On the Running Time of Hypergraph Bootstrap Percolation

Jonathan A. Noel*
Department of Mathematics and Statistics
University of Victoria
Victoria, B.C., Canada
noelj@uvic.ca
Arjun Ranganathan ${ }^{\dagger}$
Department of Mathematics
Indian Institute of Science Education and Research (IISER), Pune
Pune, India
arjun.ranganathan@students.iiserpune.ac.in

Submitted: Jun 7, 2022; Accepted: Apr 18, 2023; Published: Jun 16, 2023
(c) The authors. Released under the CC BY license (International 4.0).

Abstract

Given $r \geqslant 2$ and an r-uniform hypergraph F, the F-bootstrap process starts with an r-uniform hypergraph H and, in each time step, every hyperedge which "completes" a copy of F is added to H. The maximum running time of this process has been recently studied in the case that $r=2$ and F is a complete graph by Bollobás, Przykucki, Riordan and Sahasrabudhe [Electron. J. Combin. 24(2) (2017), Paper No. 2.16], Matzke [arXiv:1510.06156v2] and Balogh, Kronenberg, Pokrovskiy and Szabó [arXiv:1907.04559v1]. We consider the case that $r \geqslant 3$ and F is the complete r-uniform hypergraph on k vertices. Our main results are that the maximum running time is $\Theta\left(n^{r}\right)$ if $k \geqslant r+2$ and $\Omega\left(n^{r-1}\right)$ if $k=r+1$. For the case $k=r+1$, we conjecture that our lower bound is optimal up to a constant factor when $r=3$, but suspect that it can be improved by more than a constant factor for large r.

Mathematics Subject Classifications: 05C35, 05C65, 05D99, 82B43

[^0]
1 Introduction

Bootstrap percolation is a model of propagation phenomena in discrete structures which originated in the statistical physics literature to study the dynamics of ferromagnetism [20, $1,2,53]$. It has since inspired the introduction of many related models that have been the subject of intense research in sociology [26,54], computer science [24, 22] and, especially, mathematics $[17,9,30,14,13,49,31,5,44,45,10,18,6,43,27,34,28,7,52,35,8,19$, 33, 39, 21, 29].

Our focus in this paper is on hypergraph bootstrap percolation which generalizes the notion of graph bootstrap percolation introduced by Bollobás [16] in 1968, originally under the name "weak saturation." For a set S and $r \geqslant 0$, let $S^{(r)}$ denote the collection of all subsets of S of cardinality r. Given an r-uniform hypergraph F, the F-bootstrap process starts with an r-uniform hypergraph H_{0}. Then, at each time step $t \geqslant 1$, the hypergraph H_{t} consists of all hyperedges of H_{t-1} as well as each $e \in V\left(H_{0}\right)^{(r)}$ for which there exists a copy F^{\prime} of F containing e such that $E\left(F^{\prime}\right) \subseteq E\left(H_{t-1}\right) \cup\{e\}$ (that is, e "completes" a copy of F when added to H_{t-1}). The hypergraph H_{0} is referred to as the initial infection and, for $t \geqslant 0$, the hyperedges of H_{t} are said to be infected at time t.

The most well studied problem related to the F-bootstrap process is to determine the minimum number of hyperedges in an initial infection H_{0} on n vertices such that every element of $V\left(H_{0}\right)^{(r)}$ is eventually infected. When F is the complete r-uniform hypergraph on k vertices, which we denote by K_{k}^{r}, this is equivalent to the famous Skew Two Families Theorem proved by Frankl [25] using a beautiful exterior algebraic approach of Lovász [41]; see also [37, 4]. Alon [3] proved a multipartite version of the Skew Two Families Theorem, which was extended further by Moshkovitz and Shapira [46]; the results of both of these papers can be thought of in terms of hypergraph bootstrap percolation in a multipartite "host" hypergraph. Pikhurko [47, 48] solved the problem for several classes of non-complete hypergraphs F using the exterior algebraic method of [41, 25] and a related matroid-theoretic approach of Kalai [37]. For results on graphs, i.e. the case $r=2$, see $[16,40,15,45,36,37]$.

Another major focus in bootstrap percolation has been on analyzing the maximum number of time steps that a given bootstrap percolation model can take before it stabilizes $[17,42,14,13,49,31,5]$. In the context of the F-bootstrap process with initial infection H_{0}, the running time is

$$
M_{F}\left(H_{0}\right):=\min \left\{t: H_{t}=H_{t+1}\right\}
$$

and the maximum running time among all hypergraphs H_{0} with n vertices is denoted by $M_{F}(n)$. If $F=K_{k}^{r}$ for some k, then we write $M_{F}\left(H_{0}\right)$ and $M_{F}(n)$ as $M_{k}^{r}\left(H_{0}\right)$ and $M_{k}^{r}(n)$, respectively. We omit the superscript in the case $r=2$.

Our goal is to bound $M_{k}^{r}(n)$ for fixed r and k asymptotically as a function of n. This problem was first studied in the case $r=2$ independently by Bollobás, Przykucki, Riordan and Sahasrabudhe [17] and Matzke [42]. Clearly, $M_{k}^{r}(n) \leqslant\binom{ n}{r}$ for all n, r and k as at least one hyperedge must become infected in each step. It is an easy exercise to show that the maximum running time for the K_{3}-bootstrap process, i.e. $M_{3}(n)$, is
precisely $\left\lceil\log _{2}(n-1)\right\rceil$. Interestingly, for $k=4$, the maximum running time jumps from logarithmic to linear.

Theorem 1 (Bollobás et al. [17], Matzke [42]). $M_{4}(n)=n-3$ for all $n \geqslant 3$.
Bollobás et al. [17] conjectured that $M_{k}(n)=o\left(n^{2}\right)$ for all $k \geqslant 5$. This was disproved for all $k \geqslant 6$ by Balogh, Kronenberg, Pokrovskiy and Szabó [11]. Since the inequality $M_{k+1}(n+1) \geqslant M_{k}(n)$ can be shown by simply taking a construction on n vertices, adding a vertex and infecting every edge incident to it (see [11, Proposition 10] or Lemma 8 in this paper), the critical case is $k=6$.

Theorem 2 (Balogh et al. [11]). $M_{6}(n) \geqslant \frac{n^{2}}{2500}$ for all n sufficiently large.
The growth rate of the maximum running time for the K_{5}-bootstrap process is still unknown. In fact, it is an interesting open problem to determine whether or not it is quadratic [17, 11]. To date, the best known lower bound is given by Balogh et al. [11] by exploiting connections to additive combinatorics; their result improved on a bound of $n^{13 / 8-o(1)}$ due to [17]. Let $r_{3}(n)$ be the largest cardinality of a subset of $[n]$ without a 3 -term arithmetic progression. While the asymptotics of $r_{3}(n)$ are not known precisely, Roth's Theorem [50] implies that $r_{3}(n)=o(n)$ (see [51, 38] for recent quantitative bounds) and the Behrend Construction [12] yields $r_{3}(n) \geqslant n^{1-O(1 / \sqrt{\log (n)})}$.

Theorem 3 (Balogh et al. [11]). $M_{5}(n) \geqslant \frac{n r_{3}(n)}{1200}$.
Here, we initiate the study of $M_{k}^{r}(n)$ for $r \geqslant 3$. Our main contributions are constructions of initially infected hypergraphs yielding lower bounds. Our first result concerns the case that $k=r+1$. It would be interesting to know whether this bound is tight up to a constant factor, especially in the case $r=3$ and $k=4$; see Conjecture 25 and Question 26.

Theorem 4. Let $r \geqslant 3$. If $k=r+1$, then $M_{k}^{r}(n)=\Omega\left(n^{r-1}\right)$.
In contrast, for $k \geqslant r+2$, we show that the trivial upper bound $\binom{n}{r}$ is tight up to a constant factor.

Theorem 5. Let $r \geqslant 3$. If $k \geqslant r+2$, then $M_{k}^{r}(n)=\Theta\left(n^{r}\right)$.
The rest of the paper is organized as follows. In the next section, we build up some basic notation and terminology and establish a few preliminary lemmas. In particular, these lemmas will be used to reduce Theorems 4 and 5 to finding constructions with some additional properties for $r=3$ and $k \in\{4,5\}$. In Section 3, we introduce a key construction, which we call the "beachball hypergraph". This hypergraph has running time that is only linear with respect to its number of vertices, but plays a key role in the proofs of both of our main theorems. In the same section, we show how linearly many beachball hypergraphs can be "chained together" to prove Theorem 4. In Section 4, we use the beachball construction in a different way to prove Theorem 5. We conclude the paper in Section 5 with two open problems.

2 Preliminaries

Given r-uniform hypergraphs F and H, say that a copy F^{\prime} of F is susceptible to H if there exists a hyperedge $e \notin E(H)$ and $e \in E\left(F^{\prime}\right)$ such that $E\left(F^{\prime}\right) \subseteq E(H) \cup\{e\}$. Say that H is F-stable if there are no copies of F that are susceptible to H. We make the following simple observation.

Observation 6. Let H_{0} be an initial infection for the F-bootstrap process. Then, for $t \geqslant 1, E\left(H_{t}\right)$ is the union of $E\left(H_{t-1}\right)$ and the hyperedge sets of all copies of F which are susceptible to H_{t-1}.

