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Abstract

We show that if A is a subset of a group of prime order p such that |2A| <
2.7652|A| and 10 󰃑 |A| < 1.25 ·10−6p, then A is contained in an arithmetic progres-
sion with at most |2A|− |A|+ 1 terms, and 2A contains an arithmetic progression
with the same difference and at least 2|A| − 1 terms. This improves a number of
previously known results.

Mathematics Subject Classifications: 11P70, 11B25

1 Introduction

A classical result in additive combinatorics, Freiman’s (3n − 4)-theorem, says that if A
is a finite set of integers satisfying |2A| 󰃑 3|A|− 4, then A is contained in an arithmetic
progression of length |2A|− |A|+ 1.

It is believed that an analogue of Freiman’s theorem holds for the “not-too-large”
subsets of the prime-order groups; that is, if A is a subset of a group of prime order such
that |2A| 󰃑 3|A|− 4 then, subject to some mild density restrictions, A is contained in an
arithmetic progression with at most |2A|− |A| + 1 terms. The precise form of this (and
indeed, somewhat more general) conjecture can be found in [7, Conjecture 19.2].
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For an integer m 󰃍 1, we denote by Cm the cyclic group of order m. Let p be a prime.
Over sixty years ago, Freiman himself showed [4] that a subset A ⊆ Cp is contained in
a progression with at most |2A| − |A| + 1 terms provided that |2A| < 2.4|A| − 3 and
|A| < p/35. Much work has been done to improve Freiman’s result in various directions;
we list just a few results of this kind.

Rødseth [10] showed that the assumption |A| < p/35 can be relaxed to |A| < p/10.7.
Green and Ruzsa [6] pushed the doubling constant from 2.4 up to 3, at the cost of
a stronger density assumption |A| < p/10215. In [11], Serra and Zémor obtained a
result without any density assumption other than the conjectural one, but at the cost of
reducing essentially the doubling coefficient; namely, assuming that |2A| 󰃑 (2+ε)|A| with
ε < 0.0001. An improvement, allowing in particular ε < 0.1368, was obtained by Candela,
González-Sánchez, and Grynkiewicz [1]. Candela, Serra, and Spiegel [2] improved the
doubling coefficient to 2.48 under the assumption |A| < p/1010, and this was further
improved by Lev and Shkredov [9] to 2.59 and |A| < 0.0045p, respectively.

We have mentioned only several most relevant results; variations and extensions, such
as the results on the asymmetric sumset A + B and restricted sumset A+̇A, are inten-
tionally left out. A systematic coverage of the topic can be found in [7, Chapter 19].

In this paper, we prove the following result.

Theorem 1. Let p be a prime, and suppose that a set A ⊆ Cp satisfies |2A| < 2.7652|A|−
3. If 10 󰃑 |A| < 1.25 · 10−6p, then A is contained in an arithmetic progression with at
most |2A| − |A| + 1 terms, and 2A contains an arithmetic progression with the same
difference and at least 2|A|− 1 terms.

Our argument follows closely that in [2]. The improvements come primarily from
applying a result of Lev [8] that establishes the structure of small-doubling sets in cyclic
groups (instead of an earlier result of Deshouillers and Freiman [3]), and also from using
an estimate from a recent paper of Lev and Shkredov [9].

In the next section we collect the results needed for the proof of Theorem 1. The
proof itself is presented in the concluding Section 3.

2 Preparations

This paper is intended for the reader familiar with the basic notions and results from the
area of additive combinatorics, such as the sumsets, additive energy, Freiman’s isomor-
phism, Cauchy–Davenport and Vosper’s theorems, the Plünnecke–Ruzsa inequality etc;
they will be used without any further explanations. Our notation and terminology are
also quite standard. It may be worth recalling, nevertheless, that a subset of an abelian
group is called rectifiable if it is Freiman-isomorphic to a set of integers, and that the
additive dimension of a subset A ⊆ Z, denoted dim(A), is the largest integer d such that
A is Freiman-isomorphic to a subset of Zd not contained in a hyperplane. By ϕm we
denote the canonical homomorphism from Z onto the quotient group Z/mZ ∼= Cm. The
size of an arithmetic progression is the number of its (distinct) elements.

The core new component used in the proof of Theorem 1 is the following result.
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Theorem 2 (Lev [8, Theorem 1.1]). Let m be a positive integer. If a set A ⊆ Cm satisfies
|2A| < 9

4
|A|, then one of the following holds:

(i) There is a subgroup H 󰃑 Cm such that A is contained in an H-coset and |A| >
C−1|H|, where C = 2 · 105.

(ii) There is a proper subgroup H < Cm and an arithmetic progression P of size |P| > 1
such that |P +H| = |P||H|, A ⊆ P +H, and

(|P|− 1)|H| 󰃑 |2A|− |A|.

