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Abstract

We construct a family of shellings for the canonical triangulation of the order
polytope of the zig-zag poset. This gives a new combinatorial interpretation for the
coefficients in the numerator of the Ehrhart series of this order polytope in terms of
the swap statistic on alternating permutations. We also offer an alternate proof of
this result using the techniques of rank selection. Finally, we show that the sequence
of coefficients of the numerator of this Ehrhart series is symmetric and unimodal.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction and Preliminaries

The zig-zag poset Zn on ground set {z1, . . . , zn} is the poset with exactly the cover relations
z1 < z2 > z3 < z4 > . . . . That is, this partial order satisfies z2i−1 < z2i and z2i > z2i+1

for all i between 1 and ⌊n−1
2
⌋. The order polytope of Zn, denoted O(Zn) is the set

of all n-tuples (x1, . . . , xn) ∈ Rn that satisfy 0 󰃑 xi 󰃑 1 for all i and xi 󰃑 xj whenever
zi < zj in Zn. In this paper, we introduce the “swap” permutation statistic on alternating
permutations to give a new combinatorial interpretation of the numerator of the Ehrhart
series of O(Zn).

The numerator of the Ehrhart series of a polytope, also known as its h∗-polynomial,
can be computed in several different ways. In the present work, we compute the h∗-
polynomial of O(Zn) both by shelling its canonical triangulation in Section 2 and by

∗Jane Coons was partially supported by the Max Planck Institute for Mathematics in the Sciences
and the US National Science Foundation (DGE-1746939).

†Seth Sullivant was partially supported by the US National Science Foundation (DMS 1615660).

the electronic journal of combinatorics 30(2) (2023), #P2.44 https://doi.org/10.37236/11526

https://doi.org/10.37236/11526


examining the descents in the elements of its Jordan-Hölder set in Section 3. While the
latter approach may appear to be straightforward at first, it is significantly complicated
by the fact that the elements of the Jordan-Hölder set in this case are neither alternating
nor inverse alternating permutations.

The polytope O(Zn) is related to certain group-based hidden variable Markov models
in mathematical phylogenetics. We began studying this problem in relation to combinato-
rial properties of the Cavender-Farris-Neyman model with a molecular clock (or CFN-MC
model) [4]. We were interested in the polytope associated to the toric variety obtained
by applying the discrete Fourier transform to the Cavender-Farris-Neyman model with
a molecular clock on a given rooted binary phylogenetic tree. We call this polytope the
CFN-MC polytope. In particular, the Ehrhart polynomial of O(Zn) is equal to that of
the CFN-MC polytope of any rooted binary tree on n+1 leaves [4, Theorem 6.20]. There-
fore, the Ehrhart series of O(Zn) is also equal to the Hilbert series of the toric ideal of
phylogenetic invariants of the CFN-MC model on such a tree.

In the remainder of this section, we will give some preliminary definitions and key
theorems regarding alternating permutations, order polytopes and Ehrhart theory. In
Section 2, we prove our main result, Theorem 13, by giving a shelling of the canonical
triangulation of the order polytope of the zig-zag poset. In Section 3, we give an alternate
proof of Theorem 13 by counting chains in the lattice of order ideals of the zig-zag poset.
This proof makes use of the theory of Jordan-Hölder sets of general posets developed
in Chapter 2 of [9]. In Section 4, we discuss some combinatorial properties of the swap
statistic and present some open problems.

1.1 Alternating Permutations

Definition 1. An alternating permutation on n letters is a permutation σ such that
σ(1) < σ(2) > σ(3) < σ(4) > . . . . That is, an alternating permutation satisfies σ(2i−1) <
σ(2i) and σ(2i) > σ(2i+ 1) for 1 󰃑 i 󰃑 ⌊n

2
⌋.

We denote by An the set of all alternating permutations. Notice that alternating
permutations coincide with order-preserving bijections from Zn to [n] as we discuss in
more detail at the end of this section.

The number of alternating permutations of length n is the nth Euler zig-zag number
En. The sequence of Euler zig-zag numbers starting with E0 begins 1, 1, 1, 2, 5, 16, 61, 272.
This sequence can be found in the Online Encyclopedia of Integer Sequences with iden-
tification number A000111 [6]. The exponential generating function for the Euler zig-zag
numbers satisfies 󰁛

n󰃍0

En
xn

n!
= tan x+ sec x.

Furthermore, the Euler zig-zag numbers satisfy the recurrence

2En+1 =
n󰁛

k=0

󰀕
n

k

󰀖
EkEn−k
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for n 󰃍 1 with initial values E0 = E1 = 1. A thorough background on the combinatorics
of alternating permutations can be found in [8]. The following new permutation statistic
on alternating permutations is central to our results.

Example 2. The fourth Euler zig-zag number E4 is 5. The alternating permutations in
S4 are 1324, 1423, 2314, 2413 and 3412.

Definition 3. Let σ be an alternating permutation. The permutation statistic swap(σ)
is the number of i < n such that σ−1(i) < σ−1(i + 1) − 1. Equivalently, this is the
number of i < n such that i is to the left of i + 1 and swapping i and i + 1 in σ yields
another alternating permutation. The swap-set Swap(σ) is the set of all i < n for which
we can perform this operation. We say that σ swaps to τ if τ can be obtained from σ by
performing this operation a single time.

Example 4. The permutation σ = 34172856 is an alternating permutation in A8. Its
swap-set is Swap(σ) = {1, 4, 7}. Thus it has swap(σ) = #Swap(σ) = 3. The permutation
σ swaps to three different alternating permutations τ1, τ2 and τ3 corresponding to the
three elements of the swap set. They are

τ1 = 34271856, τ2 = 35172846 and τ3 = 34182756.

We will also make use of the following two features which can be defined for any
permutation. Let σ ∈ Sn.

Definition 5. A descent of σ is an index i ∈ [n − 1] such that σ(i) > σ(i + 1). An
inversion of σ is any pair (i, j) for 1 󰃑 i < j 󰃑 n such that σ(j) < σ(i). The inversion
number inv(σ) is the number of inversions of σ.