The following very straightforward definition and the lemma that follows it allow us to use a lower bound on $M_{k}^{r}(n)$ to get a lower bound on $M_{k+1}^{r}(n)$ which is only slightly worse; c.f. [11, Proposition 10].
Definition 7. Given an r-uniform hypergraph H and $w \notin V(H)$, let $H \vee w$ be the hypergraph with vertex set $V(H) \cup\{w\}$ and hyperedge set

$$
E(H) \cup\left\{e \cup\{w\}: e \in V(H)^{(r-1)}\right\}
$$

Lemma 8. Let H_{0} be an initial infection for the K_{k}^{r}-bootstrap process and, for $w \notin V\left(H_{0}\right)$, let $H_{0}^{\prime}=H_{0} \vee w$ be an initial infection for the K_{k+1}^{r}-bootstrap process. Then $H_{t}^{\prime}=H_{t} \vee w$ for all $t \geqslant 0$.

Proof. Suppose not and let t be the minimum time that the equality is violated. Since $H_{0}^{\prime}=H_{0} \vee w$ by definition, we must have $t \geqslant 1$. Observe that no hyperedge containing w becomes infected in any step $t \geqslant 1$ since all such hyperedges are already in H_{0}.

First, suppose that there is $e \in E\left(H_{t} \vee w\right)$ such that $e \notin E\left(H_{t}^{\prime}\right)$. As noted above, we may assume that $e \in E\left(H_{t}\right)$ since $w \notin e$. Let F be the corresponding copy of K_{k}^{r} that is susceptible to H_{t-1}. Then, by minimality of t, all hyperedges of $F \vee w$ except for e are present in H_{t-1}^{\prime}. Thus, $e \in E\left(H_{t}^{\prime}\right)$, which is a contradiction. The proof of the other direction is similar.

The analysis of the running time of H_{0} tends to become unwieldy if there are time steps t in which there is more than one copy of F that is susceptible to H_{t}. For this reason, the constructions in this paper will be designed with a specific goal of avoiding this situation; a similar approach is taken for graphs in $[11,17]$. This motivates the following definitions.

Definition 9. Let H_{0} be an initial infection for the F-bootstrap process. Say that H_{0} is F-tame if there is at most one copy of F which is susceptible to H_{t} for all $t \geqslant 0$.

Definition 10. Let H_{0} be F-tame. The trajectory of H_{0} is the sequence

$$
\left(F_{0}, e_{1}, F_{1}, \ldots, e_{T-1}, F_{T-1}, e_{T}\right)
$$

where $T=M_{F}\left(H_{0}\right)$ and, for all $0 \leqslant t \leqslant T-1, F_{t}$ is the unique copy of F that is susceptible to H_{t} and e_{t+1} is the unique hyperedge of $E\left(F_{t}\right) \backslash E\left(H_{t}\right)$.

The following proposition is an easy consequence of Lemma 8; we omit the proof.
Proposition 11. If H_{0} is K_{k}^{r}-tame with trajectory $\left(F_{0}, e_{1}, F_{1}, \ldots, F_{T-1}, e_{T}\right)$, then $H_{0} \vee w$ is K_{k+1}^{r}-tame with trajectory ($F_{0} \vee w, e_{1}, F_{1} \vee w, \ldots, F_{T-1} \vee w, e_{T}$).

In our constructions, it will be especially useful to restrict our attention to F-tame hypergraphs with limited interaction between the elements of their trajectories.

Definition 12. Let $\left(F_{0}, e_{1}, \ldots, F_{T-1}, e_{T}\right)$ be the trajectory of an F-tame hypergraph H_{0} and let $e_{0} \in E\left(F_{0}\right)$. We say that H_{0} is F-civilized with respect to e_{0} if the following two conditions hold:
(a) $E\left(F_{j}\right) \cap\left\{e_{0}, e_{1}, \ldots, e_{T}\right\}=\left\{e_{j}, e_{j+1}\right\}$ for any $0 \leqslant j \leqslant T-1$ and
(b) $H_{0} \backslash\left\{e_{0}\right\}$ is F-stable.

In other words, an F-tame hypergraph H_{0} is F-civilized with respect to e_{0} if every copy of F in its trajectory has exactly two hyperedges missing from $H_{0} \backslash\left\{e_{0}\right\}$ and $H_{0} \backslash\left\{e_{0}\right\}$ is F-stable. A useful property of an F-civilized hypergraph is that its trajectory can be reversed by swapping e_{0} and e_{T}.

Lemma 13. Let H_{0} be a hypergraph which is F-civilized with respect to e_{0} with trajectory $\left(F_{0}, e_{1}, \ldots, F_{T-1}, e_{T}\right)$ and let $H_{0}^{\prime}=H_{0} \backslash\left\{e_{0}\right\} \cup\left\{e_{T}\right\}$. Then H_{0}^{\prime} is F-civilized with respect to e_{T} with trajectory $\left(F_{T-1}, e_{T-1}, \ldots, F_{0}, e_{0}\right)$.

Proof. To show that H_{0}^{\prime} is F-civilized with respect to e_{T}, it suffices to show that it is F-tame with the correct trajectory since the additional conditions of Definition 12 will follow from the fact that H_{0} is F-civilized with respect to e_{0}.

For $0 \leqslant t<T$, let F^{\prime} be a copy of F which is susceptible to H_{t}^{\prime} and let e^{\prime} be the unique hyperedge of F^{\prime} that is not in H_{t}^{\prime}. We claim that $F^{\prime}=F_{T-t-1}$ and $e^{\prime}=e_{T-t-1}$. For the sake of contradiction, suppose that at least one of these equalities does not hold and let t be the minimum time for which such an F^{\prime} and e^{\prime} exist. By minimality of t, we have that

$$
H_{t}^{\prime}=H_{0}^{\prime} \cup\left\{e_{T-t}, \ldots, e_{T-1}\right\}
$$

In particular, H_{t}^{\prime} is a subhypergraph of H_{T}. Now, observe that e^{\prime} must be contained in H_{T}; if not, then F^{\prime} would be susceptible to H_{T} which contradicts the assumption that $\left(F_{0}, e_{1}, \ldots, F_{T-1}, e_{T}\right)$ is the trajectory of H_{0}. Next, we claim that F^{\prime} is not a subhypergraph of H_{0}. If it were, then, since e^{\prime} is not contained in H_{t}^{\prime}, we must have that $e^{\prime}=e_{0}$ and all other hyperedges of F^{\prime} are contained in H_{0}. However, this would contradict condition 12 of Definition 12. Therefore, F^{\prime} is not a subhypergraph of H_{0}.

So, H_{0} does not contain every hyperedge of F^{\prime} but H_{T} does. Thus, we can let $0 \leqslant j<T$ be the maximum index such that there is a hyperedge of F^{\prime} that is not contained in H_{j}. So, F^{\prime} is susceptible to H_{j}, which, by the assumption of the lemma, implies that $F^{\prime}=F_{j}$. Since H_{0} is F-civilized with respect to e_{0}, the only hyperedges of F_{j} missing from $H_{0} \backslash\left\{e_{0}\right\}$ are e_{j} and e_{j+1}. Since F_{j} is susceptible to $H_{t}^{\prime}=H_{0}^{\prime} \cup\left\{e_{T-t}, \ldots, e_{T-1}\right\}$ and also to H_{j}, but
not to H_{t-1}^{\prime}, the only possibility is that $e_{T-t}=e_{j+1}$ and $e^{\prime}=e_{j}$. So, $j+1=T-t$ which implies that $F^{\prime}=F_{j}=F_{T-t-1}$ and $e_{j}=e_{T-t-1}$, as we wanted.

Thus, F_{T-t-1} is the only copy of F that can be susceptible to H_{t}^{\prime}. The last thing to show is that F_{T-t-1} is, indeed, susceptible to H_{t}^{\prime}. To see this, note that H_{0} is F-civilized with respect to e_{0}, and so e_{T-t-1} is the unique hyperedge of F_{T-t-1} that is not in H_{t}^{\prime}. Thus, H_{0}^{\prime} is F-tame with the desired trajectory and the proof is complete.

Next, we define a natural "step up" construction for converting constructions for the K_{k}^{r}-bootstrap process into constructions for the K_{k+1}^{r+1}-bootstrap process. Later, in Lemma 16, we will see how Lemma 13 can be applied to "chain together" these step up constructions to transform a K_{k}^{r}-civilized hypergraph into a K_{k+1}^{r+1}-civilized hypergraph with a linear number of extra vertices in such a way that the running time is boosted by a linear factor.

Definition 14. Let $r \geqslant 2$, let H be an r-uniform hypergraph and let $w \notin V(H)$. Define H^{+w} to be the $(r+1)$-uniform hypergraph with vertex set $V(H) \cup\{w\}$ and hyperedges

$$
V(H)^{(r+1)} \cup\{e \cup\{w\}: e \in E(H)\}
$$

Next, we show that H_{0}^{+w} behaves in essentially the same way with respect to the K_{k+1}^{r+1}-bootstrap process as H_{0} does with respect to the K_{k}^{r}-bootstrap process.

Lemma 15. For $k \geqslant r \geqslant 2$, let H_{0} be an initial infection for the K_{k}^{r}-bootstrap process, let $w \notin V\left(H_{0}\right)$, and let $H_{0}^{\prime}=H_{0}^{+w}$ be the initial infection for the K_{k+1}^{r+1}-bootstrap process. Then $H_{t}^{\prime}=\left(H_{t}\right)^{+w}$ for all $t \geqslant 0$.

