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Abstract

The perfect matching complex of a graph is the simplicial complex on the edge set
of the graph with facets corresponding to perfect matchings of the graph. This paper
studies the perfect matching complexes, Mp(Hk×m×n), of honeycomb graphs. For
k = 1, Mp(H1×m×n) is contractible unless n  m = 2, in which case it is homotopy
equivalent to the (n− 1)-sphere. Also, Mp(H2×2×2) is homotopy equivalent to the
wedge of two 3-spheres. The proofs use discrete Morse theory.
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1 Introduction and Background

There has been a great deal of research on the topology of simplicial complexes associated
with graphs. Much of the early work in this area concerned matching complexes of
complete graphs and of complete bipartite graphs, called “the matching complex” and
“chessboard complexes,” respectively. This was often motivated by connections with other
areas of algebra, topology and combinatorics. For example, the topology of the matching
complex of the complete graph was used to study the partially ordered set of p-subgroups
of a finite group [24]. It also proved useful in the study of the posets of partitions with
restricted block sizes [25]. And [29] used matching complexes of complete bipartite graphs
to address a computational geometry problem: counting the hyperplanes that bisect sets
of points in general position. For an extensive discussion of the history and applications
of matching complexes, see the survey [28] by Wachs, and references therein.

Other complexes associated with graphs have also been studied since the 1990s (e.g.,
[16]), but much activity was initiated by the dissertation and subsequent book of Jonsson
[14]. In particular, there has been much work on independence complexes of graphs (for
example, [1, 2, 9, 10, 22]). The more recent work on matching complexes of various types
of graphs includes line tilings [4, 21], grid graphs [7, 12, 20], and more [3, 13, 18, 23, 27].

One particular type of graph is the honeycomb graph (a planar graph that is a tiling of
hexagons), studied, for example, in [13, 21]. In his exploration of the topology of matching
complexes [14], Jonsson suggests honeycomb graphs to be of interest for further study.
In addition, perfect matchings in honeycomb graphs have been of interest in chemistry
[15], and, recently, in “topological quantum chemistry” [6]. Furthermore, as we shall see,
honeycomb graphs have a close connection with plane partitions [17]. In this paper we
focus on honeycomb graphs and on a subcomplex of the matching complex, generated by
the faces corresponding to perfect matchings.

1.1 Perfect matching complexes

A matching of a simple graph G is a set of edges of G, no two of which share a vertex.
The matching complex of G, denoted by M(G), is the simplicial complex whose vertex
set is the set of edges of G, and whose facets (maximal faces) correspond to maximal
matchings of G.

Definition 1. Let G be a simple graph. A perfect matching of G is a matching that
covers all vertices of the graph. The perfect matching complex of G, denoted by Mp(G),
is the subcomplex of the matching complex whose facets correspond to perfect matchings
of G.

Thus, if σ = {e1, . . . , ek} is an arbitrary subset of the edges E(G), σ is a simplex (face)
in the complex Mp(G) if and only if there is a perfect matching P of G such that σ ⊆ P .

If the graph G admits at least one perfect matching, the perfect matching complex
Mp(G) is a full-dimensional subcomplex of the matching complex M(G). Otherwise, if
there is no perfect matching of the graph G, we consider the perfect matching complex to
be void. Note that even finding the number of perfect matchings of a graph is not easy.

the electronic journal of combinatorics 30(2) (2023), #P2.45 2



The number of perfect matchings of a graph can be expressed in terms of permanents of
associated matrices [19]. It is known that computing the permanent is #P -complete [26].

It turns out that the perfect matching complexes of complete graphs, complete bipar-
tite graphs, paths and cycles are either their entire matching complexes, or complexes
that can easily be determined. Whenever G has an odd number of vertices, the perfect
matching complex is void, so we focus only on graphs with even number of vertices.

• Complete graph G = K2n. Every matching is a subset of at least one perfect match-
ing, so Mp(K2n) = M(K2n).

• Complete bipartite graph G = Km,n. If m ∕= n, G does not contain a perfect
matching, so Mp(Km,n) is the void complex. When m = n, every matching is a
subset of a perfect matching, and Mp(Kn,n) = M(Kn,n).

• Path G = P2n. If we denote the vertices of the path by a1, a2, . . . , a2n respectively,
there is only one perfect matching on G, containing edges {a2i−1, a2i}, i ∈ {1, . . . , n}.
Therefore Mp(P2n) is a simplex ∆n−1 on n vertices.

• Cycle G = C2n. There are exactly two perfect matchings on C2n, and they are
disjoint, so the complex Mp(C2n) is the disjoint union of two simplices of dimension
n− 1, and Mp(C2n) is homotopy equivalent to the 0-sphere S0.

1.2 Bijection between perfect matchings of honeycombs and plane partitions

A honeycomb graph H = Hk×m×n is a hexagonal tiling whose congruent, opposite sides
are of length k,m and n hexagons.

In 2019, discrete Morse theory was used to determine the connectedness bounds of
d-dimensional faces of matching complexes of 1× 1× n and 2× 1× n honeycomb graphs
for n  1 [13]. It was later shown by Matsushita that the homotopy type for matching
complexes of 1 × 2 × n honeycomb graphs is a wedge of spheres [21]. Beyond the line
of hexagons, the homotopy types of matching complexes of honeycomb graphs have been
quite elusive. In this paper, we will consider the perfect matching complex of a honeycomb
graph and prove that this subcomplex for H1×m×n is contractible or homotopy equivalent
to a sphere using the bijection between perfect matchings on honeycomb graphs and
plane partitions. We also find the homotopy type of the matching complex of one larger
honeycomb graph: H2×2×2.

A plane partition is a two dimensional array of integers that are non-increasing
moving from left to right and top to bottom. We define a plane partition Pk×m×n through
a k × m matrix whose entries are less than or equal to n and follow the non-increasing
conditions. A plane partition can be visualized as a pile of unit cubes in the positive
octant of R3 following the non-increasing conditions. The perfect matchings of a honey-
comb graph are in bijection with the rhombus tilings of a hexagonal region of equilateral
triangles, which are in bijection with plane partitions. See, for example, [17], which gives
the number of plane partitions (and hence of perfect matchings) of honeycomb graphs
under various symmetry groups. For an example see Figure 4 on page 8. We will use this
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a1,1 d1,1

b1,1
T1,1

a1,0d0,0

b0,1

a2,1 d2,1

b2,1
T2,1

a2,0d1,0

an−1,1 dn−1,1

bn−1,1
Tn−1,1

an−1,0dn−2,0

bn−2,1

an,1 dn,1

bn,1
Tn,1

an,0dn−1,0

Figure 1: Labeled line of n hexagons

well-known bijection to determine the homotopy type of the perfect matching complexes
of H1×m×n and H2×2×2.

