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Abstract

Given r 󰃍 2 and an r-uniform hypergraph F , the F -bootstrap process starts
with an r-uniform hypergraph H and, in each time step, every hyperedge which
“completes” a copy of F is added to H. The maximum running time of this pro-
cess has been recently studied in the case that r = 2 and F is a complete graph
by Bollobás, Przykucki, Riordan and Sahasrabudhe [Electron. J. Combin. 24(2)
(2017), Paper No. 2.16], Matzke [arXiv:1510.06156v2] and Balogh, Kronenberg,
Pokrovskiy and Szabó [arXiv:1907.04559v1]. We consider the case that r 󰃍 3 and
F is the complete r-uniform hypergraph on k vertices. Our main results are that
the maximum running time is Θ (nr) if k 󰃍 r + 2 and Ω

󰀃
nr−1

󰀄
if k = r + 1. For

the case k = r + 1, we conjecture that our lower bound is optimal up to a constant
factor when r = 3, but suspect that it can be improved by more than a constant
factor for large r.
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1 Introduction

Bootstrap percolation is a model of propagation phenomena in discrete structures which
originated in the statistical physics literature to study the dynamics of ferromagnetism [20,
1, 2, 53]. It has since inspired the introduction of many related models that have been the
subject of intense research in sociology [26, 54], computer science [24, 22] and, especially,
mathematics [17, 9, 30, 14, 13, 49, 31, 5, 44, 45, 10, 18, 6, 43, 27, 34, 28, 7, 52, 35, 8, 19,
33, 39, 21, 29].

Our focus in this paper is on hypergraph bootstrap percolation which generalizes the
notion of graph bootstrap percolation introduced by Bollobás [16] in 1968, originally under
the name “weak saturation.” For a set S and r 󰃍 0, let S(r) denote the collection of all
subsets of S of cardinality r. Given an r-uniform hypergraph F , the F -bootstrap process
starts with an r-uniform hypergraph H0. Then, at each time step t 󰃍 1, the hypergraph
Ht consists of all hyperedges of Ht−1 as well as each e ∈ V (H0)

(r) for which there exists
a copy F ′ of F containing e such that E (F ′) ⊆ E (Ht−1) ∪ {e} (that is, e “completes” a
copy of F when added to Ht−1). The hypergraph H0 is referred to as the initial infection
and, for t 󰃍 0, the hyperedges of Ht are said to be infected at time t.

The most well studied problem related to the F -bootstrap process is to determine
the minimum number of hyperedges in an initial infection H0 on n vertices such that
every element of V (H0)

(r) is eventually infected. When F is the complete r-uniform
hypergraph on k vertices, which we denote by Kr

k , this is equivalent to the famous Skew
Two Families Theorem proved by Frankl [25] using a beautiful exterior algebraic approach
of Lovász [41]; see also [37, 4]. Alon [3] proved a multipartite version of the Skew Two
Families Theorem, which was extended further by Moshkovitz and Shapira [46]; the results
of both of these papers can be thought of in terms of hypergraph bootstrap percolation
in a multipartite “host” hypergraph. Pikhurko [47, 48] solved the problem for several
classes of non-complete hypergraphs F using the exterior algebraic method of [41, 25] and
a related matroid-theoretic approach of Kalai [37]. For results on graphs, i.e. the case
r = 2, see [16, 40, 15, 45, 36, 37].

Another major focus in bootstrap percolation has been on analyzing the maximum
number of time steps that a given bootstrap percolation model can take before it sta-
bilizes [17, 42, 14, 13, 49, 31, 5]. In the context of the F -bootstrap process with initial
infection H0, the running time is

MF (H0) := min {t : Ht = Ht+1}

and the maximum running time among all hypergraphs H0 with n vertices is denoted
by MF (n). If F = Kr

k for some k, then we write MF (H0) and MF (n) as M r
k (H0) and

M r
k (n), respectively. We omit the superscript in the case r = 2.
Our goal is to bound M r

k (n) for fixed r and k asymptotically as a function of n.
This problem was first studied in the case r = 2 independently by Bollobás, Przykucki,
Riordan and Sahasrabudhe [17] and Matzke [42]. Clearly, M r

k (n) 󰃑
󰀃
n
r

󰀄
for all n, r and

k as at least one hyperedge must become infected in each step. It is an easy exercise
to show that the maximum running time for the K3-bootstrap process, i.e. M3 (n), is
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precisely ⌈log2 (n− 1)⌉. Interestingly, for k = 4, the maximum running time jumps from
logarithmic to linear.

Theorem 1 (Bollobás et al. [17], Matzke [42]). M4 (n) = n− 3 for all n 󰃍 3.

Bollobás et al. [17] conjectured that Mk (n) = o (n2) for all k 󰃍 5. This was disproved
for all k 󰃍 6 by Balogh, Kronenberg, Pokrovskiy and Szabó [11]. Since the inequality
Mk+1 (n+ 1) 󰃍 Mk (n) can be shown by simply taking a construction on n vertices, adding
a vertex and infecting every edge incident to it (see [11, Proposition 10] or Lemma 8 in
this paper), the critical case is k = 6.

Theorem 2 (Balogh et al. [11]). M6 (n) 󰃍 n2

2500
for all n sufficiently large.

The growth rate of the maximum running time for the K5-bootstrap process is still
unknown. In fact, it is an interesting open problem to determine whether or not it is
quadratic [17, 11]. To date, the best known lower bound is given by Balogh et al. [11]
by exploiting connections to additive combinatorics; their result improved on a bound
of n13/8−o(1) due to [17]. Let r3 (n) be the largest cardinality of a subset of [n] without
a 3-term arithmetic progression. While the asymptotics of r3 (n) are not known pre-
cisely, Roth’s Theorem [50] implies that r3 (n) = o (n) (see [51, 38] for recent quantitative

bounds) and the Behrend Construction [12] yields r3 (n) 󰃍 n
1−O

󰀓
1/
√

log(n)
󰀔

.

Theorem 3 (Balogh et al. [11]). M5 (n) 󰃍 nr3(n)
1200

.

Here, we initiate the study of M r
k (n) for r 󰃍 3. Our main contributions are construc-

tions of initially infected hypergraphs yielding lower bounds. Our first result concerns
the case that k = r + 1. It would be interesting to know whether this bound is tight
up to a constant factor, especially in the case r = 3 and k = 4; see Conjecture 25 and
Question 26.