Proof. Suppose that the lemma is false and let t be the smallest index such that $H_{t}^{\prime} \neq$ $\left(H_{t}\right)^{+w}$. By definition, we have $H_{0}^{\prime}=H_{0}^{+w}$ and so $t \geqslant 1$.

First, suppose that there is a hyperedge which is contained in $\left(H_{t}\right)^{+w}$ but not in H_{t}^{\prime}. Since both of these hypergraphs contain all of $V\left(H_{0}\right)^{(r+1)}$, this hyperedge must have the form $e \cup\{w\}$ where $e \in E\left(H_{t}\right)$. By minimality of t, we must have $e \notin E\left(H_{t-1}\right)$ and so there must be a copy F of K_{k}^{r} containing e which is susceptible to H_{t-1}. As F is a copy of K_{k}^{r} containing e, this means that F^{+w} must be a copy of K_{k+1}^{r+1} containing $e \cup\{w\}$. However, by minimality of t, we have that $H_{t-1}^{\prime}=\left(H_{t-1}\right)^{+w}$, and hence $e \cup\{w\} \notin H_{t-1}^{\prime}$. Since H_{t-1} contains every hyperedge of F except e, we conclude that H_{t-1}^{\prime} must contain every hyperedge of F^{+w} except for $e \cup\{w\}$. Therefore, F^{+w} is susceptible to H_{t-1}^{\prime} and so $e \cup\{w\}$ is contained in H_{t}^{\prime}, which is a contradiction.

Now, suppose that there is a hyperedge e^{\prime} that is contained in H_{t}^{\prime} but not in $\left(H_{t}\right)^{+w}$. As in the previous case, this hyperedge must contain w. By minimality of t, we must have $e^{\prime} \notin E\left(H_{t-1}^{\prime}\right)$ and so there must be a copy F^{\prime} of K_{k+1}^{r+1} containing e^{\prime} which is susceptible to H_{t-1}^{\prime}. However, by minimality of t, we have $H_{t-1}^{\prime}=\left(H_{t-1}\right)^{+w}$ and so H_{t-1} contains all hyperedges of the form $e^{\prime \prime} \backslash\{w\}$ for $e^{\prime \prime} \in E\left(F^{\prime}\right) \backslash\left\{e^{\prime}\right\}$. Thus, the copy of K_{k}^{r} on vertex set $V(F) \backslash\{w\}$ is susceptible to H_{t-1} which implies that e^{\prime} is in $\left(H_{t}\right)^{+w}$. This contradiction completes the proof.

As alluded to earlier, we now apply Lemmas 13 and 15 to show that step up constructions for K_{k}^{r}-civilized hypergraphs can be chained together to yield K_{k+1}^{r+1}-civilized hypergraph with very long running time.

Lemma 16. For $r \geqslant 3$ and $k \geqslant r+1$, let H_{0} be a K_{k}^{r}-civilized hypergraph. Then, for any $m \geqslant 1$, there exists a K_{k+1}^{r+1}-civilized hypergraph H_{0}^{\prime} with $\left|V\left(H_{0}\right)\right|+m+(m-1)(k-r-1)$ vertices such that

$$
M_{k+1}^{r+1}\left(H_{0}^{\prime}\right)=m \cdot M_{k}^{r}\left(H_{0}\right)+m-1 .
$$

Proof. Let e_{0} be a hyperedge of H_{0} such that H_{0} is K_{k}^{r}-civilized with respect to e_{0} and let $\left(F_{0}, e_{1}, \ldots, F_{T-1}, e_{T}\right)$ be the trajectory of H_{0}. Let us describe the construction of H_{0}^{\prime}. First, let w_{1}, \ldots, w_{m} be distinct vertices which are not in $V\left(H_{0}\right)$. For any $e \in V\left(H_{0}\right)^{(r)}$ and $1 \leqslant j \leqslant m$, let $e^{+j}=e \cup\left\{w_{j}\right\}$. Let H_{0}^{1} be $H_{0}^{+w_{1}}$ and, for $2 \leqslant j \leqslant m$, let H_{0}^{j} be $H_{0}^{+w_{j}} \backslash\left\{e_{0}^{+j}\right\}$. For each $1 \leqslant j \leqslant m-1$, let $X_{j}:=\left\{x_{j}^{1}, \ldots, x_{j}^{k-r-1}\right\}$ be a set of vertices disjoint from the set of vertices introduced so far. For $1 \leqslant j \leqslant m-1$, let $f(j)=T$ if j is odd and $f(j)=0$ if j is even. For $1 \leqslant j \leqslant m-1$, let C_{j} be the $(r+1)$-uniform hypergraph with vertex set $\left\{w_{j}, w_{j+1}\right\} \cup X_{j} \cup e_{f(j)}$ containing all hyperedges in this set, except for $e_{f(j)}^{+j}$ and $e_{f(j)}^{+(j+1)}$. Finally,

$$
H_{0}^{\prime}:=\left(\bigcup_{j=1}^{m} H_{0}^{j}\right) \cup\left(\bigcup_{j=1}^{m-1} C_{j}\right) .
$$

Intuitively, the way to think of this is as follows. For each $1 \leqslant j \leqslant m$, the hypergraph H_{0}^{j} will emulate the K_{k}^{r}-bootstrap process with initial infection H_{0}, either in the forward or backwards (as in Lemma 13) direction, depending on the parity of j. The hypergraph C_{j} for $1 \leqslant j \leqslant m-1$ is used to link the process on H_{0}^{j} to the process H_{0}^{j+1} in such a way that the termination of the former triggers the start of the latter.

Let us formalize this. First, we show that, if $x \in X_{j}$ for some $1 \leqslant j \leqslant m-1$, then, for all $t \geqslant 0$, every hyperedge e of H_{t}^{\prime} containing x is contained in $V\left(C_{j}\right)$. Suppose that this is not the case, let t be the minimum time for which it fails and let z be a vertex of e that is not in $V\left(C_{j}\right)$. Clearly, by construction of H_{0}^{\prime}, we must have $t \geqslant 1$. By minimality of t, there must be a copy F of K_{k+1}^{r+1} which is susceptible to H_{t-1}^{\prime} and contains e. Since $k+1>r+1$, we can let u be a vertex of $V(F) \backslash e$. Since $r+1 \geqslant 4$, we can choose y to be a vertex of $e \backslash\{x, z\}$. Now, consider the set $e^{\prime}=e \backslash\{y\} \cup\{u\}$. This is a hyperedge of F which contains both of x and z. However, all hyperedges of F other than e are in H_{t-1}^{\prime}, and so e^{\prime} is in H_{t-1}^{\prime} which contradicts the minimality of t.

Next, observe that, for any $t \geqslant 0$, the hypergraph H_{t}^{\prime} does not contain any hyperedge which includes w_{j} and $w_{j^{\prime}}$ for $\left|j-j^{\prime}\right|>1$. Note that H_{0}^{\prime} has no such hyperedge. Consider the first time $t \geqslant 1$ that such a hyperedge appears, and observe that the relevant copy of K_{k+1}^{r+1} that was allegedly susceptible to H_{t-1}^{\prime} is missing all other hyperedges containing w_{j} and $w_{j^{\prime}}$ by minimality of t, which is a contradiction.

Now, let us show that, for $1 \leqslant j \leqslant m-1$, for every $t \geqslant 0$, every hyperedge e of H_{t}^{\prime} containing w_{j} and w_{j+1} is contained in $V\left(C_{j}\right)$. If not, let t be the minimum time that it
is violated and let z be the offending vertex of e. As usual, $t \geqslant 1$ by construction of H_{0}^{\prime}. Take a copy F of K_{k+1}^{r+1} which is susceptible to H_{t-1}^{\prime} and contains e. Since $k+1>r+1$, we can let u be a vertex of $V(F) \backslash e$. Since $r+1 \geqslant 4$, we can pick $y \in e \backslash\left\{w_{j}, w_{j+1}, z\right\}$. Now, consider $e^{\prime}=e \backslash\{y\} \cup\{u\}$. This is a hyperedge of F other than e which contains w_{j}, w_{j+1} and z, which contradicts the minimality of t.

Putting all of this together, we see that the only hyperedges that can become infected during the K_{k+1}^{r+1}-bootstrap process starting with H_{0}^{\prime} are those which are contained within $V\left(H_{0}^{j}\right)$ for some $1 \leqslant j \leqslant m$ or within $V\left(C_{j}\right)$ for some $1 \leqslant j \leqslant m-1$. The hyperedges of H_{0}^{\prime} within $V\left(C_{j}\right)$ form nothing more than a copy of K_{k+1}^{r+1} with two hyperedges removed. The same is true for the hyperedges within $V\left(F_{i}\right) \cup\left\{w_{j}\right\}$ for any copy F_{i} of K_{k}^{r} in the trajectory of H_{0} and any $1 \leqslant j \leqslant m$ with the exception of the case $i=0$ and $j=1$, in which case the hyperedges form a copy of K_{k+1}^{r+1} with one hyperedge removed. Therefore, the trajectory of H_{0}^{\prime} follows that of $H_{0}^{+w_{1}}$ for the first $M_{k}^{r}\left(H_{0}\right)$ steps. At that point, the hyperedge e_{T}^{+1} has become infected, which causes C_{1} to become susceptible. Thus, e_{T}^{+2} becomes infected. This triggers the process in H_{0}^{2} to start running in the reverse direction as in Lemma 13, and so on. Putting all of this together, the fact that H_{0} is K_{k}^{r}-civilized with respect to e_{0} now implies that H_{0}^{\prime} is K_{k+1}^{r+1}-civilized with respect to e_{0}^{+1}. The running time includes $M_{k}^{r}\left(H_{0}\right)$ steps for every $1 \leqslant j \leqslant m$, plus one extra step for each $1 \leqslant j \leqslant m-1$. This completes the proof.

