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Abstract
Let S2m be symmetric group, h0 = (1 2) · · · (2m − 1 2m) and H = C(h0).

We clarify the structure of gHg−1 ∩ H, g ∈ S2m, and using tools from analytic
combinatorics we prove that the permutations g such that |gHg−1 ∩ H| bounded
by mO(1) have density zero.
Mathematics Subject Classifications: 05A16, 05C88, 05C89

1 Introduction

For any positive integer n, let Sn be the symmetric group on the symbols {1, 2, · · · , n} and
h ∈ Sn be any permutation. We want to know how common elements g ∈ Sn can make
the centralizer C(⟨h, ghg−1⟩) small. Here by “small” we mean of size in polynomial of n.
The interest of such problems is originated from growth in groups as follows. Consider
a permutation subgroup G ⊂ Sn acting on Sn by inner automorphisms. For any subset
A ⊂ G, define the orbit of h under A to be OA(h) = {a−1ha | a ∈ A}. Clearly, if there
are a1, a2 ∈ A such that a−1

1 ha1 = a−1
2 ha2, then a2a

−1
1 ∈ C(h) and we can bound the size

of OA(h) from below by

|OA(h)| = |A/(AA−1 ∩ C(h))| ⩾ |A|/|AA−1 ∩ C(h)|,

where A/ ∼ is modulo by the equivalence relation with a1 ∼ a2 if a2a−1
1 ∈ C(h). This is

a form of the orbit-stabilizer principle. The above lower bound is effective only if C(h) is
small. If C(h) is large and we still want a profitable lower bound, we can study the action
of G on Sn × Sn via

g · (h0, h1) := (g−1h0g, g
−1h1g),∀g ∈ G, h0, h1 ∈ Sn.
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Then at least one of the orbits OA(hi), i = 0, 1, has size at least square root of
|OA((h0, h1))|, which has lower bound

|OA((h0, h1))| ⩾ |A|/|AA−1 ∩ C(h0) ∩ C(h1)| = |A|/|AA−1 ∩ C(⟨h0, h1⟩)|.

Especially when h0 and h1 are conjugate, |OA(h0)| = |OA(h1)| and the above gives a
lower bound for its square. This arithmetic sets up the first step for Helfgott-Seress [8] to
bound the diameter of permutation groups, for which they needed to control the growth
of chains of stabilizers more carefully, see section 1.5 therein.

Hence it makes sense to ask, given h ∈ Sn, how easily we can find g ∈ Sn such that
C(⟨h, ghg−1⟩) is small. If h has k fixed points, then C(h) is at least of size k!. Assum-
ing h has no fixed points, C(h) can still be large if the block partition of the support
of h is fixed in many ways. Such an extreme example occurs for n = 2m even and
h0 = (1 2)(3 4) · · · (2m − 1 2m), written in left-to-right convention for composition of
cycles. Let H be the subgroup of S2m consisting of permutations preserving the partition
{1, 2}, {3, 4}, · · · , {2m− 1, 2m}, then it is not hard to see that H = C(h0). To make the
notion of being “small” more precise, we introduce the following notations. In an asymp-
totic convention, call g ∈ S2m good if |H ∩ gHg−1| = mO(1); call it bad otherwise. Harald
Helfgott wonders in [1] about the structure of good elements and postulated that the
good permutations asymptotically have density 1 in S2m. There seems to be a fair share
of good permutations in S2m, for example if the cycle decomposition of g does not contain
“too many” cycles of the same length, g may be checked good. The paper contributes to
studying the structure of good elements, and however shows that the good permutations
asymptotically have density zero as a negative answer to Helfgott’s postulation.

More precisely we prove

Theorem 1. For any c > 0,

Prob(|H ∩ gHg−1| < mc) → 0, as m → ∞.

Consequently, good elements of S2m have density zero.

The right tail is also estimated to show that

Theorem 2. For some constant C > 0,

Prob
(
|H ∩ gHg−1| > Cmlogm

)
→ 0, as m → ∞.

In particular, the bad elements g ∈ S2m with |H ∩ gHg−1| ≫ mlogm have zero density.

The above results are based on classifying the structure of H ∩ gHg−1 for arbitrary
g ∈ S2m. It turns out that the isomorphism class of H ∩ gHg−1 depends on the double
coset HgH and moreover

Theorem 3. Each HgH has a representative x ∈ Sym{2, 4, · · · , 2m} ⩽ S2m determined
by a partition of m and there is a 1-1 correspondence H\S2m/H ↔ {paritition of m}.
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Furthermore, for any g ∈ HxH with x ∈ Sym{2, 4, · · · , 2m} whose cycle decomposition
has ri cycles of length i, i = 1, · · · , k,

H ∩ gHg−1 ≃
k⊕

i=1

Di ≀ Sri ,

where Di is the dihedral group with 2i elements and ≀ denotes wreath product of groups.
(For convenience we write D1 for C2 or S2.)

Thus |H∩gHg−1| can be seen as a random variable on partitions of m with probability
distribution of counting measure P (λ) = |HxH|

|S2m| , if g ∈ HxH for x ∈ Sym{2, 4, · · · , 2m}
with cycle type λ. Details are examined in section 2.

Outline of paper.
The 1-1 correspondence H\S2m/H ↔ {paritition of m} of Theorem 3 is established

by studying the left and right action of H on S2m in details in section 2.3. It can also be
verified by a character formula in section 2.4. Then combined with an idea of bipartite
graph automorphism construction introduced by J. P. James [14], we prove the structural
result in Theorem 3 in section 2.5. As a byproduct we prove that they are all rational
groups in aspect of representation theory.

Explicitly shown in section 3.1, the distribution of |H ∩ gHg−1| happens to be P =
ESF(1

2
), where ESF(1

2
) is the Ewens’ distribution with bias 1

2
. Then we estimate the left

tail P (⩽ mc) by the moment bound. The expectations for each m involved in the moment
bound are brought together into a special generating function. Then asymptotics of the
expectations can be extracted from coefficients of singular expressions of the generating
function around its singularities which are of logarithmic type, see section 3.2.2. We
use techniques from analytic combinatorics, especially the hybrid method introduced by
Flajolet-Fusy-Gourdon-Panario-Pouyanne [4], to find the correct asymptotics and prove
Theorem 1 in section 3.3.

In the same probabilistic setting, the expectations involved in the moment bound of the
right tail are brought together into generating functions with singularities of exponential
type. Then to prove Theorem 2, we use asymptotics of coefficients of generating functions
of exponential type which was given by E. M. Wright [15], in section 4.

2 Structures of double cosets and H ∩ gHg−1

2.1 Preliminaries on H and H ∩ gHg−1

This section includes some necessary basic group theoretic results on H = C(h0) ⩽ S2m

for h0 = (1 2)(3 4) · · · (2m− 1 2m) and H ∩ gHg−1 for general g ∈ S2m.
Firstly, viewed as preserving the block partition {1, 2}, {3, 4}, · · · , {2m − 1, 2m} of

1, 2 · · · , 2m, the structure of H is as simple as follows:

Proposition 4. H has the wreath product structure H = C(h0) ≃ C2 ≀ Sm.
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This is also an easy corollary of 4.1.19 of James-Kerber [13] which describes centralizers
of arbitrary permutations in a symmetric group as wreath products of cyclic groups with
smaller symmetric groups.

One immediately notices that H ∩ gHg−1 is identical for any g in a common left coset
of H. Moreover, for any h1, h2 ∈ H and g ∈ S2m,

H ∩ h1gh2H(h1gh2)
−1 = H ∩ h1gHg−1h−1

1 = h1

(
H ∩ gHg−1

)
h−1
1 ,

hence the structure of H ∩ gHg−1 depends only on the double coset HgH.

Example 5. For m = 2, H = D1 ≀ S2 ≃ (C2)
2 ⋊ S2 and S4/H = {1̄, ¯(1 3), ¯(1 4)}.

Computing by hand we get

H ∩ (1 3)H(1 3) = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} = K4,

where K4 is the Klein four group. Again by hand

H ∩ (1 4)H(1 4) = H ∩ (1 3)H(1 3) = K4.