Theorem 4. Let r 󰃍 3. If k = r + 1, then M r
k (n) = Ω (nr−1).

In contrast, for k 󰃍 r + 2, we show that the trivial upper bound
󰀃
n
r

󰀄
is tight up to a

constant factor.

Theorem 5. Let r 󰃍 3. If k 󰃍 r + 2, then M r
k (n) = Θ (nr).

The rest of the paper is organized as follows. In the next section, we build up some
basic notation and terminology and establish a few preliminary lemmas. In particular,
these lemmas will be used to reduce Theorems 4 and 5 to finding constructions with
some additional properties for r = 3 and k ∈ {4, 5}. In Section 3, we introduce a key
construction, which we call the “beachball hypergraph”. This hypergraph has running
time that is only linear with respect to its number of vertices, but plays a key role in the
proofs of both of our main theorems. In the same section, we show how linearly many
beachball hypergraphs can be “chained together” to prove Theorem 4. In Section 4, we
use the beachball construction in a different way to prove Theorem 5. We conclude the
paper in Section 5 with two open problems.
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2 Preliminaries

Given r-uniform hypergraphs F and H, say that a copy F ′ of F is susceptible to H if
there exists a hyperedge e /∈ E (H) and e ∈ E (F ′) such that E (F ′) ⊆ E (H) ∪ {e}. Say
that H is F -stable if there are no copies of F that are susceptible to H. We make the
following simple observation.

Observation 6. Let H0 be an initial infection for the F -bootstrap process. Then, for
t 󰃍 1, E (Ht) is the union of E (Ht−1) and the hyperedge sets of all copies of F which are
susceptible to Ht−1.

The following very straightforward definition and the lemma that follows it allow us
to use a lower bound on M r

k (n) to get a lower bound on M r
k+1 (n) which is only slightly

worse; c.f. [11, Proposition 10].

Definition 7. Given an r-uniform hypergraph H and w /∈ V (H), let H ∨ w be the
hypergraph with vertex set V (H) ∪ {w} and hyperedge set

E (H) ∪
󰁱
e ∪ {w} : e ∈ V (H)(r−1)

󰁲
.

Lemma 8. Let H0 be an initial infection for the Kr
k-bootstrap process and, for w /∈ V (H0),

let H ′
0 = H0 ∨w be an initial infection for the Kr

k+1-bootstrap process. Then H ′
t = Ht ∨w

for all t 󰃍 0.

Proof. Suppose not and let t be the minimum time that the equality is violated. Since
H ′

0 = H0 ∨w by definition, we must have t 󰃍 1. Observe that no hyperedge containing w
becomes infected in any step t 󰃍 1 since all such hyperedges are already in H0.

First, suppose that there is e ∈ E (Ht ∨ w) such that e /∈ E (H ′
t). As noted above, we

may assume that e ∈ E (Ht) since w /∈ e. Let F be the corresponding copy of Kr
k that

is susceptible to Ht−1. Then, by minimality of t, all hyperedges of F ∨ w except for e
are present in H ′

t−1. Thus, e ∈ E (H ′
t), which is a contradiction. The proof of the other

direction is similar.

The analysis of the running time ofH0 tends to become unwieldy if there are time steps
t in which there is more than one copy of F that is susceptible to Ht. For this reason, the
constructions in this paper will be designed with a specific goal of avoiding this situation;
a similar approach is taken for graphs in [11, 17]. This motivates the following definitions.

Definition 9. Let H0 be an initial infection for the F -bootstrap process. Say that H0 is
F -tame if there is at most one copy of F which is susceptible to Ht for all t 󰃍 0.

Definition 10. Let H0 be F -tame. The trajectory of H0 is the sequence

(F0, e1, F1, . . . , eT−1, FT−1, eT )

where T = MF (H0) and, for all 0 󰃑 t 󰃑 T − 1, Ft is the unique copy of F that is
susceptible to Ht and et+1 is the unique hyperedge of E (Ft) \ E (Ht).
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The following proposition is an easy consequence of Lemma 8; we omit the proof.

Proposition 11. If H0 is Kr
k-tame with trajectory (F0, e1, F1, . . . , FT−1, eT ), then H0 ∨w

is Kr
k+1-tame with trajectory (F0 ∨ w, e1, F1 ∨ w, . . . , FT−1 ∨ w, eT ).

In our constructions, it will be especially useful to restrict our attention to F -tame
hypergraphs with limited interaction between the elements of their trajectories.

Definition 12. Let (F0, e1, . . . , FT−1, eT ) be the trajectory of an F -tame hypergraph H0

and let e0 ∈ E (F0). We say that H0 is F -civilized with respect to e0 if the following two
conditions hold:

(a) E (Fj) ∩ {e0, e1, . . . , eT} = {ej, ej+1} for any 0 󰃑 j 󰃑 T − 1 and

(b) H0 \ {e0} is F -stable.

In other words, an F -tame hypergraph H0 is F -civilized with respect to e0 if every
copy of F in its trajectory has exactly two hyperedges missing from H0\{e0} and H0\{e0}
is F -stable. A useful property of an F -civilized hypergraph is that its trajectory can be
reversed by swapping e0 and eT .

Lemma 13. Let H0 be a hypergraph which is F -civilized with respect to e0 with trajectory
(F0, e1, . . . , FT−1, eT ) and let H ′

0 = H0 \ {e0} ∪ {eT}. Then H ′
0 is F -civilized with respect

to eT with trajectory (FT−1, eT−1, . . . , F0, e0).

Proof. To show that H ′
0 is F -civilized with respect to eT , it suffices to show that it is

F -tame with the correct trajectory since the additional conditions of Definition 12 will
follow from the fact that H0 is F -civilized with respect to e0.

For 0 󰃑 t < T , let F ′ be a copy of F which is susceptible to H ′
t and let e′ be the unique

hyperedge of F ′ that is not in H ′
t. We claim that F ′ = FT−t−1 and e′ = eT−t−1. For the

sake of contradiction, suppose that at least one of these equalities does not hold and let t
be the minimum time for which such an F ′ and e′ exist. By minimality of t, we have that

H ′
t = H ′

0 ∪ {eT−t, . . . , eT−1} .

In particular, H ′
t is a subhypergraph of HT . Now, observe that e′ must be contained in

HT ; if not, then F ′ would be susceptible to HT which contradicts the assumption that
(F0, e1, . . . , FT−1, eT ) is the trajectory of H0. Next, we claim that F ′ is not a subhyper-
graph of H0. If it were, then, since e

′ is not contained in H ′
t, we must have that e′ = e0 and

all other hyperedges of F ′ are contained in H0. However, this would contradict condition
12 of Definition 12. Therefore, F ′ is not a subhypergraph of H0.