Using the results of this section, we show that, in order to prove Theorems 4 and 5, it suffices to find K_{k}^{r}-civilized constructions with long running time for $r=3$ and $k \in\{4,5\}$.

Corollary 17. If there is a K_{4}^{3}-civilized hypergraph H_{0} on n vertices with $M_{4}^{3}\left(H_{0}\right)=$ $\Omega\left(n^{2}\right)$, then Theorem 4 holds. Likewise, if there is a K_{5}^{3}-civilized hypergraph H_{0}^{\prime} on n vertices with $M_{5}^{3}\left(H_{0}^{\prime}\right)=\Omega\left(n^{3}\right)$, then Theorem 5 holds.

Proof. For any fixed $r \geqslant 3$ and k such that $k=r+1$, applying Lemma 16 with $m=\Theta(n)$ exactly $r-3$ times to the hypergraph H_{0} in the statement of the corollary yields an r-uniform hypergraph with $O(n)$ vertices whose running time with respect to the $K_{k^{-}}^{r}$ bootstrap process is $\Omega\left(n^{r-1}\right)$. For $r \geqslant 3$ and $k \geqslant r+2$, apply Proposition 11 to H_{0}^{\prime} exactly $k-r-2$ times, and then Lemma 16 with $m=\Theta(n)$ exactly $r-3$ times to get an r-uniform hypergraph with $O(n)$ vertices whose running time with respect to the K_{k}^{r} bootstrap process is $\Omega\left(n^{r}\right)$. Trivially, $M_{k}^{r}(n) \leqslant\binom{ n}{r}=O\left(n^{r}\right)$ and so $M_{k}^{r}(n)=\Theta\left(n^{r}\right)$.

3 Getting the Beachball Rolling

The following definition provides a simple gadget that will be used in both of our main constructions. See Figure 1 for an illustration.

Definition 18. For $n \geqslant 1$ and distinct vertices $v_{1}, v_{2}, \ldots, v_{n}, u_{1}$ and u_{2}, the beachball hypergraph $B\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$ is the 3 -uniform hypergraph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\} \cup$ $\left\{u_{1}, u_{2}\right\}$ and hyperedges $\left\{u_{1}, v_{i}, v_{i+1}\right\}$ and $\left\{u_{2}, v_{i}, v_{i+1}\right\}$ for $1 \leqslant i \leqslant n-1$, as well as the hyperedge $\left\{u_{1}, u_{2}, v_{1}\right\}$.

Figure 1: An illustration of the hypergraph $B\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$.
We call u_{1} and u_{2} the top and bottom vertices of $B\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$, respectively. The vertices $v_{1}, v_{2}, \ldots, v_{n}$ are the middle vertices. A key property of beachball hypergraphs is that they behave in a very straightforward way with respect to the K_{4}^{3}-process.

Lemma 19. For $n \geqslant 2$, the hypergraph $B\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$ is K_{4}^{3}-civilized with respect to $e_{0}=\left\{u_{1}, u_{2}, v_{1}\right\}$ with trajectory $\left(F_{0}, e_{1}, \ldots, F_{n-2}, e_{n-1}\right)$ where

$$
V\left(F_{i}\right)=\left\{u_{1}, u_{2}, v_{i+1}, v_{i+2}\right\}, \quad e_{i+1}=\left\{u_{1}, u_{2}, v_{i+2}\right\}
$$

for all $0 \leqslant i \leqslant n-2$.
Proof. For the purposes of this proof, denote $B\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$ by B_{0}^{n}. Say that a hyperedge e is flat if it is contained in $\left\{v_{1}, \ldots, v_{n}\right\}$ and wide if it contains exactly one of u_{1} or u_{2} and is not an element of $E\left(B_{0}^{n}\right)$.

We claim that B_{t}^{n} contains no flat or wide hyperedges for any $t \geqslant 0$. For $t=0$, this is true by definition of B_{0}^{n}. Now, consider the minimum t for which the statement does not hold and let $e \in B_{t}^{n}$ be a hyperedge which is either flat or wide. Then there must exist a copy F of K_{4}^{3} with $e \in E(F)$ which is susceptible to B_{t-1}^{n}. Let v be the unique vertex of $V(F) \backslash e$. If e is flat, then we can write $e=\left\{v_{i}, v_{j}, v_{k}\right\}$ for $1 \leqslant i<j<k \leqslant n$. If $v \in\left\{v_{1}, \ldots, v_{n}\right\}$, then B_{t-1}^{n} must contain the hyperedge $e \backslash\left\{v_{i}\right\} \cup\{v\}$. However, this hyperedge is flat, which contradicts the minimality of t. Likewise, if $v \in\left\{u_{1}, u_{2}\right\}$, then B_{t-1}^{n} contains the hyperedge $\left\{v_{i}, v_{k}, v\right\}$, which is wide, and so we get another contradiction. Similarly, if e is wide, then, depending on whether $v \in\left\{v_{1}, \ldots, v_{n}\right\}$ or $v \in\left\{u_{1}, u_{2}\right\}$, we find either a flat or a wide hyperedge in B_{t-1}^{n}, respectively. This proves the claim.

Thus, the only hyperedges which can become infected after any number of steps are those of the form $\left\{u_{1}, u_{2}, v_{i}\right\}$ for some $i \in\{2, \ldots, n\}$. This implies that the only copies of K_{4}^{3} that can be susceptible at any time are those whose vertex sets have the form $\left\{u_{1}, u_{2}, v_{i}, v_{i+1}\right\}$ for some $i \in\{1, \ldots, n-1\}$.

Now, we claim that, for all $0 \leqslant t \leqslant n-2$, a hyperedge of the form $\left\{u_{1}, u_{2}, v_{i}\right\}$ for $1 \leqslant i \leqslant n$ is contained in B_{t}^{n} if and only if $i \leqslant t+1$. This is clearly true for $t=0$
by construction. Consider the minimum $t \geqslant 1$ for which this statement is false and let $j>t+1$ such that $e=\left\{u_{1}, u_{2}, v_{j}\right\} \in B_{t}^{n}$. Then, by the result of the previous paragraph, the only possible copies of K_{4}^{3} containing e which could be susceptible at time $t-1$ are the ones with vertex set $\left\{u_{1}, u_{2}, v_{j-1}, v_{j}\right\}$ or $\left\{u_{1}, u_{2}, v_{j}, v_{j+1}\right\}$. However, this implies that either $\left\{u_{1}, u_{2}, v_{j-1}\right\}$ or $\left\{u_{1}, u_{2}, v_{j+1}\right\}$ is in $E\left(B_{t-1}^{n}\right)$; in either case, this contradicts the minimality of t.

Therefore, B_{0}^{n} is K_{4}^{3}-tame with the trajectory described in the statement in the lemma. Let us argue that B_{0}^{n} is K_{4}^{3}-civilized with respect to $e_{0}=\left\{u_{1}, u_{2}, v_{1}\right\}$. Condition 12 of Definition 12 follows from the construction of the beachball hypergraph, since all of the sets $\left\{u_{1}, u_{2}, v_{i+1}, v_{i+2}\right\}$ for $0 \leqslant i \leqslant n-2$ form a copy of K_{4}^{3} with two hyperedges missing from $B_{0}^{n} \backslash\left\{e_{0}\right\}$. For the same reason, condition 12 also holds. This completes the proof.

In our construction for the K_{4}^{3}-bootstrap process, we will also require the hypergraph $B^{\prime}\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$ obtained from $B\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$ by adding the hyperedge $\left\{u_{1}, v_{1}, v_{n}\right\}$. We call this an augmented beachball hypergraph. Next, we show that the addition of this hyperedge extends the running time by one step without disrupting any of the steps that came before it. In fact, this hypergraph is still K_{4}^{3}-civilized, albeit with respect to a different hyperedge $e_{0}^{\prime} \neq e_{0}$.

Figure 2: An illustration of the hypergraph $B^{\prime}\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$.