2 Hexagonal line tiling

In this section we use the nerve theorem, an important theorem in topology, to find the
homotopy type of the perfect matching complex of a line of hexagons. For an exposition
in the combinatorial context of simplicial complexes, see [5].

Definition 2. The nerve of a family of sets (Ai)i∈I is the simplicial complex N (Ai) with
vertex set I and σ ⊆ I a face of N (Ai) if and only if


i∈σ Ai ∕= ∅.

Theorem 3. Suppose ∆ is a simplicial complex, and (∆i)i∈I is a family of subcomplexes
such that ∆ =


i∈I ∆i. If every nonempty finite intersection


i∈J ∆i (J ⊆ I) is con-

tractible, then ∆ and the nerve N (∆i) are homotopy equivalent.

Theorem 4. Let Hn = H1×1×n be the graph of a line of n hexagons. Let Mp(Hn) be the
perfect matching complex of Hn. For n  2, Mp(Hn) is contractible.

Proof. Let n  2. Label the graph Hn as in Figure 1.
For each vertical segment bi,1 (0  i  n), there is a unique perfect matching for Hn

containing bi,1. This is the matching
{a1,1, d0,0, a2,1, d1,0, . . . , ai,1, di−1,0, bi,1, di+1,1, ai+1,0, . . . dn−1,1, an−1,0, dn,1, an,0}
(omitting the a1,1, d0,0 for i = 0, and omitting the dn,1, an,0 for i = n). Let Ai be the corre-
sponding simplex (facet) in the perfect matching complex Mp(Hn), i ∈ {0, 1, . . . , n}. Let
N (Mp(Hn)) be the nerve complex of Mp(Hn) with vertices Ai. For all i, 0  i  n− 1,
Ai contains the vertices dn,1, an,0, so {A0, A1, A2, . . . , An−1} is a simplex in N (Mp(Hn)).
For all i, 1  i  n, Ai contains the vertices a1,1, d0,0, so {A1, A2, . . . , An} is a simplex
in N (Mp(Hn)). Since A0 ∩ An = ∅ in Mp(Hn), N (Mp(Hn)) is the suspension over the
simplex {A1, A2, . . . , An−1}, and so is contractible. The conditions of the nerve lemma
are satisfied because a nonempty intersection of simplices in a complex is contractible.
Therefore, the perfect matching complex Mp(Hn) is contractible.
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3 The 1 × m × n honeycomb graph

3.1 A short summary of discrete Morse theory

Our subsequent calculations of homotopy type rely on discrete Morse theory. Developed
by Forman, discrete Morse theory is a way to find the homotopy type of complexes by
pairing faces of the complex [11]. These pairings correspond with a sequence of collapses
on the complex, resulting in a homotopy equivalent cell complex.

In what follows we will say two faces are paired in place of the usual phrasing of two
faces are matched in a discrete Morse matching, in order to avoid unnecessary confusion
with perfect matchings of a graph.

Definition 5. A partial pairing in a poset P is a partial pairing on the underlying
graph of the Hasse diagram of P . In other words, it is a subset M ⊆ P × P such that:

• (a, b) ∈ M implies a ≺ b and

• each c ∈ P belongs to at most one pair in M .

When (a, b) ∈ M we write b = u(a). A partial pairing is acyclic if there does not exist a
cycle

a1 ≺ u(a1) ≻ a2 ≺ u(a2) ≻ · · · ≺ u(am) ≻ a1

with m  2 and ai ∈ P distinct.

Given an acyclic partial pairing M on a poset P , we call an element critical if it
is unpaired. The main theorem of discrete Morse theory describes the essence of these
sequences of collapses.

Theorem 6 ([11]). Let ∆ be a polyhedral cell complex and let M be an acyclic pairing
on the face poset of ∆. Let ci denote the number of critical i-dimensional cells of ∆. The
space ∆ is homotopy equivalent to a cell complex ∆c with ci cells of dimension i for each
i  0, plus a single 0-dimensional cell in the case where the empty set is paired in the
matching.

A very simple way of constructing a pairing on a face poset is to choose a vertex and
then pair each face that contains that vertex with the subface obtained by deleting that
vertex.

Definition 7. [8, 14] Let x be an arbitrary vertex of a simplicial complex K. The
element pairing on K using vertex x is defined as:

M(x) = {(σ, σ ∪ {x}) | x /∈ σ, σ ∪ {x} ∈ K}.

Throughout the paper we will use the property that a union of a sequence of element
pairings is an acyclic pairing, as the following theorem claims.
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Theorem 8. ([8, Proposition 2.10], [14, Lemma 4.1]) Let K be a simplicial complex and
{x1, x2, . . . , xk} be a subset of the vertex set of K. Let K0 = K, and for all i ∈ {1, 2, . . . , k}
define inductively:

M(xi) = {(σ, σ ∪ {xi}) | xi /∈ σ, and σ, σ ∪ {xi} ∈ Ki−1},
N(xi) = {σ ∈ Ki−1 | σ ∈ η for some η ∈ M(xi)}, and

Ki = Ki−1 \N(xi).

Then
k

i=1

M(xi) is an acyclic pairing on K.

3.2 Perfect matchings in H1×m×n

We label the hexagons and the edges of the 1×m× n honeycomb graph as follows. Let
Ti,j denote the hexagon located in column i (1  i  m) and row j (1  j  n) starting
from the bottom left hexagon; see Figures 2 and 3. That is, for fixed i, the hexagons Ti,j,
1  j  n, form a vertical sequence with Ti,1 on the bottom and Ti,n on the top. For fixed
j, the hexagons Ti,j, 1  i  m, form a horizontal sequence with T1,j on the left and Tm,j

on the right (see Figure 2). The edges are labeled ai,j, bi,j, di,j, as in Figure 3. Here ai,j
exists for 1  i  m and 0  j  n; bi,j exists for 0  i  m and 1  j  n; and di,j
exists for 0  i  m and 0  j  n, except d0,n and dm,0.