So, H0 does not contain every hyperedge of F ′ butHT does. Thus, we can let 0 󰃑 j < T
be the maximum index such that there is a hyperedge of F ′ that is not contained in Hj.
So, F ′ is susceptible to Hj, which, by the assumption of the lemma, implies that F ′ = Fj.
Since H0 is F -civilized with respect to e0, the only hyperedges of Fj missing from H0\{e0}
are ej and ej+1. Since Fj is susceptible to H ′

t = H ′
0 ∪ {eT−t, . . . , eT−1} and also to Hj, but
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not to H ′
t−1, the only possibility is that eT−t = ej+1 and e′ = ej. So, j + 1 = T − t which

implies that F ′ = Fj = FT−t−1 and ej = eT−t−1, as we wanted.
Thus, FT−t−1 is the only copy of F that can be susceptible to H ′

t. The last thing to
show is that FT−t−1 is, indeed, susceptible to H ′

t. To see this, note that H0 is F -civilized
with respect to e0, and so eT−t−1 is the unique hyperedge of FT−t−1 that is not in H ′

t.
Thus, H ′

0 is F -tame with the desired trajectory and the proof is complete.

Next, we define a natural “step up” construction for converting constructions for
the Kr

k-bootstrap process into constructions for the Kr+1
k+1-bootstrap process. Later, in

Lemma 16, we will see how Lemma 13 can be applied to “chain together” these step up
constructions to transform a Kr

k-civilized hypergraph into a Kr+1
k+1-civilized hypergraph

with a linear number of extra vertices in such a way that the running time is boosted by
a linear factor.

Definition 14. Let r 󰃍 2, let H be an r-uniform hypergraph and let w /∈ V (H). Define
H+w to be the (r + 1)-uniform hypergraph with vertex set V (H) ∪ {w} and hyperedges

V (H)(r+1) ∪ {e ∪ {w} : e ∈ E (H)} .

Next, we show that H+w
0 behaves in essentially the same way with respect to the

Kr+1
k+1-bootstrap process as H0 does with respect to the Kr

k-bootstrap process.

Lemma 15. For k 󰃍 r 󰃍 2, let H0 be an initial infection for the Kr
k-bootstrap process,

let w /∈ V (H0), and let H ′
0 = H+w

0 be the initial infection for the Kr+1
k+1-bootstrap process.

Then H ′
t = (Ht)

+w for all t 󰃍 0.

Proof. Suppose that the lemma is false and let t be the smallest index such that H ′
t ∕=

(Ht)
+w. By definition, we have H ′

0 = H+w
0 and so t 󰃍 1.

First, suppose that there is a hyperedge which is contained in (Ht)
+w but not in H ′

t.

Since both of these hypergraphs contain all of V (H0)
(r+1), this hyperedge must have the

form e ∪ {w} where e ∈ E (Ht). By minimality of t, we must have e /∈ E (Ht−1) and so
there must be a copy F of Kr

k containing e which is susceptible to Ht−1. As F is a copy
of Kr

k containing e, this means that F+w must be a copy of Kr+1
k+1 containing e ∪ {w}.

However, by minimality of t, we have that H ′
t−1 = (Ht−1)

+w, and hence e ∪ {w} /∈ H ′
t−1.

Since Ht−1 contains every hyperedge of F except e, we conclude that H ′
t−1 must contain

every hyperedge of F+w except for e∪ {w}. Therefore, F+w is susceptible to H ′
t−1 and so

e ∪ {w} is contained in H ′
t, which is a contradiction.

Now, suppose that there is a hyperedge e′ that is contained in H ′
t but not in (Ht)

+w.
As in the previous case, this hyperedge must contain w. By minimality of t, we must have
e′ /∈ E

󰀃
H ′

t−1

󰀄
and so there must be a copy F ′ of Kr+1

k+1 containing e′ which is susceptible

to H ′
t−1. However, by minimality of t, we have H ′

t−1 = (Ht−1)
+w and so Ht−1 contains all

hyperedges of the form e′′ \ {w} for e′′ ∈ E (F ′) \ {e′}. Thus, the copy of Kr
k on vertex set

V (F ) \ {w} is susceptible to Ht−1 which implies that e′ is in (Ht)
+w. This contradiction

completes the proof.
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As alluded to earlier, we now apply Lemmas 13 and 15 to show that step up con-
structions for Kr

k-civilized hypergraphs can be chained together to yield Kr+1
k+1-civilized

hypergraph with very long running time.

Lemma 16. For r 󰃍 3 and k 󰃍 r+1, let H0 be a Kr
k-civilized hypergraph. Then, for any

m 󰃍 1, there exists a Kr+1
k+1-civilized hypergraph H ′

0 with |V (H0) |+m+(m− 1) (k − r − 1)
vertices such that

M r+1
k+1 (H

′
0) = m ·M r

k (H0) +m− 1.

Proof. Let e0 be a hyperedge of H0 such that H0 is Kr
k-civilized with respect to e0 and

let (F0, e1, . . . , FT−1, eT ) be the trajectory of H0. Let us describe the construction of H ′
0.

First, let w1, . . . , wm be distinct vertices which are not in V (H0). For any e ∈ V (H0)
(r)

and 1 󰃑 j 󰃑 m, let e+j = e ∪ {wj}. Let H1
0 be H+w1

0 and, for 2 󰃑 j 󰃑 m, let Hj
0 be

H
+wj

0 \
󰀋
e+j
0

󰀌
. For each 1 󰃑 j 󰃑 m − 1, let Xj :=

󰀋
x1
j , . . . , x

k−r−1
j

󰀌
be a set of vertices

disjoint from the set of vertices introduced so far. For 1 󰃑 j 󰃑 m − 1, let f (j) = T if
j is odd and f (j) = 0 if j is even. For 1 󰃑 j 󰃑 m − 1, let Cj be the (r + 1)-uniform
hypergraph with vertex set {wj, wj+1} ∪Xj ∪ ef(j) containing all hyperedges in this set,

except for e+j
f(j) and e

+(j+1)
f(j) . Finally,

H ′
0 :=

󰀣
m󰁞

j=1

Hj
0

󰀤
∪
󰀣

m−1󰁞

j=1

Cj

󰀤
.