When we write σ in one-line notation, a descent is a position on σ where the value of
σ drops. An inversion is any pair of positions in which a larger number appears before a
smaller number in σ.

Example 6. The alternating permutation σ = 34172856 has descent set {2, 4, 6}. In fact,
every alternating permutation of length n has descent set {2, 4, . . . , n−2} if n is even and
{2, 4, . . . , n− 1} if n is odd. The set of inversions of σ is

{(1, 3), (1, 5), (2, 3), (2, 5), (4, 5), (4, 7), (4, 8), (6, 7), (6, 8)}.

So the inversion number inv(σ) is 9.

Recall that a linear extension of a poset P is a bijection λ : P → [n] such that if x < y
in P , then λ(x) < λ(y). Note that a linear extension of Zn can be viewed as a permutation
of [n] by considering its domain to be the set of subscripts of the elements zi of Zn. We
conclude this section with the observation linear extensions of Zn are in bijection with
alternating permutations. This proposition follows directly from the definition of the
cover relations of the zig-zag poset and the definition of an alternating permutation.

Proposition 7. A bijection λ : Zn → [n] is a linear extension of Zn if and only if the
map sending i to λ(i) is an alternating permutation.
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1.2 Order Polytopes

To every finite poset on n elements one can associate a polytope in Rn by viewing the
cover relations on the poset as inequalities on Euclidean space.

Definition 8. The order polytope O(P ) of any poset P on ground set p1, . . . , pn is the
set of all v ∈ Rn that satisfy 0 󰃑 vi 󰃑 1 for all i and vi 󰃑 vj if pi < pj is a cover relation
in P .

Order polytopes for arbitrary posets have been the object of considerable study, and
are discussed in detail in [7]. In the case of O(Zn), the facet defining inequalities are those
of the form

−vi 󰃑 0 for i 󰃑 n odd

vi 󰃑 1 for i 󰃑 n even

vi − vi+1 󰃑 0 for i 󰃑 n− 1 odd, and

−vi + vi+1 󰃑 0 for i 󰃑 n− 1 even.

Note that the inequalities of the form −vi 󰃑 0 for i even and vi 󰃑 1 for i odd are
redundant. The order polytope of Zn is also the convex hull of all (v1, . . . , vn) ∈ {0, 1}n
that are indicator vectors of upper order ideals of Zn. These are also known as filters.
Equivalently, the vertices are exactly the labelings of Zn with 0 and 1 that are weakly
consistent with the partial order on {p1, . . . , pn}.

In [7], Stanley gives the following canonical unimodular triangulation of the order
polytope of any poset P on ground set {p1, . . . , pn}. Let σ : P → [n] be a linear extension
of P . Denote by ei the ith standard basis vector in Rn. The simplex ∆σ is the convex
hull of vσ

0 , . . . ,v
σ
n where vσ

0 is the all 1’s vector and vσ
i = vσ

i−1 − eσ−1(i). Letting σ range
over all linear extensions of P yields a unimodular triangulation of O(P ). Hence, the
normalized volume of O(P ) is the number of linear extensions of P . In particular, this
means that the volume of O(Zn) is the Euler zig-zag number, En.

Example 9. Consider the case when n = 4. The zig-zag poset Z4 is pictured in Figure
1. The order polytope O(Z4) has facet defining inequalities

−v1 󰃑 0

−v3 󰃑 0

v1 − v2 󰃑 0

v3 − v4 󰃑 0

v2 󰃑 1

v4 󰃑 1

−v2 + v3 󰃑 0

The vertices of O(Z4) are the columns of the matrix

󰀵

󰀹󰀹󰀷

0 0 0 1 0 1 0 1
0 1 0 1 1 1 1 1
0 0 0 0 0 0 1 1
0 0 1 0 1 1 1 1

󰀶

󰀺󰀺󰀸 .
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z1

z2

z3

z4

Figure 1: The zig-zag poset Z4

The alternating permutations on 4 elements, which correspond to linear extensions of
Z4, are 1324, 1423, 2314, 2413, and 3412. Note that there are E4 = 5 such alternating
permutations, so the normalized volume of O(Z4) is 5. The simplex in the canonical
triangulation of O(Zn) corresponding to 2413 is

∆2413 = conv

󰀵

󰀹󰀹󰀷

1 1 0 0 0
1 1 1 1 0
1 0 0 0 0
1 1 1 0 0

󰀶

󰀺󰀺󰀸 .

1.3 Ehrhart Theory

We turn our attention to the study of Ehrhart functions and series of lattice polytopes.
Let P ⊂ Rn be any polytope with integer vertices. Recall that the Ehrhart function,
iP (m), counts the integer points in dilates of P ; that is,

iP (m) = #(Zn ∩mP ),

where mP = {mv | v ∈ P} denotes the mth dilate of P . The Ehrhart function is, in
fact, a polynomial in m [1, Chapter 3]. We further define the Ehrhart series of P to be
the generating function

EhrP (t) =
󰁛

m󰃍0

iP (m)tm.

The Ehrhart series is of the form

EhrP (t) =
h∗
P (t)

(1− t)d+1
,

where d is the dimension of P and h∗
P (t) is a polynomial in t of degree at most d. Often

we just write h∗(t) when the particular polytope is clear. The coefficients of h∗(t) have an
interpretation in terms of a shelling of a unimodular triangulation of P , if such a shellable
unimodular triangulation exists.

Definition 10. Let T be the collection of maximal dimensional simplices in a pure sim-
plicial complex of dimension d with #T = s. An ordering ∆1,∆2, . . . ,∆s on the simplices
in T is a shelling order if for all 1 < r 󰃑 s,

r−1󰁞

i=1

󰀓
∆i ∩∆r

󰀔
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is a union of facets of ∆r.

Equivalently, the order ∆1,∆2, . . . ,∆s is a shelling order if and only if for all r 󰃑 s
and k < r, there exists an i < r such that ∆k ∩∆r ⊂ ∆i ∩∆r and ∆i ∩∆r is a facet of
∆r. This means that when we build our simplicial complex by adding facets in the order
prescribed by the shelling order, we add each simplex along its highest dimensional facets.

