the following integral:

 ∞

−∞

 ∞

−∞

 ∞

−∞

 ∞

−∞

 UB

LB

e−
x23
2
−x24

2
−x25

2
−x26

2
−x27

2
1

(2π)5/2
dx7dx6dx5dx4dx3.

Unfortunately, we are not able to compute this integral (not even numerically). Per-
forming a Monte Carlo simulation with 3× 107 iterations (see the authors’ wegpages for
the corresponding Python code) and checking in each round whether the new sample of
Zv3 , Zv4 , Zv5 , Zv6 , Zv7 satisfies all inequalities, we obtain an estimated value of 0.002818666.

Therefore, the total number of border cherries having their centers in H
(n)
2 and of degree

zero in H(n) is 3 × 0.00281866n = 0.008456n + o(n) a.a.s. (concentration around the
expected value follows as before). By symmetry, this clearly holds also for border cherries

having their centers in H
(n)
1 and of degree zero in H(n).

We can therefore improve the previous argument in the following way: first switch the
2×0.008456n+o(n) centers of border cherries having degree zero in H(n) (0.008456n+o(n)
in both parts of the graph) to the other side of the cut (that is, change the associated
value φv from 0 to 1 and vice versa), yielding a total a.a.s. gain of 0.016912n + o(n)
edges. These centers of cherries “disappear” as vertices of H(n) since they are no longer
centers of border cherries. We apply Lemma 48 to the remaining bipartite graph with
parts of size 0.022438n− 0.0084912n+ o(n) = 0.013982n+ o(n) to obtain an independent
set of size at least 2 × 0.013982n

2
+ o(n). Switching these to the other side gives another

gain of 0.013982 + o(n), thus yielding a total cut (U
(n)
1 , U

(n)
2 ) size of at most 0.16226n −

0.016912n − 0.013982n + o(n) = 0.131366n + o(n) with |U (n)
1 | − |U (n)

2 | = o(n) a.a.s. As
above, this cut may be transformed into a bisection by switching the sides of at most
o(n) vertices of G(n, 3). We remark that this numerical value is also close to the one in
Remark 4.1 given in [11] for numerical calculation of the number of edges, not included
in a maximum cut of G(n, 3), thus giving another indication that the conjecture of [38]
holds true.
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Clearly, taking into account different substructures (such as, for example, paths v1,
v2, . . . , vk of three or more consecutive vertices, for which (Xvi)1ik have all the same
sign, and each of (vi)1ik having exactly one neighbor (ui)1ik, respectively, such that
for every i ∈ [k], Xvi and Xui

have different signs, or other structures that were observed
in the proof of the lower bound), we could further improve the previous bound. Since we
cannot evaluate the corresponding integrals numerically, we stopped as this point.
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