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Abstract

A new descent set statistic on involutions, defined geometrically via their inter-
pretation as matchings, is introduced in this paper, and shown to be equidistributed
with the standard one. This concept is then applied to construct explicit cyclic
descent extensions on involutions, standard Young tableaux and Motzkin paths.
Schur-positivity of the associated quasisymmetric functions follows.
Mathematics Subject Classifications: 05A15, 05A19, 05E05
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1 Introduction

The notion of descent set, for permutations as well as for standard Young tableaux, is well
established. Klyachko [15] and Cellini [7] introduced a natural notion of cyclic descents
for permutations. This notion was generalized to standard Young tableaux of rectangular
shapes by Rhoades [20], and to other shapes and combinatorial sets in [3].

For a positive integer n, denote [n] := {1, . . . , n}.
Definition 1. Let T be a finite set, equipped with any set map Des : T −→ 2[n−1].
A cyclic extension of Des is a pair (cDes, p), where cDes : T −→ 2[n] is a map and
p : T −→ T is a bijection, satisfying the following axioms: for all T in T ,

(extension) cDes(T ) ∩ [n− 1] = Des(T ),
(equivariance) cDes(p(T )) = 1 + cDes(T ) (mod n),
(non-Escher) ∅ ( cDes(T ) ( [n],

where 1 + cDes(T ) (mod n) := {(1 + i) (mod n) : i ∈ cDes(T )}. A pair (cDes, p),
which satisfies the first two axioms but not the third is called an Escherian cyclic descent
extension.

Example 2. Consider the symmetric group Sn on n letters and the standard descent set
of a permutation π = [π1, . . . , πn],

Des(π) := {1 6 i 6 n− 1 : πi > πi+1} ⊆ [n− 1].

A corresponding cyclic descent set was defined by Cellini [7] as

CDES(π) := {1 6 i 6 n : πi > πi+1} ⊆ [n],

with the convention πn+1 := π1. The pair (CDES, p), where p : Sn → Sn is the cyclic
rotation defined by p([π1, . . . , πn]) := [πn, π1, . . . , πn−1], is a cyclic descent extension for
Sn.

Cyclic descent extensions were introduced in the study of Lie algebras [15] and descent
algebras [7]. Surprising connections of cyclic descent extensions to a variety of mathe-
matical areas were found later. For connections of cyclic descents to Kazhdan-Lusztig
theory see [20]; for topological aspects and connections to the Steinberg torus see [8]; for
twisted Schützenberger promotion see [20, 13]; for cyclic quasisymmetric functions and
Schur-positivity see [1, 2, 5]; for higher Lie characters see [2]; and for Postnikov’s toric
Schur functions and Gromov-Witten invariants see [3].

The question addressed in [2] was: which conjugacy classes in Sn carry a cyclic descent
extension? Cellini’s cyclic descent map does not provide a cyclic descent extension on
most conjugacy classes. However, it turns out that most conjugacy classes carry such an
extension.
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Example 3. Consider the conjugacy class of transpositions in S4

{2134, 3214, 4231, 1324, 1432, 1243}.

Cellini’s cyclic descent sets are

{1, 4}, {1, 2, 4}, {1, 3}, {2, 4}, {2, 3, 4}, {3, 4},

respectively; and this collection is not closed under cyclic rotation. On the other hand,
defining the cyclic descent sets by

cDes(2134) = {1, 4}, cDes(3214) = {1, 2}, cDes(4231) = {1, 3},

cDes(1324) = {2, 4}, cDes(1432) = {2, 3}, cDes(1243) = {3, 4},
and the map p by

3214→ 1432→ 1243→ 2134 (→ 3214), 4231→ 1324 (→ 4231),

yields a pair (cDes, p) which is a cyclic descent extension for this conjugacy class.

A full characterization of the conjugacy classes in Sn which carry a cyclic descent
extension was given.

Theorem 4. [2, Theorem 1.4] A conjugacy class of permutations of cycle type λ carries
a cyclic descent extension if and only if λ is not equal to (rs) for any square-free integer
r.

The proof of Theorem 4, presented in [2], is algebraic and not constructive.

Problem 5. [2, Problem 7.11] Find an explicit combinatorial description of the cyclic
descent extension for conjugacy classes, whenever it exists.

In this paper we present a solution of this problem for the conjugacy classes of involu-
tions. For n > k > 0 with n−k even, let In,k be the conjugacy class of involutions with k
fixed points in the symmetric group Sn. We present a purely combinatorial constructive
proof of the following result.

Theorem 6. For every n > k > 0 with n−k even, In,k carries a cyclic descent extension.
For k = 0 and k = n there is only an Escherian cyclic extension.

In order to construct an explicit cyclic descent extension for conjugacy classes of
involutions with fixed points, we have to consider first the conjugacy class of fixed-point-
free involutions. It will be shown that a certain geometrically-defined set-valued function
on perfect matchings is equidistributed with the standard descent set on fixed-point-free
involutions, leading to an Escherian cyclic descent extension for this conjugacy class of
involutions (k = 0) and an ordinary (non-Escherian) extension for 0 < k < n.

For n > k > 0 with n− k even, letMn,k be the set of partial matchings on n points,
labeled by [n] := {1, . . . , n}, with exactly k unmatched points.
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Remark 7. An involution (i1, i2) · · · (i2r−1, i2r) ∈ In,k (with n = 2r + k) may be naturally
interpreted as the matching m ∈ Mn,k with matched pairs {i1, i2}, . . . , {i2r−1, i2r}. This
interpretation will be used frequently. Throughout this paper, the notations In,k and
Mn,k are interchangeable.

Definition 8. The standard descent set of a matching m ∈ Mn,k, denoted Des(m), is
defined via the one-line notation of the corresponding involution in In,k.

Definition 9. The geometric descent set of a matching m ∈ Mn,k, denoted GDes(m),
consists of the geometric descents of m, defined as follows. Draw the n points on a
horizontal line in the real plane and label them by 1, . . . , n from left to right. Indicate
a matched pair {i, j}, with i < j, by drawing an arc in the upper half plane from the
point labeled i to the point labeled j. An index i ∈ [n− 1] is a geometric descent of the
matching m ∈Mn,k if one of the following conditions holds:

1. {i, i+ 1} is a matched pair in m.

2. The arc containing i intersects the arc containing i+ 1.

3. i is unmatched and i+ 1 is matched.

See Figure 1 for an example.

m =
1 2 3 4 5 6 7 8

Figure 1: m = (1, 6)(3, 4)(5, 7) ∈ M8,2, has GDes(m) = {2, 3, 5, 6} and Des(m) =
Des([6, 2, 4, 3, 7, 1, 5, 8]) = {1, 3, 5}.

For a finite set of positive integers J let xJ :=
∏
j∈J

xj.

Lemma 10. For every n > 0∑
m∈M2n,0

xDes(m)yGDes(m) =
∑

m∈M2n,0

xGDes(m)yDes(m).

For a matching m ∈ Mn,k let cr(m) and ne(m) be the crossing number and nesting
number of m, respectively; see Definition 29 below. Using Lemma 10 we will prove the
following.