There is no wonder because there are only 2 double cosets in H\S4/H with representatives
1 (which may be seen as supported on any single symbol for convenience) and (1 3), and
clearly (3 4)(1 3)(3 4) = (1 4) (note that (3 4) ∈ H).

2.2 Double coset decomposition of S2m

Counting the left cosets contained in HgH gives

|HgH| = |H|[H : H ∩ gHg−1] =
|H|2

|H ∩ gHg−1|
.

Thus if each double coset determines a distinct structure (or size) of H ∩ gHg−1, the
density of those g is assigned by

|HgH|
|S2m|

=
|H|2

|S2m||H ∩ gHg−1|
=

(2mm!)2

(2m)!|H ∩ gHg−1|
.

In addition, the double coset decomposition of S2m by H gives

|S2m| =
∑

g∈H\S2m/H

|HgH| =
∑

g∈H\S2m/H

|H|2

|H ∩ gHg−1|
,

and consequently ∑
g∈H\S2m/H

1

|H ∩ gHg−1|
=

|S2m|
|H|2

=
(2m)!

(2mm!)2
∼ 1√

πm
,

by Stirling’s formula. These formulae become the starting point of studying distribution
of |H ∩ gHg−1| in section 3.
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2.3 Counting double cosets by partition number

To describe the structure of H\S2m/H, we first prove the following lemma on double coset
representatives.

Lemma 6. Each double coset of H\S2m/H has a representative with support contained
in the odd integers M = {1, 3, · · · , 2m− 1} or the even integers M ′ = {2, 4, · · · , 2m}.

Proof. For any x ∈ S2m, we first split its cycles containing some 2-blocks {2k − 1, 2k} as
follows. A proper cycle (of length ⩾ 2) containing both 2k − 1 and 2k can be written as
(in left-to-right convention for cycle composition):

(2k − 1 l1 · · · ls 2k l′1 · · · l′t)

= (2k − 1 l1) · · · (2k − 1 ls)(2k − 1 2k)(2k − 1 l′1) · · · (2k − 1 l′t),

with all numbers distinct. Multiplying (2k − 1 2k) (∈ H) on the left of both sides above
we get

(2k − 1 2k)x = (2k l1 · · · ls)(2k − 1 l′1 · · · l′t) · · · ,

i.e. we can decompose the cycle into two cycles which split {2k − 1, 2k}. Repeat the
procedure using suitable (2ki − 1 2ki) (∈ H) i = 1, · · · , r, until (2k1 − 1 2k1) · · · (2kr −
1 2kr)x has no cycles containing any {2k − 1, 2k}. (This is doable since (2ki − 1 2ki)
commutes with the cycles not intersecting {2ki − 1, 2ki}.)

For a representative with such cycle type, by multiplying (2k− 1 2k)’s simultaneously
on left and right, we get a product of cycles which either contains only odd numbers
or even numbers. Then move all cycles of even numbers to the left. Now we can re-
place them by corresponding cycles of the complementary odd numbers, by multiplying
the unique element in H supported on the corresponding 2-blocks on the left. (For ex-
ample, (2 6 4)(8 10) can be replaced by (1 5 3)(7 9) since (2 6 4)(8 10)(1 5 3)(7 9) =
(2 6 4)(1 5 3)(8 10)(7 9) ∈ H.) Thus we get a representative of HxH supported on odd
numbers. Replacing the cycles of odd number by complementary even numbers we get a
representatives supported on even integers.

In addition, the following explicit expression of Proposition 4 is crucial to proving the
main result of this section.

Lemma 7. Let M = {1, 3, · · · , 2m − 1},M ′ = {2, 4, · · · , 2m}, C =
∏m

i=1 Sym{2i −
1, 2i} ⩽ S2m, and T = Sym{(1, 2), · · · , (2m − 1, 2m)} ⩽ S2m (the symmetric group of
the ordered pairs (2k − 1, 2k)’s). Then H = TC and explicitly for any h ∈ H, there is a
unique decomposition

h = h̄h̃ = h̄M h̄M ′h̃ = h̄M ′h̄M h̃,

in which h̃ ∈ C, h̄ ∈ T , h̄M and h̄M ′, commuting with each other, are the complementary
permutation actions of h̄ restricted onto M and M ′ respectively. We call it the TC-
decomposition of H.
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Proof. For any h ∈ H and k ⩽ m, let h̄ be the permutation action defined as

h̄ · (2k) =

{
h(2k), if h(2k) is even,
h(2k − 1), if h(2k) is odd,

and

h̄ · (2k − 1) =

{
h(2k − 1), if h(2k) is odd,
h(2k), if h(2k) is even,

where h(i) denotes the number that h moves i to.
The definition guarantees that h̄ sends even numbers to even numbers and odd to odd

while still preserving the partition {1, 2}, · · · , {2m − 1, 2m}, hence belongs to H. The
case separation in the definition where 2k−1 and 2k are switched by h gives a product of
transpositions (2k − 1, 2k)’s, denoted by h̃. This amounts to the decomposition h = h̄h̃
which is unique simply because C ∩ T = {1}. Restriction of h̄ onto M and M ′ gives the
3-term decomposition

h = h̄M h̄M ′h̃ = h̄M ′h̄M h̃,

whose uniqueness is due to the decomposition T = Sym(M)× Sym(M ′).

Remark 8. Note that alternatively we have the CT-decomposition H = CT , i.e. h = h̃′h̄
for some h̃′ ∈ C which switches h(2k) and h(2k − 1) when necessary.

Now we can prove the main result on the structure of H\S2m/H.

Proposition 9. Keep the notations from last lemma. Each conjugacy class of Sym(M)
(Sym(M ′)) is contained in a distinct double coset of H\S2m/H, and each double coset
intersects with Sym(M) (Sym(M ′)) at a conjugacy class of Sym(M) (Sym(M ′)). Conse-
quently, |H\S2m/H| = p(m), the partition number of m.

Proof. For any two conjugates x1, x2 ∈ Sym(M), say conjugated by x = (2k1 − 1 2k2 −
1 · · · 2ks − 1) · · · (2k′

1 − 1 2k′
2 − 1 · · · 2k′

t − 1), they are conjugate in S2m by x′ =
x(2k1 2k2 · · · 2ks) · · · (2k′

1 2k′
2 · · · 2k′

t) ∈ H.
Hence x2 ∈ Hx1H.
On the other hand, if x2 ∈ Hx1H, then there exists h ∈ H such that x1hx

−1
2 ∈ H. By

Lemma 7 we get
x1hx

−1
2 = x1h̄M h̄M ′h̃x−1

2 = x1h̄M h̄M ′(h̃x−1
2 h̃)h̃. (1)

It is easy to check that chc−1 = chc ∈ Sym(M) (Sym(M ′)) for any h ∈ Sym(M)
(Sym(M ′)) and any c ∈ C such that h preserves the support of c, denoted by supp(c).

We claim that x−1
2 preserves supp(h̃). For any k ⩽ m, if 2k − 1 /∈ supp(h̃), then

x1hx
−1
2 (2k) = x1h(2k) = h(2k) is even. Since x1hx

−1
2 ∈ H, x1hx

−1
2 (2k − 1) must be odd,

which indicates x−1
2 (2k − 1) /∈ supp(h̃). If 2k − 1 ∈ supp(h̃), then x1hx

−1
2 (2k) = x1h(2k)

is odd. Hence x1hx
−1
2 (2k − 1) = hx−1

2 (2k − 1) is even, and x−1
2 (2k − 1) ∈ supp(h̃). This

shows

x−1
2 (M ∖ supp(h̃)) = M ∖ supp(h̃), x−1

2 (M ∩ supp(h̃)) = M ∩ supp(h̃),
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and consequently h̃x−1
2 h̃ ∈ Sym(M).

Therefore in (1), we can switch h̄M ′ and (h̃x−1
2 h̃) to get

x1hx
−1
2 =

(
x1h̄M(h̃x−1

2 h̃)
)
h̄M ′h̃,

which must be the 3-term TC-decomposition of h. Hence x1hx
−1
2 = h and

x1h̄M(h̃x−1
2 h̃) = h̄M ,

i.e. x1 is conjugate to h̃x2h̃ by h̄M ∈ Sym(M).
Furthermore we can choose h ∈ H with h̃ = 1, so that x1 is conjugate to x2 by

h̄M ∈ Sym(M). Actually since x−1
2 preserves supp(h̃), it is easy to verify that x2h̃x

−1
2 ∈ H.