T1,2

T2,2

T3,2T1,1

T2,1

T3,1

Figure 2: Honeycomb Labels

Remark 9. Recall each perfect matching P on H1×m×n is identified with a plane partition,
represented by a 1 × m matrix. Thus, we will denote P as P = (h1, h2, . . . , hm) where
n  h1  · · ·  hm  0 and h1, . . . , hm ∈ Z0. Notice that we can think of h1, . . . , hm as
heights of the respective columns of cubes. See Figure 4 for an example.

The matching (h1, h2, . . . , hm), contains the following edges:

• ai,j, if the edge is visible in the top of a cube or if column i has no cubes and ai,j is
the bottom horizontal edge in the column;
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bi−1,j

ai,j

di,j

bi,j

ai,j−1

di−1,j−1

Ti,j

Figure 3: Edge Labels

• bi,j, if the edge is visible on the front right side of a cube or b0,j if the hexagon in
column 1 is above the top cube in column 1;

• di,j, if the edge is in the front left side of a cube for any column.

In terms of the plane partition, we get the following description of edges in the perfect
matching.

Proposition 10. Let P be the perfect matching corresponding to the plane partition
(h1, h2, . . . , hm). Then

• ai,j ∈ P if and only if j = hi;

• bi,j ∈ P if and only if (hi  j > hi+1) or (i = 0 and j > h1) or (i = m and j  hm);

• di,j ∈ P if and only if (j > hi) or (j < hi+1).

Definition 11. For a 1 ×m × n honeycomb graph, the edges di,j at the intersection of
Ti,j and Ti+1,j+1 for 1  i  m− 1 and 1  j  n− 1 are called significant edges. See
Figure 5.

Directly from Definition 1 we derive the following properties of facets of Mp(H1×m×n).

Lemma 12. Consider the honeycomb graph H = H1×m×n, m,n ∈ N, m,n  2, and its
perfect matching complex Mp(H). Consider vertices of Mp(H) that correspond to edges
x = d0,0 and y = dm,n (Figure 5). Let P = (h1, . . . , hm) be an arbitrary perfect matching
on H. Then vertex x belongs to P if and only if P ∕= (0, . . . , 0  

m

), while vertex y belongs to

P if and only if P ∕= (n, . . . , n  
m

).

Proof. By Proposition 10, the vertex y = dm,n belongs to P if and only if hm < n, which
occurs if only if P ∕= (n, . . . , n  

m

). The vertex x = d0,0 belongs to P if and only if h1 > 0,

which occurs if and only if P ∕= (0, . . . , 0  
m

).
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Figure 4: Pictured above is H1×3×2 along with a perfect matching highlighted in thicker
red edges and overlaid with the corresponding plane partition (2, 1, 1).

Lemma 13. Consider the honeycomb graph H = H1×m×n, m,n ∈ N, m,n  2, and
its perfect matching complex Mp(H). Then the intersection of facet (0, . . . , 0  

m

) and facet

(n, . . . , n  
m

) is a simplex whose set of vertices corresponds to the set of significant edges.

Proof. If P equals either (0, . . . , 0) or (n, . . . , n), then, according to Proposition 10, for
1  i  m− 1 and 1  j  n− 1, P contains neither ai,j nor bi,j+1. Each interior vertex
of the honeycomb graph lies on exactly three edges, ai,j, bi,j+1 and di,j (1  i  m − 1,
1  j  n − 1). Thus, to cover this interior vertex, P must contain the significant edge
di,j.

We check that the two perfect matchings share no other edges. Clearly, they share
no edge ai,j. The matching (0, . . . , 0) contains b0,j (1  j  n) but no other bi,j. The
matching (n, . . . , n) contains bm,j (1  j  n) but no other bi,j. So the two share no edge
bi,j. Finally, (n, . . . , n) contains no di,n and no dm,j, while (0, . . . , 0) contains no d0,j and
no di,0. So the intersection of the perfect matchings (0, . . . , 0) and (n, . . . , n) is exactly
the simplex with vertices corresponding to the significant edges.

We will use this Lemma in the next two sections as we create Morse pairings.

3.3 The 1 × 2 × n honeycomb graph

Before proving the main result for 1×m×n honeycomb graphs, we consider the homotopy
type in the special case H1×2×n.

Theorem 14. Let H1×2×n be the honeycomb graph with n  2. Then

Mp(H1×2×n) ≃ Sn−1.
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n

m

y

x

z

Figure 5: The 1 ×m × n honeycomb graph with significant edges highlighted in thicker
red.

Proof. Let H = H1×2×n. We construct a Morse pairing on the face poset of Mp(H) by
using two element pairings:

(1) construct element pairing M(x) using vertex x (see Figure 6); then

(2) on the set of unpaired faces, construct element pairing M(y) using vertex y.

From Theorem 8, we know that the union of a sequence of element pairings is an
acyclic pairing. Therefore, M(x)∪M(y) is an acyclic pairing on the face poset of Mp(H).
We will prove that there is only one face of Mp(H) that is unpaired after M(x) ∪M(y).

From Lemma 12, we know that vertex x belongs to a perfect matching P = (h1, h2)
if and only if P ∕= (0, 0), while vertex y belongs to P if and only if P ∕= (n, n). Therefore,
complex Mp(H) can be seen as the union of two cones with apices x and y. From this
representation we observe that a face τ ∈ Mp(H) is unpaired after M(x) ∪M(y) if and
only if τ has the following structure:

τ = {y} ∪ σ,

where the face σ ∈ Mp(H) satisfies:

x, y /∈ σ, {y} ∪ σ ∈ Mp(H), {x} ∪ σ ∈ Mp(H), and {x, y} ∪ σ /∈ Mp(H). (1)
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d1,2

d1,1

d1,n

d1,n−1

y

x

Figure 6: Case 1× 2× n.

Let σ ∈ Mp(H) be an arbitrary face that satisfies (1). If there exists a perfect matching
P /∈ {(0, 0), (n, n)} such that σ ⊆ P, then σ ∪ {x, y} is also contained in P , which
contradicts the last condition in (1). The only perfect matchings that might contain σ
are (0, 0) and (n, n). Further, since x /∈ (0, 0) and {x} ∪ σ ∈ Mp(H), we conclude that
σ ⊆ (n, n). Similarly, conditions y /∈ (n, n) and {y} ∪ σ ∈ Mp(H) imply that σ ⊆ (0, 0).
Therefore,

σ ⊆ (0, 0) ∩ (n, n) = {d1,1, . . . , d1,n−1},
where the second equality follows from Lemma 13.