Theorem 11. For every n > k > 0 with n− k even∑
m∈Mn,k

qcr(m)xGDes(m) =
∑

m∈Mn,k

qne(m)xDes(m).
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Bijective proofs of Lemma 10 and Theorem 11 will be described in Section 3.
LetMn := tnk=0Mn,k be the set of all matchings on n points, labeled by 1, . . . , n. Let

um(m) be the number of unmatched points in a matching m ∈Mn. For a partition λ let
ht(λ) be the number of parts in λ, let oc(λ) be the number of odd parts in the conjugate
partition, and let sλ be the corresponding Schur function. For D ⊆ [n − 1] let Fn,D be
the corresponding fundamental quasisymmetric function. For definitions and more details
see Subsection 4.1. The following Schur-positivity phenomenon follows from the proof of
Theorem 11.

Theorem 12. For every n > 0∑
m∈Mn

qum(m)tcr(m)Fn,GDes(m) =
∑
λ`n

qoc(λ)tbht(λ)/2csλ.

The existence of cyclic descent extensions, on conjugacy classes of involutions with
fixed points and other combinatorial sets, follows. To verify this observe, first, that there
is a very natural cyclic extension of GDes onMn,k.

Definition 13. Draw n points on a circle and label them by 1, . . . , n clockwise. Indicate
a matched pair by drawing a chord between the corresponding points. A point i ∈ [n] is a
cyclic geometric descent of a matching m ∈Mn,k if one of the following conditions holds
(where addition is modulo n):

1. {i, i+ 1} is a chord in m.

2. The chord containing i intersects the chord containing i+ 1.

3. i is unmatched and i+ 1 is matched.

The cyclic geometric descent set of m is denoted by cGDes(m).

See Figure 2 for an example.
The proof of Theorem 11 applies an explicit bijection ι̂ : In,k →Mn,k for any n > k >

0, which satisfies
Des(π) = GDes(ι̂−1(π)) (∀π ∈ In,k).

Using cGDes, define cDes : In,k → [n] by

cDes(π) := cGDes(ι̂−1(π)) (∀π ∈ In,k).

Let r : Mn,k → Mn,k correspond to clockwise rotation by 2π/n. Here is an explicit
version of Theorem 6.

Proposition 14. Assume that n > k > 0 with n− k even.

(a) If 0 < k < n then the pair (cDes, ι̂−1 ◦ r ◦ ι̂) is a (non-Escherian) cyclic extension
of Des on In,k.
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m =

8
1

2

3
4

5

6

7

, r(m) =

8
1

2

3
4

5

6

7

Figure 2: m = (1, 6)(3, 4)(5, 7) ∈ M8,2 has GDes(m) = {2, 3, 5, 6} and cGDes(m) =
{2, 3, 5, 6, 8}. Rotating m by 2π/8 yields r(m) = (2, 7)(4, 5)(6, 8) with GDes(r(m)) =
cGDes(r(m)) = {3, 4, 6, 7, 1}.

(b) If k = 0 or k = n then the above pair is an Escherian cyclic extension of Des on
In,k.

The cyclic descent extension from Proposition 14 can be further refined to certain
subsets of In,k, yielding a combinatorial cyclic descent extension for sets of standard Young
tableaux of bounded height with a given number of odd columns. Letting the height be
at most 2 with all columns even, or height at most 3 with no further restrictions, give
explicit cyclic descent extensions for the sets of Dyck paths and Motzkin paths of fixed
length, respectively. These cyclic extensions coincide with those determined by Dennis
White (as described in [17]) and Bin Han [12].

The structure of this paper is as follows. Section 2 contains some preliminary back-
ground. Section 3 contains bijective proofs of the equidistribution results, Lemma 10
and Theorem 11. Section 4 contains a proof of the Schur-positivity result, Theorem 12.
Section 5 deals with cyclic descent extensions and proves Proposition 14, thus Theorem 6.
Finally, Section 6 presents a non-constructive proof of a refinement of Theorem 11, based
on a very recent unpublished result of Gessel.

2 Preliminaries

2.1 Permutations and tableaux

For 1 6 k 6 n denote [n] := {1, 2, . . . , n} and [k, n] := {k, k + 1, . . . , n}. A partition of λ
of a positive integer n, denoted λ ` n, is a sequence λ = (λ1, . . . , λt) of weakly decreasing
positive integers whose sum is n.

Let Sn denote the symmetric group consisting of all permutations of [n]. A permutation
π ∈ Sn will be represented by the one-row notation π = [π1, . . . , πn] ∈ Sn, where πi := π(i)
(i ∈ [n]); denote also Fix(π) := {i ∈ [n] : π(i) = i}, the set of fixed points of π. Recall
that the descent set of a permutation π ∈ Sn is

Des(π) := {i ∈ [n− 1] : π(i) > π(i+ 1)}.
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Another important family of combinatorial objects for which there is a well-studied notion
of descent set is the set of standard Young tableaux (SYT). Let SYT(λ) denote the set
of standard Young tableaux of shape λ, where λ is a partition of n. We draw tableaux in
English notation, as in Figure 3. The descent set of T ∈ SYT(λ) is

Des(T ) := {i ∈ [n− 1] : i+ 1 is in a lower row than i in T}.

For example, the descent set of the SYT in Figure 3 is {1, 3, 5, 6}.

1 3 5 9
2 4 6
7 8

Figure 3: A SYT of shape λ = (4, 3, 2).

The Robinson-Schensted (RS) correspondence is a bijection π 7→ (Pπ, Qπ) from per-
mutations in Sn to pairs of standard Young tableaux (SYT) of the same shape and size
n. The common shape λ of the insertion tableau Pπ and the recording tableau Qπ is called
the shape of the permutation π. We recall basic properties of the RS correspondence that
will be used in the paper. For more details see, e.g., [22].

The height ht(λ) of a shape λ is the number of rows in λ.

Proposition 15. [23] For every permutation π ∈ Sn, the height of the shape of π is equal
to the maximal length of a decreasing subsequence in the one-line notation of π.

Proposition 16. [4, Propositions 14.4.12 and 14.10.6]

1. Pπ = Qπ−1, thus Qπ = Pπ−1 and Pπ = Qπ if and only if π ∈ Sn is an involution.

2. Des(Qπ) = Des(π) for all π ∈ Sn.

Proposition 17. [24] The number of columns of odd length in the shape of an involution
with k fixed points is equal to k.

Let SYTn denote the set of all SYT of size n, and let SYTn,k denote the set of
standard Young tableaux of size n having k columns of odd length. Consider the map
Q : Sn → SYTn defined by mapping π ∈ Sn to the corresponding Robinson-Schensted
recording tableau Qπ.

Corollary 18. The map Q, restricted to involutions with a fixed number of fixed points, is
a descent-set-preserving bijection from the set In,k of involutions in Sn with k fixed points
to the set SYTn,k of standard Young tableaux of size n with k odd columns.