Example 11. Consider the order polytope O(Z4) with its canonical triangulation by
alternating permutations

∆3412,∆2413,∆2314,∆1423,∆1324.

This particular ordering of the facets in the canonical triangulation is a special case of
the shelling order that will be established and proved in the next section. The fact that
this is a shelling order can be checked directly in this example, for instance:

∆2314 ∩ (∆3412 ∪∆2413) = conv

󰀵

󰀹󰀹󰀷

1 1 0 0
1 1 1 0
1 0 0 0
1 1 1 0

󰀶

󰀺󰀺󰀸

which is a facet of ∆2314.

Keeping track of the number of facets that each simplex is added along gives the
following relationship between shellings of a triangulation of an integer polytope and the
Ehrhart series of the polytope, which is proved in [1, Chapter 3].

Theorem 12. Let P be a polytope with integer vertices. Let {∆1, . . . ,∆s} be a unimodular
triangulation of P using the integer points of P . Denote by h∗

j the coefficient of tj in the
h∗ polynomial of P . If ∆1, . . . ,∆s is a shelling order, then h∗

j is the number of ∆i that
are added along j of their facets in this shelling. Equivalently,

h∗(t) =
s󰁛

i=1

tai ,

where ai = #{k < i | ∆k ∩∆i is a facet of ∆i}.

Example (Example 11, continued). Since ∆3412 comes first in the shelling, it is added
along zero of its facets; hence it contributes a summand of 1 to h∗

O(Z4)
(t). The intersections

∆2413 ∩∆3412, ∆2314 ∩ (∆3412 ∪∆2413) and ∆1423 ∩ (∆2314 ∪∆3412 ∪∆2413) each consist a
single facet. So they each contribute a summand of t to h∗

O(Z4)
(t). Finally ∆1324∩(∆1423∪

∆2314 ∪∆3412 ∪∆2413) consists of two facets of ∆1324. So it contributes a summand of t2

to h∗
O(Z4)

(t). Thus we have h∗
O(Z4)

(t) = 1 + 3t+ t2.

The goal of this paper is to prove the following theorem relating the h∗-polynomial of
O(Zn) and the swap statistic.
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Theorem 13. The numerator of the Ehrhart series of O(Zn) is

h∗
O(Zn)(t) =

󰁛

σ∈An

tswap(σ).

Example (Example 11, continued). We verify Theorem 13 in the case of Z4. We have
swap(3412) = 0, swap(2413) = swap(2314) = swap(1423) = 1 and swap(1324) = 2. So
Theorem 13 holds in this case. In particular, note that in this example swap(σ) is exactly
the number of facets ∆σ is added along in the shelling order.

In Section 2, we prove this result by giving a shelling of the canonical triangulation of
O(Zn). Alternate formulas for the h∗-polynomial of the order polytope of a poset P exist,
as described in [9, Chapter 3.13]. Many of these formulas refer to the Jordan-Hölder set
of P and in particular, descents in the permutations in this set. In Section 3, we offer
an alternate proof of Theorem 13 using this machinery. We now provide a review of the
relevant theory.

1.4 Jordan-Hölder Sets and Rank Selection

Our second proof of Theorem 13 relies heavily on the concepts of rank selection and flag
f -vectors developed for general posets in Sections 3.13 and 3.15 of [9]. We will focus our
attention to the zig-zag poset, Zn. Denote by J(Zn) the distributive lattice of order ideals
in Zn ordered by inclusion. Let S = {s1, . . . , sk} ⊂ [0, n], where [0, n] = {0, . . . , n}. We
always assume that s1 < s2 < . . . < sk. Denote by αn(S) the number of chains of order
ideals I1 ⊊ · · · ⊊ Ik in J(Zn) such that #Ij = sj for all j. Define

βn(S) =
󰁛

T⊂S

(−1)#(S−T )αn(T ).

By the Principle of Inclusion-Exclusion, or equivalently, via Möbius inversion on the
Boolean lattice,

αn(S) =
󰁛

T⊂S

βn(T ).

Example 14. Consider the case where n = 5 and S = {1, 3}. The chains of order ideals
of Zn of the form I1 ⊊ I2 where #I1 = 1 and #I2 = 3 are:

{z1} ⊊ {z1, z2, z3} {z3} ⊊ {z1, z2, z3}
{z1} ⊊ {z1, z3, z5} {z3} ⊊ {z1, z3, z5}
{z5} ⊊ {z1, z3, z5} {z3} ⊊ {z3, z4, z5}
{z5} ⊊ {z3, z4, z5}.

Thus α5({1, 3}) = 7. Similarly, we have α5({1}) = 3, α5({3}) = 3 and α5(∅) = 1. Thus,
β5({1, 3}) = 1− 3− 3 + 7 = 2.
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In Section 3.13 of [9], the function αn : 2[0,n] → Z is called the flag f-vector of Zn

and βn : 2[0,n] → Z is called the flag h-vector of Zn. For any poset P of size n, let
ω : P → [n] be an order-preserving bijection (ie. a linear extension) that assigns a label
to each element of P ; in this case, ω is called a natural labeling. Then for any linear
extension σ : P → [n], we may define a permutation in Sn by ω ◦σ−1. The Jordan-Hölder
set L(P,ω) is the set of all permutations obtained in this way. The following result for
arbitrary finite posets can be found in Chapter 3.13 of [9].

Theorem 15 ([9], Theorem 3.13.1). Let S ⊂ [n− 1]. Then βn(S) is equal to the number
of permutations τ ∈ L(P,ω) with descent set S.

Example (Example 14, continued). We verify Theorem 15 in the case where n = 5
and S = {1, 3}. Consider the natural labeling ω : Z5 → [5] given by z1 󰀁→ 1, z2 󰀁→ 4,
z3 󰀁→ 2, z4 󰀁→ 5 and z5 󰀁→ 3. This is a linear extension of Z5 and corresponds to the
alternating permutation 14253. Let σ1 = 23154, which is an alternating permutation.
We have σ−1

1 = 31254. So the element of the Jordan-Hölder set L(Z5,ω) corresponding
to σ1 is ω ◦ σ−1

1 = 21435. Note that the descent set of ω ◦ σ−1
1 is {1, 3}. Similarly,

letting σ2 = 45231, we have ω ◦ σ−1
2 = 32514 whose descent set is also {1, 3}. These are

exactly the alternating permutations σ for which the descent set of ω ◦ σ−1 is {1, 3}, and
β5({1, 3}) = 2 as needed.