Suppose that ρ ⊊ {d1,1, . . . , d1,n−1} is a proper subset. Then, there exists some index
i ∈ {1, . . . , n−1} such that d1,i /∈ ρ. The perfect matching (i, i) /∈ {(0, 0), (n, n)} contains
{d1,1, d1,2, . . . , d1,n−1} {d1,i}. Therefore (i, i) is a perfect matching that contains ρ.

Hence, there is only one critical cell, τ = {y} ∪ {d1,1, . . . , d1,n−1}. From Theorem 6,
complex Mp(H) is homotopy equivalent to a CW-complex with one (n− 1)-dimensional
cell and one 0-cell (because the empty set is paired with set {x}). Hence, Mp(H) ≃
Sn−1.

3.4 The 1 × m × n honeycomb graph, m,n  3

The homotopy type for H1×m×n is different when m and n are both at least 3. In the proof
of the following theorem, we emphasize two places where we use the fact that m,n  3.

Theorem 15. Let H1×m×n be the honeycomb graph of dimension 1×m×n, with m,n ∈ N,
and m,n  3. Then the perfect matching complex Mp(H1×m×n) is contractible.

Proof. Let H = H1×m×n. We construct a discrete Morse pairing for Mp(H). Begin with
the two element pairings as in Theorem 14, and extend it with one significant edge:
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(1) construct an element pairing M(x) using vertex x = d0,0; then

(2) on the set of unpaired faces, construct element pairing M(y) using vertex y = dm,n;
then

(3) on the set of unpaired faces, construct element pairing M(dm−1,1) using vertex z =
dm−1,1.

(See Figure 5 for edge labels.)
From Theorem 8, we know that the union of a sequence of element pairings is an

acyclic pairing; therefore M(x) ∪ M(y) ∪ M(z) is an acylic pairing on the face poset of
Mp(H).

As in the proof of Theorem 14, we see that a face τ ∈ Mp(H) is unpaired after
M(x) ∪M(y) if and only if τ has the following structure:

τ = {y} ∪ σ,

where σ ⊆ (0, . . . , 0) ∩ (n, . . . , n) and τ ∪ {x} ∕∈ Mp(H).
Let N be the set of faces in Mp(H) that are unpaired after M(x)∪M(y). Reasoning

as in the proof of Theorem 14 we get that

N = {τ ∈ Mp(H) : τ = {y} ∪ σ for some σ ⊆ (0, . . . , 0) ∩ (n, . . . , n)

and τ ∪ {x} ∕∈ Mp(H)}.

Note that σ ⊆ (0, . . . , 0) ∩ (n, . . . , n) implies that x, y /∈ σ. We claim that the final
element pairing M(z) pairs all faces in N , and therefore the homotopy type of the perfect
matching complex is contractible. Thus, we wish to show z ∕∈ τ , τ ∈ N if and only if
τ ∪ {z} ∈ N .

(⇒) Assume τ = {y} ∪ σ ∈ N , z ∕∈ τ . Then σ ⊆ (0, . . . , 0) ∩ (n, . . . , n) and τ ∪ {x} ∕∈
Mp(H). Consider τ ∪ {z} = {y} ∪ (σ ∪ {z}). Since z ∈ (0, . . . , 0) ∩ (n, . . . , n), as z is a
significant edge, σ∪{z} ⊆ (0, . . . , 0)∩(n, . . . , n). This also shows that τ∪{z} ⊆ (0, . . . , 0),
and hence is in Mp(H). Also, (τ ∪ {z}) ∪ {x} ∕∈ Mp(H), since its subset τ ∪ {x} is not
in Mp(H). So τ ∪ {z} ∈ N .

(⇐) Assume τ ∪ {z} ∈ N (z ∕∈ τ). Then τ ∪ {z} = {y} ∪ (σ ∪ {z}) where σ ∪ {z} ⊆
(0, . . . , 0) ∩ (n, . . . , n) and (τ ∪ {z}) ∪ {x} ∕∈ Mp(H). Clearly, τ = {y} ∪ σ ∈ Mp(H),
with σ ⊆ (0, . . . , 0) ∩ (n, . . . , n). We need to show that τ ∪ {x} = σ ∪ {x, y} ∕∈ Mp(H).
We prove this by contradiction.

Assume σ ∪ {x, y} ∈ Mp(H), but (σ ∪ {z}) ∪ {x, y} ∕∈ Mp(H). Say σ ∪ {x, y} ⊆
(h1, h2, . . . , hm). Since (σ ∪ {z}) ∪ {x, y} ∕⊆ (h1, h2, . . . , hm), by Proposition 10 (applied
to z = dm−1,1), hm−1  1 and hm  1.

Case 1. hm−1  2 and hm  1. We claim that in this case (σ ∪ {z}) ∪ {x, y} ⊆
(h1, h2, . . . , hm−1, 2). First note that x and y are in (h1, h2, . . . , hm−1, 2), since each is in
every perfect matching except (0, . . . , 0) (in the case of x) and (n, . . . , n) (in the case of y).
Here we use the fact n  3, which implies y ∈ (h1, h2, . . . , hm−1, 2). Since σ ⊆ (0, . . . , 0)∩
(n, . . . , n), all other elements of (σ ∪ {z}) ∪ {x, y} are significant edges, that is, edges of
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the form di,j, 1  i  m− 1, 1  j  n− 1. By Proposition 10, di,j ∈ (h1, h2, . . . , hm−1, 2)
if and only if j > hi or j < hi+1. (We are assuming i > 0.) In particular, 1 < 2, so
z = dm−1,1 ∈ (h1, . . . , hm−1, 2). In addition, we know σ ∪ {x, y} ⊆ (h1, h2, . . . , hm), so for
di,j ∈ σ with i < m − 1, di,j satisfies the criterion for (h1, h2, . . . , hm−1, 2). On the other
hand, for dm−1,j ∈ σ, j  2 > hm, so dm−1,j ∈ (h1, h2, . . . , hm) implies j > hm−1. Thus,
dm−1,j also satisfies the criterion for (h1, h2, . . . , hm−1, 2). So in Case 1, we conclude that
(τ ∪ {z}) ∪ {x} = (σ ∪ {z}) ∪ {x, y} ∈ Mp(H), a contradiction.