Proof. By Proposition 16.1, the map Q determines a bijection from the set of involutions
In to the set of all SYT of size n. By Proposition 16.2, this map is descent-set-preserving
and, by Proposition 17, the pre-image of SYTn,k is In,k.
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Let X be a totally-ordered set of letters, and let U and V be disjoint finite sub-
sets of X. Let SU and SV be the groups of permutations on U and V , respectively.
For σ ∈ SU and τ ∈ SV , the set of shuffles of σ and τ , denoted by σ � τ , is the
set of all permutations of the disjoint union U t V in which the letters of U appear
in the same order as in σ and the letters of V appear in the same order as in τ . For
sets A and B of permutations on disjoint finite totally-ordered sets of letters U and
V , respectively, denote by A � B the set of all shuffles of a permutation in A and
a permutation in B. For example, if A = {12, 21} and B = {43}, then A � B =
{1243, 1423, 1432, 4123, 4132, 4312, 2143, 2413, 2431, 4213, 4231, 4321}.

Observation 19. By the definition of the RS correspondence, the smallest n− k letters
in Pπ form a sub-tableau which depends only on their relative positions in π.

In particular, letting σ be a permutation on [k] and τ a permutation on [n] \ [k], all
π ∈ σ� τ have a common sub-tableau of Pπ consisting of the smallest k letters.

Proposition 20. For every σ ∈ In−k,0 and π ∈ σ� [n− k+ 1, . . . , n], the number of odd
columns in the RS shape of π is equal to k.

Proof. Since σ ∈ In−k,0, by Proposition 17 all the columns of its shape have even length.
By Observation 19, the shape of the sub-tableau consisting of the smallest n − k letters
in Pπ, which are the letters of σ, is the shape of σ. On the other hand, for every shuffle
π ∈ σ � [n − k + 1, . . . , n] and every n − k < i < n, i 6∈ Des(π−1). By Proposition 16
this implies that i 6∈ Des(Pπ) for all such i, so that the largest k letters in Pπ belong to
distinct columns and increase from left to right. They are therefore in the bottom cells of
the odd columns of Pπ, and the result follows.

The proof of Proposition 20 implies the following.

Corollary 21. For every σ ∈ In−k,0 and π ∈ σ� [n− k + 1, . . . , n], the largest k letters
in Pπ appear in the bottom cells of the k odd columns of Pπ, and they are increasing from
left to right.

2.2 Involutions and oscillating tableaux

Consider the Young lattice whose elements are all partitions, ordered by inclusion of the
corresponding Young diagrams. A standard Young tableau of shape λ may be viewed
as a maximal chain, in the Young lattice, from the empty partition to λ; see, e.g., [4,
§14.2.5.1]. A variation of this description yields oscillating tableaux, which correspond to
general paths in the Hasse diagram of the Young lattice, from the empty diagram to a
diagram of shape λ. The size of the oscillating tableau is the length of the path, and
its shape is λ. We focus on closed paths of length 2n from the empty diagram to itself;
in other words, on oscillating tableaux of size 2n with an empty shape. The set of all
such oscillating tableaux will be denoted by O2n. A key tool in this paper is Sundaram’s
bijection s : I2n,0 → O2n, from the set I2n,0 of fixed-point-free involutions in S2n to the
set O2n of oscillating tableaux of size 2n and empty shape; see [28]. We hereby describe
this bijection.
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Definition 22. (Sundaram’s bijection [28]) Let π ∈ I2n,0. We start with λ0 = ∅. For
1 6 d 6 2n, define a standard Young tableau of shape λd, with letters forming a subset
of [2n], from a presumably-defined standard Young tableau of shape λd−1, as follows. Let
td = (i, j), i < j, be the unique transposition which affects d in the factorization of π into
a product of n disjoint transpositions. If d = i, insert j into the tableau of shape λd−1
using Robinson-Schensted insertion and get a tableau of shape λd. If d = j, delete j from
the tableau of shape λd−1 and apply jeu-de-taquin to get a tableau of shape λd. We get a
sequence of 2n+ 1 tableaux of shapes λd, 0 6 d 6 2n. Ignoring the letters in the tableaux
yields a sequence of shapes, which is the oscillating tableau corresponding to π.

Example 23. Let π = (1, 5)(2, 4)(3, 8)(6, 7) ∈ I8,0. The corresponding sequence of
tableaux is

∅ , 5 , 4
5
, 4 8

5
, 5 8 , 8 , 7

8
, 8 , ∅

Thus, the oscillating tableau corresponding to π is

s(π) = (∅ , , , , , , , , ∅) ∈ O8.

A special case of [28, Theorem 5.3] is the following.

Theorem 24. The map s : I2n,0 → O2n defined above is a bijection.

A characterization of the descents of π in the language of oscillating tableaux follows.

Observation 25. [14, Proof of Theorem 3.4] For every π ∈ I2n,0, i ∈ Des(π) if and only
if what we do in the ith and (i+ 1)st steps of the corresponding oscillating tableau s(π) is
either

1. add a box in the ith step and then delete a box in the next step; or

2. add a box in the ith step and then add another box in a strictly lower row in the next
step; or

3. delete a box in the ith step and then delete another box in a strictly higher row in
the next step.

In all other cases, i 6∈ Des(π).

Definition 26. For an oscillating tableau O = (D0, D1, . . . , D2n) ∈ O2n, define the trans-
pose (or conjugate) tr O := (D′0, D

′
1, . . . , D

′
2n), where for each 0 6 i 6 2n, the diagram D′i

is the transpose of the diagram Di.

Another bijection t : I2n,0 → O2n, using growth diagrams, was described by Roby [21,
§4.2]. This bijection applies a growth diagram algorithm to (a half of) the permutation
matrix corresponding to a fixed-point-free involution π ∈ I2n,0, with empty boundary
conditions, and reads an oscillating tableau t(π) from the main diagonal. It relates to
Sundaram’s bijection via conjugation.
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Proposition 27. [21, p. 69] For every π ∈ I2n,0
t(π) = tr(s(π)).

Denote the longest permutation in S2n by w0 := (1, 2n)(2, 2n− 1) · · · (n, n+ 1).

Corollary 28. For every π ∈ I2n,0, the oscillating tableau s(w0πw0) is the reverse of
s(π).

Proof. Conjugating a permutation π ∈ S2n by w0 corresponds to reflecting its permutation
matrix about its vertical midline as well as about its horizontal midline. This is equivalent
to a 180-degree rotation of the permutation matrix. An inspection of the algorithm shows
that for π ∈ I2n,0 this simply reverses the oscillating tableau t(π) on the main diagonal.
Combining this with Proposition 27 completes the proof.

2.3 Matchings

Chen et al. [6] generalized Sundaram’s bijection, described in Subsection 2.2 above, and
applied it to the enumeration of crossings and nestings in perfect matchings and partitions.

Definition 29. Let m ∈Mn be a matching.

1. The crossing number cr(m) of m is the maximal r such that there exist matched
pairs {i1, j1}, {i2, j2}, . . . , {ir, jr} in m with 1 6 i1 < · · · < ir < j1 < · · · < jr 6 n.