The order polynomial of a poset P , ΩP (m) is the number of order preserving maps
from P to [m]. The Ehrhart polynomial of O(Zn) evaluated at m is equal to the order
polynomial of Zn evaluated at m+1 [7]. We also have the following equality of generating
functions from Theorem 3.15.8 of [9]. We restate the relevant special case of this theorem
here.

Theorem 16 ([9], Theorem 3.15.8). Let ω : P → [n] be an order-preserving bijection.
Then

󰁛

m󰃍0

ΩP (m)xm =

󰁓
σ∈L(P,ω) x

1+des(σ)

(1− x)n+1
.

Therefore, since iO(Zn)(m) = ΩO(Zn)(m+ 1), we have that

EhrO(Zn)(t) =

󰁓
σ∈L(Zn,ω)

xdes(σ)

(1− x)n+1
.

It follows that the h∗-polynomial of O(Zn) is

h∗
O(Zn)(t) =

󰁛

S⊂[n−1]

βn(S)t
#S. (1)

In the case of Zn, the elements of the Jordan-Hölder set are not alternating or inverse
alternating permutations (as we see in Example 14) because they arise from linear exten-
sions with respect to a natural labeling of Zn. Indeed, our labeling of Zn, with respect
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to which linear extensions are the same as alternating permutations, is not natural since
the map zi 󰀁→ i is not a linear extension of Zn. The elements of the Jordan-Hölder set
do not have as nice of a combinatorial description as the alternating permutations, and
there is not an obvious bijection between swaps in alternating permutations and descents
in elements of the Jordan-Hölder set. Section 3 is largely devoted to showing that βn(S)
is equal to the number of alternating permutations σ with Swap(σ) = S, and the main
theorem follows from this fact.

2 Shelling the Canonical Triangulation of the Order Polytope

In this section we describe a family of shelling orders on the simplices of the canonical
triangulation of O(Zn). Let σ be an alternating permutation. We will denote by vert(σ)
the set of all vertices of the simplex ∆σ. Note that this is the set of all 0/1 vectors v of
length n that have vi 󰃑 vj whenever σ(i) < σ(j).

Proposition 17. The simplices ∆σ and ∆τ are joined along a facet if and only if σ swaps
to τ or τ swaps to σ.

Proof. Simplices ∆σ and ∆τ are joined along a facet if and only if vert(σ) and vert(τ)
differ by a single element. Since every simplex in the canonical triangulation of O(Zn)
has exactly one vertex with the sum of its components equal to i for 0 󰃑 i 󰃑 n and the
all 0’s and all 1’s vector are in every simplex in this triangulation, this occurs if and only
if there exists an i with 1 󰃑 i 󰃑 n − 1 such that vert(σ) − {vσ

i } = vert(τ) − {vτ
i }. By

definition of each vσ
j and vτ

j , this occurs if and only if σ−1(j) = τ−1(j) for all j ∕= i, i+ 1
and eσ−1(i)+eσ−1(i+1) = eτ−1(i)+eτ−1(i+1). This is true if and only if swapping the positions
of i and i+ 1 in σ yields τ , as needed.

Example 18. Let n = 5 and consider the alternating permuation σ = 35142. We have
Swap(σ) = {1, 3}, so σ swaps to two permutations τ1 = 35241 and τ2 = 45132. Note
that the vertex sets of ∆σ and ∆τ1 differ by a single vertex, and the same is true for τ2.
Indeed, the simplices ∆σ and ∆τ1 are

∆σ = conv

󰀵

󰀹󰀹󰀹󰀹󰀷

1 1 1 0 0 0
1 1 1 1 1 0
1 0 0 0 0 0
1 1 1 1 0 0
1 1 0 0 0 0

󰀶

󰀺󰀺󰀺󰀺󰀸
and ∆τ1 = conv

󰀵

󰀹󰀹󰀹󰀹󰀷

1 1 1 0 0 0
1 1 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0
1 0 0 0 0 0

󰀶

󰀺󰀺󰀺󰀺󰀸
.

Since τ1 is obtained from σ by swapping the positions of 1 and 2, we have that vσ
1 ∕= vτ1

1 ,
but all other vertices are equal. So these simplices intersect along a facet. Note that σ
does not swap to τ3 = 45231 since it is obtained by swapping the positions of 1 and 2 and
the positions of 3 and 4. And indeed, ∆σ∩∆τ3 is not a facet since vσ

1 ∕= vτ3
1 and vσ

3 ∕= vτ3
3 .

Denote by inv(σ) the number of inversions of a permutation σ; that is, inv(σ) is the
number of pairs i < j such that σ(i) > σ(j). We similarly define a non-inversion to be
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a pair i < j with σ(i) < σ(j). We call an inversion or non-inversion (i, j) relevant if
i < j − 1.

The motivation behind this definition is that all alternating permutations have at
least ⌊(n− 1)/2⌋ inversions, namely those of the form (2i, 2i+1) for 1 󰃑 i 󰃑 ⌊(n− 1)/2⌋.
These inversions are necessary in order for a permutation to be alternating. Similarly, all
alternating permutations have at least ⌊n/2⌋ non-inversions of the form (2i − 1, 2i) for
1 󰃑 i 󰃑 ⌊n/2⌋. Since these inversions and non-inversions are present in all alternating
permutations, we consider them to be irrelevant. In the following proofs, the relevant
inversions and non-inversions (that is, those that do not occur between consecutive posi-
tions) are the ones that give insight into the relationship between the swap statistic and
the intersections of simplices in the triangulation of O(Zn).

Note that performing a swap on an alternating permutation always increases its in-
version number by exactly one.