Case 2. hm−1 = 1 and hm  1. We claim that in this case (σ ∪ {z}) ∪ {x, y} ⊆
(h1, h2, . . . , hm−2, 0, 0). As in Case 1, x and y are in (h1, h2, . . . , hm−2, 0, 0). Note that since
m  3 and hm−1 = 1, we have hm−2  1. Also, z = dm−1,1 is in (h1, h2, . . . , hm−2, 0, 0),
since 1 > 0. Again, consider the significant edges di,j in σ. We know these di,j are in
(h1, h2, . . . , hm−1, 1, hm), so for i < m − 2 it is obvious that di,j ∈ (h1, h2, . . . , hm−2, 0, 0).
For i = m − 2, the condition from Proposition 10 reduces to j > hm−2, so dm−2,j ∈
(h1, h2, . . . , hm−2, 0, 0) again. Finally, for i = m − 1, Proposition 10 implies j > 1 > 0,
and di,j ∈ (h1, h2, . . . , hm−2, 0, 0).

Again we have shown that (τ∪{z})∪{x} = (σ∪{z})∪{x, y} ∈ Mp(H), a contradiction.
We conclude that τ ∪ {x} = σ ∪ {x, y} ∕∈ Mp(H). So τ ∈ N .
Thus, all elements unpaired after M(x) ∪ M(y) are paired as (τ, τ ∪ {z}). That is,

the three element pairings, M(x), M(y), and M(z) pair all faces of Mp(H1×m×n), so
Mp(H1×m×n) (m,n  3) is contractible.

4 The 2 × 2 × 2 honeycomb graph

We conclude this article by calculating the homotopy type of the perfect matching complex
for the 2× 2× 2 honeycomb graph. Recall that each perfect matching on the honeycomb
graph is in bijection with a plane partition. For the 2 × 2 × 2 honeycomb graph that
means we are considering plane partitions of shape (2, 2). We will denote these plane

partitions by
a b
c d

where 0  a, b, c, d  2 and a  b, c  d. For an example of the

plane partition represented by
2 2
1 1

, see Figure 7. See Appendix A for drawings of all

the perfect matchings of H2×2×2 and the corresponding plane partitions.
Let σ ∈ Mp(H) be a face in the perfect matching complex of the 2×2×2 honeycomb

graph H. We use the notation σ ∈ a b
c d

to denote a subset of the perfect matching

corresponding with
a b
c d

. If an entry in the plane partition can be 0, 1, or 2, in accor-

dance with the restrictions, we will denote it with ∗. For example,
2 2
∗ 1

represents the

plane partitions
2 2
1 1

and
2 2
2 1

.
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Figure 7: Matching for plane partition

Remark 16. In the proof that follows we will use a sequence of element pairings to obtain
the homotopy type. Notice that if we perform a sequence of element pairings in which
an element ε has been paired on, we can categorize the remaining faces as those that
contain ε and those that do not. When we continue pairing with an element that has not
previously been paired on, say λ, we can only pair faces of the same type. That is to say
θ and θ ∪ λ would be paired together only if ε was in θ and θ ∪ λ, or ε was not in θ and
θ ∪ λ.

Theorem 17. Let H be the honeycomb graph of dimension 2× 2× 2. Then,

Mp(H) ≃ S3 ∨ S3.

Proof. We will proceed by defining a discrete Morse matching on Mp(H) given by pairing
on α, then β, then γ, and finally δ according to the labels in Figure 8.

α

β

δ

γ

b1,3

b1,2

c1,1

c1,0

c0,0

b0,2

c2,3

c2,2

b2,2

b2,1

b3,2

c3,3

a1,1 a3,2

Figure 8: Figure for the proof of Theorem 17.

For faces σ ∈ Mp(H), we make the following observations:

the electronic journal of combinatorics 30(2) (2023), #P2.45 13



(1) σ ∪ {α} is a face if and only if σ ∈ 2 ∗
∗ ∗ ,

(2) σ ∪ {β} is a face if and only if σ ∈ 2 2
2 2

or σ ∈ 1 ∗
∗ ∗ ,

(3) σ ∪ {γ} is a face if and only if σ ∈ 0 0
0 0

or σ ∈ ∗ ∗
∗ 1

, and

(4) σ ∪ {δ} is a face if and only if σ ∈ ∗ ∗
∗ 0

.

We begin by an element pairing on α and then β. There are two types of unpaired
simplices that remain. The first type (t1) consists of faces σ ∈ Mp(H) such that α, β ∕∈ σ,
and σ cannot be paired with σ ∪ α or σ ∪ β, because simplices σ ∪ α and σ ∪ β do not

exist in Mp(H). Therefore, by observations (1) and (2) σ ∕∈ 2 ∗
∗ ∗ , σ ∕∈ 2 2

2 2
, and

σ ∕∈ 1 ∗
∗ ∗ . It follows that σ is only in

0 0
0 0

and α, β ∕∈ σ.

The second type (t2) consists of faces σ ∪ β ∈ Mp(H), which remain because σ has
been previously paired with σ ∪ α, and σ ∪ β ∪ α ∕∈ Mp(H). There exists a face σ ∪ α, so

σ ∈ 2 ∗
∗ ∗ . Similarly, σ ∪ β is a face, so σ ∈ 1 ∗

∗ ∗ or σ ∈ 2 2
2 2

. But σ ∪ β ∪ α is not

a face, so σ is not in
2 2
2 2

. Therefore, (t2) is the set of faces σ ∪ β such that α, β ∕∈ σ,

σ ∈ 2 ∗
∗ ∗ and σ ∈ 1 ∗

∗ ∗ , and σ ∕∈ 2 2
2 2

.

By Remark 16, we know that in the remaining element pairings if two faces are paired
they have to be of the same type. We perform our next pairing with γ and analyze what
faces remain unpaired. For each of the above types we will consider faces that contain γ
and those that do not.

Let θ ∈ Mp(H).
Case 1: Suppose θ is of type (t1) and γ ∕∈ θ. Since θ is type (t1), θ is only in

0 0
0 0

but, it is also the case that γ ∈ 0 0
0 0

. This means that θ ∪ γ is only in
0 0
0 0

,

so θ and θ ∪ γ are paired and there are no unpaired faces that remain from this case.