Intuitively, the way to think of this is as follows. For each 1 󰃑 j 󰃑 m, the hypergraph Hj
0

will emulate the Kr
k-bootstrap process with initial infection H0, either in the forward or

backwards (as in Lemma 13) direction, depending on the parity of j. The hypergraph Cj

for 1 󰃑 j 󰃑 m − 1 is used to link the process on Hj
0 to the process Hj+1

0 in such a way
that the termination of the former triggers the start of the latter.

Let us formalize this. First, we show that, if x ∈ Xj for some 1 󰃑 j 󰃑 m − 1, then,
for all t 󰃍 0, every hyperedge e of H ′

t containing x is contained in V (Cj). Suppose that
this is not the case, let t be the minimum time for which it fails and let z be a vertex of e
that is not in V (Cj). Clearly, by construction of H ′

0, we must have t 󰃍 1. By minimality
of t, there must be a copy F of Kr+1

k+1 which is susceptible to H ′
t−1 and contains e. Since

k + 1 > r + 1, we can let u be a vertex of V (F ) \ e. Since r + 1 󰃍 4, we can choose y to
be a vertex of e \ {x, z}. Now, consider the set e′ = e \ {y} ∪ {u}. This is a hyperedge
of F which contains both of x and z. However, all hyperedges of F other than e are in
H ′

t−1, and so e′ is in H ′
t−1 which contradicts the minimality of t.

Next, observe that, for any t 󰃍 0, the hypergraph H ′
t does not contain any hyperedge

which includes wj and wj′ for |j− j′| > 1. Note that H ′
0 has no such hyperedge. Consider

the first time t 󰃍 1 that such a hyperedge appears, and observe that the relevant copy of
Kr+1

k+1 that was allegedly susceptible to H ′
t−1 is missing all other hyperedges containing wj

and wj′ by minimality of t, which is a contradiction.
Now, let us show that, for 1 󰃑 j 󰃑 m − 1, for every t 󰃍 0, every hyperedge e of H ′

t

containing wj and wj+1 is contained in V (Cj). If not, let t be the minimum time that it
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is violated and let z be the offending vertex of e. As usual, t 󰃍 1 by construction of H ′
0.

Take a copy F of Kr+1
k+1 which is susceptible to H ′

t−1 and contains e. Since k + 1 > r + 1,
we can let u be a vertex of V (F ) \ e. Since r + 1 󰃍 4, we can pick y ∈ e \ {wj, wj+1, z}.
Now, consider e′ = e \ {y} ∪ {u}. This is a hyperedge of F other than e which contains
wj, wj+1 and z, which contradicts the minimality of t.

Putting all of this together, we see that the only hyperedges that can become infected
during the Kr+1

k+1-bootstrap process starting with H ′
0 are those which are contained within

V
󰀃
Hj

0

󰀄
for some 1 󰃑 j 󰃑 m or within V (Cj) for some 1 󰃑 j 󰃑 m− 1. The hyperedges of

H ′
0 within V (Cj) form nothing more than a copy of Kr+1

k+1 with two hyperedges removed.
The same is true for the hyperedges within V (Fi) ∪ {wj} for any copy Fi of K

r
k in the

trajectory of H0 and any 1 󰃑 j 󰃑 m with the exception of the case i = 0 and j = 1, in
which case the hyperedges form a copy of Kr+1

k+1 with one hyperedge removed. Therefore,
the trajectory of H ′

0 follows that of H+w1
0 for the first M r

k (H0) steps. At that point,
the hyperedge e+1

T has become infected, which causes C1 to become susceptible. Thus,
e+2
T becomes infected. This triggers the process in H2

0 to start running in the reverse
direction as in Lemma 13, and so on. Putting all of this together, the fact that H0 is
Kr

k-civilized with respect to e0 now implies that H ′
0 is Kr+1

k+1-civilized with respect to e+1
0 .

The running time includes M r
k (H0) steps for every 1 󰃑 j 󰃑 m, plus one extra step for

each 1 󰃑 j 󰃑 m− 1. This completes the proof.

Using the results of this section, we show that, in order to prove Theorems 4 and 5, it
suffices to find Kr

k-civilized constructions with long running time for r = 3 and k ∈ {4, 5}.

Corollary 17. If there is a K3
4 -civilized hypergraph H0 on n vertices with M3

4 (H0) =
Ω (n2), then Theorem 4 holds. Likewise, if there is a K3

5 -civilized hypergraph H ′
0 on n

vertices with M3
5 (H

′
0) = Ω (n3), then Theorem 5 holds.

Proof. For any fixed r 󰃍 3 and k such that k = r+1, applying Lemma 16 with m = Θ (n)
exactly r − 3 times to the hypergraph H0 in the statement of the corollary yields an
r-uniform hypergraph with O (n) vertices whose running time with respect to the Kr

k-
bootstrap process is Ω (nr−1). For r 󰃍 3 and k 󰃍 r + 2, apply Proposition 11 to H ′

0

exactly k − r − 2 times, and then Lemma 16 with m = Θ (n) exactly r − 3 times to get
an r-uniform hypergraph with O (n) vertices whose running time with respect to the Kr

k-
bootstrap process is Ω (nr). Trivially, M r

k (n) 󰃑
󰀃
n
r

󰀄
= O (nr) and so M r

k (n) = Θ (nr).

3 Getting the Beachball Rolling

The following definition provides a simple gadget that will be used in both of our main
constructions. See Figure 1 for an illustration.

Definition 18. For n 󰃍 1 and distinct vertices v1, v2, . . . , vn, u1 and u2, the beachball
hypergraph B (v1, . . . , vn, u1, u2) is the 3-uniform hypergraph with vertex set {v1, . . . , vn}∪
{u1, u2} and hyperedges {u1, vi, vi+1} and {u2, vi, vi+1} for 1 󰃑 i 󰃑 n − 1, as well as the
hyperedge {u1, u2, v1}.
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Figure 1: An illustration of the hypergraph B (v1, . . . , vn, u1, u2).

We call u1 and u2 the top and bottom vertices of B (v1, . . . , vn, u1, u2), respectively. The
vertices v1, v2, . . . , vn are the middle vertices. A key property of beachball hypergraphs is
that they behave in a very straightforward way with respect to the K3

4 -process.