2. The nesting number ne(m) of m is the maximal r such that there exist matched
pairs {i1, j1}, {i2, j2}, . . . , {ir, jr} in m with 1 6 i1 < · · · < ir < jr < · · · < j1 6 n.

Example 30. For m ∈ M8,2 as in Figure 1, {1, 6}, {5, 7} is a maximal crossing, thus
cr(m) = 2. Also, {1, 6}, {3, 4} is a maximal nesting, thus ne(m) = 2.

Chen et al. introduced the involution ι :M2n,0 →M2n,0, defined by

ι := s−1 ◦ tr ◦ s

Here s is Sundaram’s bijection, s : I2n,0 → O2n, described in Definition 22, and tr is the
transpose operation on oscillating tableaux, as in Definition 26. Following Remark 7, we
identify perfect matchings inM2n,0 with involutions in I2n,0.

Example 31. Let π = (1, 5)(2, 4)(3, 8)(6, 7) ∈ I8,0 as in Example 23. Then

tr ◦ s(π) = (∅ , , , , , , , , ∅)

and ι(π) = s−1 ◦ tr ◦ s(π) = (1, 4)(2, 7)(3, 5)(6, 8) ∈ I8,0.

Theorem 32. [6] For every m ∈M2n,0

cr(m) = ne(ι(m)).

Thus ∑
m∈M2n,0

qcr(m)tne(m) =
∑

m∈M2n,0

qne(m)tcr(m).
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3 Geometric versus standard descents: equidistribution results

The bijection of Chen et al., presented in Subsection 2.3, is applied in Subsection 3.1 to
prove Lemma 10. This bijection serves as a component in the proof, in Subsection 3.2, of
the following result.

Theorem 33. For every n > k > 0 there exists an explicit bijection ι̂ :Mn,k →Mn,k, to
be described in Definition 38, which satisfies

GDes(m) = Des(ι̂(m)) and cr(m) = ne(ι̂(m)) (∀m ∈Mn,k).

Theorem 11 follows. The bijection ι̂ : Mn,k →Mn,k is used to prove Theorem 12 in
Subsection 4.2, and to determine cyclic descents on involutions in Section 5.

3.1 Proof of Lemma 10

Recall the involution ι : M2n,0 → M2n,0 introduced by Chen et al. [6], described in
Subsection 2.3.

Proposition 34. The involution ι :M2n,0 →M2n,0 satisfies

Des(ι(m)) = GDes(m) (∀m ∈M2n,0).

Proof. Consider m ∈M2n,0 as a fixed-point-free involution π ∈ I2n,0 (see Remark 7). The
oscillating tableau s(π̂), corresponding to the involution π̂ := ι(π), is the conjugate of the
oscillating tableau s(π): s(π̂) = tr(s(π)). Here s : I2n,0 → O2n is Sundaram’s bijection,
described in Definition 22, and tr is the conjugation operation on oscillating tableaux, as
in Definition 26.

We will show that Des(π̂) = GDes(π).
Fix 1 6 i < 2n. There are seven possible cases.

1. (i, i+ 1) is a chord in π.

2. there exist a < i and b > i+ 1, such that (a, i) and (i+ 1, b) are chords in π.

3. there exist a < i and b > i+ 1, such that (i, b) and (a, i+ 1) are chords in π.

4. there exist i+ 1 < a < b such that (i, a) and (i+ 1, b) are chords in π.

5. there exist i+ 1 < a < b such that (i+ 1, a) and (i, b) are chords in π.

6. there exist a < b < i such that (a, i) and (b, i+ 1) are chords in π.

7. there exist a < b < i such that (a, i+ 1) and (b, i) are chords in π.

By Definition 9, i ∈ GDes(π) in cases (1), (3), (4) and (6) and i 6∈ GDes(π) in all
other cases.

By Definition 22 of an oscillating tableau and basic properties of the insertion algo-
rithm, what we do in the ith and (i+ 1)st steps of the first 5 cases above is
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1. add a box and then delete a box.

2. delete a box and then add a box.

3. add a box and then delete a box.

4. add a box and then add another box in a weakly higher row.

5. add a box and then add another box in a strictly lower row.

Cases (6) and (7) require more subtle analysis. Consider the involutions π and π′ :=
w0πw0, and denote i′ := 2n − i (so that i′ + 1 = 2n + 1 − i), a′ := 2n + 1 − b and
b′ := 2n+ 1− a. Then case (6) for π translates into

(6’) there exist b′ > a′ > i′ + 1 such that (i′ + 1, b′) and (i′, a′) are chords in π′,

namely case (4) for π′. Similarly, case (7) for π translates into

(7’) there exist b′ > a′ > i′ + 1 such that (i′ + 1, a′) and (i′, b′) are chords in π′,

namely case (5) for π′. By Corollary 28, s(π′) is the reverse of s(π). We conclude that
what we do in the ith and (i+ 1)st steps of cases (6) and (7) for π is

(6) delete a box and then delete another box in a weakly lower row.

(7) delete a box and then delete another box in a strictly higher row.

This is the description for π. For π̂ = ι(π) we have a conjugate oscillating tableau.
The description for cases (1)-(3) remains the same, whereas case (4) is switched with case
(5) and case (6) is switched with case (7). By Observation 25, this translates to i ∈ Des(π̂)
in cases (1), (3), (4) and (6), but not in the other cases. This completes the proof.

Remark 35. Arguments, similar to those used in the proof of Lemma 10, were used by
Kim [14] to prove the symmetry of the Eulerian and Mahonian distributions on I2n,0.

The following refinement of Lemma 10 follows.

Corollary 36. For every n > 0∑
m∈M2n,0

xGDes(m)yDes(m)qcr(m)tne(m) =
∑

m∈M2n,0

xDes(m)yGDes(m)qne(m)tcr(m).

Proof. By Proposition 34, the involution ι : M2n,0 → M2n,0 satisfies Des(ι(m)) =
GDes(m) for all m ∈ M2n,0. By Theorem 32, ne(ι(m)) = cr(m). Since ι is an invo-
lution, Des(m) = GDes(ι(m)) and ne(m) = cr(ι(m)). Thus∑

m∈M2n,0

xGDes(m)yDes(m)qcr(m)tne(m) =
∑

m′∈M2n,0

xDes(m′)yGDes(m′)qne(m
′)tcr(m

′),

where m′ := ι(m).
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3.2 Proof of Theorem 11

In this subsection we describe a map

ι̂ :Mn,k →Mn,k,

for any 0 6 k 6 n, which generalizes the bijection ι : M2n,0 → M2n,0 used in the
previous subsection. It will be shown that ι̂ is a bijection which maps the descent set
to the geometric descent set and the crossing number to the nesting number, implying
Theorem 11.

Recall that Mn,k is naturally identified with In,k (Remark 7). In the rest of this
section it will be more convenient to consider involutions in In,k, rather than matchings
inMn,k, since the shuffle operation and the RS correspondence used here are defined in
terms of permutations (in particular, involutions).