Case 2: Suppose θ ∪ γ is of type (t1). Then θ ∪ γ is only in
0 0
0 0

. The only

way this face could be unpaired is if θ is not only in
0 0
0 0

. Hence the faces that remain

are all θ ∪ γ such that α, β, γ ∕∈ θ and θ ∪ γ is only in
0 0
0 0

and either θ ∈ 2 ∗
∗ ∗ or

θ ∈ 1 ∗
∗ ∗ . We call these faces types (t1.1).
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Case 3: Suppose θ is of type (t2) and γ ∕∈ θ. Since θ is of type (t2), θ = σ ∪ β

where α, β ∕∈ σ and σ ∈ 2 ∗
∗ ∗ , and σ ∈ 1 ∗

∗ ∗ , and σ ∕∈ 2 2
2 2

. Since we are supposing

that θ is unpaired, θ ∪ γ = σ ∪ γ ∪ β is not of type (t2). Therefore, σ ∪ γ ∕∈ 2 ∗
∗ ∗ or

σ∪γ ∕∈ 1 ∗
∗ ∗ or σ∪γ ∈ 2 2

2 2
. Notice the last condition is not possible since γ ∕∈ 2 2

2 2

and, since γ is in a face if and only if the face is in
∗ ∗
∗ 1

or in
0 0
0 0

, we can rewrite

the above statement. That is, since θ ∪ γ is not of type (t2), σ ∕∈ 2 ∗
∗ 1

or σ ∕∈ 1 1
1 1

.

Hence the unpaired faces that remain are σ ∪ β where α, β, γ ∕∈ σ, σ ∈ 2 ∗
∗ ∗ and

σ ∈ 1 ∗
∗ ∗ and σ ∕∈ 2 2

2 2
and either σ is not in

2 ∗
∗ 1

or σ is not in
1 1
1 1

. We call

this type (t2.1).
Case 4: Suppose θ ∪ γ is of type (t2). Then, θ ∪ γ = σ ∪ β ∪ γ and, as argued

in Case 3, σ ∈ 2 ∗
∗ 1

and σ ∈ 1 1
1 1

. Since we are assuming that θ ∪ γ = σ ∪ γ ∪ β is

unpaired this must be because θ = σ∪β is not of type (t2). This implies that θ ∕∈ 2 ∗
∗ ∗ ,

which cannot be the case because σ ∪ γ ∈ 2 ∗
∗ 1

, or σ ∕∈ 1 ∗
∗ ∗ , which cannot be the

case because σ ∪ γ ∈ 1 1
1 1

, or σ ∈ 2 2
2 2

. It follows that, for this case, all unpaired

faces are σ∪β ∪ γ such that α, β, γ ∕∈ σ and σ ∈ 2 ∗
∗ 1

and σ ∈ 1 1
1 1

and σ ∈ 2 2
2 2

.

We call this type (t2.2).
We are now ready to pair using δ. Consider first the faces of type (t2.2).
Case 4.1: Suppose θ is of type (t2.2) and δ ∈ θ. Then δ ∈ σ. This case cannot

occur because in type (t2.2) σ ∈ 1 1
1 1

and δ ∕∈ 1 1
1 1

.

Case 4.2: Suppose θ is of type (t2.2) and δ ∕∈ θ. That is, θ = σ∪β∪γ such that

α, β, γ, δ ∕∈ σ and σ ∈ 2 ∗
∗ 1

and σ ∈ 1 1
1 1

and σ ∈ 2 2
2 2

. For the faces left unpaired,

it must be the case that σ ∪ δ ∪ β ∪ γ is not of type (t2.2). That is, σ ∪ δ ∕∈ 2 ∗
∗ 1

or

σ∪ δ ∕∈ 1 1
1 1

or σ∪ δ ∕∈ 2 2
2 2

, which is true since δ ∕∈ 1 1
1 1

. Therefore, the unpaired

cells are σ∪β∪γ such that α, β, γ, δ ∕∈ σ and σ ∈ 2 ∗
∗ 1

and σ ∈ 1 1
1 1

and σ ∈ 2 2
2 2

.
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When we consider the intersection
2 ∗
∗ 1

 1 1
1 1

 2 2
2 2

we have c0,0, c1,0, b2,1, and

b3,2. See Figure 9. These four edges are in the intersection
2 2
2 1

 1 1
1 1

 2 2
2 2

.

One can verify that these are the only edges in the intersection
2 ∗
∗ 1

 1 1
1 1

 2 2
2 2

.

α

β

δ

γ

b1,3

b1,2

c1,1

c1,0

c0,0

b0,2

c2,3

c2,2

b2,2

b2,1

b3,2

c3,3

a1,1 a3,2

Figure 9: The highlighted edges used in Case 4.2.

Therefore, σ ∈ P(c0,0, c1,0, b2,1, b3,2), the power set of {c0,0, c1,0, b2,1, b3,2}. So the faces
θ in Case 4.2 form an interval in the face poset of Mp(H) isomorphic to the Boolean
lattice, and so can be paired using an element pairing with, say, c1,0.

We proceed with the analysis of element pairing using δ for unpaired faces of type
(t1.1) from Case 2.

Case 2.1: Suppose θ is of type (t1.1) and δ ∕∈ θ. That is, θ = σ ∪ γ such that

α, β, γ, δ ∕∈ σ, σ ∪ γ is only in
0 0
0 0

and σ ∈ 2 ∗
∗ ∗ or σ ∈ 1 ∗

∗ ∗ . For the faces left

unpaired, it must be that σ ∪ δ ∪ γ is not of type (t1.1). Therefore, it is either the case

that σ∪ δ∪ γ is not only in
0 0
0 0

or that σ∪ δ ∕∈ 2 ∗
∗ ∗ and σ∪ δ ∕∈ 1 ∗

∗ ∗ , but notice

if σ∪ δ∪γ is not only in
0 0
0 0

then σ∪γ is not only in
0 0
0 0

, which is a contradiction

to θ being type (t1.1). Thus, it must be the case that σ ∪ δ ∕∈ 2 ∗
∗ ∗ and σ ∪ δ ∕∈ 1 ∗

∗ ∗

and, in particular, σ ∕∈ 2 ∗
∗ 0

and σ ∕∈ 1 ∗
∗ 0

. It follows that the faces left unpaired are

those such that σ ∪ γ is only in
0 0
0 0

and (σ ∈ 2 2
2 2

or σ ∈ 2 ∗
∗ 1

or σ ∈ 1 1
1 1

).