Then the TC-decomposition x1hx
−1
2 = x1h̄x

−1
2 x2h̃x

−1
2 (∈ H) implies x1h̄x

−1
2 ∈ H. Thus

we can choose h ∈ T in the beginning.
Finally, since Sym(M) ≃ Sm in an obvious way, the conjugacy classes of Sym(M)

hence the double cosets H\S2m/H are in one-to-one correspondence with the partitions
of m.

Remark 10. Note that if x preserves the support of c ∈ C, then cxc is the truncation of x
from supp(c), i.e. cxc |supp(c) is the trivial permutation and cxc is the same permutation
as x outside of supp(c).
Remark 11. Now we can show by Stirling’s formula that

Average of |H ∩ gHg−1| =
∑

g∈H\S2m/H

|HgH||H ∩ gHg−1|
|S2m|

= |H\S2m/H| |H|2

|S2m|
= p(m)

22m(m!)2

(2m)!

∼ p(m)
22m · 2πm(m/e)2m√
2π · 2m(2m/e)2m

= p(m)
√
πm.

Since p(m) ∼ 1

4
√
3m

eπ
√

2m/3 by Hardy-Ramanujan [9], the average is of super-polynomial
growth, which is a sign that the density of good elements should be low.

2.4 Counting double cosets by character formula

Apart from the combinatorics in section 2.3, there is a representation theoretic way of
counting (self-inverse) double cosets by character formula following Frame [6].

Proposition 12. The number of self-inverse double cosets of a finite group G with respect
to a subgroup H ⩽ G equals ∑

χ∈IrrG,⟨χ,IndG
H1H⟩̸=0

FS(χ),
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where the sum is over Frobenius-Schur indicators of irreducible characters occurring in
the induced character of G from the trivial character of H. Here for any character χ of
G,

FS(χ) := 1

|G|
∑
x∈G

χ(x2).

Note that IndG
H1H is afforded by the permutation representation of G through its action

on the right cosets H\G.

Proof. We follow the ideas of [6].
First, we show that the number of self-inverse double cosets of G with respect to H is

#{gix2 = hgi | gi ∈ H\G, x ∈ G, h ∈ H}
|G|

.

(See Theorem 3.1 of [6].) It suffices to show that each self-inverse double coset corresponds
to |G| solutions to the equation

h(gixg
−1
i ) = (gixg

−1
i )−1, (2)

which says that the inverse of t = gixg
−1
i belongs to its own right coset. Each double

coset HgH decomposes into right cosets as

HgH =
⨿

y∈H/(g−1Hg∩H)

Hgy,

hence each left coset h′gH ⊂ HgH intersects with each right coset Hgy at h′g(g−1Hg ∩
H)y, all of which have d = |g−1Hg ∩H| elements. In particular, the inverse of each right
coset is a left coset, so it intersects with its own right coset at d elements, which amount
to d values of t. Summing over all right cosets in HgH, we get [H : (g−1Hg ∩H)]d = |H|
solutions to (2) in HgH if it is an self-inverse double coset. Varying the right cosets
gi ∈ H\G, for each solution (x0, h0) ∈ HgH ×H hx = x−1, we get solutions (g−1

i xgi, h)
to hgixg

−1
i = (gixg

−1
i )−1, which amount to [G : H]|H| = |G| solutions.

Now let G act on H\G by right multiplication and consider the corresponding permu-
tation representation of G, which affords IndG

H1H by definition. Since the character value
of a permutation representation on every element is the number of its fixed points, we get

#{gix2 = hgi | gi ∈ H\G, x ∈ G, h ∈ H}
|G|

=
1

|G|
∑
x∈G

IndG
H1H(x

2)

=FS(IndG
H1H(x

2))

=
∑

χ∈IrrG,⟨χ,IndG
H1H⟩≠0

FS(χ).
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Next, we resort to an interesting result of Inglis-Richardson-Saxl [11] on multiplicity
free decomposition of the permutation representation IndS2m

H 1H .

Proposition 13. Let H = C(h0), h0 = (1 2)(3 4) · · · (2m− 1 2m), then

IndS2m
H 1H =

⊕
|λ|=m

S2λ,

where Sν for any partition ν denotes the Specht module (over Q).

By Proposition 9, the double cosets of S2m with respect to H are all self-inverse for x
conjugate to x−1 in Sym{2, 4, · · · , 2m}. Also note that all irreducible representations of
symmetric groups are of real type, i.e. FS(χ) = 1 for any χ ∈ IrrS2m. Then Proposition
13 and Proposition 12 show that the number of double cosets H\S2m/H equals∑

χ∈IrrG,⟨χ,IndG
H1H⟩≠0

FS(χ) =
∑
|λ|=m

FS(S2λ) =
∑
|λ|=m

1 = p(m),

the partition number of m.

2.5 Structure of H ∩ gHg−1 and proof of Theorem 3

With the structure description of double cosets H\S2m/H, this section proves Theorem
3 using an idea of constructing bipartite graph automorphisms introduced by J.P. James
[14].

Let G = (V,E) be a bipartite graph (non-directed), i.e. its vertex set V = V1

⨿
V2 is a

disjoint union of two parties Vi, i = 1, 2 and the edge set E is a collection of (unordered)
pairs {v1, v2}, vi ∈ V1, i = 1, 2. We allow one edge to be duplicated. A graph automor-
phism is a permutation of vertices that sends edges to edges. Denote Autb(G) the set of
automorphisms preserving Vi, i = 1, 2. Suppose G is k-regular, i.e. each vertex belongs to
k edges, then |E| = kl for some positive integer l. Label the edges by integers between 1
and kl. Define two k-partitions of {1, · · · , kl} as

αi = {Uv, v ∈ Vi}, i = 1, 2,

in which Uv = {1 ⩽ i ⩽ kl, v belongs to i}, the set of all edges containing v. Then
any automorphism of Autb(G) is a permutation of {1, · · · , kl} that preserves the two k-
partitions α1, α2. Denote the group of such permutations (Skl)α1,α2 , then by definition
Autb(G) ⩽ (Skl)α1,α2 .

On the other hand, each permutation of (Skl)α1,α2 is an automorphism of Autb(G).
This is simply because each part of αi (a k-subset of {1, · · · .kl}) corresponds to a vertex
in Vi, hence a permutation preserving αi sends a vertex to a vertex, which also sends
edges to edges by definition. We summarize Lemma 2.2 and 2.3 of [14] as follows

Proposition 14. (Skl)α1,α2 ≃ Autb(G).
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Proof of Theorem 3. The one-to-one correspondence H\S2m/H was already established
in Proposition 9. In application of Proposition 14 to our case, let k = 2, l = m, the edges
be 1, 2, · · · , 2m, and the two parties of vertices be α1 = {{1, 2}, · · · , {2m − 1, 2m}} and
α2 = {{g(1), g(2)}, · · · , {g(2m − 1), g(2m)}} for any g ∈ S2m. The edge i connects two
vertices (blocks {2k−1, 2k}’s) that contain i. Then by definition, (S2m)α1,α2 = H∩gHg−1.
Recall that H = C(h0), h0 = (1 2) · · · (2m − 1 2m). By Proposition 9, the structure of
H ∩ gHg−1 depends only on those g supported on even (or odd) numbers and their cycle
type determined by partitions of M ′ = {2, 4, · · · , 2m}. Hereinafter we denote a partition
by λ = {1r1 · · · krk} which means λ has ri parts equal to i and by Nλ =

∑k
i=1 ri the number

of parts of λ. If g ∈ HxH for x in the conjugacy class of Sym(M ′) with cycle type λ, then
the constructed bipartite graph G has Nλ connected components corresponding to parts
of λ, i.e. cycles of x. For instance, the component corresponding to a part k of λ, which
may be expressed as the standard cycle (2 4 · · · 2k) ∈ Sym(M ′), looks like

When unfolded, it becomes a 2k-gon

Denote such a bipartite graph by Gk. Clearly as a proper subgroup of the auto-
morphism group of the above 2k-gon, i.e. D2k, Autb(Gk) contains the automorphism
group of the k-polygon with blue nodes (or equivalently the k-gon with green nodes)
and dashed edges, i.e. Dk. Hence Autb(Gk) ≃ Dk, the dihedral group with 2k elements.
Any automorphism in Autb(G) can also permute components of the same size, i.e. those
corresponding to cycles of the same length. Thus the above construction using bipartite
graphs replicates the definition of wreath product with symmetric groups. Hence for any
permutation x ∈ Sym(M ′) with cycle type {ir}, by Proposition 14 we have the wreath
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product presentation

H ∩ xHx−1 ≃ Autb(G) ≃ AutbGi ≀ Sr = Di ≀ Sr,

In general for any g ∈ HxH and x ∈ Sym(M ′) of cycle type λ = {1r12r2 · · · krk}, we get

H ∩ gHg−1 ≃
k⊕

i=1

Di ≀ Sri ,

and in particular,

|H ∩ gHg−1| =
k∏

i=1

(2i)riri!,

simply by |Di ≀ Sri | = |Di|ri |Sri |. This completes the proof.