(iii) There is a proper subgroup H < Cm such that A meets exactly three H-cosets, the
cosets are not in an arithmetic progression, and

3|H| 󰃑 |2A|− |A|.

The following lemma originating from [2] relates the additive dimension of a set with
the rectifiability of its image under a quotient map.

Lemma 3 (Candela–Serra–Spiegel [2, Lemma 2.2]). Let l be a positive integer, and sup-
pose that A is a set of integers satisfying {0, l} ⊆ A ⊆ [0, l] and gcd(A) = 1. If there is
a proper subgroup H < Cl such that the image of A under the composite homomorphism
Z → Cl → Cl/H is rectifiable, then dim(A) 󰃍 2.

Since the proof is just several lines long, we reproduce it here for the convenience of
the reader.

Proof. Writing m := l/|H|, we identify the quotient group Cl/H with the group Cm,
and the map Z → Cl → Cl/H with ϕm. Let f : ϕm(A) → Z be Freiman’s isomorphism
of ϕm(A) into the integers. The set {(a, f(ϕm(a))) : a ∈ A} ⊆ Z2 is easily seen to
be isomorphic to A, and to complete the proof we show that this set is not contained
in a line. Assuming the opposite, from f(ϕm(0)) = f(ϕm(l)) we derive that f(ϕm(a))
attains the same common value for all a ∈ A. The same is then true for ϕm(a), showing
that ϕm(a) = ϕm(0) = 0 for any a ∈ A; that is, all elements of A are divisible by m,
contradicting the assumption gcd(A) = 1, except if m = 1 in which case H = Cl.

From Theorem 2 and Lemma 3 we deduce the key proposition used in the proof of
Theorem 1.

Proposition 4. Let A be a finite set of integers satisfying |2A| < 13
4
|A|− 9

4
. If dim(A) =

1, then A is contained in an arithmetic progression with at most 2 · 105|A| terms.

The proof essentially follows that of [2, Proposition 2.3], with some simplifications,
and with Theorem 2 replacing [3, Theorem 1].
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Proof of Proposition 4. Without loss of generality we assume that {0, l} ⊆ A ⊆ [0, l]
with an integer l > 0, and that gcd(A) = 1. We want to show that l < 2 · 105|A|.

Aiming at a contradiction, assume that l 󰃍 2 · 105|A|. Let A := ϕl(A) ⊆ Cl; thus,
|A| = |A| − 1. Since ϕl(a) = ϕl(a + l) for any a ∈ A \ {0, l}, and ϕl(0) = ϕl(l) = ϕl(2l),
we have |2A| 󰃍 |2A|+ |A|. It follows that

|2A| 󰃑 |2A|− |A| < 9

4
|A|− 9

4
=

9

4
|A|,

allowing us to apply Theorem 2. We consider three possible cases corresponding to the
three cases in the conclusion of the theorem.

Case (i): There is a subgroup H 󰃑 Cl such that A is contained in an H-coset and
|A| > C−1|H|, where C = 2 · 105. Since 0 ∈ A and gcd(A) = 1, the subgroup H is not
proper. Therefore l = |H| < 2 · 105|A| < 2 · 105|A|, as wanted.
Case (ii): There is a proper subgroup H < Cl and an arithmetic progression P ⊆ Cl of
size |P| > 1 such that |P +H| = |P||H|, A ⊆ P +H, and (|P|− 1)|H| 󰃑 |2A|− |A|. The
image of A under the quotient map Cl → Cl/H is contained in an arithmetic progression
of size

|P| 󰃑 1 + (|2A|− |A|)/|H| 󰃑 1 +
5

4
|A|/|H|

< 1 +
5

4
|A|/|H| 󰃑 1 +

5

8
10−5l/|H| < 1

2
l/|H| = 1

2
|Cl/H|.

The difference of this progression is coprime with |Cl/H| in view of the assumptions 0 ∈ A
and gcd(A) = 1. Hence, the progression is rectifiable, and so is the image of A contained
therein. The result now follows by applying Lemma 3.

Case (iii): There is a proper subgroup H < Cl such that A meets exactly three H-cosets,
the cosets are not in an arithmetic progression, and 3|H| 󰃑 |2A| − |A|. In this case the
image of A in Cl/H consists of three elements not in an arithmetic progression; therefore
the image is isomorphic, say, to the set {0, 1, 3} ⊆ Z, and an application of Lemma 3
completes the proof.

Lemma 5 (Freiman [5, Lemma 1.14]). For any finite, nonempty set A of integers, writing
d := dim(A), we have

|2A| 󰃍 (d+ 1)|A|−
󰀕
d+ 1

2

󰀖
.