Lemma 19. For n 󰃍 2, the hypergraph B (v1, . . . , vn, u1, u2) is K3
4 -civilized with respect

to e0 = {u1, u2, v1} with trajectory (F0, e1, . . . , Fn−2, en−1) where

V (Fi) = {u1, u2, vi+1, vi+2} , ei+1 = {u1, u2, vi+2}

for all 0 󰃑 i 󰃑 n− 2.

Proof. For the purposes of this proof, denote B (v1, . . . , vn, u1, u2) by Bn
0 . Say that a

hyperedge e is flat if it is contained in {v1, . . . , vn} and wide if it contains exactly one of
u1 or u2 and is not an element of E (Bn

0 ).
We claim that Bn

t contains no flat or wide hyperedges for any t 󰃍 0. For t = 0, this
is true by definition of Bn

0 . Now, consider the minimum t for which the statement does
not hold and let e ∈ Bn

t be a hyperedge which is either flat or wide. Then there must
exist a copy F of K3

4 with e ∈ E (F ) which is susceptible to Bn
t−1. Let v be the unique

vertex of V (F ) \ e. If e is flat, then we can write e = {vi, vj, vk} for 1 󰃑 i < j < k 󰃑 n.
If v ∈ {v1, . . . , vn}, then Bn

t−1 must contain the hyperedge e \ {vi} ∪ {v}. However, this
hyperedge is flat, which contradicts the minimality of t. Likewise, if v ∈ {u1, u2}, then
Bn

t−1 contains the hyperedge {vi, vk, v}, which is wide, and so we get another contradiction.
Similarly, if e is wide, then, depending on whether v ∈ {v1, . . . , vn} or v ∈ {u1, u2}, we
find either a flat or a wide hyperedge in Bn

t−1, respectively. This proves the claim.
Thus, the only hyperedges which can become infected after any number of steps are

those of the form {u1, u2, vi} for some i ∈ {2, . . . , n}. This implies that the only copies
of K3

4 that can be susceptible at any time are those whose vertex sets have the form
{u1, u2, vi, vi+1} for some i ∈ {1, . . . , n− 1}.

Now, we claim that, for all 0 󰃑 t 󰃑 n − 2, a hyperedge of the form {u1, u2, vi} for
1 󰃑 i 󰃑 n is contained in Bn

t if and only if i 󰃑 t + 1. This is clearly true for t = 0
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by construction. Consider the minimum t 󰃍 1 for which this statement is false and let
j > t+ 1 such that e = {u1, u2, vj} ∈ Bn

t . Then, by the result of the previous paragraph,
the only possible copies of K3

4 containing e which could be susceptible at time t − 1 are
the ones with vertex set {u1, u2, vj−1, vj} or {u1, u2, vj, vj+1}. However, this implies that
either {u1, u2, vj−1} or {u1, u2, vj+1} is in E

󰀃
Bn

t−1

󰀄
; in either case, this contradicts the

minimality of t.
Therefore, Bn

0 isK3
4 -tame with the trajectory described in the statement in the lemma.

Let us argue that Bn
0 is K3

4 -civilized with respect to e0 = {u1, u2, v1}. Condition 12 of
Definition 12 follows from the construction of the beachball hypergraph, since all of the
sets {u1, u2, vi+1, vi+2} for 0 󰃑 i 󰃑 n− 2 form a copy of K3

4 with two hyperedges missing
from Bn

0 \{e0}. For the same reason, condition 12 also holds. This completes the proof.

In our construction for the K3
4 -bootstrap process, we will also require the hyper-

graph B′ (v1, . . . , vn, u1, u2) obtained from B (v1, . . . , vn, u1, u2) by adding the hyperedge
{u1, v1, vn}. We call this an augmented beachball hypergraph. Next, we show that the
addition of this hyperedge extends the running time by one step without disrupting any
of the steps that came before it. In fact, this hypergraph is still K3

4 -civilized, albeit with
respect to a different hyperedge e′0 ∕= e0.

Figure 2: An illustration of the hypergraph B′ (v1, . . . , vn, u1, u2).

Lemma 20. For n 󰃍 4, the hypergraph B′ (v1, . . . , vn, u1, u2) is K3
4 -civilized with respect

to e′0 = {u1, v1, v2} with trajectory (F0, e1, . . . , Fn−1, en) where (F0, e1, . . . , Fn−2, en−1) is
the trajectory of B (v1, . . . , vn, u1, u2) and

V (Fn−1) = {u1, u2, v1, vn} , en = {u2, v1, vn} .

Proof. Let us denote B (v1, . . . , vn, u1, u2) by Bn
0 and B′ (v1, . . . , vn, u1, u2) by B′

0
n. By

Lemma 19, for every 0 󰃑 t 󰃑 n − 2, the only hyperedge of Bn
t contained within

{u1, u2, v1, vn} is {u1, u2, v1}. Therefore, if we additionally infect the hyperedge {u1, v1, vn}
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at time zero, as is the case in B′
0
n, then, for 0 󰃑 t 󰃑 n−2, the copy of K3

4 with this vertex
set has at most two infected hyperedges at time t, and is therefore not susceptible at that
time. Any other copy of K3

4 containing {u1, v1, vn} has at most one infected hyperedge.
Thus, we have that B′

t
n = Bn

t ∪ {{u1, v1, vn}} for 0 󰃑 t 󰃑 n− 1.
Given that the hyperedge {u1, v1, vn} is infected in B′

0
n, we see that the copy ofK3

4 with
vertex set {u1, u2, v1, vn} is susceptible to B′n

n−1. Note that, by Lemma 19, {u1, v1, vn} is
the unique wide hyperedge (to borrow terminology from the proof of Lemma 19) that is
infected at time n−1. Thus, there is only one susceptible copy of K3

4 at time n−1 and we
have that B′

n
n = B′n

n−1∪{{u2, v1, vn}}. Let us show that B′
n
n is K3

4 -stable. Note that the
only wide or flat infected hyperedges at time n are precisely {u1, v1, vn} and {u2, v1, vn},
both of which are wide. Any K3

4 containing both of u1 and u2 is either fully infected in
B′

n
n or contains two healthy wide hyperedges. Any K3

4 containing exactly one of u1 or u2

contains at least one healthy wide hyperedge (here, we use that n 󰃍 4) and exactly one
healthy flat hyperedge. Finally, any K3

4 consisting containing neither u1 nor u2 consists
only of flat hyperedges and therefore none of its edges are in B′

n
n. Thus, B′

0
n is K3

4 -tame.
Note that the only 0 󰃑 j 󰃑 n − 1 for which Fj contains the hyperedge e′0 is F0. Also,
{u1, u2, v1, vn} does not contain any of the hyperedges e′0, e1, . . . , en−2. Combining this
with Lemma 19, we see that B′

0
n satisfies condition 12 of Definition 12 with respect to e′0.