Remark 37. The bijection of Chen et al. is defined for involutions with fixed points as well.
It is an involution which maps the crossing number to the nesting number and preserves
the fixed point set. Unfortunately, for involutions with fixed points it does not map GDes
to Des and vice versa. For example, Chen et al.’s involution maps π = (1, 4)(2, 5)(3) to
σ = (1, 5)(2, 4)(3), but Des(π) = {2, 3} 6= GDes(σ) = {3} and also Des(σ) = {1, 2, 3, 4} 6=
GDes(π) = {1, 3, 4}.

Definition 38. Fix n > k > 0, with n− k even.

1. For every π ∈ In,k, let res(π) be the pair (Fix(π), σ), where Fix(π) is the set of fixed
points of π, and σ is the fixed-point-free involution in Sn−k with the same relative
order as that of π on [n] \ Fix(π).

2. For (J, σ) ∈
(
[n]
k

)
× In−k,0 let emb(J, σ) be the permutation in the set of all shuffles

In−k,0� [n− k+ 1, n− k+ 2, . . . n], for which the letters in [n− k] are ordered as in
σ, and set of positions of the increasing subsequence [n− k + 1, . . . n] is equal to J .

3. Define ϕ : In,k −→ In−k,0� [n− k + 1, . . . , n] by

ϕ : In,k
res−→
(

[n]

k

)
× In−k,0

(id,ι)−→
(

[n]

k

)
× In−k,0

emb−→ In−k,0� [n− k + 1, . . . , n],

where (id, ι)(J, σ) := (J, ι(σ)).

4. For τ ∈ In−k,0 � [n − k + 1, . . . , n] let q(τ) ∈ In be the RS preimage of (Qτ , Qτ ),
where Qτ is the recording tableau of τ :

q : In−k,0� [n− k + 1, . . . , n]
Q−→ SYTn

diag−→ SYTn × SYTn
RS−1

−→ In,

where SYTn denotes the set of standard Young tableaux of size n and In is the set
of involutions in Sn. Note that q(τ) is an involution by Proposition 16.1.
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5. Let ι̂ := q ◦ ϕ.

The following proposition implies Theorem 33.

Proposition 39. The map ι̂ : In,k −→ In is a bijection from In,k onto itself, which
satisfies

GDes(π) = Des(ι̂(π)) and cr(π) = ne(ι̂(π)) (∀π ∈ In,k).

Example 40. Let π = [4, 2, 6, 1, 5, 3] = (1, 4)(3, 6)(2)(5) ∈ I6,2. Then

ϕ : [4, 2, 6, 1, 5, 3]
res7−→ ({2, 5} , (1, 3)(2, 4))

(id,ι)7−→ ({2, 5} , (1, 4)(2, 3))
emb7−→ [4, 5, 3, 2, 6, 1],

and thus

ι̂ : [4, 2, 6, 1, 5, 3]
ϕ7−→ [4, 5, 3, 2, 6, 1]

Q7−→
1 2 5
3
4
6

diag7−→

 1 2 5
3
4
6

,

1 2 5
3
4
6

 RS−1

7−→ [1, 6, 4, 3, 5, 2].

Namely, ι̂(π) = (2, 6)(3, 4)(1)(5) ∈ I6,2. Indeed, GDes(π) = Des(ι̂(π)) = {2, 3, 5} and
cr(π) = ne(ι̂(π)) = 2.

To prove Proposition 39 we first generalize the concepts of crossing and nesting num-
bers, from matchings (or, equivalently, involutions) to shuffles of fixed-point-free involu-
tions with increasing sequences.

Definition 41. For every τ ∈ In−k,0 � [n − k + 1, . . . , n] define ne(τ) := ne(σ) and
cr(τ) := cr(σ), where σ ∈ In−k,0 is obtained by deleting the letters n− k + 1, . . . , n from
τ .

Example 42. Let τ = [3, 4, 5, 1, 6, 2] ∈ I4,0 � [5, 6]. Then τ is not an involution, but
deleting the letters 5 and 6 from τ gives a fixed-point-free involution σ = [3, 4, 1, 2] =
(1, 3)(2, 4) ∈ I4,0. By definition, cr(τ) = cr(σ) = 2 and ne(τ) = ne(σ) = 1.

Lemma 43. For any n > k > 0 with n− k even, the map

ϕ : In,k → In−k,0� [n− k + 1, n− k + 2, . . . n]

is a bijection which satisfies

GDes(π) = Des(ϕ(π)) (∀π ∈ In,k)

as well as
ne(π) = cr(ϕ(π)) and cr(π) = ne(ϕ(π)) (∀π ∈ In,k).
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Proof. By Definition 38, ϕ is a bijection. To show that it maps GDes to Des, let 1 6 i 6 n
and consider the four possible cases.

Case 1 If i, i + 1 ∈ Fix(π) then, by Definition 9, i 6∈ GDes(π); and, by Definition 38,
ϕ(π)(i) < ϕ(π)(i+ 1).

Case 2 If i 6∈ Fix(π) and i+ 1 ∈ Fix(π) then i 6∈ GDes(π) and ϕ(π)(i) < ϕ(π)(i+ 1).

Case 3 If i ∈ Fix(π) and i+ 1 6∈ Fix(π) then i ∈ GDes(π) and ϕ(π)(i) > ϕ(π)(i+ 1).

Case 4 If i, i + 1 6∈ Fix(π) then, by Definition 38, we can ignore the fixed points and
apply Proposition 34, which shows that i ∈ GDes(π)⇐⇒ i ∈ Des(ϕ(π)).

This proves the claim regarding GDes and Des. The claim about crossing and nesting
numbers follows from Definition 38, Definition 41 and Theorem 32.

Corollary 44.∑
π∈In,k

xGDes(π)qcr(π)tne(m) =
∑

π∈In−k,0�[n−k+1,...,n]

xDes(π)qne(π)tcr(π).

To prove Proposition 39 we also need the following lemmas.

Lemma 45. For every involution π ∈ Sn

ne(π) = bht(Qπ)/2c,

where Qπ is the RS recording tableau of π.

Proof. By Proposition 15, ht(Qπ) is the length of the longest decreasing subsequence in
the one-line notation of π. By Definition 29, if ne(π) = r then there exists a sequence
1 6 i1 < · · · < ir < ir+1 < · · · < i2r 6 n such that, for every 1 6 j 6 2r, π(ij) = i2r+1−j.
Then (i2r, . . . , i1) is a decreasing subsequence in the one-line notation of π, so that

ht(Qπ) > 2r = 2 ne(π).