The following lemma relates relevant non-inversions to swaps in between them.

Lemma 19. Let σ be an alternating permut ation. Let a, b ∈ [n] such that (σ−1(a), σ−1(b))
is a relevant non-inversion of σ. Then there exists a k with a 󰃑 k < b such that k is a
swap of σ.

Proof. We proceed by induction on b − a. If b − a = 1, then since (σ−1(a), σ−1(b)) is a
relevant non-inversion, a is a swap in σ.

Let b − a > 1. Consider the position of a + 1 in σ. There are three cases. If
σ−1(a+ 1) < σ−1(b)− 1, then (σ−1(a+ 1), σ−1(b)) is a relevant non-inversion, and we are
done by induction. If σ−1(a+1) > σ−1(b), then a is a swap in σ. If σ−1(a+1) = σ−1(b)−1,
then note that σ−1(a) < σ−1(a + 1)− 1 since otherwise, a, a + 1, b would be an adjacent
increasing sequence in σ, which would contradict that σ is alternating. So a is a swap in
σ, as needed.

Example 20. Consider the alternating permutation σ = 34172856. We illustrate exam-
ples of the three cases described in the proof of Lemma 19. First, consider the relevant
non-inversion (1, 4), so that following the notation of the lemma, a = 3 and b = 7. Then
σ−1(4) = 2 < σ−1(7) − 1, and (2, 4) is a relevant non-inversion of σ. We are now done
since 4 is a swap in σ. This then puts us in the second case of a proof, where 4 is itself a
swap in σ. Finally, to illustrate the third case, consider the relevant non-inversion (3, 6),
so that a = 1 and b = 8. We have σ−1(2) = 5, and indeed 1 is a swap in σ.

Theorem 13 follows as a corollary of Theorem 12, Proposition 17 and the following
theorem.

Theorem 21. Let σ1, . . . , σEn be an order on the alternating permutations such that if
i < j then inv(σi) 󰃍 inv(σj). Then the order ∆σ1 , . . . ,∆σEn on the simplices of the
canonical triangulation of O(Zn) is a shelling order.

Note that since performing a swap increases inversion number by exactly one, the
condition of Theorem 21 implies that if σj swaps to σi, then i < j. For any alternating
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permutation σ, define the exclusion set of σ, excl(σ) to be the set of all vσ
k ∈ vert(σ) such

that k is a swap in σ. In other words,

excl(σ) = {v | v ∈ ∆σ −∆τ for some τ such that σ swaps to τ}.

For example, we computed in Example 18 that swap(35142) = {1, 3}. So excl(35142) =
{v35142

1 ,v35142
3 }. In the proof of Theorem 21, we will show that Proposition 17 implies

that in order to prove Theorem 21, it suffices to check that if inv(σ) 󰃑 inv(τ), then
excl(σ) ∕⊂ vert(τ). This fact follows from the next two propositions.

Proposition 22. Let σ be an alternating permutation. Then σ maximizes inversion number
over all alternating permutations τ with excl(σ) ⊂ vert(τ).

Proof. Consider a vertex vσ
k ∈ vert(σ). Note that we may read all of the non-inversions

(i, j) with σ(i) 󰃑 k < σ(j) from vσ
k since these correspond to pairs of positions in vσ

k

with a 0 in the first position and a 1 in the second. That is to say, we have vσ
k (i) = 0,

vσ
k (j) = 1, and i < j.
We claim that every relevant non-inversion of σ can be read from an element of excl(σ)

in this way. By Lemma 19, there exists a swap k in σ with σ(i) 󰃑 k < σ(j), and the
relevant non-inversion (i, j) can be read from vσ

k in the manner described above.
Therefore, all relevant non-inversions in σ can be found as a non-adjacent 0−1 pair in

a vertex in excl(σ). In particular, we can count the number of relevant non-inversions in
σ from the vertices in excl(σ). Furthermore, if excl(σ) ⊂ vert(τ), then all non-inversions
in σ must also be non-inversions in τ , though τ can contain more non-inversions as well.
So σ minimizes the number of non-inversions, and therefore maximizes the number of
inversions, over all τ with excl(σ) ⊂ vert(τ).

Example 23. The alternating permutation σ = 34172856 whose inversion set is listed in
Example 6 has Swap(σ) = {1, 4, 7}. So the exclusion set of σ is

excl(σ) =
󰀋

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1
1
0
1
1
1
1
1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
0
0
1
0
1
1
1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
0
0
0
0
1
0
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀌
.

In the proof of Proposition 22, we show that every relevant non-inversion corresponds to a
pair of non-adjacent entries of some v ∈ excl(σ) that contain a 0 before a 1. Indeed, these
pairs in vσ

1 are (3, 5), (3, 6), (3, 7) and (3, 8). In vσ
4 , they are (1, 4), (1, 6), (1, 7), (1, 8), (2, 4),

(2, 6), (2, 7), (2, 8), (3, 6), (3, 7), (3, 8), (5, 7) and (5, 8) and in vσ
7 , they are (1, 6), (2, 6), (3, 6)

and (4, 6). Note that the non-adjacent pairs that are not in any of these lists are exactly
the relevant inversions of σ; namely, these are (1, 3), (1, 5), (2, 5), (4, 5), (4, 7), (4, 8) and
(6, 8), as listed in Example 6. Let τ = 23164857 and note that excl(σ) ⊂ vert(τ). And
indeed, inv(τ) = 6 which is less than inv(σ), as guaranteed by Proposition 22.
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Proposition 24. Let S ⊂ vert(O(Zn)) be contained in vert(σ) for some alternating σ. Then
there exists a unique alternating σ̂ that maximizes inversion number over all alternating
permutations whose vertex set contains S.

Proof. Let S = {s0, s1, . . . , sr} ordered by decreasing coordinate sum. We can assume
that S contains both the all zeroes and all ones vectors since those vectors belong to the
simplex ∆σ for any alternating permutation σ. Since S ⊂ vert(σ) for some alternating
σ, if si(j) = 0, then sk(j) = 0 for all k > i. For i = 1, . . . , r, let mi be the number of
positions in si that are equal to zero, and let ni = mi −mi−1 (with n1 = m1).