Note that the only hyperedges that are present in B′
0
n \ {e′0} and absent from Bn

0 \ {e0}
are e0 and {u1, v1, vn}. Thus, since Bn

0 is K3
4 -civilized with respect to e0, if there is a copy

of K3
4 that is susceptible to B′

0
n \ {e′0}, then it must contain e0 or {u1, v1, vn}. However,

every such copy has at least two hyperedges that are missing from B′
0
n \ {e′0}, and so

condition 12 of Definition 12 is satisfied.

Next, we show that, by carefully chaining together augmented beachball hypergraphs,
one obtains a K3

4 -civilized hypergraph with quadratic running time. This implies Theo-
rem 4 via Corollary 17.

Theorem 21. For any n 󰃍 4 and m 󰃍 2 there exists a K3
4 -civilized hypergraph H0 with

n+m vertices such that
M3

4 (H0) = (m− 1)n.

Proof. Let v0, . . . , vn−1 be distinct vertices whose indices are viewed “cyclically” modulo
n. In particular, for any i, we have v−i = vn−i = v2n−i, and so on. Let u0, . . . , um−1 be
m additional vertices which are distinct from one another, and from v0, . . . , vn−1. For
0 󰃑 i 󰃑 m− 2, define Si := {v0, . . . , vn−1} ∪ {ui, ui+1}. We let H0 be the hypergraph

B′ (v0, v1, . . . , vn−1, u0, u1) ∪
󰀣

m−2󰁞

i=1

B′ (v−i, v1−i, . . . , vn−1−i, ui, ui+1) \ {{v−i, v1−i, ui}}
󰀤
.

The construction can be thought of intuitively as follows. Start with the hypergraph
B′ (v0, . . . , vn−1, u0, u1). Then, we take the same beachball hypergraph again, except that
we delete one specific hyperedge, rotate the middle vertices by one, move the bottom
vertex to the top, and insert a new vertex on the bottom. Repeat until there are no
remaining vertices to add. See Figure 3 for an illustration.

the electronic journal of combinatorics 30(2) (2023), #P2.46 11



Figure 3: The hypergraph H0 constructed in the proof of Theorem 21. We have drawn
the only hyperedges of H0 that are on S0, S1 and S2 for illustration purposes.

First, we claim that the hyperedges of H0 within S0 are precisely the hyperedges
of the augmented beachball hypergraph on its vertices. Every hyperedge of the aug-
mented beachball hypergraph on S0 was added, by definition of H0, and so it suffices
to show that no additional hyperedges are present. For i > 1, all of the hyperedges
of B′ (v−i, v1−i, . . . , vn−1−i, ui, ui+1) contain ui or ui+1 and thus are not contained in S0.
Moreover, the only hyperedge of B′ (vn−1, v0, . . . , vn−2, u1, u2) contained in S0 that is not
a hyperedge of the augmented beachball on its vertices is {vn−1, v0, u1} which was deleted
during the construction of H0. This proves the claim. The same argument also proves
that, for all i 󰃍 1, the hyperedges within the vertices Si are precisely those of the aug-
mented beachball hypergraph on these vertices, except that the hyperedge {v−i, v1−i, ui}
is missing.

Now, we also observe that, for any t 󰃍 0, the hypergraph Ht does not contain any
hyperedge which includes ui and ui′ with |i− i′| > 1. To see this, consider the first time
that it fails and consider the susceptible K3

4 which caused it; as H0 contains no such
hyperedges containing ui and ui′ , we get a contradiction.

By Lemma 20, every augmented beachball in the chain is K3
4 -civilised, and the corre-

sponding trajectory implies that the hyperedge {v−i, v1−i, ui} is contained in the unique
K3

4 that is susceptible to B′ (v−i, v1−i, . . . , vn−1−i, ui, ui+1).
So we see that, for any i 󰃍 1, the first hyperedge in Si that becomes infected does so

due to a susceptible copy of K3
4 with precisely one vertex outside of Si (since it cannot

be contained entirely inside Si); until such a copy appears, no additional hyperedges in
Si become infected. Note that this statement is not true for i = 0, as the first hyperedge
in S0 becomes infected due to a susceptible copy of K3

4 contained within S0.
Putting this together, we see that the only hyperedges that become infected in the

first n steps are exactly those which become infected in the K3
4 -bootstrap process in

B′ (v0, v1, . . . , vn−1, u0, u1). By Lemma 20, all of these hyperedges are disjoint from Si

for all i 󰃍 1, except for the last one, namely {u1, v0, vn−1}, which happens to be the
unique hyperedge of B′ (vn−1, v0, . . . , vn−2, u1, u2) that is missing from H0. From this
point, the infection follows the K3

4 -bootstrap process in B′ (vn−1, v0, . . . , vn−2, u1, u2) for n
steps. This pattern repeats itself m− 1 times. Thus, H0 is K3

4 -tame. The proof that the
additional conditions of Definition 12 hold with respect to e′0 = {u0, v0, v1} is analogous
to the arguments given in the proofs of the lemmas in this section, and so we omit it.
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This completes the proof.

Proof of Theorem 4. For each n 󰃍 8, Theorem 21 gives us a K3
4 -civilized hypergraph H0

on n vertices such that
M3

4 (H0) 󰃍
󰀓󰁯n

2

󰁰
− 1

󰀔󰁭n
2

󰁮
.

The result now follows by Corollary 17.

4 Cubic Time Construction for K3
5

Our final task is to use the beachball hypergraph again to obtain a construction for the
K3

5 -bootstrap process with cubic running time.

Theorem 22. For any n 󰃍 2 and m 󰃍 2, there exists a K3
5 -civilized hypergraph H0 with

2n+ 4m+ 4 vertices such that

M3
5 (H0) = (2n+ 4)m2 − 1.

Proof. The vertices of the construction are naturally divided into two “halves” which share
exactly two special vertices, w1 and w2. For i ∈ {1, 2}, the vertices that are “exclusive”
to the ith half are vi1, . . . , v

i
n, u

i
1, . . . , u

i
m, z

i
1, . . . , z

i
m and xi. Each half of the construction

has n + 2m + 1 exclusive vertices. Together with w1 and w2, this makes 2n + 4m + 4
vertices in total.