On the other hand, the fixed points of π form an increasing subsequence of its one-
line notation; thus any decreasing subsequence contains at most one fixed point. Let
(π(i1), . . . , π(it)) be a decreasing subsequence of maximal length in the one-line notation of
π. Assume, first, that it contains no fixed points. Let s := max{j : π(ij) > ij}. If s > t/2
then (π(i1), . . . , π(is), is, . . . , i1) is a decreasing subsequence of length 2s > t in π, contra-
dicting the maximality of t. Similarly, if s < t/2 then (it, it−1, . . . , is+1, π(is+1), . . . , π(it))
is a decreasing subsequence of length 2(t − s) > t in π, contradicting the maximality
of t. We deduce that s = t/2. The sequence (π(i1), . . . , π(is), is, . . . , i1) is a decreasing
sequence of maximal length in π, and corresponds to a nesting. Thus

2 ne(π) > 2s = t = ht(Qπ).
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Finally, assume that the chosen decreasing subsequence (π(i1), . . . , π(it)) of maximal
length in the one-line notation of π contains a fixed point, say π(is) = is. Then for all
1 6 j 6 t, π(ij) > ij if and only if j < s. By the above argument, if either 2(s−1)+1 > t
or 2(t − s) + 1 > t then one can define a decreasing subsequence of length exceeding
t, contradicting the maximality of t. Thus t + 1 6 2s 6 t + 1, namely 2s = t + 1.
The sequence (π(i1), . . . , π(is−1), is−1, . . . , i1) is decreasing subsequence corresponding to
a nesting, so that

2 ne(π) > 2(s− 1) = t− 1 = ht(Qπ)− 1.

This completes the proof.

Remark 46. By Proposition 17, ht(Qπ) is even for every fixed-point-free involution π ∈
I2n,0. Hence, for fixed-point-free involutions, no floors are required in Lemma 45, i.e.,

ne(π) = ht(Qπ)/2 (∀π ∈ I2n,0).

Corollary 47. If σ ∈ In−k,0 and τ ∈ σ� [n− k + 1, . . . , n] then

ne(τ) = bht(Qτ )/2c.

Proof. For π ∈ Sn let `(π) be the length of the longest decreasing subsequence in π.
Observe that `(τ)− `(σ) ∈ {0, 1}; hence, by Proposition 15,

ht(Qτ )− ht(Qσ) ∈ {0, 1}.

By Definition 41 and Remark 46 we deduce

ne(τ) = ne(σ) = ht(Qσ)/2 = bht(Qτ )/2c.

Recall the mapQ : Sn → SYTn sending each π ∈ Sn to the corresponding RS recording
tableau Qπ. Recall also the notation SYTn,k for the set of all SYT of size n with k odd
columns.

Lemma 48. For any n > k > 0 with n − k even, the map Q restricts to a descent-set-
preserving bijection from the set of shuffles In−k,0� [n− k + 1, . . . , n] to SYTn,k.

Proof. First, by Proposition 16.2, Des(Qτ ) = Des(τ), so Q is descent-set-preserving.
Second, by Proposition 20, Qτ has k odd columns for every τ ∈ In−k,0 � [n − k +

1, . . . , n], so Q maps In−k,0� [n− k + 1, . . . , n] into SYTn,k.
To prove thatQ is a bijection, we will construct an inverse. Assuming that τ ∈ In−k,0�

[n− k+ 1, . . . , n], it will be shown that τ can be reconstructed from its recording tableau
Qτ , which can be an arbitrary element of SYTn,k. Assume that τ ∈ σ� [n−k+ 1, . . . , n],
where σ ∈ In−k,0. By Corollary 21, the largest k letters in Pτ appear in the bottom
cells of the k odd columns of Pτ , and they are increasing from left to right. These cells
can be identified from Qτ , which has the same shape as Pτ . We want to recover the
positions of these k largest letters in τ , i.e., the values τ−1(i) for n − k + 1 6 i 6 n.
Recall, from Proposition 16.1, that if τ corresponds (under RS) to the pair (Pτ , Qτ ) then
τ−1 corresponds to (Pτ−1 , Qτ−1) = (Qτ , Pτ ). Apply to Qτ , k times, the inverse of the RS
insertion algorithm, as in [22, proof of Theorem 3.1.1]. Here is the first step:
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• Let Tn := Qτ . Assume that the bottom cell of the the rightmost odd column is in
the rth row. Let ir be the entry in this cell.

• Let ir−1 be the largest letter smaller than ir in the (r− 1)st row. Delete ir from the
rth row and replace ir−1 by ir.

• Repeat this step until i1, the largest letter smaller than i2 in the first row, is replaced
by i2.

• The letter i1 is the position of n in τ , namely τ−1(n).

Apply the same procedure to the resulting tableau Tn−1 (with τ−1(n) removed) to find
the position of n− 1, namely τ−1(n− 1), and so on.

After k steps, the positions of the increasing subsequence of τ consisting of the largest
k letters have been determined. At this stage we get Tn−k, which is the P tableau
corresponding to the sequence τ−1(1), . . . , τ−1(n−k). This sequence has the same relative
order of letters as the sequence σ−1(1), . . . , σ−1(n−k). Replacing the n−k letters in Tn−k
by 1, . . . , n − k with the same relative order therefore yields Pσ−1 = Qσ. It is clear from
the algorithm that all the columns of Tn−k, and therefore of Qσ, have even lengths. By
Corollary 18 (for k = 0) there is a unique fixed-point-free involution σ with this Qσ as a
Q tableau. Since σ is an involution, Proposition 16.1 implies that Pσ = Qσ, and therefore
σ is the RS preimage of (Qσ, Qσ). This completes the proof.

Example 49. Let

Qτ =
1 2 4 6
3 5 8
7

.

This tableau has n = 8 cells and k = 2 columns of odd length. Thus τ ∈ σ � [7, 8] for
some σ ∈ I6,0.

Start with T8 = Qτ . The bottom cell of the rightmost odd column in T8 appears in
the first row. Thus r = 1, the entry there is ir = i1 = 6, and therefore τ−1(8) = 6. The
resulting tableau after deleting this letter is

T7 =
1 2 4
3 5 8
7

.

Now the bottom cell of the rightmost odd column appears in row r = 3. The entry there
is i3 = 7, and consequently i2 = 5 and i1 = 4. Thus τ−1(7) = 4. This yields

T6 = 1 2 5
3 7 8

.

Standartization (by mapping the letters in T6 to {1, . . . , 6} in a monotone increasing
fashion) gives

Qσ = 1 2 4
3 5 6

.

Hence σ = RS−1(Qσ, Qσ) = [3, 5, 1, 6, 2, 4] and τ = [3, 5, 1, 7, 6, 8, 2, 4].
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Recall the map q from Definition 38.4: for τ ∈ In−k,0� [n−k+1, . . . , n], the involution
q(τ) is the RS preimage of (Qτ , Qτ ), where Qτ is the RS recording tableau of τ .

Corollary 50. The map q is a descent set and nesting number preserving bijection from
the set of shuffles In−k,0� [n− k + 1, . . . n] to the set of involutions In,k.

Proof. Let τ ∈ In−k,0 � [n − k + 1, . . . , n]. First, by Proposition 20, Qτ has k odd
columns. Combining this with Propositions 16.1 and 17, the RS preimage of (Qτ , Qτ ) is
an involution with k fixed points, namely, q(τ) ∈ In,k. Moreover, by Lemma 48 together
with Corollary 18, q is a descent set preserving bijection. Finally, by definition, Qτ = Qq(τ),
and by Lemma 45 for the involution q(τ),

ne(q(τ)) = bht(Qq(τ))/2c.