Lemma 20. For $n \geqslant 4$, the hypergraph $B^{\prime}\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$ is K_{4}^{3}-civilized with respect to $e_{0}^{\prime}=\left\{u_{1}, v_{1}, v_{2}\right\}$ with trajectory $\left(F_{0}, e_{1}, \ldots, F_{n-1}, e_{n}\right)$ where $\left(F_{0}, e_{1}, \ldots, F_{n-2}, e_{n-1}\right)$ is the trajectory of $B\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$ and

$$
V\left(F_{n-1}\right)=\left\{u_{1}, u_{2}, v_{1}, v_{n}\right\}, \quad e_{n}=\left\{u_{2}, v_{1}, v_{n}\right\}
$$

Proof. Let us denote $B\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$ by B_{0}^{n} and $B^{\prime}\left(v_{1}, \ldots, v_{n}, u_{1}, u_{2}\right)$ by $B_{0}^{\prime n}$. By Lemma 19, for every $0 \leqslant t \leqslant n-2$, the only hyperedge of B_{t}^{n} contained within $\left\{u_{1}, u_{2}, v_{1}, v_{n}\right\}$ is $\left\{u_{1}, u_{2}, v_{1}\right\}$. Therefore, if we additionally infect the hyperedge $\left\{u_{1}, v_{1}, v_{n}\right\}$
at time zero, as is the case in $B_{0}^{\prime n}$, then, for $0 \leqslant t \leqslant n-2$, the copy of K_{4}^{3} with this vertex set has at most two infected hyperedges at time t, and is therefore not susceptible at that time. Any other copy of K_{4}^{3} containing $\left\{u_{1}, v_{1}, v_{n}\right\}$ has at most one infected hyperedge. Thus, we have that $B_{t}^{\prime n}=B_{t}^{n} \cup\left\{\left\{u_{1}, v_{1}, v_{n}\right\}\right\}$ for $0 \leqslant t \leqslant n-1$.

Given that the hyperedge $\left\{u_{1}, v_{1}, v_{n}\right\}$ is infected in $B_{0}^{\prime n}$, we see that the copy of K_{4}^{3} with vertex set $\left\{u_{1}, u_{2}, v_{1}, v_{n}\right\}$ is susceptible to $B_{n-1}^{\prime n}$. Note that, by Lemma $19,\left\{u_{1}, v_{1}, v_{n}\right\}$ is the unique wide hyperedge (to borrow terminology from the proof of Lemma 19) that is infected at time $n-1$. Thus, there is only one susceptible copy of K_{4}^{3} at time $n-1$ and we have that ${B_{n}^{\prime n}}_{n}=B_{n-1}^{\prime n} \cup\left\{\left\{u_{2}, v_{1}, v_{n}\right\}\right\}$. Let us show that $B_{n}^{\prime n}$ is K_{4}^{3}-stable. Note that the only wide or flat infected hyperedges at time n are precisely $\left\{u_{1}, v_{1}, v_{n}\right\}$ and $\left\{u_{2}, v_{1}, v_{n}\right\}$, both of which are wide. Any K_{4}^{3} containing both of u_{1} and u_{2} is either fully infected in $B_{n}^{\prime n}$ or contains two healthy wide hyperedges. Any K_{4}^{3} containing exactly one of u_{1} or u_{2} contains at least one healthy wide hyperedge (here, we use that $n \geqslant 4$) and exactly one healthy flat hyperedge. Finally, any K_{4}^{3} consisting containing neither u_{1} nor u_{2} consists only of flat hyperedges and therefore none of its edges are in $B_{n}^{\prime n}$. Thus, $B_{0}^{\prime n}$ is K_{4}^{3}-tame. Note that the only $0 \leqslant j \leqslant n-1$ for which F_{j} contains the hyperedge e_{0}^{\prime} is F_{0}. Also, $\left\{u_{1}, u_{2}, v_{1}, v_{n}\right\}$ does not contain any of the hyperedges $e_{0}^{\prime}, e_{1}, \ldots, e_{n-2}$. Combining this with Lemma 19, we see that ${B_{0}^{\prime n}}^{n}$ satisfies condition 12 of Definition 12 with respect to e_{0}^{\prime}. Note that the only hyperedges that are present in $B_{0}^{\prime n} \backslash\left\{e_{0}^{\prime}\right\}$ and absent from $B_{0}^{n} \backslash\left\{e_{0}\right\}$ are e_{0} and $\left\{u_{1}, v_{1}, v_{n}\right\}$. Thus, since B_{0}^{n} is K_{4}^{3}-civilized with respect to e_{0}, if there is a copy of K_{4}^{3} that is susceptible to $B_{0}^{\prime n} \backslash\left\{e_{0}^{\prime}\right\}$, then it must contain e_{0} or $\left\{u_{1}, v_{1}, v_{n}\right\}$. However, every such copy has at least two hyperedges that are missing from $B_{0}^{\prime n} \backslash\left\{e_{0}^{\prime}\right\}$, and so condition 12 of Definition 12 is satisfied.

Next, we show that, by carefully chaining together augmented beachball hypergraphs, one obtains a K_{4}^{3}-civilized hypergraph with quadratic running time. This implies Theorem 4 via Corollary 17.

Theorem 21. For any $n \geqslant 4$ and $m \geqslant 2$ there exists a K_{4}^{3}-civilized hypergraph H_{0} with $n+m$ vertices such that

$$
M_{4}^{3}\left(H_{0}\right)=(m-1) n .
$$

Proof. Let v_{0}, \ldots, v_{n-1} be distinct vertices whose indices are viewed "cyclically" modulo n. In particular, for any i, we have $v_{-i}=v_{n-i}=v_{2 n-i}$, and so on. Let u_{0}, \ldots, u_{m-1} be m additional vertices which are distinct from one another, and from v_{0}, \ldots, v_{n-1}. For $0 \leqslant i \leqslant m-2$, define $S_{i}:=\left\{v_{0}, \ldots, v_{n-1}\right\} \cup\left\{u_{i}, u_{i+1}\right\}$. We let H_{0} be the hypergraph

$$
B^{\prime}\left(v_{0}, v_{1}, \ldots, v_{n-1}, u_{0}, u_{1}\right) \cup\left(\bigcup_{i=1}^{m-2} B^{\prime}\left(v_{-i}, v_{1-i}, \ldots, v_{n-1-i}, u_{i}, u_{i+1}\right) \backslash\left\{\left\{v_{-i}, v_{1-i}, u_{i}\right\}\right\}\right) .
$$

The construction can be thought of intuitively as follows. Start with the hypergraph $B^{\prime}\left(v_{0}, \ldots, v_{n-1}, u_{0}, u_{1}\right)$. Then, we take the same beachball hypergraph again, except that we delete one specific hyperedge, rotate the middle vertices by one, move the bottom vertex to the top, and insert a new vertex on the bottom. Repeat until there are no remaining vertices to add. See Figure 3 for an illustration.

Figure 3: The hypergraph H_{0} constructed in the proof of Theorem 21. We have drawn the only hyperedges of H_{0} that are on S_{0}, S_{1} and S_{2} for illustration purposes.

First, we claim that the hyperedges of H_{0} within S_{0} are precisely the hyperedges of the augmented beachball hypergraph on its vertices. Every hyperedge of the augmented beachball hypergraph on S_{0} was added, by definition of H_{0}, and so it suffices to show that no additional hyperedges are present. For $i>1$, all of the hyperedges of $B^{\prime}\left(v_{-i}, v_{1-i}, \ldots, v_{n-1-i}, u_{i}, u_{i+1}\right)$ contain u_{i} or u_{i+1} and thus are not contained in S_{0}. Moreover, the only hyperedge of $B^{\prime}\left(v_{n-1}, v_{0}, \ldots, v_{n-2}, u_{1}, u_{2}\right)$ contained in S_{0} that is not a hyperedge of the augmented beachball on its vertices is $\left\{v_{n-1}, v_{0}, u_{1}\right\}$ which was deleted during the construction of H_{0}. This proves the claim. The same argument also proves that, for all $i \geqslant 1$, the hyperedges within the vertices S_{i} are precisely those of the augmented beachball hypergraph on these vertices, except that the hyperedge $\left\{v_{-i}, v_{1-i}, u_{i}\right\}$ is missing.

Now, we also observe that, for any $t \geqslant 0$, the hypergraph H_{t} does not contain any hyperedge which includes u_{i} and $u_{i^{\prime}}$ with $\left|i-i^{\prime}\right|>1$. To see this, consider the first time that it fails and consider the susceptible K_{4}^{3} which caused it; as H_{0} contains no such hyperedges containing u_{i} and $u_{i^{\prime}}$, we get a contradiction.

By Lemma 20, every augmented beachball in the chain is K_{4}^{3}-civilised, and the corresponding trajectory implies that the hyperedge $\left\{v_{-i}, v_{1-i}, u_{i}\right\}$ is contained in the unique K_{4}^{3} that is susceptible to $B^{\prime}\left(v_{-i}, v_{1-i}, \ldots, v_{n-1-i}, u_{i}, u_{i+1}\right)$.

So we see that, for any $i \geqslant 1$, the first hyperedge in S_{i} that becomes infected does so due to a susceptible copy of K_{4}^{3} with precisely one vertex outside of S_{i} (since it cannot be contained entirely inside S_{i}); until such a copy appears, no additional hyperedges in S_{i} become infected. Note that this statement is not true for $i=0$, as the first hyperedge in S_{0} becomes infected due to a susceptible copy of K_{4}^{3} contained within S_{0}.