Notice it cannot be the case that σ ∈ 2 ∗
∗ 1

or σ ∈ 1 1
1 1

because σ ∪ γ is only in

0 0
0 0

. So we are left with σ ∪ γ only in
0 0
0 0

and σ ∈ 2 2
2 2

, but this implies that
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σ is an empty face, because
0 0
0 0

∩ 2 2
2 2

= {∅}. Therefore, σ ∪ γ = γ, and this is a

contradiction because γ is not only in
0 0
0 0

. Hence, there are no unpaired faces for this

case.
Case 2.2: Suppose θ is of type (t1.1) and δ ∈ θ. That is, θ = σ ∪ δ ∪ γ where

α, β, γ, δ ∕∈ σ, σ ∪ δ ∪ γ is only in
0 0
0 0

and σ ∪ δ ∈ 2 ∗
∗ ∗ or σ ∪ δ ∈ 1 ∗

∗ ∗ . For the

faces left unpaired, it must be that σ ∪ γ is not of type (t1.1). Therefore, it is either the

case that σ ∪ γ is not only in
0 0
0 0

or σ ∕∈ 2 ∗
∗ ∗ and σ ∕∈ 1 ∗

∗ ∗ , but σ ∪ δ is already

in
2 ∗
∗ ∗ or

1 ∗
∗ ∗ . Therefore, it must be that σ ∪ γ is not only in

0 0
0 0

. Hence all

unpaired faces of this type are such that σ ∈ 0 0
0 0

and (σ ∈ 2 ∗
∗ 0

or σ ∈ 1 ∗
∗ 0

)

and (σ ∈ 2 ∗
∗ 1

or σ ∈ 1 1
1 1

).

These matchings σ are subsets of the highlighted edges in Figure 10. It can be checked
that no other edges are in a matching σ of this type. The edges b0,2, b1,3, c2,3, and c3,3 are

all in
0 0
0 0

 1 1
1 0

 1 1
1 1

. So the unpaired faces σ ∪ δ ∪ γ include those for which

σ ∈ P (b0,2, b1,3, c2,3, c3,3). The edges b1,2 and c2,2 are both in
0 0
0 0

 2 2
2 0

 2 2
2 1

.

The edges b1,2 and c3,3 are both in
0 0
0 0

 2 0
2 0

 2 1
2 1

. The edges b0,2 and c2,2 are

both in
0 0
0 0

 2 2
0 0

 2 2
1 1

. So the unpaired faces σ∪δ∪γ include those for which

σ ∈ {{b1,2}, {c2,2}, {b1,2, c2,2}, {b1,2, c3,3}, {b0,2, c2,2}}. It is straightforward to check that
these describe all the unpaired faces. Thus, the unpaired faces in this case are σ ∪ δ ∪ γ
where σ ∈ P (b0,2, b1,3, c3,3, c2,3) ∪ {{b1,2}, {c2,2}, {b1,2, c2,2}, {b1,2, c3,3}, {b0,2, c2,2}}.

Finally, we discuss Case 3 with element pairing using δ.
Case 3.1: Suppose θ is of type (t2.1) and δ ∕∈ θ. That is, θ = σ ∪ β where

α, β, γ, δ ∕∈ σ, σ ∈ 2 ∗
∗ ∗ , σ ∈ 1 ∗

∗ ∗ , σ ∕∈ 2 2
2 2

, and (σ ∕∈ 2 ∗
∗ 1

or σ ∕∈ 1 1
1 1

). If

θ ∪ δ = σ ∪ δ ∪ β is also of type (t2.1), then θ and θ ∪ δ are paired using δ. So assume

σ ∪ δ ∪ β is not of type (t2.1). Then σ ∪ δ ∕∈ 2 ∗
∗ ∗ or σ ∪ δ ∕∈ 1 ∗

∗ ∗ or σ ∪ δ ∈ 2 2
2 2

or (σ ∪ δ ∈ 2 ∗
∗ 1

and σ ∪ δ ∈ 1 1
1 1

). Note that by observation (4) σ ∪ δ cannot be

in
2 2
2 2

or
1 1
1 1

. Therefore, we see that all unpaired faces are such that σ ∈ 2 ∗
∗ ∗ ,

and σ ∈ 1 ∗
∗ ∗ and σ ∕∈ 2 2

2 2
, and (σ ∕∈ 2 ∗

∗ 1
or σ ∕∈ 1 1

1 1
) and (σ ∕∈ 2 ∗

∗ 0
or
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α

β

δ

γ

b1,3

b1,2

c1,1

c1,0

c0,0

b0,2

c2,3

c2,2

b2,2

b2,1

b3,2

c3,3

a1,1 a3,2

Figure 10: The highlighted edges used in Case 2.2

σ ∕∈ 1 ∗
∗ 0

). Although there are four possible subcases to consider, we see that it is not

possible for σ ∈ 2 ∗
∗ ∗ , σ ∕∈ 2 2

2 2
, σ ∕∈ 2 ∗

∗ 1
, and σ ∕∈ 2 ∗

∗ 0
, which rules out one

subcase. Similarly, it is not possible for σ ∈ 1 ∗
∗ ∗ , σ ∕∈ 1 1

1 1
, and σ ∕∈ 1 ∗

∗ 0
. So we

are left with two possible subcases, both of which lead to no unpaired faces.

Subcase 1: Suppose that σ ∈ 2 ∗
∗ ∗ , σ ∈ 1 ∗

∗ ∗ σ ∕∈ 2 2
2 2

, σ ∕∈ 2 ∗
∗ 1

, and

σ ∕∈ 1 ∗
∗ 0

. Then, it follows that σ ∈ 2 ∗
∗ 0

and σ ∈ 1 1
1 1

. We now notice that

the intersection of the perfect matchings of
1 1
1 1

and
2 ∗
∗ 0

is contained in a perfect

matching of
2 ∗
∗ 1

, but by assumption σ ∕∈ 2 ∗
∗ 1

so there are no unpaired faces.

Subcase 2: Suppose now that σ ∈ 2 ∗
∗ ∗ , σ ∈ 1 ∗

∗ ∗ , σ ∕∈ 2 2
2 2

, σ ∕∈ 1 1
1 1

, and

σ ∕∈ 2 ∗
∗ 0

. Then it follows that σ ∈ 2 ∗
∗ 1

and σ ∈ 1 ∗
∗ 0.

The intersection of the

perfect matchings of
2 ∗
∗ 1

and
1 ∗
∗ 0

is contained in the perfect matching
1 1
1 1

.