Thus, by Corollary 47,

ne(τ) = bht(Qτ )/2c = bht(Qq(τ))/2c = ne(q(τ)),

so that q preserves nesting number as well.

Proof of Proposition 39. By Lemma 43 and Corollary 50,

ι̂ : In,k
ϕ→ In−k,0� [n− k + 1, . . . , n]

q→ In,k

is a bijection which satisfies

GDes(π) = Des(ϕ(π)) = Des(q(ϕ(π))) = Des(ι̂(π))

as well as
cr(π) = ne(ϕ(π)) = ne(q(ϕ(π))) = ne(ι̂(π)).

4 Schur-positivity

4.1 Background

Schur functions indexed by partitions of n form a distinguished basis for Λn, the vector
space of homogeneous symmetric functions of degree n; see, e.g., [26, Corollary 7.10.6].
A symmetric function in Λn is Schur-positive if all the coefficients in its expansion in the
basis {sλ : λ ` n} of Schur functions are nonnegative.

For each D ⊆ [n − 1] = {1, 2, . . . , n − 1}, define the fundamental quasisymmetric
function

Fn,D(x) :=
∑

i16i26...6in
ij<ij+1 if j∈D

xi1xi2 · · ·xin .

Let A be a set of combinatorial objects, equipped with a set-valued function D : A →
2[n−1]. We say that A is symmetric (Schur-positive) with respect to D if

QA,D :=
∑
π∈A

Fn,D(π)
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is a symmetric (respectively, Schur-positive) function. Determining whether a given sym-
metric (quasisymmetric) function is Schur-positive is a major problem in contemporary
algebraic combinatorics [27, §3].

The following theorem is due to Gessel.

Theorem 51. [26, Theorem 7.19.7] For every partition λ ` n,

QSYT(λ),Des = sλ.

Thus SYT(λ) is symmetric and Schur-positive with respect to the standard descent set.

We say that a statistic f : A → N ∪ {0} is Schur-positive on A with respect to the
set-valued function D if ∑

π∈A

qf(π)Fn,D(π),

is a Schur-positive symmetric function. Examples of Schur-positive statistics with respect
to the standard descent set on permutations include

• Statistics on Sn which are invariant under conjugation; e.g., the cycle number and
the number of fixed points. This follows from [11, Theorem 2.1].

• Statistics on Sn which are invariant under Knuth relations; e.g., the length of the
longest increasing subsequence, the inverse descent number, and the inverse major
index. This follows from Theorem 51 above together with Proposition 16.

• The inversion number on Sn (reduced to the inverse major index by Foata’s bijec-
tion). For a far reaching generalization see [25, Theorem 6.3].

Theorem 12, to be proved in the following subsection, implies that on the setMn of
all matchings on n points, the pair (cr, um) of the crossing number and the number of
unmatched points is Schur-positive with respect to the geometric descent set GDes.

4.2 Proof of Theorem 12

Recall from Section 1 the following notations: um(m) is the number of unmatched points
in a matching m ∈ Mn; and, for a partition λ, ht(λ) is the number of parts in λ and
oc(λ) is the number of odd parts in the conjugate partition.

The following proposition follows from Theorem 11.

Proposition 52. For every n > 0∑
m∈Mn

qum(m)tcr(m)xGDes(m) =
∑
λ`n

qoc(λ)tbht(λ)/2c
∑

T∈SYT(λ)

xDes(T ). (1)
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Proof. We have

∑
m∈Mn

qum(m)tcr(m)xGDes(m) =
n∑
k=0

qk
∑

m∈Mn,k

tcr(m)xGDes(m)

=
n∑
k=0

qk
∑

m∈Mn,k

tne(m)xDes(m)

=
∑
m∈Mn

qum(m)tne(m)xDes(m)

=
n∑
λ`n

qoc(λ)tbht(λ)/2c
∑

T∈SYT(λ)

xDes(T ).

The second equality follows from Theorem 11. The last equality is obtained from the inter-
pretation of matchings as involutions, followed by the bijection to SYT via the Robinson-
Schensted correspondence, using Corollary 18 and Lemma 45.

Proof of Theorem 12. Consider the equality in Proposition 52. Applying the vector space
isomorphism from the ring of multilinear polynomials to the ring of quasisymmetric func-
tions, defined by xJ 7→ Fn,J for every subset J ⊆ [n− 1], one obtains∑

m∈Mn

qum(m)tcr(m)Fn,GDes(m) =
∑
λ`n

qoc(λ)tbht(λ)/2c
∑

T∈SYT(λ)

Fn,Des(T )

=
∑
λ`n

qoc(λ)tbht(λ)/2csλ.

The last equality follows from Theorem 51.

5 Cyclic descent extensions

The above setting is applied in this section to construct a cyclic descent extension for
conjugacy classes of involutions and their refinements, that is, involutions with fixed cycle
structure and nesting number.

LetMn be the set of matchings on n points on the circle, labeled clockwise by 1, . . . , n.
Let r :Mn →Mn be clockwise rotation by 2π/n. Recall the definition of the geometric
cyclic descent set map of a matching, cGDes :Mn 7→ 2[n], from Definition 13.

Observation 53. For every m ∈Mn

cGDes(m) ∩ [n− 1] = GDes(m)

and
cGDes(r(m)) = 1 + cGDes(m),

where addition is modulo n.
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In order to verify the non-Escher axiom for cGDes, we need the following lemma.

Lemma 54. For m ∈Mn,k, where n > k > 0 with n− k even,

(a) cGDes(m) = ∅ if and only if k = n, namely, m contains no chords; and

(b) cGDes(m) = [n] if and only if k = 0 and cr(m) = n/2, namely, n is even and m
matches i with i+ n/2 for any 1 6 i 6 n/2.

Proof. Consider the possible values of k.

Case 1. If k = n then all the points in m are unmatched, and therefore cGDes(m) = ∅.

Case 2. If 0 < k < n then m has matched as well as unmatched points. There must be an
umatched point followed by a matched one, and a matched point followed by an
unmatched one. Therefore cGDes(m) 6= ∅, [n].

Case 3. If k = 0 then all the points are matched and n is even. If cGDes(m) = [n] then,
in particular, GDes(m) = [n − 1] and, by Proposition 34, Des(ι(m)) = [n − 1]. It
follows that ι(m) = w0 = (1, n)(2, n− 1) · · · (n/2, n/2 + 1) ∈ In,0, hence m matches
i with i + n/2 for any 1 6 i 6 n/2 and cr(m) = n/2. For the opposite direction, if
cr(m) = n/2 then, by Definition 29, m matches i with i+ n/2 for any 1 6 i 6 n/2
and cGDes(m) = [n].

Denote now
In,k,j := {π ∈ In,k, ne(π) = j},

and recall the map ι̂ : In,k → In,k from Definition 38.

Proposition 55. Assume that n > k > 0 with n− k even, and 0 6 j 6 (n− k)/2.

(a) If 0 < k < n, or k = 0 and j 6= n/2, then the pair

(cGDes ◦ι̂−1, ι̂ ◦ r ◦ ι̂−1)

is a (non-Escherian) cyclic extension of Des on In,k,j.