Putting this together, we see that the only hyperedges that become infected in the first n steps are exactly those which become infected in the K_{4}^{3}-bootstrap process in $B^{\prime}\left(v_{0}, v_{1}, \ldots, v_{n-1}, u_{0}, u_{1}\right)$. By Lemma 20 , all of these hyperedges are disjoint from S_{i} for all $i \geqslant 1$, except for the last one, namely $\left\{u_{1}, v_{0}, v_{n-1}\right\}$, which happens to be the unique hyperedge of $B^{\prime}\left(v_{n-1}, v_{0}, \ldots, v_{n-2}, u_{1}, u_{2}\right)$ that is missing from H_{0}. From this point, the infection follows the K_{4}^{3}-bootstrap process in $B^{\prime}\left(v_{n-1}, v_{0}, \ldots, v_{n-2}, u_{1}, u_{2}\right)$ for n steps. This pattern repeats itself $m-1$ times. Thus, H_{0} is K_{4}^{3}-tame. The proof that the additional conditions of Definition 12 hold with respect to $e_{0}^{\prime}=\left\{u_{0}, v_{0}, v_{1}\right\}$ is analogous to the arguments given in the proofs of the lemmas in this section, and so we omit it.

This completes the proof.
Proof of Theorem 4. For each $n \geqslant 8$, Theorem 21 gives us a K_{4}^{3}-civilized hypergraph H_{0} on n vertices such that

$$
M_{4}^{3}\left(H_{0}\right) \geqslant\left(\left\lceil\frac{n}{2}\right\rceil-1\right)\left\lfloor\frac{n}{2}\right\rfloor .
$$

The result now follows by Corollary 17 .

4 Cubic Time Construction for K_{5}^{3}

Our final task is to use the beachball hypergraph again to obtain a construction for the K_{5}^{3}-bootstrap process with cubic running time.

Theorem 22. For any $n \geqslant 2$ and $m \geqslant 2$, there exists a K_{5}^{3}-civilized hypergraph H_{0} with $2 n+4 m+4$ vertices such that

$$
M_{5}^{3}\left(H_{0}\right)=(2 n+4) m^{2}-1 .
$$

Proof. The vertices of the construction are naturally divided into two "halves" which share exactly two special vertices, w_{1} and w_{2}. For $i \in\{1,2\}$, the vertices that are "exclusive" to the i th half are $v_{1}^{i}, \ldots, v_{n}^{i}, u_{1}^{i}, \ldots, u_{m}^{i}, z_{1}^{i}, \ldots, z_{m}^{i}$ and x^{i}. Each half of the construction has $n+2 m+1$ exclusive vertices. Together with w_{1} and w_{2}, this makes $2 n+4 m+4$ vertices in total.

For $1 \leqslant j \leqslant m^{2}$, let $\left(a_{j}, b_{j}\right)$ be the j th element of $\{1,2, \ldots, m\} \times\{1,2, \ldots, m\}$ in lexicographic order. For $1 \leqslant j \leqslant m^{2}$, let C_{j}^{1} be the copy of K_{5}^{3} with vertex set $\left\{u_{a_{j}}^{1}, z_{b_{j}}^{1}, u_{a_{j}}^{2}, z_{b_{j}}^{2}, w_{2}\right\}$ and, if $j \leqslant m^{2}-1$, then we additionally define C_{j}^{2} to be the copy of K_{5}^{3} with vertex set $\left\{u_{a_{j}}^{2}, z_{b_{j}}^{2}, u_{a_{j+1}}^{1}, z_{b_{j+1}}^{1}, w_{1}\right\}$. Let

$$
B_{j}^{1}:=B\left(w_{1}, v_{1}^{1}, \ldots, v_{n}^{1}, w_{2}, u_{a_{j}}^{1}, z_{b_{j}}^{1}\right) \vee x^{1}
$$

and

$$
B_{j}^{2}:=B\left(w_{2}, v_{1}^{2}, \ldots, v_{n}^{2}, w_{1}, u_{a_{j}}^{2}, z_{b_{j}}^{2}\right) \vee x^{2}
$$

for all $1 \leqslant j \leqslant m^{2}$. Define H_{0} to be the union of the following five hypergraphs

$$
\begin{gathered}
B_{1}^{1}, \\
\bigcup_{j=2}^{m^{2}} B_{j}^{1} \backslash\left\{\left\{u_{a_{j}}^{1}, z_{b_{j}}^{1}, w_{1}\right\}\right\}, \\
\bigcup_{j=1}^{m^{2}} B_{j}^{2} \backslash\left\{\left\{u_{a_{j}}^{2}, z_{b_{j}}^{2}, w_{2}\right\}\right\},
\end{gathered}
$$

$$
\begin{aligned}
& \bigcup_{j=1}^{m^{2}} C_{j}^{1} \backslash\left\{\left\{u_{a_{j}}^{1}, z_{b_{j}}^{1}, w_{2}\right\},\left\{u_{a_{j}}^{2}, z_{b_{j}}^{2}, w_{2}\right\}\right\}, \text { and } \\
& \bigcup_{j=1}^{m^{2}-1} C_{j}^{2} \backslash\left\{\left\{u_{a_{j}}^{2}, z_{b_{j}}^{2}, w_{1}\right\},\left\{u_{a_{j+1}}^{1}, z_{b_{j+1}}^{1}, w_{1}\right\}\right\} .
\end{aligned}
$$

Intuitively, the way that the infection evolves can be described as follows. It starts by propagating through B_{1}^{1}, the first beachball hypergraph on the first half, in the way described by Lemma 19 and Proposition 11. This takes $n+1$ steps. The hyperedge that gets infected in the last step is $\left\{u_{a_{1}}^{1}, z_{b_{1}}^{1}, w_{2}\right\}$. Consequently, now all of the hyperedges within $V\left(C_{1}^{1}\right)$ except for $\left\{u_{a_{1}}^{2}, z_{b_{1}}^{2}, w_{2}\right\}$ are infected, and so this hyperedge gets infected in the next step; at this point, we have done $n+2$ steps in total. This was the only hyperedge of B_{1}^{2} that is not in H_{0}, and so its infection triggers the beachball hypergraph B_{1}^{2} on the right half of the construction. The process inside B_{1}^{2} ends with the infection of the hyperedge $\left\{u_{a_{1}}^{2}, z_{b_{1}}^{2}, w_{1}\right\}$, which is in $V\left(C_{1}^{2}\right)$. So now all the hyperedges of $V\left(C_{1}^{2}\right)$ except $\left\{u_{a_{2}}^{1}, z_{b_{2}}^{1}, w_{1}\right\}$ are infected, and hence this hyperedge gets infected in the next step. This transfers the infection back over to the left half of the construction by triggering B_{2}^{1}, and so on. If the process does indeed progress in this manner, then, in total, it will take $n+2$ steps for every $1 \leqslant j \leqslant m^{2}$ and every $i \in\{1,2\}$, with the exception of $j=m^{2}$ and $i=2$, which only contributes $n+1$ steps (since $C_{m^{2}}^{2}$ has not been defined). Thus, there are $(2 n+4) m^{2}-1$ steps.

Let us now make this rigorous. Our goal is to show that H_{0} is K_{5}^{3}-civilized with respect to $e_{0}=\left\{u_{a_{1}}^{1}, z_{b_{1}}^{1}, w_{1}\right\}$; on the way to that goal, we will need to establish several claims. First, we observe that any pair of vertices which are not contained together in a hyperedge of H_{0} are not contained together in any hyperedge of H_{t} for any $t \geqslant 0$; to see this, consider the first time that such a hyperedge becomes infected, look at the susceptible copy of K_{5}^{3} which caused it and get a contradiction. This argument immediately yields the following claim. Throughout the statement of the claim, keep in mind that w_{1} and w_{2} are regarded as being on both halves of the construction, but all other vertices are exclusive to one half or the other.

Claim 23. For any $t \geqslant 0, H_{t}$ does not contain any hyperedge e which satisfies any of the following conditions:
(i) e contains x^{i} but is not contained in the ith half of the construction for some $i \in$ $\{1,2\}$,
(ii) e contains v_{j}^{i} but is not contained in the ith half of the construction for some $1 \leqslant$ $j \leqslant n$ and $i \in\{1,2\}$,
(iii) e contains two of $u_{1}^{i}, \ldots, u_{m}^{i}$ or two of $z_{1}^{i}, \ldots, z_{m}^{i}$ for some $i \in\{1,2\}$.

The purpose of the next claim is similar to the previous one; i.e. to rule out certain types of hyperedges from becoming infected.

Claim 24. For any $t \geqslant 0$, every hyperedge of H_{t} containing both w_{1} and w_{2} must also contain one of x^{1} or x^{2}.

Proof of Claim 24. Consider the first time t such that H_{t} contains a hyperedge e that contains both of w_{1} and w_{2} but neither of x^{1} nor x^{2}. Note that $t \geqslant 1$ by construction of H_{0}. Let F be the copy of K_{5}^{3} containing e which is susceptible to H_{t-1}. By minimality of t, the only two hyperedges of H_{t-1} containing w_{1} and w_{2} are $\left\{w_{1}, w_{2}, x^{1}\right\}$ and $\left\{w_{1}, w_{2}, x^{2}\right\}$. So, the vertices of F must consist of $w_{1}, w_{2}, x^{1}, x^{2}$ and a fifth vertex, say y. However, y is exclusive to one of the two halves of the construction, and so, regardless of which half it is, H_{t-1} contains several hyperedges which satisfy condition 23 of Claim 23, which is a contradiction.