Let τ be any alternating permutation such that S ⊆ vert(τ). The 0-pattern of each
si partitions the entries of all τ with S ⊂ vert(τ) as follows: For 1 󰃑 k 󰃑 r, the nk

positions j such that sk(j) = 0 and sk−1(j) = 1 are the positions of τ such that τ(j) ∈
{mk−1 + 1, . . . ,mk}.

The positions of inversions and non-inversions across these groups are fixed for all
τ with S ⊂ vert(τ). We can build an alternating permutation σ̂ that maximizes the
inversions within each group as follows. For 1 󰃑 k 󰃑 r, let jk1 , . . . , j

k
nk

be the positions of
σ̂ that must take values in {mk−1+1, . . . ,mk}, as described above. We place these values
in reverse; i.e. map jkl to mk − l + 1. The permutation obtained in this way need not be
alternating, so we switch adjacent positions that need to contain non-descents in order
to make the permutation alternating. Note that we never need to make such a switch
between groups, since the partition given by S respects the structure of an alternating
permutation.

This permutation is unique because within the kth group, arranging the values in this
way is equivalent to finding the permutation on nk elements with some fixed non-descent
positions that maximizes inversion number. To obtain this permutation, we begin with
the permutation mk mk − 1 . . .mk−1 + 1 and switch all the positions that must be non-
descents. The alternating structure of the original permutation implies that none of these
non-descent positions can be adjacent, so these transpositions commute and give a unique
permutation.

Example 25. Let n = 7 and let

S =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1
1
1
1
1
1
1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
1
0
1
1
1
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
1
0
0
0
0
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
0
0
0
0
0
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀼
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀾

We will construct σ̂, the alternating permutation that maximizes inversion number overall
alternating permuations whose vertex set contains S. The second and third vertices in S
are the only one that gives information about the position of each entry; we will denote
them w1 and w2, respectively. Since w1 has 0’s in exactly the first, third and seventh
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positions, we know that 1, 2 and 3 are in these positions. We insert them into these
positions in decreasing order, so that σ̂ has the form

3 2 1.

The zeros added in w2 are in the fourth, fifth and sixth positions. Placing them in
decreasing order yields the permutation

3 2 6 5 4 1.

However, this permutation cannot be alternating, since there must be an ascent from
position 5 to position 6. To create this ascent, we switch the entries in these positions,
yielding a permutation of the form

3 2 6 4 5 1.

Finally, the only entry missing is 7, which must go in the remaining space. This gives
the permutation

σ̂ = 3 7 2 6 4 5 1.

Proof of Theorem 21. First, we claim that it suffices to show that for any alternating
permutations σ and τ , if inv(τ) 󰃍 inv(σ) then excl(σ) ∕⊂ vert(τ). Indeed, for any ρ with
inv(ρ) 󰃍 inv(σ), by Proposition 17 we have that ∆σ ∩∆ρ is a facet of ∆σ if and only if σ
swaps to ρ. This is the case if and only if ∆σ ∩∆ρ = ∆σ \ {vi} for some vi ∈ excl(σ). So
if ∆σ ∩∆τ is not contained in ∆σ ∩∆ρ for any ρ such that inv(ρ) 󰃍 inv(σ) with ∆σ ∩∆ρ

a facet of ∆σ, then we must have excl(σ) ⊂ vert(τ). The contrapositive of this statement
shows that if excl(σ) ∕⊂ vert(τ), then the given order on the facets of the triangulation is
a shelling.

If inv(τ) > inv(σ), then since σ maximizes inversion number over all alternating
permutations that contain the exclusion set of σ by Proposition 22, excl(σ) ∕⊂ vert(τ).
Furthermore, Proposition 24 implies that if inv(τ) = inv(σ), then excl(σ) ∕⊂ vert(τ)
because σ is the unique permutation that maximizes inversion number of all alternating
permutation that contain its exclusion set.

Proof of Theorem 13. Let ∆σ1 , . . . ,∆σEn be a shelling order as described in Theorem 21.
Then by Proposition 17, each ∆σi is added in the shelling along exactly swap(σi) facets.
Therefore, by Theorem 12,

h∗
O(ZN )(t) =

󰁛

σ∈An

tswap(σ),

as needed.

We conclude this section by remarking that not all of the shellings described in The-
orem 21 can be obtained from EL- or CL-labelings of the lattice of order ideals of J(Zn).
Saturated chains in J(Zn) are in bijection with elements of An via the map that sends an
alternating permutation σ to the chain of order ideals,

I0 ⊊ I1 ⊊ I2 ⊊ · · · ⊊ In

where Ij = {σ−1(1), . . . , σ−1(j)} [9, Chapter 3.5].
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Figure 2: The distributive lattice of order ideals J(Z4) with an EL-labeling in blue.

Definition 26. Let P be a graded bounded poset and let E(P ) be the set of cover
relations of P . An EL-labeling of P is a labeling λ of E(P ) with integers such that

• each closed interval [a, b] of P has a unique λ-increasing saturated chain, and

• this λ-increasing chain lexicographically precedes all other saturated chains from a
to b.

A poset that has an EL-labeling is called EL-shellable.

For more details on poset shellability, we refer the reader to [11]. If P is EL-shellable
with EL-labeling λ, then lexicographic order on the saturated chains of P with respect to
λ gives a shelling of the order complex of P [2]. In the case of J(Zn), its order complex is
isomorphic to the canonical triangulation of the order polytope O(Zn) via the bijection
described above.

Example 27. We consider the lattice of order ideals, J(Z4) pictured in Figure 2. The
elements of this poset are order ideals of Z4, which we denote by their indicator vector, and
the labeling in blue is an EL-labeling. Hence this poset is EL-shellable. The lexicographic
order on the labelings saturated chains is

(1, 2, 3, 4) < (1, 2, 4, 1) < (2, 1, 3, 4) < (2, 1, 4, 1) < (2, 2, 1, 1).

This corresponds to the order on alternating permutations,

1324, 1423, 2314, 2413, 3412,

which is indeed a shelling of the triangulation of O(Zn).