Using Theorem 3 we can measure the double cosets as follows.

Corollary 15. For any g ∈ HxH with x ∈ Sym{2, 4, · · · , 2m} with x of cycle type
λ = {1r1 · · · krk},

|HgH| = |H|[H : H ∩ gHg−1] = (2mm!)2/(
k∏

i=1

(2i)riri!).

By Theorem 4.4.8 of James-Kerber [13], the wreath product of a rational finite group
with any symmetric group is also rational, hence Theorem 3 implies

Corollary 16. All irreducible representations of H ∩ gHg−1 are realizable over Q.

2.6 Some computational verification of Theorem 3

For convenience, we denote g ∼ λ for any g ∈ S2m and λ a partition of m, if g ∈ HxH
with x ∈ Sym{2, 4, · · · , 2m} of cycle type λ.

For the simplest example, if x ∼ {1m}, then Theorem 3 gives

H ∩ xHx−1 ≃ D1 ≀ Sm = C2 ≀ Sm,

which coincides with Proposition 4 because HxH = H.
For m = 2, S4 has p(2) = 2 double cosets, the nontrivial of which has a representative

x ∼ {21}, then Theorem 3 gives

H ∩ xHx−1 ≃ D2 ≃ K4,

which coincides with our computation by hand in Example 5.
For m = 3, there are p(3) = 3 double cosets in H\S6/H with representatives 1, (4 5),

(2 3)(4 5). Computed by GAP (the StructureDescription function), we get

H ∩ (4 5)H(4 5) ≃ C2 × C2 × C2 ≃ D1 ×D2,
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and
H ∩ (2 3)(4 5)H(2 3)(4 5) ≃ S3 ≃ D3,

where Di denotes the dihedral group with 2i elements and for convenience, we write C2

as D1. Note that (4 5) ∼ {1121} and (2 3)(4 5) ∼ {31}, the structure results by Theorem
3 coincide with computation by GAP.

For m = 4, computed by GAP (the DoubleCosetRepsAndSizes function), there are
p(4) = 5 double cosets in H\S8/H with representatives

1, (6 7) ∼ {1221}, (4 5)(6 7) ∼ {1131}, (2 3)(6 7) ∼ {22}, (2 3)(4 5)(6 7) ∼ {41}.

GAP gives the following structure description in coincidence with Theorem 3

H ∩ (6 7)H(6 7) ≃ C2 × C2 ×D4 ≃ (D1 ≀ S2)×D2,

H ∩ (2 3)(6 7)H(2 3)(6 7) ≃ C4
2 ⋊ C2 ≃ D2 ≀ S2,

H ∩ (4 5)(6 7)H(4 5)(6 7) ≃ D6 ≃ D1 ×D3,

H ∩ (2 3)(4 5)(6 7)H(2 3)(4 5)(6 7) ≃ D4.

For m = 5, by GAP, there are p(5) = 7 double cosets in H\S10/H with representatives

1, (8 9) ∼ {1321}, (6 7)(8 9) ∼ {1231}, (4 5)(8 9) ∼ {1122},

(4 5)(6 7)(8 9) ∼ {1141}, (2 3)(6 7)(8 9) ∼ {112131}, (2 3)(4 5)(6 7)(8 9) ∼ {51}.

GAP gives the following structure description in coincidence with Theorem 3

H ∩ (8 9)H(8 9) ≃ C2 × C2 × C2 × S4 ≃ (D1 ≀ S3)×D2,

H ∩ (6 7)(8 9)H(6 7)(8 9) ≃ D4 × S3 ≃ (D1 ≀ S2)×D3,

H ∩ (4 5)(8 9)H(4 5)(8 9) ≃ C2 × (C4
2 ⋊ C2) ≃ D1 × (D2 ≀ S2),

H ∩ (4 5)(6 7)(8 9)H(4 5)(6 7)(8 9) ≃ C2 ×D4 = D1 ×D4,

H ∩ (2 3)(6 7)(8 9)H(2 3)(6 7)(8 9) ≃ C2 × C2 × S3 ≃ D1 ×D2 ×D3,

H ∩ (2 3)(4 5)(6 7)(8 9)H(2 3)(4 5)(6 7)(8 9) ≃ D5.

More computational verification by GAP for m ⩾ 6 can also be checked.

3 Counting good elements

With the structural results on H ∩ gHg−1, we are prepared to count good elements in
S2m. Recall that g ∈ S2m is good if |H ∩ gHg−1| = O(mc) for some universal constant
c > 0.
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3.1 Counting with random permutation statistics

We show that the distribution of |H ∩gHg−1| happens to be the Ewens’ distribution with
bias θ = 1

2
. By definition (see Example 2.19 of Arratia-Barbour-Tavaré [2]), the Ewens’

distribution ESF(θ) is the distribution equipped with the following probability density on
partitions λ = {1r1 · · · krk} of m

Pθ(λ) =
m!

θ(θ + 1) · · · (θ +m− 1)

k∏
i=1

(
θ

i

)ri 1

ri!
. (3)

By Theorem 3 and Corollary 15, the distribution of |H∩gHg−1| over g ∈ S2m is equivalent
to the following probability density on partitions of m, i.e. for any x ∈ Sym{2, 4, · · · , 2m}
of cycle type λ,

P (λ) =
|HxH|
|S2m|

=
22m(m!)2

(2m)!
∏k

i=1(2i)
riri!

=
m!∏m

j=1(j −
1
2
)

k∏
i=1

( 1
2

i

)ri
1

ri!
, (4)

which is exactly P 1
2
(λ) as in (3).

This turns the study of distribution of |H ∩ gHg−1| into study of Ewens’ distribution
ESF(1

2
). By Theorem 5.1 of [2], as m → ∞, ESF(θ) point-wise converges to the joint dis-

tribution of independent Poisson distributions (Z1, Z2, · · · ) on N∞, where Zi ∼ Po(θ/i) for

any i ⩾ 1 with Prob(Zi = j ) = e−θ/i (θ/i)
j

j!
. However, the unmanageable errors appearing

in [2] between Ewens’ distributions and joint Poisson distribution make it inaccessible to
calculate the tail distribution of ESF(θ). In the next section, we use methods of analytic
combinatorics to estimate the left tail P (|H ∩ gHg−1| ⩽ mc), i.e. the probability of good
elements.

3.2 Left tail of Ewen’s distribution

First we define |H ∩ gHg−1| as a random variable on partitions of m, i.e. let f :
{partition of m} → R be f(λ) = |H ∩ gHg−1| =

∏k
i=1(2i)

riri! for any partition λ =
(1r1 · · · krk) of m such that g ∈ HxH for any x ∈ Sym{2, 4, · · · , 2m} of cycle type λ, by
Theorem 3.

For any a ∈ R, define Wa,m :=
∑

|λ|=m f(λ)−a. Especially for a = 0 we get the partition

number W0,m = p(m) ∼ 1

4
√
3m

eπ
√

2m/3 and for a = 1, W1,m =
(2m)!

22m(m!)2
∼ 1√

πm
by

section 2.2. Also note that Wa,m strictly decreases as a increases. In this notation we can
write the distribution P defined in (4) as P (λ) = W−1

1,mf(λ)
−1.