Let us now show that H_{0} is K_{5}^{3}-tame with the trajectory that was described earlier in the proof. Suppose that this is not the case, let $t \geqslant 1$ be the minimum time in which there is an unexpected infected hyperedge, say e. Let F be a copy of K_{5}^{3} containing e which is susceptible to H_{t-1}. By Lemma 19 and minimality of t, we cannot have $V(F) \subseteq B_{j}^{i}$ for any $1 \leqslant j \leqslant m^{2}$ and $i \in\{1,2\}$. Now, any five vertices on the i th half of the construction are either contained in B_{j}^{i} for some j or contain two of $u_{1}^{i}, \ldots, u_{m}^{i}$ or two of $z_{1}^{i}, \ldots, z_{m}^{i}$. So, as there are no hyperedges satisfying condition 23 of Claim 23, $V(F)$ must contain at least one vertex that is exclusive to each half of the construction. But now, since no hyperedges satisfy Claim 2323 or 23 , we get that $V(F)$ cannot contain any of the vertices x^{i} or v_{j}^{i} for $i \in\{1,2\}$ and $1 \leqslant j \leqslant n$. This also means that it cannot contain both of w_{1} and w_{2} by Claim 24. On the other hand, it must contain at least one of w_{1} or w_{2}; if not, then three vertices of F are exclusive to one of the sides of the partition, and we get a contradiction from Claim 23 23. Using Claim 2323 one more time, we see that $V(F)$ has the form $\left\{u_{a}^{1}, z_{b}^{1}, w_{\ell}, u_{c}^{2}, z_{d}^{2}\right\}$ for some $1 \leqslant a, b, c, d \leqslant m$ and $\ell \in\{1,2\}$. We now divide the proof into cases.
Case 1. e does not contain w_{ℓ}.
We assume that $e=\left\{u_{a}^{1}, z_{b}^{1}, u_{c}^{2}\right\}$ and note that the other three cases follow from similar arguments. Let $1 \leqslant j \leqslant m^{2}$ be chosen so that $a=a_{j}$ and $b=b_{j}$; such a j exists by construction of H_{0}. The hypergraph H_{t-1} contains the hyperedge $e^{\prime}=e \backslash\left\{u_{c}^{2}\right\} \cup\left\{z_{d}^{2}\right\}$ and so, by minimality of t, we get that e^{\prime} is contained in either $V\left(C_{j}^{1}\right)$ or $V\left(C_{j-1}^{2}\right)$. Indeed, under the trajectory described at the beginning of the proof, every hyperedge containing two vertices exclusive to one side and one exclusive to the other had this property. The fact that e^{\prime} is contained in $V\left(C_{j}^{1}\right)$ or $V\left(C_{j-1}^{2}\right)$ implies that e is as well. However, every hyperedge of C_{j}^{1} or C_{j-1}^{2} not containing w_{1} or w_{2} was added to H_{0} originally, which contradicts our choice of e.
Case 2. e contains w_{ℓ}.
Again, let $1 \leqslant j \leqslant m^{2}$ be chosen so that $a=a_{j}$ and $b=b_{j}$. The hyperedge $\left\{u_{a_{j}}^{1}, z_{b_{j}}^{1}, u_{c}^{2}\right\}$ is contained in H_{t-1} and so, by minimality of t, it must be contained in either $V\left(C_{j}^{1}\right)$ or $V\left(C_{j-1}^{2}\right)$. By definition of $V\left(C_{j}^{1}\right)$ and $V\left(C_{j-1}^{2}\right)$, and our specific choice of lexicographic order in the construction of H_{0}, this implies that either $c=a_{j}$ or $c=a_{j}-1$ and $b_{j}=1$.

Suppose first that $c=a_{j}$. Then we get that H_{t-1} contains $\left\{z_{b_{j}}^{1}, u_{a_{j}}^{2}, z_{d}^{2}\right\}$ which, by minimality of t and construction of H_{0}, implies that either $d=b_{j}$ or $d=b_{j}-1$. If $d=b_{j}$, then we must have that $\ell=2$ by minimality of t since $\left\{z_{b_{j}}^{1}, w_{1}, z_{b_{j}}^{2}\right\}$ is not contained in any of the hypergraphs $C_{1}^{1}, \ldots, C_{m^{2}}^{1}$ or $C_{1}^{2}, \ldots, C_{m^{2}-1}^{2}$. So, in the case that $c=a_{j}$ and $d=b_{j}$, we get that $V(F)=V\left(C_{j}^{1}\right)$. This implies that e is one of the only two hyperedges of C_{j} that are missing from H_{0}. If $e=\left\{u_{a_{j}}^{1}, z_{b_{j}}^{1}, w_{2}\right\}$, then the hyperedge $\left\{w_{2}, u_{a_{j}}^{2}, z_{b_{j}}^{2}\right\}$ is present before e, which contradicts minimality of t. If $e=\left\{w_{2}, u_{a_{j}}^{2}, z_{b_{j}}^{2}\right\}$, then e is being infected due to C_{j}^{1} being susceptible, which fits the description of the trajectory from earlier in the proof, and so this contradicts the definition of e. Now, suppose that $c=a_{j}$ and $d=b_{j}-1$. In this case, we must have $\ell=1$ by minimality of t since $\left\{z_{b_{j}}^{1}, w_{2}, z_{b_{j}-1}^{2}\right\}$ is not contained in any of the sets $C_{1}^{1}, \ldots, C_{m^{2}}^{1}$ or $C_{1}^{2}, \ldots, C_{m^{2}-1}^{2}$. So, what we end up with is $V(F)=V\left(C_{j-1}^{2}\right)$ and we get a contradiction similar to the case that we just analyzed.

Now, suppose that $c=a_{j}-1$ and $b_{j}=1$. Since H_{t-1} contains $\left\{z_{1}^{1}, u_{a_{j}-1}^{2}, z_{d}^{2}\right\}$, we must have either $d=1$ or $d=m$. If $d=1$, we get a contradiction, since $\left\{u_{a_{j}}^{1}, u_{a_{j}-1}^{2}, z_{1}^{2}\right\}$ is not contained in H_{t-1} by minimality of t and the fact that $m \geqslant 2$ and so, under lexicographic order, $\left(a_{j}-1,1\right)$ does not immediately precede or follow any pair involving a_{j} in the first coordinate. So, $d=m$. Now, we get that $\ell=1$ by minimality of t since $\left\{z_{1}^{1}, w_{2}, z_{m}^{2}\right\}$ is not contained in any of the sets $C_{1}^{1}, \ldots, C_{m^{2}}^{1}$ or $C_{1}^{2}, \ldots, C_{m^{2}-1}^{2}$. So, we get that $V(F)=C_{j-1}^{2}$ which leads us to a contradiction, as in the previous paragraph.

Similar arguments also show that, for $e_{0}=\left\{u_{a_{1}}^{1}, z_{a_{1}}^{1}, w_{1}\right\}$, the hypergraph $H_{0} \backslash\left\{e_{0}\right\}$ is K_{5}^{3}-stable; thus, condition 12 of Defintion 12 holds. Clearly each of the copies of K_{5}^{3} in the trajectory of H_{0}, as described above, has precisely two hyperedges missing from $H_{0} \backslash\left\{e_{0}\right\}$ and so 12 holds, too. This completes the proof.

Proof of Theorem 5. For n sufficiently large and $n \equiv 4 \bmod 6$, Theorem 22 provides a K_{5}^{3}-civilized hypergraph H_{0}^{\prime} with n vertices such that

$$
M_{5}^{3}\left(H_{0}^{\prime}\right) \geqslant\left(\frac{n+8}{3}\right)\left(\frac{n-4}{6}\right)^{2}-1 .
$$

The result follows by Corollary 17.

5 Open Problems

While Theorem 5 determines $M_{k}^{r}(n)$ up to a constant factor for all $r \geqslant 3$ and $k \geqslant r+2$, it would be interesting to have a better understanding of the growth rate in the case $k=r+1$. The most interesting question here seems to be whether there is a non-trivial upper bound on the running time of the K_{4}^{3}-bootstrap process; we conjecture that the quadratic lower bound from Theorem 4 is tight up to a constant factor.

Conjecture 25. $M_{4}^{3}(n)=O\left(n^{2}\right)$.

In contrast, we do not believe that Theorem 4 is tight for all $r \geqslant 3$. It is even conceivable that, for large enough r, the maximum running time of the K_{r+1}^{r}-process on n vertices eventually becomes $\Theta\left(n^{r}\right)$. We ask whether this is, indeed, the case.

Question 26. Does there exist an integer r_{0} such that, if $r \geqslant r_{0}$, then $M_{r+1}^{r}(n)=\Theta\left(n^{r}\right)$?

Acknowledgements

We would like to thank the anonymous referee for their helpful comments that improved particular details as well as the overall coherence of the paper.

Remarks

After completing this work, Hartarsky and Lichev [32] and Espuny Díaz, Janzer, Kronenberg and Lada [23] independently disproved 25 by showing that $M_{4}^{3}(n)=\Theta\left(n^{3}\right)$, and consequently answered Question 26 in the affirmative in a rather strong sense with $r_{0}=3$. Hartarsky and Lichev [32] also determine the leading asymptotics of the prefactor when $r \rightarrow \infty$. Additionally, Espuny Díaz et al. [23] provide the first nontrivial exact result about the maximum running times of hypergraph bootstrap percolation by showing that the maximum running time for the H-bootstrap process on n vertices when H is K_{4}^{3} minus an edge is exactly $2 n-\left\lfloor\log _{2}(n-2)\right\rfloor-6$.