(b) If k = n (and necessarily j = 0), or k = 0 and j = n/2, then the above pair is an
Escherian cyclic extension of Des on In,k,j.

Proof. The number of unmatched points is invariant under rotation and (by Proposi-
tion 39) also under ι̂, hence ι̂ ◦ r ◦ ι̂−1(π) ∈ In,k for every π ∈ In,k. Furthermore,

π ∈ In,k,j =⇒ ι̂ ◦ r ◦ ι̂−1(π) ∈ In,k,j

since

ne(ι̂ ◦ r ◦ ι̂−1(π)) = cr(r ◦ ι̂−1(π)) = cr(ι̂−1(π)) = ne(ι̂ ◦ ι̂−1(π)) = ne(π).
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Here we applied Proposition 39 and the fact that the crossing number (but not the nesting
number!) is invariant under rotation.

Denote
cDes(π) := cGDes(ι̂−1(π)) (∀π ∈ In,k,j).

By Proposition 39 and Observation 53 we have

cDes(π) ∩ [n− 1] = cGDes(ι̂−1(π)) ∩ [n− 1] = GDes(ι̂−1(π)) = Des(π)

and

cDes(ι̂ ◦ r ◦ ι̂−1(π)) = cGDes(r ◦ ι̂−1(π)) = 1 + cGDes(ι̂−1(π)) = 1 + cDes(π)

for any π ∈ In,k,j. This proves the extension and equivariance properties for every 0 6
k 6 n and 0 6 j 6 (n − k)/2. Finally, by Lemma 54, the non-Escher property holds if
and only if either 0 < k < n or k = 0 and j 6= n/2.

Proof of Proposition 14. Follows from Proposition 55.

Recall the mapQ : Sn → SYTn sending each π ∈ Sn to the corresponding RS recording
tableau Qπ, and define h : In,k 7→ SYTn,k by h := Q ◦ ι̂. A cyclic descent extension on
the set

SYTn,k,j := {T ∈ SYTn,k, 2j 6 ht(T ) 6 2j + 1}.

is described in the following statement.

Proposition 56. Assume that n > k > 0 with n− k even, and 0 6 j 6 (n− k)/2.

(a) If 0 < k < n, or k = 0 and j 6= n/2, then the pair

(cGDes ◦h−1, h ◦ r ◦ h−1)

is a (non-Escherian) cyclic extension of Des on SYTn,k,j.

(b) If k = n (and necessarily j = 0), or k = 0 and j = n/2, then the above pair is an
Escherian cyclic extension of Des on SYTn,k,j.

Proof. Follows from Proposition 55, noting that, by Proposition 16 and Lemma 45, the
restriction of Q to In,k,j is a descent set preserving bijection onto SYTn,k,j.

Remark 57. Cyclic rotation of geometric configurations has been used before for the
construction of cyclic descent extensions on standard Young tableaux of certain given
shapes — rectangular shapes of height at most 3 [17] and flag shapes [16]. These results
motivated our work, and some of them are indeed obtained as special cases:

• Letting k = 0 and j = 1 in Proposition 56 yields a cyclic descent extension on
standard Young tableaux of shape (n, n), since SYT2n,0,1 = SYT(n, n). One can
verify that this cyclic extension coincides with the one determined by Dennis White,
as described in [17, Theorem 1.4].
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• Recalling that the number of Motzkin paths of length n is equal to the number
of standard Young tableaux of size n and at most three rows [19, 9, 4], consider
Proposition 56 on the union of ∪kSYTn,k,1, namely j = 1 and k arbitrary. This
determines a cyclic descent extension on Motzkin paths via Han’s bijection [12],
which coincides with Han’s cyclic descent extension on Motzkin paths.

6 Equidistribution revisited

In an early version of this paper, the following conjecture was posed.

Conjecture 58. Let µ ` m and ν ` n be integer partitions with no common part. Let π
and σ be permutations of cycle types µ and ν, respectively, with disjoint supports. Let
Aπ,σ be the subset of the conjugacy class of cycle type µ t ν ` m + n consisting of the
permutations for which the relative order of the letters in the union of all cycles of µ is as
in π, and the relative order of the letters in the union of all cycles of ν is as in σ. Then∑

w∈Aπ,σ

xDes(w) =
∑
τ∈π�σ

xDes(τ).

Example 59. Let π = (1, 3, 2) and σ = (4). Then Aπ,σ is the following subset of the
conjugacy class of cycle type (3, 1) in S4:

Aπ,σ = {(1, 3, 2)(4), (1, 4, 2)(3), (1, 4, 3)(2), (2, 4, 3)(1)} = {[3124], [4132], [4213], [1423]}

This set of permutations and the set

π� σ = [312]� [4] = {[3124], [3142], [3412], [4312]}

have the same distribution of the descent set.

Conjecture 58 was proved by Gessel.

Proposition 60. [10] Conjecture 58 holds.

The proof is partly algebraic and not bijective.
Proposition 60 implies the following.

Corollary 61. There exists an (implicit) bijection

φ : In−k,0� [n− k + 1, . . . , n]→ In,k.

preserving descent set, nesting number and crossing number.

Proof. Take, in Proposition 60, σ ∈ In−k,0 and π = [n − k + 1, . . . , n], the identity
permutation in S[n]\[n−k], the group of permutations on the letters {n− k + 1, . . . , n}. It
follows that there exists a bijection

φ : In−k,0� [n− k + 1, . . . , n]→ In,k
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which preserves the descent set and satisfies the following property: for every σ ∈ In−k,0
and every τ ∈ σ � [n − k + 1, . . . , n], the relative order of the letters in the union of all
2-cycles in φ(τ) is equal to the relative order of the letters in σ. By Definition 41, the
nesting and crossing numbers of τ are the same as those of σ. Thus φ preserves nesting
and crossing numbers as well.

Remark 62. The explicit bijection q : In−k,0 � [n − k + 1, n − k + 2, . . . n] → In,k from
Lemma 50 preserves the descent set and the nesting number, but does not preserve the
crossing number. The bijection φ : In−k,0 � [n − k + 1, n − k + 2, . . . n] → In,k, whose
existence is claimed in Corollary 61, preserves the crossing number as well.

The following refinement of Theorem 11 follows.

Theorem 63. For every n > k > 0 with n− k even,∑
m∈Mn,k

qcr(m)tne(m)xGDes(m) =
∑

m∈Mn,k

qne(m)tcr(m)xDes(m).

Proof. Replace ι̂ := q◦ϕ by η := φ◦ϕ in the proof of Theorem 11, where again we use In,k
instead ofMn,k. Combining Lemma 43 with Corollary 61 implies that for any n > k > 0,
the map

η : In,k → In,k
is a bijection which satisfies

GDes(π) = Des(η(π)) (∀π ∈ In,k)

as well as
ne(π) = cr(η(π)) and cr(π) = ne(η(π)) (∀π ∈ In,k).

This completes the proof.

Problem 64. Find an explicit bijective proof of Theorem 63.
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