To estimate P (f(λ) ⩽ mc), i.e. the probability of good elements, we introduce the
moment bound. For any nonnegative random variable X from a sample space Ω to R⩾0

with probability distribution F , define the α-th moment for any α > 0 by

Mα
X := E(Xα) =

∫
Ω

Xα(ω)dF (ω).
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Then by Markov’s inequality, we have for any C > 0,

F (X > C) = F (Xα > Cα) ⩽ Mα
X

Cα
.

Since α is arbitrary, we get

Proposition 17 (Moment bound). For any α > 0 and nonnegative random variable X
with distribution F ,

F (X ⩾ C) ⩽ inf
α>0

Mα
X

Cα
, ∀C > 0.

Now for the distribution P defined in (4), the moment bound applied to X = f−1

gives for any c > 0,

P (f ⩽ mc) = P (f−1 ⩾ m−c) ⩽ inf
α>0

mcαMα
f−1 = inf

α>0
mcαW−1

1,mWα+1,m, (5)

since we have the expectation

Ef−α = W−1
1,m

∑
|λ|=m

f(λ)−αf−1(λ) = W−1
1,m

∑
|λ|=m

f(λ)−(α+1) = W−1
1,mWα+1,m.

Hence the task is to find an appropriate estimate of Wβ,m for β > 1. This is accessible
through a hybrid method introduced by Flajolet et al [4] which we present in section 3.3.

3.2.1 Generating function of Wβ,m

Before applying the hybrid method, it is necessary to introduce the following generating
function for any β ∈ R,

Wβ(z) =
∑
m⩾0

Wβ,mz
m =

∑
m⩾0

∑
|λ|=m

zr1+2r2+···+krk∏k
i=1(2i)

riβ(ri!)β
=
∏
i⩾1

Iβ(z
i/(2i)β), (6)

where Iβ(z) =
∑

j⩾0

zj

(j!)β
defines an entire function (called Le Roy function, see [10]).

For β > 0, Wβ is an analytic function in the open unit disk of convergence radius ⩾ 1 at
the origin, since

(Wβ,m)
1/m ⩽ W

1/m
0,m = p(m)1/m ∼ e

√
m/m → 1, as m → ∞. (7)

To further determine the convergence radius of Wβ(z), β > 0, we need a lower bound
for Wβ,m. For any α ∈ R, let µα be the distribution on {partition of m} with µα(λ) =
W−1

α,mf(λ)
−α for any partition λ of m. For example, µ0 is the uniform distribution and

µ1 is the distribution P = P 1
2

in the notation of Ewen’s distribution defined in (3). For
0 < γ < 1, x1/γ is a convex function, hence by Jensen’s inequality (with expectation Eµβ

over µβ), for any α, β ∈ R, (
Eµβ

f−α
)1/γ ⩽ Eµβ

(
(f−α)1/γ

)
,
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i.e.
W−1

β,m

∑
|λ|=m

f−α(λ)f−β(λ) = W−1
β,mWα+β,m

⩽

W−1
β,m

∑
|λ|=m

f−α/γf−β

γ

= W−γ
β,mW

γ
α/γ+β,m.

Thus we get

Proposition 18. For any α, β ∈ R, 0 < γ < 1, and m ∈ Z+,

Wα+β,m ⩽ W 1−γ
β,m W γ

α/γ+β,m.

Remark 19. For β = 0 and 0 < γ = α < 1, we get

((Eµ0f
−α))1/α ⩽ Eµ0(f

−α)1/α =
W1,m

p(m)
,

i.e. ∑
|λ|=m

f(λ)−α = Wα,m ⩽ Wα
1,mp(m)1−α.

Let α = 1 − 1√
m

√
3

π
√
2
t lnm for any 0 < t < 1

2
. By the asymptotics of W1,m, p(m) and

m
lnm√

m = O(1), we get Wα
1,m = O(m− 1

2 ) and p(m)1−α = O(mt), hence

Wα,m ⩽ O(m− 1
2
+t).

However, this bound is not sufficient for estimating the left tail in (5).
Remark 20. Proposition 18 is a log-convex constraint on Wα,m, since

(1− γ)β + γ(α/γ + β) = α + β.

Especially for γ = 1
2

we get
Wα+β ⩽ W

1
2
β,mW

1
2
2α+β,m,

or
W2α+β,m ⩾ W 2

α+βW
−1
β,m.

By the above remark, we can prove

Corollary 21. For any β ⩾ 0, W
1/m
β,m → 1. Consequently, the convergence radius of

Wβ(z) equals 1.

Proof. Acknowledging the upper bound (7), we need only to prove the lower bound. For
any β ∈ [0, 1], W 1/m

β,m → 1, due to W0,m = p(m), W1,m ∼ 1√
πm

and the monotonicity of
Wβ,m on β. Since α/γ + β with α, β, γ ∈ (0, 1) ranges over (0,+∞), the case of β > 1
easily follows from Proposition 18.
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3.2.2 Exp-log schema for Wβ(z)

Let Hβ(z) = log(Iβ(z)) =
∑

l⩾1 hβ,lz
l (hβ,0 = 0 since Iβ(0) = 1). Then (6) becomes

Wβ(z) = exp

(∑
i⩾1

Hβ

(
zi

2iβ

))
= exp

(∑
l⩾1

∑
i⩾1

hβ,l
zil

(2i)βl

)
(8)

= exp

(∑
l⩾1

hβ,l

2βl
Liβl(z

l)

)
,

where Liγ(z) =
∑

k⩾1

zk

kγ
is the polylogarithm for any γ ∈ C.

Directly by definition, for γ > 1, Liγ(1) < ∞ and Liγ(1) monotonically decrease to
1 as γ → ∞. Also note that

∑
l⩾1

hβ,l

2βl
= Hβ(

1
2β
) < ∞ since the Le Roy function Iβ(z)

is entire and positive for z > 0. Hence by Dirichlet’s criterion,
∑

l>⌊ 1
β
⌋
hβ,l

2βl
(Liβl(1)− 1)

converges, and ∑
l>⌊ 1

β
⌋

hβ,l

2βl
Liβl(1) =

∑
l>⌊ 1

β
⌋

hβ,l

2βl
+O(1) (9)

= Hβ(
1

2β
) +O(1) = O(1).

Hence if β > 1, Wβ(z) is bounded in the unit disc |z| < 1 (the convergence region), or of
global order 0 in notation of the next subsection where we introduce the hybrid method
in details. The boundedness also prevents us from directly using (Hardy-Littlewood-
Karamata) Tauberian theorem to derive asymptotics for Wβ,m, β > 1.

Fortunately, the following result on singularities of polylogarithms is particularly help-
ful in this perspective.

Lemma 22 (Lemma 5 of [4]). For any γ ∈ C, the polylogarithm Liγ(z) is analytically
continuable to the slit plane C∖R⩾1. Moreover, the singular expansion of Liγ(z) near the
singularity z = 1 for non-integer γ is

Liγ(z) ∼ Γ(1− γ)τ γ−1 +
∑
j⩾0

(−1)j

j!
ζ(γ − j)τ j, (10)

where τ := − log z =
∑

l⩾1

(1− z)l

l
, Γ(z) is the gamma function and ζ(z) is the Riemann

zeta function. For m ∈ Z+,

Lim(z) =
(−1)m

(m− 1)!
τm−1(log τ −Hm−1) +

∑
j⩾0,j ̸=m−1

(−1)j

j!
ζ(m− j)τ j, (11)

where Hk is the harmonic number 1 + 1/2 + · · ·+ 1/k.
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In (10) (similar to (11)), the first term is the singular part for γ with real part Reγ ⩽ 1
and the regular remainder tends to ζ(γ) = Liγ(1) if Reγ > 1, as τ → 0 (or z → 1). The
lemma indicates that for 0 < β < 1, Tauberian theorem is also not directly applicable to
Wβ(z), since ea(− log z)β−1 ≫ (1 − |z|)−a for any a > 0, i.e. is of infinite global order. In
section 4, we will deduce asymptotics of coefficients of this type through application of a
saddle point method following E. M. Wright [15].