References

[1] J. Adler, D. Stauffer, and A. Aharony. Comparison of bootstrap percolation models. J. Phys. A, 22:L297-L301, 1989.
[2] M. Aizenman and J. L. Lebowitz. Metastability effects in bootstrap percolation. J. Phys. A, 21(19):3801-3813, 1988.
[3] N. Alon. An extremal problem for sets with applications to graph theory. J. Combin. Theory Ser. A, 40(1):82-89, 1985.
[4] N. Alon and G. Kalai. A simple proof of the upper bound theorem. European J. Combin., 6(3):211-214, 1985.
[5] P. Balister, B. Bollobás, and P. Smith. The time of bootstrap percolation in two dimensions. Probab. Theory Related Fields, 166(1-2):321-364, 2016.
[6] J. Balogh and B. Bollobás. Bootstrap percolation on the hypercube. Probab. Theory Related Fields, 134(4):624-648, 2006.
[7] J. Balogh, B. Bollobás, H. Duminil-Copin, and R. Morris. The sharp threshold for bootstrap percolation in all dimensions. Trans. Amer. Math. Soc., 364(5):2667-2701, 2012.
[8] J. Balogh, B. Bollobás, and R. Morris. Majority bootstrap percolation on the hypercube. Combin. Probab. Comput., 18(1-2):17-51, 2009.
[9] J. Balogh, B. Bollobás, and R. Morris. Graph bootstrap percolation. Random Structures Algorithms, 41(4):413-440, 2012.
[10] J. Balogh, B. Bollobás, R. Morris, and O. Riordan. Linear algebra and bootstrap percolation. J. Combin. Theory Ser. A, 119(6):1328-1335, 2012.
[11] J. Balogh, G. Kronenberg, A. Pokrovskiy, and T. Szabó. The maximum length of $K_{r^{-}}$ bootstrap percolation. E-print arXiv:1907.04559, to appear in Proc. Amer. Math. Soc., 2019.
[12] F. A. Behrend. On sets of integers which contain no three terms in arithmetical progression. Proc. Nat. Acad. Sci. U.S.A., 32:331-332, 1946.
[13] F. Benevides and M. Przykucki. On slowly percolating sets of minimal size in bootstrap percolation. Electron. J. Combin., 20(2):\#P46, 20, 2013.
[14] F. Benevides and M. Przykucki. Maximum percolation time in two-dimensional bootstrap percolation. SIAM J. Discrete Math., 29(1):224-251, 2015.
[15] M. Bidgoli, A. Mohammadian, and B. Tayfeh-Rezaie. On $K_{2, t^{-}}$-bootstrap percolation. Graphs Combin., 37(3):731-741, 2021.
[16] B. Bollobás. Weakly k-saturated graphs. In Beiträge zur Graphentheorie (Kolloquium, Manebach, 1967), pages 25-31. Teubner, Leipzig, 1968.
[17] B. Bollobás, M. Przykucki, O. Riordan, and J. Sahasrabudhe. On the maximum running time in graph bootstrap percolation. Electron. J. Combin., 24(2):\#P2.16, 20, 2017.
[18] B. Bollobás, P. Smith, and A. Uzzell. Monotone cellular automata in a random environment. Combin. Probab. Comput., 24(4):687-722, 2015.
[19] R. Cerf and E. N. M. Cirillo. Finite size scaling in three-dimensional bootstrap percolation. Ann. Probab., 27(4):1837-1850, 1999.
[20] J. Chalupa, P. L. Leath, and G. R Reich. Bootstrap percolation on a Bethe lattice. J. Phys. C, 12:L31-L35, 1979.
[21] T. Coker and K. Gunderson. A sharp threshold for a modified bootstrap percolation with recovery. J. Stat. Phys., 157(3):531-570, 2014.
[22] P. A Dreyer Jr and F. S Roberts. Irreversible k-threshold processes: Graphtheoretical threshold models of the spread of disease and of opinion. Discrete Applied Mathematics, 157(7):1615-1627, 2009.
[23] A. Espuny Díaz, B. Janzer, G. Kronenberg, and J. Lada. Long running times for hypergraph bootstrap percolation. E-print arXiv:2209.02015v2, 2022.
[24] P. Flocchini, E. Lodi, F. Luccio, L. Pagli, and N. Santoro. Dynamic monopolies in tori. Discrete applied mathematics, 137(2):197-212, 2004.
[25] P. Frankl. An extremal problem for two families of sets. European J. Combin., 3(2):125-127, 1982.
[26] M. Granovetter. Threshold models of collective behavior. American journal of sociology, 83(6):1420-1443, 1978.
[27] J. Gravner and A. E. Holroyd. Slow convergence in bootstrap percolation. Ann. Appl. Probab., 18(3):909-928, 2008.
[28] J. Gravner, A. E. Holroyd, and D. Sivakoff. Polluted bootstrap percolation in three dimensions. Ann. Appl. Probab., 31(1):218-246, 2021.
[29] K. Gunderson, S. Koch, and M. Przykucki. The time of graph bootstrap percolation. Random Structures Algorithms, 51(1):143-168, 2017.
[30] L. Hambardzumyan, H. Hatami, and Y. Qian. Lower bounds for graph bootstrap percolation via properties of polynomials. J. Combin. Theory Ser. A, 174:105253, 12, 2020.
[31] I. Hartarsky. Maximal bootstrap percolation time on the hypercube via generalised snake-in-the-box. Electron. J. Combin., 25(3):\#P3.10, 12, 2018.
[32] I. Hartarsky and L. Lichev. The maximal running time of hypergraph bootstrap percolation. E-print arXiv:2208.13489v1, 2022.
[33] I. Hartarsky and R. Morris. The second term for two-neighbour bootstrap percolation in two dimensions. Trans. Amer. Math. Soc., 372(9):6465-6505, 2019.
[34] A. E. Holroyd. Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Related Fields, 125(2):195-224, 2003.
[35] A. E. Holroyd. The metastability threshold for modified bootstrap percolation in d dimensions. Electron. J. Probab., 11:no. 17, 418-433, 2006.
[36] G. Kalai. Weakly saturated graphs are rigid. In Convexity and graph theory (Jerusalem, 1981), volume 87 of North-Holland Math. Stud., pages 189-190. NorthHolland, Amsterdam, 1984.
[37] G. Kalai. Hyperconnectivity of graphs. Graphs Combin., 1(1):65-79, 1985.
[38] Z. Kelly and R. Meka. Strong bounds for 3-progressions. E-print arXiv:2302.05537v1, 2023.
[39] B. Kolesnik. The sharp K_{4}-percolation threshold on the Erdős-Rényi random graph. Electron. J. Probab., 27:Paper No. 13, 23, 2022.
[40] G. Kronenberg, T. Martins, and N. Morrison. Weak saturation numbers of complete bipartite graphs in the clique. J. Combin. Theory Ser. A, 178:Paper No. 105357, 15, 2021.
[41] L. Lovász. Flats in matroids and geometric graphs. In Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), pages 4586, 1977.
[42] K. Matzke. The saturation time of graph bootstrap percolation. E-print arXiv:1510.06156v2, 2015.
[43] N. Morrison and J. A. Noel. Extremal bounds for bootstrap percolation in the hypercube. J. Combin. Theory Ser. A, 156:61-84, 2018.
[44] N. Morrison and J. A. Noel. A sharp threshold for bootstrap percolation in a random hypergraph. Electron. J. Probab., 26:Paper No. 97, 85, 2021.
[45] N. Morrison, J. A. Noel, and A. Scott. Saturation in the hypercube and bootstrap percolation. Combin. Probab. Comput., 26(1):78-98, 2017.
[46] G. Moshkovitz and A. Shapira. Exact bounds for some hypergraph saturation problems. J. Combin. Theory Ser. B, 111:242-248, 2015.
[47] O. Pikhurko. Uniform families and count matroids. Graphs Combin., 17(4):729-740, 2001.
[48] O. Pikhurko. Weakly saturated hypergraphs and exterior algebra. Combin. Probab. Comput., 10(5):435-451, 2001.
[49] M. Przykucki. Maximal percolation time in hypercubes under 2-bootstrap percolation. Electron. J. Combin., 19(2):\#P41, 13, 2012.
[50] K. F. Roth. On certain sets of integers. J. London Math. Soc., 28:104-109, 1953.
[51] T. Schoen. Improved bound in Roth's theorem on arithmetic progressions. Adv. Math., 386:Paper No. 107801, 20, 2021.
[52] L. Shapiro and A. B. Stephens. Bootstrap percolation, the Schröder numbers, and the N-kings problem. SIAM J. Discrete Math., 4(2):275-280, 1991.
[53] A. C. D. van Enter. Proof of Straley's argument for bootstrap percolation. J. Statist. Phys., 48(3-4):943-945, 1987.
[54] D. J. Watts. A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences, 99(9):5766-5771, 2002.

[^0]: *Research supported by NSERC Discovery Grant RGPIN-2021-02460 and NSERC Early Career Supplement DGECR-2021-00024 and a Start-Up Grant from the University of Victoria.
 ${ }^{\dagger}$ Research supported by Kishore Vaigyanik Protsahan Yojana Fellowship (KVPY), Department of Science and Technology, Govt. of India. and by IISER Pune-IDeaS Scholarship