For 1 󰃑 j 󰃑 m2, let (aj, bj) be the jth element of {1, 2, . . . ,m} × {1, 2, . . . ,m}
in lexicographic order. For 1 󰃑 j 󰃑 m2, let C1

j be the copy of K3
5 with vertex set󰁱

u1
aj
, z1bj , u

2
aj
, z2bj , w2

󰁲
and, if j 󰃑 m2 − 1, then we additionally define C2

j to be the copy

of K3
5 with vertex set

󰁱
u2
aj
, z2bj , u

1
aj+1

, z1bj+1
, w1

󰁲
. Let

B1
j := B

󰀓
w1, v

1
1, . . . , v

1
n, w2, u

1
aj
, z1bj

󰀔
∨ x1

and
B2

j := B
󰀓
w2, v

2
1, . . . , v

2
n, w1, u

2
aj
, z2bj

󰀔
∨ x2

for all 1 󰃑 j 󰃑 m2. Define H0 to be the union of the following five hypergraphs

B1
1 ,

m2󰁞

j=2

B1
j \

󰁱󰁱
u1
aj
, z1bj , w1

󰁲󰁲
,

m2󰁞

j=1

B2
j \

󰁱󰁱
u2
aj
, z2bj , w2

󰁲󰁲
,
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m2󰁞

j=1

C1
j \

󰁱󰁱
u1
aj
, z1bj , w2

󰁲
,
󰁱
u2
aj
, z2bj , w2

󰁲󰁲
, and

m2−1󰁞

j=1

C2
j \

󰁱󰁱
u2
aj
, z2bj , w1

󰁲
,
󰁱
u1
aj+1

, z1bj+1
, w1

󰁲󰁲
.

Intuitively, the way that the infection evolves can be described as follows. It starts
by propagating through B1

1 , the first beachball hypergraph on the first half, in the way
described by Lemma 19 and Proposition 11. This takes n+ 1 steps. The hyperedge that
gets infected in the last step is

󰀋
u1
a1
, z1b1 , w2

󰀌
. Consequently, now all of the hyperedges

within V (C1
1) except for

󰀋
u2
a1
, z2b1 , w2

󰀌
are infected, and so this hyperedge gets infected

in the next step; at this point, we have done n + 2 steps in total. This was the only
hyperedge of B2

1 that is not in H0, and so its infection triggers the beachball hypergraph
B2

1 on the right half of the construction. The process inside B2
1 ends with the infection

of the hyperedge
󰀋
u2
a1
, z2b1 , w1

󰀌
, which is in V (C2

1). So now all the hyperedges of V (C2
1)

except
󰀋
u1
a2
, z1b2 , w1

󰀌
are infected, and hence this hyperedge gets infected in the next step.

This transfers the infection back over to the left half of the construction by triggering B1
2 ,

and so on. If the process does indeed progress in this manner, then, in total, it will take
n+ 2 steps for every 1 󰃑 j 󰃑 m2 and every i ∈ {1, 2}, with the exception of j = m2 and
i = 2, which only contributes n + 1 steps (since C2

m2 has not been defined). Thus, there
are (2n+ 4)m2 − 1 steps.

Let us now make this rigorous. Our goal is to show that H0 is K
3
5 -civilized with respect

to e0 =
󰀋
u1
a1
, z1b1 , w1

󰀌
; on the way to that goal, we will need to establish several claims.

First, we observe that any pair of vertices which are not contained together in a hyperedge
of H0 are not contained together in any hyperedge of Ht for any t 󰃍 0; to see this, consider
the first time that such a hyperedge becomes infected, look at the susceptible copy of K3

5

which caused it and get a contradiction. This argument immediately yields the following
claim. Throughout the statement of the claim, keep in mind that w1 and w2 are regarded
as being on both halves of the construction, but all other vertices are exclusive to one half
or the other.

Claim 23. For any t 󰃍 0, Ht does not contain any hyperedge e which satisfies any of the
following conditions:

(i) e contains xi but is not contained in the ith half of the construction for some i ∈
{1, 2},

(ii) e contains vij but is not contained in the ith half of the construction for some 1 󰃑
j 󰃑 n and i ∈ {1, 2},

(iii) e contains two of ui
1, . . . , u

i
m or two of zi1, . . . , z

i
m for some i ∈ {1, 2}.

The purpose of the next claim is similar to the previous one; i.e. to rule out certain
types of hyperedges from becoming infected.
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Claim 24. For any t 󰃍 0, every hyperedge of Ht containing both w1 and w2 must also
contain one of x1 or x2.

Proof of Claim 24. Consider the first time t such that Ht contains a hyperedge e that
contains both of w1 and w2 but neither of x1 nor x2. Note that t 󰃍 1 by construction of
H0. Let F be the copy of K3

5 containing e which is susceptible to Ht−1. By minimality of
t, the only two hyperedges of Ht−1 containing w1 and w2 are {w1, w2, x

1} and {w1, w2, x
2}.

So, the vertices of F must consist of w1, w2, x
1, x2 and a fifth vertex, say y. However, y

is exclusive to one of the two halves of the construction, and so, regardless of which half
it is, Ht−1 contains several hyperedges which satisfy condition 23 of Claim 23, which is a
contradiction.

Let us now show that H0 is K
3
5 -tame with the trajectory that was described earlier in

the proof. Suppose that this is not the case, let t 󰃍 1 be the minimum time in which there
is an unexpected infected hyperedge, say e. Let F be a copy of K3

5 containing e which is
susceptible to Ht−1. By Lemma 19 and minimality of t, we cannot have V (F ) ⊆ Bi

j for
any 1 󰃑 j 󰃑 m2 and i ∈ {1, 2}. Now, any five vertices on the ith half of the construction
are either contained in Bi

j for some j or contain two of ui
1, . . . , u

i
m or two of zi1, . . . , z

i
m.

So, as there are no hyperedges satisfying condition 23 of Claim 23, V (F ) must contain
at least one vertex that is exclusive to each half of the construction. But now, since no
hyperedges satisfy Claim 23 23 or 23, we get that V (F ) cannot contain any of the vertices
xi or vij for i ∈ {1, 2} and 1 󰃑 j 󰃑 n. This also means that it cannot contain both of
w1 and w2 by Claim 24. On the other hand, it must contain at least one of w1 or w2; if
not, then three vertices of F are exclusive to one of the sides of the partition, and we get
a contradiction from Claim 23 23. Using Claim 23 23 one more time, we see that V (F )
has the form {u1

a, z
1
b , wℓ, u

2
c , z

2
d} for some 1 󰃑 a, b, c, d 󰃑 m and ℓ ∈ {1, 2}. We now divide

the proof into cases.