Note that Liγ(z
k) only has singularities at k-th roots ξ1, . . . , ξk of unity, the above

lemma gives the corresponding singular expansion

Lim(z
k) =

(−1)m

(m− 1)!km−1
(kτ)m−1(log(kτ)−Hm−1) (12)

+
∑

j⩾0,j ̸=m−1

(−1)j

j!kj
ζ(m− j)(kτ)j,

which becomes a series of (1− z/ξi) by substitution

kτ = −k log(z/ξi) =
∑
l⩾1

k

l
(1− z/ξi)

l.

3.3 Proof of Theorem 1 by hybrid method asymptotics for Wβ,m

We first introduce some necessary notions following Flajolet et al [4].

Definition 23. The global order of an analytic function f(z) in the open unit disc, is a
number a ⩽ 0 such that |f(z)| = O((1− |z|)a), ∀|z| < 1, that is, there exists M > 0 such
that |f(z)| < M(1− |z|)a for all z with |z| < 1.

Since for any β > 1, Wβ(z) is bounded in the unit disc, its global order is zero. It
can be shown by Cauchy’s integral formula that a function f(z) of global order a ⩽ 0 has
coefficients satisfying [zn]f(z) = O(n−a), see section 1.1 of [4].

Definition 24. A log-power function at 1 is a finite sum of the form

σ(z) =
r∑

k=1

ck(log(
1

1− z
)(1− z)αk ,

where α1 < · · · < αk and each ck is a polynomial. A log-power function at a finite set of
points Z = {ζ1, · · · , ζm}, is a finite sum

Σ(z) =
m∑
j=1

σj

(
z

ζj

)
,

where σj is a log-power function at 1.
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Since Li0(z) =
z

1−z
,Li1(z) = log( 1

1−z
), a log-power function can be seen as approxima-

tion by combinations of these two polylogarithms. Asymptotics of coefficient of log-power
functions are known, see Lemma 1 of [4].

Definition 25. Let h(z) be analytic in |z| < 1 and s be a nonnegative integer. h(z)
is said to be Cs-smooth on the unit disc, or of class Cs, if for all k = 0, · · · , s, its k-th
derivative h(k)(z) defined for |z| < 1 admits a continuous extension to |z| = 1.

The smoothness condition relates to the coefficients of a function in an obvious way: if
h(z) =

∑
n⩾0 hnz

n with hn = O(n−s−1−δ) for some δ > 0 and s ∈ Z⩾0, then it is Cs-smooth.
Conversely, we have the Darboux’s transfer (Lemma 2 of [4]): if h(z) is Cs-smooth, then
hn = o(n−s). By (9) and the easy differentiation formula Li′γ(z) = Liγ−1(z)/z, we can see
that for any β ⩾ 2, Wβ(z) is at least C⌊β⌋−2-smooth on the unit disc.

Definition 26. An analytic function Q(z) in the open unit disc is said to admit a log-
power expansion of class Ct if there exist a finite set of points Z = {ζ1, · · · , ζm} on the
unit circle |z| = 1 and a log-power function Σ(z) at the points of Z such that Q(z)−Σ(z)
is Ct-smooth on the unit circle.

By (9) and Lemma 22, Wβ(z) has a non-trivial log-power expansion only for β = 1
and for 0 < β < 1 there exists no such expansion.

Definition 27. Let f(z) be analytic in the open unit disc. For ζ a point on the unit
circle, we define the radial expansion of f at ζ with order t ∈ R as the smallest (in terms
of numbers of monomials) log-power function σ(z) at ζ, provided it exists, such that

f(z) = σ(z) +O((z − ζ)t),

when z = (1− x)ζ and x tends to 0+. The quantity σ(z) is written

asymp(f(z), ζ, t).

Now we are prepared to introduce the main theorem of the hybrid method.

Proposition 28 (Theorem 2 of [4]). Let f(z) be analytic in the open unit disc D, of
finite global order a ⩽ 0, and such that it admits a factorization f = P · Q, with P,Q
analytic in D. Assume the following conditions on P and Q, relative to a finite set of
points Z = {ζ1, . . . , ζm} on the unit circle ∂D:
D1: The “Darboux factor” Q(z) is Cs-��smooth on ∂D (s ∈ Z⩾0).
D2: The “singular factor” P (z) is analytically continuable to an indented domain of the
form D = ∩m

j=1(ζj ·∆), where a ∆-domain is ∆(R, ϕ) := {z ∈ C | |z| < R, ϕ < arg(z−1) <
2π − ϕ, z ̸= 1} for some radius R > 1 and angle ϕ ∈ (0, π

2
). For some non-negative real

number t0, it admits, at any ζj ∈ Z, an asymptotic form (a log-power expansion of class
Ct0)

P (z) = σj(z/ζj) +O((z − ζj)
t0) (z → ζj, z ∈ D),
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where σj(z) is a log-power function at 1.
D3: t0 > u0 := ⌊ s+⌊a⌋

2
⌋.

Then f admits radial expansions at every ζj ∈ Z with order u0 = ⌊ s+⌊a⌋
2

⌋. The coefficients
of zn of f(z) satisfy:

[zn]f(z) = [zn]A(z) + o(n−u0),

where A(z) :=
∑m

j=1 asymp(f(z), ζj, u0).
Now we turn to approximating the coefficients of Wβ(z), β > 1, to the order o(n−u0)

for some u0 ∈ Z+ which will be specified later as needed. We follow the hybrid method
in close steps.

3.3.1 Darboux factor

By Proposition 28 we should choose a Darboux factor of Cs-smooth for s = 2u0, noting
that the global order of Wβ(z) is zero. Provided the exp-log schema (8), we can factorize
Wβ(z) into

Wβ(z) = exp

 ∑
l<⌊ 2u0+2

β
⌋

hβ,l

2βl
Liβl(z

l)

 · exp

 ∑
l⩾⌊ 2u0+2

β
⌋

hβ,l

2βl
Liβl(z

l)

 (13)

=: eU(z) · eV (z).

Note that for l ⩾ ⌊2u0+2
β

⌋, i.e. βl ⩾ 2u0+2 = s+2 and all k = 0, · · · , s, the k-th derivative
of Liβl admits a continuous extension onto the unit circle. Hence by Dirichlet’s criterion
as (9), V (z) as of (13) is Cs-smooth and we can take the Darboux factor as Q(z) = eV (z).

3.3.2 Singular factor

Clearly we should take P (z) = eU(z) as the singular factor. Here as of (13), U(z) =∑
l<⌊ 2u0+2

β
⌋
hβ,l

2βl
Liβl(z

l) as a truncation of the infinite sum, only has singularities at the
l-th roots of unity for l ⩽ ⌊2u0+2

β
⌋ − 1, by Lemma 22. This is to say P (z) is analytically

continuable to the intersection of ∆-domains pointed at those roots, which form the set
Z as in Proposition 28. Also the lemma readily shows that P (z) admits the required
asymptotic expansion to any order at each point of Z.

Hence by Proposition 28, for any β > 1, Wβ(z) admits a radial expansion at any point
of Z with the chosen order u0 and the hybrid method could give us the wanted asymptotics
for Wβ,m once the radial expansions is calculated explicitly at each singularity. To simplify
calculation, we set u0 = ⌊β⌋ so that we only need to consider the expansion at l-th roots
of unity for l ⩽

⌊
2u0+2

β

⌋
− 1, which evaluates as follows

⌊
2⌊β⌋+ 2

β

⌋
− 1 =


2 if 1 < β ⩽ 4

3
,

1 if 4
3
< β < 2,

2 if β = 2,

1 if β > 2.
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In application due to Lemma 22, we are mainly concerned with the cases where β ∈ Z⩾2

and β → 2−.

3.3.3 The expansion at z = 1, β ∈ Z⩾2

We first consider β ∈ Z⩾2. Note that for any (real part) ℜγ > 1, ζ(γ) = Liγ(1) and

Wβ(1) = exp

(∑
l⩾1

hβ,l

2βl
Liβl(1)

)
,

by taking out Wβ(1) and using Lemma 22 we get (τ = − log z)

Wβ(z) = Wβ(1) exp

(∑
l⩾1

hβ,l

2βl
(−1)βllβl−1

(βl − 1)!
τβl−1(log τ + log l −Hβl−1)

)
(14)

· exp

(∑
l⩾1

hβ,l

2βl

∑
j⩾1,j ̸=βl−1

(−1)j

j!
ζ(βl − j)ljτ j

)
= Wβ(1) exp (Aβ(τ) log τ +Bβ(τ) + δβ(τ))

= Wβ(1) +Wβ(1)
∞∑
n=1

1

n!
(Aβ(τ) log τ +Bβ(τ) + δβ(τ))

n ,

in which Aβ, Bβ, δβ are series of τ correspondingly.