So finding EL-labelings of J(Zn) is one way to construct shellings of the canonical
triangulations of O(Zn). However, not all of the shellings described in Theorem 21 can
be obtained in this way.

Proposition 28. There exist shelling orders on the canonical triangulation of O(Zn) given
by the conditions of Theorem 21 that cannot be obtained from EL-labelings of J(Zn).
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Proof. For the sake of readability, we discuss these shellings on the level of alternating
permutations. The “position of σ in a shelling order” is taken to mean the position of
∆σ in that shelling order for the canonical triangulation of O(Zn). All of the shellings
described in Theorem 21 begin with the unique alternating permutation σ̄ that maximizes
inversion number over all alternating permutations; this permutation exists by Proposition
24. Note that σ̄−1(1) is n− 1 or n, depending upon the parity of n.

We address the case where n 󰃍 5 is odd. Then σ̄ is of the form

σ̄ = (n− 1) n (n− 3) (n− 2) . . . 4 5 2 3 1.

Let λ be an EL-labeling of the cover relations of J(Zn) that induces a shelling with σ̄ is
its first element. (Note that if no such EL-labeling exists, the proposition holds trivially.)

The sets ∅, {zn}, {zn−2} and {zn−2, zn} are order ideals of J(Zn) that comprise the
interval [∅, {zn−2, zn}]. The chain corresponding to σ̄ begins with ∅ ⋖ {zn} ⋖ {zn−2, zn}.
So this must must be the unique λ-increasing chain in the interval [∅, {zn−2, zn}]. As
such, it lexicographically precedes the chain ∅ ⋖ {zn−2} ⋖ {zn−2, zn}. This implies that
any permutation σ with σ−1(1) = n and σ−1(2) = n − 2 will precede any permutation τ
with τ−1(2) = n and τ−1(1) = n− 2.

In particular, let σ be obtained from σ̄ by switching the positions of 3 and 4. Let τ
be obtained from σ̄ by switching the positions of 1 and 2. Then in any EL-shelling, σ
will come before τ . However, σ and τ have the same inversion number and have exactly
one swap position, so they are interchangeable in any order given by the conditions of
Theorem 21.

An analogous argument works when n 󰃍 6 is even, and can be adapted for the case
when n = 4.

This proposition and proof can also be adapted to show that not all shellings arising
from Theorem 21 can be obtained from CL-labelings of J(Zn).

3 The Swap Statistic Via Rank Selection

We now turn our attention to an alternate proof of Theorem 13 using the machinery
of rank selection and Jordan-Hölder sets as introduced in Section 1.4. Theorem 13 will
follow from Equation 1 and the following theorem, which is analogous to Theorem 3.13.1
in [9].

Theorem 29. Let S ⊂ [n− 1]. Then βn(S) is the number of alternating permutations ω
with Swap(ω) = S.

To prove this theorem, for every S = {s1, . . . , sn} ⊂ [n− 1], we will define a function
φS that maps chains of order ideals of sizes s1, . . . , sk to alternating permutations whose
swap set is contained in S. Let I1, . . . , Ik be a chain of order ideals in J(Zn) with sizes
#Ij = sj. Let wi be the vertex of O(Zn) that satisfies

wi(j) =

󰀫
0 if j ∈ Ii

1 if j ∕∈ Ii.
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Define φS(I1, . . . , Ik) to be the unique alternating permutation that maximizes inversion
number over all alternating permutations whose vertex set contains {w1, . . . ,wk}. This
map is well-defined by Proposition 24.

Let ψS be the map that sends an alternating permutation ω with Swap(ω) ⊂ S to
the chain of order ideals (I1, . . . , Ik) where each Ij = {ω−1(1), . . . ,ω−1(sj)}. Since every
alternating permutation ω is a linear extension of Zn, each Ij obtained in this way is an
order ideal. They form a chain by construction, so the map ψS is well-defined. We will
show that ψS is the inverse of φS in the proof of Theorem 29.

Example 30. Consider the zig-zag poset on seven elements Z7 pictured in Figure 3. Let
S = {3, 6}, and let I1 = {a, c, g} and I2 = {a, c, d, e, f, g} be the given order ideals of sizes
3 and 6 respectively. Then the vectors w1 and w2 are

w1 =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
1
0
1
1
1
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

and w2 =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0
1
0
0
0
0
0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

.

Notice that these are the same vectors w1 and w2 as in Example 25. So the unique
alternating permutation φS(I1, I2) that maximizes inversion number over all alternating
permutations whose vertex set contains {w1,w2} is the same permutation as in Example
25,

φS(I1, I2) = 3 7 2 6 4 5 1.

Note that Swap(3726451) = {3} ⊂ {3, 6} = S.
Now let ω = 3726451. We will recover our original order ideals I1 and I2 by finding

ψS(ω). For clarity, we will treat ω as a map from {a, . . . , g} to {1, . . . , 7}. The first order
ideal of ψS(ω) consists of the inverse images of 1, 2, and 3 in ω. That is,

I1 = {ω−1(1),ω−1(2),ω−1(3)} = {a, c, g}.

The second order ideal of ψS(ω) consists of the inverse images of 1 through 6 in ω. So we
obtain

I2 = {ω−1(1), . . . ,ω−1(6)} = {a, c, d, e, f, g}.

Note that this is, in fact, the chain of order ideals with which we began.

Proof of Theorem 29. Let S = {s1, . . . , sk} ⊂ [n − 1]. We will show that αn(S) is the
number of alternating permutations whose swap set is contained in S by showing that
the map φS described above is a bijection. We suggest that the reader follow Example
30, which illustrates the fact that this is a bijection, alongside this proof.
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Figure 3: The zig-zag poset Z7

Let I1, . . . , Ik be a chain of order ideals in J(Zn) with sizes #Ij = sj. It is clear from
the definitions of φS and ψS that

ψS(φS(I1, . . . , Ik)) = (I1, . . . , Ik).

Since φS is injective, it suffices to show that ψS is also injective. We will show that
φS(I1, . . . , Ik) is the only alternating permutation that maps to (I1, . . . , Ik) under ψS.