Case 1. e does not contain wℓ.

We assume that e = {u1
a, z

1
b , u

2
c} and note that the other three cases follow from similar

arguments. Let 1 󰃑 j 󰃑 m2 be chosen so that a = aj and b = bj; such a j exists by
construction of H0. The hypergraph Ht−1 contains the hyperedge e

′ = e\{u2
c}∪{z2d} and

so, by minimality of t, we get that e′ is contained in either V
󰀃
C1

j

󰀄
or V

󰀃
C2

j−1

󰀄
. Indeed,

under the trajectory described at the beginning of the proof, every hyperedge containing
two vertices exclusive to one side and one exclusive to the other had this property. The
fact that e′ is contained in V

󰀃
C1

j

󰀄
or V

󰀃
C2

j−1

󰀄
implies that e is as well. However, every

hyperedge of C1
j or C2

j−1 not containing w1 or w2 was added to H0 originally, which
contradicts our choice of e.

Case 2. e contains wℓ.

Again, let 1 󰃑 j 󰃑 m2 be chosen so that a = aj and b = bj. The hyperedge󰁱
u1
aj
, z1bj , u

2
c

󰁲
is contained in Ht−1 and so, by minimality of t, it must be contained in

either V
󰀃
C1

j

󰀄
or V

󰀃
C2

j−1

󰀄
. By definition of V

󰀃
C1

j

󰀄
and V

󰀃
C2

j−1

󰀄
, and our specific choice

of lexicographic order in the construction ofH0, this implies that either c = aj or c = aj−1
and bj = 1.
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Suppose first that c = aj. Then we get that Ht−1 contains
󰁱
z1bj , u

2
aj
, z2d

󰁲
which, by

minimality of t and construction of H0, implies that either d = bj or d = bj − 1. If d = bj,

then we must have that ℓ = 2 by minimality of t since
󰁱
z1bj , w1, z

2
bj

󰁲
is not contained in

any of the hypergraphs C1
1 , . . . , C

1
m2 or C2

1 , . . . , C
2
m2−1. So, in the case that c = aj and

d = bj, we get that V (F ) = V
󰀃
C1

j

󰀄
. This implies that e is one of the only two hyperedges

of Cj that are missing from H0. If e =
󰁱
u1
aj
, z1bj , w2

󰁲
, then the hyperedge

󰁱
w2, u

2
aj
, z2bj

󰁲
is

present before e, which contradicts minimality of t. If e =
󰁱
w2, u

2
aj
, z2bj

󰁲
, then e is being

infected due to C1
j being susceptible, which fits the description of the trajectory from

earlier in the proof, and so this contradicts the definition of e. Now, suppose that c = aj

and d = bj − 1. In this case, we must have ℓ = 1 by minimality of t since
󰁱
z1bj , w2, z

2
bj−1

󰁲

is not contained in any of the sets C1
1 , . . . , C

1
m2 or C2

1 , . . . , C
2
m2−1. So, what we end up with

is V (F ) = V
󰀃
C2

j−1

󰀄
and we get a contradiction similar to the case that we just analyzed.

Now, suppose that c = aj−1 and bj = 1. Since Ht−1 contains
󰁱
z11 , u

2
aj−1, z

2
d

󰁲
, we must

have either d = 1 or d = m. If d = 1, we get a contradiction, since
󰁱
u1
aj
, u2

aj−1, z
2
1

󰁲
is not

contained in Ht−1 by minimality of t and the fact that m 󰃍 2 and so, under lexicographic
order, (aj − 1, 1) does not immediately precede or follow any pair involving aj in the first
coordinate. So, d = m. Now, we get that ℓ = 1 by minimality of t since {z11 , w2, z

2
m} is not

contained in any of the sets C1
1 , . . . , C

1
m2 or C2

1 , . . . , C
2
m2−1. So, we get that V (F ) = C2

j−1

which leads us to a contradiction, as in the previous paragraph.
Similar arguments also show that, for e0 =

󰀋
u1
a1
, z1a1 , w1

󰀌
, the hypergraph H0 \ {e0}

is K3
5 -stable; thus, condition 12 of Defintion 12 holds. Clearly each of the copies of K3

5

in the trajectory of H0, as described above, has precisely two hyperedges missing from
H0 \ {e0} and so 12 holds, too. This completes the proof.

Proof of Theorem 5. For n sufficiently large and n ≡ 4 mod 6, Theorem 22 provides a
K3

5 -civilized hypergraph H ′
0 with n vertices such that

M3
5 (H

′
0) 󰃍

󰀕
n+ 8

3

󰀖󰀕
n− 4

6

󰀖2

− 1.

The result follows by Corollary 17.

5 Open Problems

While Theorem 5 determines M r
k (n) up to a constant factor for all r 󰃍 3 and k 󰃍 r + 2,

it would be interesting to have a better understanding of the growth rate in the case
k = r + 1. The most interesting question here seems to be whether there is a non-trivial
upper bound on the running time of the K3

4 -bootstrap process; we conjecture that the
quadratic lower bound from Theorem 4 is tight up to a constant factor.

Conjecture 25. M3
4 (n) = O (n2).
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In contrast, we do not believe that Theorem 4 is tight for all r 󰃍 3. It is even
conceivable that, for large enough r, the maximum running time of the Kr

r+1-process on
n vertices eventually becomes Θ (nr). We ask whether this is, indeed, the case.

Question 26. Does there exist an integer r0 such that, if r 󰃍 r0, then M r
r+1 (n) = Θ (nr)?
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Remarks

After completing this work, Hartarsky and Lichev [32] and Espuny Dı́az, Janzer, Kro-
nenberg and Lada [23] independently disproved 25 by showing that M3

4 (n) = Θ(n3), and
consequently answered Question 26 in the affirmative in a rather strong sense with r0 = 3.
Hartarsky and Lichev [32] also determine the leading asymptotics of the prefactor when
r → ∞. Additionally, Espuny Dı́az et al. [23] provide the first nontrivial exact result
about the maximum running times of hypergraph bootstrap percolation by showing that
the maximum running time for the H-bootstrap process on n vertices when H is K3

4

minus an edge is exactly 2n− ⌊log2(n− 2)⌋ − 6.
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