Noticing that τ = − log z =
∑∞

l=1

(1− z)l

l
, to approximate Wβ(z) by log-power func-

tions at z = 1 to the order u0 = ⌊β⌋ is to approximate it to the order O(τβ). Simply we
have

Aβ(τ) =
(−1)βhβ,1

2β(β − 1)!
τβ−1 +O(τ 2β−1),

Bβ(τ) =
(−1)βhβ,1

2β(β − 1)!
(−Hβ−1)τ

β−1 +O(τ 2β−1),

δβ(τ) =

β−1∑
j=1

(−1)j

j!
τ j

( ∑
l⩾1,βl−1̸=j

hβ,l

2βl
ζ(βl − j)lj

)
+O(τβ)

=

β−1∑
j=1

(−1)jHβ,j

j!
τ j +O(τβ),

where Hβ,j =
∑

l⩾1,βl−1̸=j

hβ,l

2βl
ζ(βl − j)lj are convergent series.

Hence in (14), we only need to care about the following terms

Aβ(τ) log τ, Bβ(τ),

β−1∑
n=1

1

n!
δnβ(τ).
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We investigate the log-power expansion of these three terms separately.
First we write log τ as

log τ = log

(
(1− z)

∞∑
l=0

(1− z)l

l + 1

)
= log(1− z) + log

(
1 +

∞∑
l=1

(1− z)l

l + 1

)

= log(1− z) +O(1− z).

Then
Aβ(τ) log τ =

(−1)βhβ,1

2β(β − 1)!
τβ−1 log(1− z) +O(τβ)

=
(−1)βhβ,1

2β(β − 1)!

(
∞∑
l=1

(1− z)l

l

)β−1

log(1− z) +O(τβ)

=
(−1)βhβ,1

2β(β − 1)!

(
(1− z)β−1 +

β − 1

2
(1− z)β

)
log(1− z) +O(τβ).

The other two terms Bβ(τ) and δβ(τ) do not involve log(1−z), hence for large enough
n, do not contribute to [zn]Wβ(z) by the following lemma

Lemma 29 (Lemma 1 of [4]). The general shape of coefficients of a log-power function
is computable by the two rules:

[zn](1− z)α ∼ 1

Γ(−α)
n−α−1, α /∈ Z⩾0,

[zn](1− z)r(− log(1− z))k ∼ (−1)rk(r!)n−r−1(log n)k−1, r ∈ Z⩾0, k ∈ Z+.

Note that Γ(z) has poles at negative integers which makes the first formula in the
lemma coincide with the obvious fact that (1− z)α, α ∈ Z⩾0 do not contribute to asymp-
totics of coefficients eventually. Combined with the above calculation, we get

[zn]Aβ(τ) log τ (15)

=[zn]
(−1)βhβ,1

2β(β − 1)!

(
(1− z)β−1 + (β − 1)(1− z)β

)
log(1− z) + o(n−β)

=
hβ,1

2βnβ
+ o(n−β) = (2n)−β + o(n−β),

recalling that
∑

l⩾1 hβ,lz
l = log(Iβ(z)) = log

(∑
j⩾0 z

j/(j!)β
)

and hβ,1 = 1 for any β ∈ R.
In general, the coefficients hβ,l can be computed by Faà di Bruno’s formula. Hence we get
the expansion for Wβ(z) at z = 1 in this shape.
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3.3.4 The expansion at z = 1, β > 1, β /∈ Z⩾0

By Lemma 22 we get (τ = − log z)

Wβ(z) = Wβ(1) exp

(∑
l⩾1

hβ,ll
βl−1

2βl
Γ(1− βl)(τ)βl−1

)
(16)

· exp

(∑
l⩾1

hβ,l

2βl

∑
j⩾1

(−1)j

j!
ζ(βl − j)ljτ j

)
= Wβ(1) exp (Aβ(τ) + δβ(τ)) ,

in which (recall that hβ,1 = 1)

Aβ(τ) =
hβ,1

2β
Γ(1− β)τβ−1 +O(τ 2β−1)

=
Γ(1− β)

2β
(1− z)β−1 +O((1− z)β)

and δβ(τ) involves only integer powers of (1 − z). Hence by Lemma 29, we only need to
concern about Aβ(τ) and

[zn]Aβ(τ) =
Γ(1− β)

2βΓ(1− β)
n−β + o(n−β) =

1

2βnβ
+ o(n−β).

3.3.5 The expansion at z = −1

By Lemma 22, only Li2βl(z
2l) in (8) contribute singularities at z = −1, hence contribute

to the asymptotics of Wβ,n to the order O(n−2β) by 3.3.3 and 3.3.4.
Thus combining 3.3.1-3.3.4 and 3.3.5, we conclude from the hybrid method Proposition

28 that
Proposition 30. For any β > 1,

Wβ,m =
Wβ(1)

2βmβ
+ o(m−β).

Remark 31. We omit the calculation of Wβ(1) for now, but according to Proposition 4
of [4], it should be less than 4.26341/2β for β ⩾ 2. Also note that by Stirling’s formula
W1,m ∼ 1√

πm
, an abrupt jump of order in n. This is caused by Wβ(1) → ∞ as β → 1.

Proof of Theorem 1. Now by the moment bound from Proposition 17, for P defined as
(4) and f the random variable on {patition of m} defined at the beginning of subsection
3.2, and for any c > 0, α > 0, we have

P (f < mc) ⩽ mcαW−1
1,mWα+1,m = mcα ·O(m−1/2−α) = O(m−1/2+(c−1)α).

In particular since for any c > 0 there always exists α small enough such that (c− 1)α <
1/2, we have

P (f < mc) → 0, as m → ∞,

which proves Theorem 1.
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4 Proof of Theorem 2 by Wright’s expansion

Again by Markov’s inequality, for any c > 0, 0 < β < 1 and expectation EP on the
probability measure P defined in (4),

P (f(λ) > mc) = P
(
f 1−β(λ) > mc(1−β)

)
⩽ 1

mc(1−β)
EP (f

1−β) (17)

= m−c(1−β)
∑
|λ|=m

(
k∏

i=1

(2i)riri!

)1−β

22m(m!)2

(2m)!
∏k

i=1(2i)
riri!

= m−c(1−β)W−1
1,mWβ,m.

Only when β tends 1 could the above inequality give an appropriate bound for P (f(λ) >
mc). The upper bound of Wβ,m in remark 19 can only best possibly give

P (f(λ) > mc) = O(1),

for β = 1 − 1√
m

√
3

π
√
2
t logm and any 0 < t < 1

2
. Hence we need more precise asymptotics

for Wβ,m, 0 < β < 1.
Let 1

2
< β < 1, we can split Wβ(z) as of (8) into

Wβ(z) = exp

(∑
l⩾1

hβ,l

2βl
Liβl(z

l)

)
= exp

(
2−βLiβ(z)

)
· eVβ(z), (18)

where Vβ(z) =
∑

l⩾2

hβ,l

2βl
Liβl(z

l) and also note that hβ,1 = 1. By calculation using the
hybrid method in subsection 3.2, it is clear that

[zn]eVβ(z) = O(n−2β). (19)
For the first factor, by Lemma 22, we get (τ = − log z)

exp
(
2−βLiβ(z)

)
= exp

(
2−β

(
Γ(1− β)τβ−1 + ζ(β) + δβ(τ)

))
, (20)

where
δβ(τ) =

∑
j⩾1

(−1)j

j!
ζ(β − j)τ j.

Similar to 3.3.3, since δβ(τ) (or eδβ(τ)) only involves integer powers of (1− z), by Lemma
29 it does not contribute to the asymptotics of [zn] exp

(
2−βLiβ(z)

)
in order of n. Thus it

is essential to approximate the coefficients of
Uβ(z) = exp

(
2−βΓ(1− β)(− log z)β−1

)
.