Since this is a contradiction to the assumption that σ ∕∈ 1 1
1 1

, there are no unpaired

faces left from this case.
Case 3.2: Suppose θ is of type (t2.1) and that δ ∈ θ. That is, θ = σ∪δ∪β where

α, β, γ, δ ∕∈ σ and σ ∪ δ ∈ 2 ∗
∗ ∗ , σ ∪ δ ∈ 1 ∗

∗ ∗ , σ ∪ δ ∕∈ 2 2
2 2

, and (σ ∪ δ ∕∈ 2 ∗
∗ 1

or σ ∪ δ ∕∈ 1 1
1 1

). If θ \ δ = σ ∪ β is also of type (t2.1), then θ and θ \ δ are paired

the electronic journal of combinatorics 30(2) (2023), #P2.45 18



using δ. So assume σ ∪ β is not of type (t2.1). Therefore, σ ∕∈ 2 ∗
∗ ∗ , or σ ∕∈ 1 ∗

∗ ∗ ,

or σ ∈ 2 2
2 2

, or (σ ∈ 2 ∗
∗ 1

and σ ∈ 1 1
1 1

). Notice that it is not possible for

σ ∕∈ 2 ∗
∗ ∗ since σ ∪ δ ∈ 2 ∗

∗ ∗ and, similarly, it is not possible for σ ∕∈ 1 ∗
∗ ∗ since

σ∪ δ ∈ 1 ∗
∗ ∗ . Hence, the faces left unpaired are such that σ ∈ 2 ∗

∗ 0
, and σ ∈ 1 ∗

∗ 0
,

and (σ ∈ 2 2
2 2

or (σ ∈ 2 ∗
∗ 1

and σ ∈ 1 1
1 1

)). There are two subcases to consider:

Subcase 1: Suppose first that σ ∈ 2 2
2 2

. Then, σ is in the intersection between

the perfect matchings of
2 ∗
∗ 0

,
1 ∗
∗ 0

, and
2 2
2 2

. Therefore the unpaired faces are

σ ∪ β ∪ δ where
σ ∈ {∅, {c0,0}, {c1,1}, {b3,2}, {b2,2}, {c0,0, b3,2}, {c0,0, b2,2}, {c1,1, b3,2}, {c1,1, b2,2}}.

Subcase 2: Suppose now that σ ∈ 2 ∗
∗ 1

and σ ∈ 1 1
1 1

. The intersection of
2 ∗
∗ 0

,

1 ∗
∗ 0

,
2 ∗
∗ 1

, and
1 1
1 1

is P(b0,2, a1,1, c0,0, c3,3, a3,2, b3,2).

Therefore, the unpaired faces obtained from Case 3.2 are those of the form σ ∪ β ∪ δ
where σ ∈ P(b0,2, a1,1, c0,0, c3,3, a3,2, b3,2)∪{{c1,1}, {b2,2}, {c0,0, b2,2}, {c1,1, b3,2}, {c1,1, b2,2}}.

We are now left with three types of unpaired faces:

(1) σ ∪ β ∪ γ where σ ∈ P(c0,0, b3,2, c1,0, b2,1) (Case 4.2)

(2) σ ∪ γ ∪ δ where
σ ∈ P(b0,2, b1,3, c3,3, c2,3)∪{{b1,2}, {c2,2}, {b1,2, c2,2}, {b1,2, c3,3}, {b0,2, c2,2}} (Case 2.2)

(3) σ ∪ β ∪ δ where
σ ∈ P(b0,2, a1,1, c0,0, c3,3, a3,2, b3,2) ∪ {{c1,1}, {b2,2}, {c0,0, b2,2}, {c1,1, b3,2}, {c1,1, b2,2}}.
(Case 3.2)

Pairing with c1,0 matches all faces in (1). Then, pairing with b0,2 leaves the faces:

(2) σ ∪ γ ∪ δ where σ ∈ {{b1,2}, {b1,2, c2,2}, {b1,2, c3,3}}

(3) σ ∪ β ∪ δ where σ ∈ {{c1,1}, {b2,2}, {c0,0, b2,2}, {c1,1, b3,2}, {c1,1, b2,2}}.

Finally we perform a small series of element pairings. The element pairing using c3,3
pairs {b1,2} with {b1,2, c3,3}, an element pairing using c0,0 pairs {b2,2} with {c0,0, b2,2}, and
an element pairing using b3,2 pairs c1,1 with {c1,1, b3,2}. This leaves us with two critical
cells {b1,2, c2,2} ∪ δ ∪ γ and {c1,1, b2,2} ∪ β ∪ δ and the homotopy type S3 ∨ S3.
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5 Conclusion and further directions

Throughout this paper, our main guiding question has been, are the perfect matching
complexes of honeycomb graphs all contractible or homotopy equivalent to a wedge of
spheres? We have considered the homotopy type of the perfect matching complexes of
honeycomb graphs Hℓ×m×n. When ℓ = 1, we were able to compute all homotopy types,
but for ℓ  2, the only homotopy type we were able to compute is for H2×2×2. It appears,
at this time, that for larger honeycomb graphs, we need a new strategy.

Our motivation for this project has been to better understand (ordinary) matching
complexes of honeycomb graphs, M(Hk×m×n). Since not every maximal matching of a
honeycomb graph is contained in a perfect matching, the matching complex is not a pure
complex, that is, not all maximal faces of the matching complex are the same dimension.
The perfect matching complex is a pure complex, and thus less complicated than the
matching complex. For example, Matsushita ([21]) showed that the matching complex
of the honeycomb graphs H1,1,n has the homotopy type of a wedge of spheres, as part
of a more general result on polygonal line tilings. This contrasts with our result on
these graphs: if you consider only the subcomplex of perfect matchings, the complex is
contractible (for n  2).

We are interested more generally in the relationship between the (ordinary) matching
complex and the perfect matching complex. Our curiosity in (ordinary) matching com-
plexes has not diminished. Are the matching complexes of honeycomb graphs contractible
or homotopy equivalent to wedges of spheres? What can we say about the (ordinary or
perfect) matching complexes of more general classes of graphs, such as bipartite graphs?
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A Perfect matchings of H2×2×2

2 2
2 2

2 2
2 1

2 2
2 0

2 2
1 1

2 2
1 0

2 2
0 0

2 1
2 1

2 1
2 0

2 1
1 1

2 1
1 0

2 1
0 0

2 0
2 0

2 0
1 0

2 0
0 0

1 1
1 1

1 1
1 0
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1 1
0 0

1 0
1 0

1 0
0 0

0 0
0 0
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