Since ω = φS(I1, . . . , Ik) is the unique alternating permuation that maximizes inversion
number over all alternating permutations with {w1, . . . ,wk} in their vertex sets, any other
alternating permutation σ that maps to (I1, . . . , Ik) under ψS must have fewer inversions
than ω.

Let σ be such a permutation. Since each inversion between the sets I1, Zn − Ik and
Ij − Ij−1 for all 1 < j 󰃑 k are fixed, the additional non-inversion must be contained in
one of these sets. Without loss of generality, let this be R = Ij − Ij−1. Denote by σ|R the
restriction of σ to the domain R. Let (σ−1(a), σ−1(b)) be the non-inversion of σ|R that is
not required by the alternating structure. Then by Lemma 19, there exists a k such that
a 󰃑 k < b and k is a swap in σ. Since a 󰃑 k < b, σ−1(k) and σ−1(k + 1) are in R, so
k is also a swap in σ|R as well. So the swap set of σ is not contained in S and we have
reached a contradiction.

Therefore, ω is the only alternating permutation that can map to (I1, . . . , Ik) under
ψS, and ψS is the inverse map of φS. So αn(S) is equal to the number of alternating
permutations whose swap set is contained in S. By the Principle of Inclusion-Exclusion,
βn(S) is the number of alternating permutations whose swap set is equal to S.

Theorem 13 follows as a corollary of Theorem 29.

Proof of Theorem 13. Equation 1 states that

h∗
O(Zn)(t) =

󰁛

S⊂[n−1]

βn(S)t
#S.

Theorem 29 tells us that βn(S) is the number of alternating permutations with swap set S.
So the sum

󰁓
#S=k βn(S) is the number of alternating permutations σ with swap(σ) = k.

So
h∗
O(Zn)(t) =

󰁛

σ

tswap(σ),

as needed.

We conclude this section with an equidistribution result that follows as a corollary of
Theorem 13.
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Corollary 31. Let ω be a natural labeling of Zn. Then

󰁛

σ∈An

tswap(σ) =
󰁛

σ∈L(Zn,ω)

tdes(σ).

4 Combinatorial Properties of Swap Numbers

Let sn(k) denote the number of alternating permutations on n letters that have exactly
k swaps. We call these numbers the swap numbers. Theorem 13 shows that the h∗-
polynomial of O(Zn) is

n−1󰁛

k=0

sn(k)t
k.

We are interested in understanding these numbers. For example, it would be interesting
to find an explicit formula for sn(k), though we have not been able to do this yet.

One straightforward property that becomes apparent looking at examples is that
sn(n − 1) = 0. This is clear because it is not possible that every k ∈ [n − 1] is a
swap. Indeed, otherwise k is to the left of k + 1 for all k ∈ [n − 1] which implies that σ
is the identity permutation, which is not alternating. Furthermore, sn(n − 2) = 1, since
the unique alternating permutation with this many swaps is the one with 1, 2, . . . , ⌈n

2
⌉ in

order in the odd numbered positions and ⌈n
2
⌉ + 1, . . . , n in order in the even numbered

positions. Similarly, sn(0) = 1, because there is a unique alternating permutation with
no swaps. It is the permutation (n− 1, n, n− 3, n− 2, n− 5, n− 4, . . .).

Another property that is apparent from examples is summarized in the following:

Theorem 32. The sequence sn(0), sn(1), . . . , sn(n− 2) is symmetric and unimodal.

In fact, Theorem 32 and all the preceding properties will follow from the fact that
O(Zn) is a Gorenstein polytope of index 3.

Definition 33. An integral polytope is Gorenstein if there is a positive integer m such
that mP contains exactly one lattice point v in its relative interior, and for each facet-
defining inequality aTx 󰃑 b, we have that b− aTv = 1. The integer m is called the index
of P .

See Lemma 4 (iii) in [3] for this characterization of Gorenstein polytopes. The following
relevant theorem concerning the h∗ polynomials of Gorenstein polytopes with unimodular
triangulations is Theorem 1 in [3].

Theorem 34. Suppose that P is a Gorenstein polytope of dimension d and index m.
Then h∗

P (t) is a polynomial of degree d − m + 1, whose coefficients form a symmetric
sequence. Furthermore, the constant term of h∗

P (t) is 1. If, in addition, P has a regular
unimodular triangulation, then the coefficient sequence is unimodal.
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Proof of Theorem 32. It suffices to show that O(Zn) is a Gorenstein polytope of index
three with a regular unimodular triangulation. The canonical triangulation of O(Zn) is a
regular unimodular triangulation. This follows from the fact the triangulation is the initial
complex of a Gröbner basis of the toric ideal associated to O(Zn). Indeed, this Gröbner
basis is precisely the straightening law associated to the Hibi ring of the distributive lattice
L(Zn) [5]. Initial complexes of toric ideals always yield regular triangulations [10].

To see that O(Zn) satisfies the Gorenstein property with respect to m = 3, note that
the defining inequalities for 3O(Zn) are that vi 󰃍 0 for i odd, vi 󰃑 3 for i even, v2i−1 󰃑 v2i
and v2i+1 󰃑 v2i. The unique interior lattice point of 3O(Zn) is the point v where vi = 1
for i odd, and vi = 2 for i even. Finally, this point has lattice distance 1 from each of
the facet-defining inequalities. Hence O(Zn) is a Gorenstein polytope of index three with
a regular unimodular triangulation and Theorem 34 can be applied to deduce that the
coefficient sequence is symmetric and unimodal.

While general principles provide a proof of the symmetry and unimodality of the
sequence sn(0), sn(1), . . . , sn(n− 2), it would be interesting to find explicit combinatorial
arguments that would produce these results. In particular, we let An,k denote the set of
alternating permutations on n letters with exactly k swaps, then it would be interesting
to solve the following problems.

Problem 35. 1. Find a bijection between An,k and An,n−k−2.

2. For each 0 󰃑 k 󰃑 ⌊(n− 4)/2⌋ find an injective map from An,k to An,k+1.
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