Together with the factorization (18) and asymptotics (19), this gives

Wβ,m = [zm]Wβ(z) = Ce2
−βζ(β)

m∑
k=0

[zn]Uβ(z)[z
m−n]eVβ(z). (21)

Now we focus on the asymptotics of [zn]e2−βζ(β)Uβ(z). We notice that functions of same
type with Uβ were already handled in 1930s by E. M. Wright [15].
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Proposition 32 (Wright’s expansions, Theorem 5,6,7 of [15]). For any a, b, c ∈ C, a ̸= 0
and ρ > 0, let

χ(z) =
zc

(− log(z))b
exp

(
a

(− log(z))ρ

)
,

and
F (z) =

∞∑
n=⌈ℜc⌉+1

(n− c)b−1ϕ(a(n− c)ρ)zn,

in which ℜc is the real part of c and

ϕ(z) =
∞∑
l=0

zl

Γ(l + 1)Γ(ρl + b)
.

(It is called a generalized Fox-Wright function, see [5].) Then F (z) forms the singular
part of χ(z) and G(z) = F (z)− χ(z) is a regular function around z = 1 where it behaves
uniformly in terms of a and ρ. Moreover, define the asymptotic expansion

H(z) ∼ z1/2−be(1+1/ρ)z

(
r∑

j=0

(−1)jaj
zj

+O(
1

|z|r+1
)

)
,

where the term O(|z|r+1) and aj are uniformly bounded for ρ > −1, for example,

a0 = {2π(ρ+ 1)}−
1
2 , a1 =

12b2 − 12b(ρ+ 1) + (ρ+ 2)(2ρ+ 1)

24(ρ+ 1){2π(ρ+ 1)} 1
2

.

For arg(z) = ξ, |ξ| ⩽ π − ϵ, let

Z = (ρ|z|)1/(ρ+1)eiξ/(ρ+1),

then ϕ(z) has the asymptotics (by a saddle point analysis which Wright did not perform
in [15] but in [16])

ϕ(z) = H(Z),

and the error term in H depends on ϵ.

Since Vβ(z) is regular of global order 0 at the singularity z = 1, it does not contribute
to asymptotics of coefficients (by Cauchy’s integral formula). Thus we conclude from
Proposition 32 that

Corollary 33. Let b = c = 0, a = 2−βΓ(1− β) and ρ = 1− β, then

[zn]Uβ(z) = n−1ϕ(2−βΓ(1− β)n1−β).

In particular ξ = 0 (keeping notations of the above proposition), hence

Z =
(
(1− β)2−βΓ(1− β)n1−β

)1/(2−β)
=
(
2−βΓ(2− β)n1−β

)1/(2−β)
.
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Then
[zn]e2

−βζ(β)Uβ(z) = e2
−βζ(β) · n−1H

((
2−βΓ(2− β)n1−β

)1/(2−β)
)

= n−1e2
−βζ(β)

(
2−βΓ(2− β)n1−β

)1/(4−2β)

· exp
(
2− β

1− β

(
2−βΓ(2− β)n1−β

)1/(2−β)
)
· C

= C ′n−1 · n
1−β
4−2β exp

(
g(1− β)

1− β

)
,

where
g(1− β) = (2− β)

(
2−βΓ(2− β)n1−β

)1/(2−β)
+ 2−βζ(β)(1− β),

C is bounded independent of 1− β and n, and C ′ = C · 2−βΓ(2− β) ∼ C/2 as β → 1−.
Let ϵ = 1− β → 0+, then we can rewrite g(1− β) as

g(ϵ) = (1 + ϵ)
(
2ϵ−1Γ(1 + ϵ)nϵ

) 1
1+ϵ + 2ϵ−1ζ(1− ϵ)ϵ.

Hence to figure out the asymptotics of Wβ,n we need to compute the limit

lim
ϵ→0+

g(ϵ)

ϵ
=

1

2
+ lim

ϵ→0+

(2ϵ−1Γ(1 + ϵ)nϵ)
1

1+ϵ + 2ϵ−1ζ(1− ϵ)ϵ

ϵ

=
1

2
+

1

2
lim
ϵ→0+

2
ϵ(1−ϵ)
1+ϵ n

ϵ
1+ϵΓ(1 + ϵ)

1
1+ϵ + ζ(1− ϵ)ϵ

ϵ
.

First, the limit exists since ζ(1− ϵ)ϵ → −1 and then

g(ϵ) → 1 · (2−1)1 + 2−1(−1) = 0, as ϵ → 0.

Moreover, we have the Laurent series of ζ(s)

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)nγn
n!

(s− 1)n,

where γn are the Stieltjes constants and especially γ0 is the Euler-Mascheroni constant.
Thus we get

ζ(1− ϵ)ϵ = −1 + γ0ϵ+
∞∑
n=0

γn
n!

ϵn+1 ∼ −1 + γ0ϵ+O(ϵ2),

and we can rewrite the limit as

lim
ϵ→0+

g(ϵ)

ϵ
=

1

2
+

1

2
lim
ϵ→0+

2
ϵ(1−ϵ)
1+ϵ n

ϵ
1+ϵΓ(1 + ϵ)

1
1+ϵ − 1

ϵ
+

γ0
2
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=
1 + γ0

2
+

1

2
lim
ϵ→0+

n
ϵ

1+ϵΓ(1 + ϵ)
1

1+ϵ − 2−
ϵ(1−ϵ)
1+ϵ

ϵ

=
1 + γ0

2
+

1

2
lim
ϵ→0+

g1(ϵ)− g2(ϵ)

ϵ
.

Easily g1(0) = g2(0) = 1. Now we calculate their first derivatives at 0,

g′1(ϵ) = n
ϵ

1+ϵ
1

(1 + ϵ)2
log n · Γ(1 + ϵ)

1
1+ϵ

+n
ϵ

1+ϵ · Γ(1 + ϵ)
1

1+ϵ

(
− 1

(1 + ϵ)2
log Γ(1 + ϵ) +

1

1 + ϵ

Γ′(1 + ϵ)

Γ(1 + ϵ)

)
,

hence
g′1(0) = log n− γ0,

note that Γ(1) = 1,Γ′(1) = −γ0. (Moreover, inductively we have estimate that g
(k)
1 (0) ∼

(log n)k.)

g′2(ϵ) = 2−
ϵ(1−ϵ)
1+ϵ log 2 ·

(
1− 2

(1 + ϵ)2

)
,

hence
g′2(0) = − log 2.

We are plugged into the limit and get

lim
ϵ→0+

g(ϵ)

ϵ
=

1 + γ0
2

+
1

2
(g′1(0)− g′2(0)) =

1 + γ0
2

+
1

2
(log 2n− γ0)

=
1 + log 2n

2
.

Moreover, we have (for n ⩽ m)

g(ϵ)

ϵ
− 1 + log 2n

2
= O

(∑
k⩾1

(log n)k+1

(k + 1)!
ϵk

)
,

where the constant in O(∗) is independent of m and 1− β.
Finally we get

[zn]e2
−βζ(β)Uβ(z) = O

(
n−1 · n

1−β
4−2β · exp

(
g(1− β)

1− β

))

= O

(
n−1+ 1−β

4−2β exp

(
log 2n

2
+ log n ·O

(∑
k⩾1

((1− β) log n)k

(k + 1)!

)))
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= O

n

− 1
2
+ 1−β

4−2β
+O

∑
k⩾1

((1− β) log n)k

(k + 1)!


 .

Returning to (21) we finally get

Wβ,m = [zm]Wβ(z) = O

(
m∑

n=0

[zn]e2
−βζ(β)Uβ(z)[z

m−n]eVβ(z)

)

= O

m

− 1
2
+ 1−β

4−2β
+O

∑
k⩾1

((1− β) logm)k

(k + 1)!


 ,

note that [zm−n]eVβ(z) = O
(
m−2β

)
.

Returning to (17) and noting that W1,m ∼ (πm)−1/2, for any c > 0 we get

P (f > mc) ⩽ m−c(1−β)W−1
1,mWβ,m

= O

m

(−c+ 1
4−2β )(1−β)+O

∑
k⩾1

((1− β) logm)k

(k + 1)!


 .

For β = 1 − t
(logm)2

(t constant) and c > 1
2
+ logm, the above term goes to zero as

m → ∞. This amounts to proving Theorem 2.
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