Lemma 6 (Candela–Serra–Spiegel [2, Corollary 2.6]). Let A ⊆ Z be a finite set with
dimA = 2. If |2A| 󰃑 10

3
|A| − 7, then A is contained in the union of two arithmetic

progressions, P1 and P2, with the same difference, such that |P1 ∪ P2| 󰃑 |2A| − 2|A| + 3
and the sumsets 2P1, P1 + P2 and 2P2 are pairwise disjoint.

The following result is, essentially, extracted from [9, Proof of Theorem 3], with a little
twist that will help us keep the remainder terms under better control.
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For a prime p and a subset A ⊆ Cp, by 󰁥A we denote the non-normalized Fourier
transform of the indicator function of A:

󰁥A(χ) =
󰁛

a∈A

χ(a); χ ∈ 󰁦Cp.

The principal character is denoted by 1. We let

ηA := max{| 󰁥A(χ)|/|A| : χ ∕= 1}.

Proposition 7. Suppose that p is a prime, and A ⊆ Cp is a nonempty subset of density
α := |A|/p < 1/2. If |2A| = K|A| and A is not an arithmetic progression, then

(1− αK)(1− η2A) 󰃑 1−K−1 −K−2 + (K − (1− 2K−1)|A|)/|A|2.

Proof. Let S := 2A and D := A − A. For a set T ⊆ Cp and element x ∈ Cp, we write
Tx := T ∩ (x+ T ); thus, |Tx| is the number of representations of x as a difference of two
elements of T , and in particular |T0| = |T |.

Consider the easily-verified identity

1

p

󰁛

χ∈󰁦Cp

| 󰁥A(χ)|2| 󰁥S(χ)|2 =
󰁛

x∈D

|Ax||Sx|. (1)

For the left-hand side using the Parseval identity we obtain the estimate

1

p

󰁛

χ∈󰁦Cp

| 󰁥A(χ)|2| 󰁥S(χ)|2 󰃑 1

p
|A|2|S|2 + 1

p
η2A|A|2|S|(p− |S|)

󰃑 αK2|A|3 + η2AK|A|3(1− αK). (2)

To estimate the right-hand side we recall the Katz–Koester observation A+Ax ⊆ Sx, x ∈
Cp. Let N be the number of elements x ∈ D with |Ax| = 1. Notice that N 󰃑 |D| 󰃑 K2|A|;
here the first estimate is trivial, and the second is the Plünnecke–Ruzsa inequality. From
the assumption α < 1/2 and the theorems of Cauchy–Davenport and Vosper, we get

󰁛

x∈D

|Ax||Sx| 󰃍
󰁛

x∈D\{0}

|Ax||Sx|+ |A||S|

󰃍
󰁛

x∈D\{0}

|Ax||A+Ax|+ |A||S|

󰃍
󰁛

x∈D\{0}

|Ax|(|A|+ |Ax|)−N + |A||S|

󰃍
󰁛

x∈D

|Ax|(|A|+ |Ax|)−N + |A||S|− 2|A|2

󰃍 |A|3 + E(A)−K2|A|+ (K − 2)|A|2 (3)
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where E(A) =
󰁓

x∈D |Ax|2 is the additive energy of A, and where the third estimate
follows from Vosper’s theorem if |A+Ax| 󰃑 p−2, and otherwise from |A+Ax| 󰃍 p−1 >
2αp− 1 = 2|A|− 1 󰃍 |A|+ |Ax|− 1.

Combining (1), (2), and (3), and using the basic bound E(A) 󰃍 |A|3/K, we get

αK2|A|3 + η2AK|A|3(1− αK) 󰃍 (1 +K−1)|A|3 − (K2 − (K − 2)|A|)|A|

whence

αK + η2A(1− αK) 󰃍 K−1 +K−2 − (K − (1− 2K−1)|A|)/|A|2,
(η2A − 1)(1− αK) 󰃍 K−1 +K−2 − 1− (K − (1− 2K−1)|A|)/|A|2

which is equivalent to the inequality sought.

Corollary 8. Let A, α, and K be as in Proposition 7. If α < 10−5, K < 2.7652, and
|A| 󰃍 10, then ηA > 8

13
K − 1.

Proof. Assuming ηA 󰃑 8
13
K − 1 we get

1− η2A 󰃍 16

13
K − 64

169
K2 =

16

169
K(13− 4K)

whence, by Proposition 7,

(1− αK)
16

169
K(13− 4K) 󰃑 1−K−1 −K−2 + (K − (1− 2K−1)|A|)/|A|2. (4)

The left-hand side is decreasing both as a function ofK (sinceK > 13/8) and as a function
of α, while the right-hand side is an increasing function of K. Therefore (4) stays true
with K substituted by 2.7652 and α by 10−5; this results in a quadratic inequality in |A|
which is false for |A| 󰃍 10.

The following lemma is standardly used to convert the “Fourier bias” (established in
Corollary 8) into the “combinatorial bias”.

Lemma 9 (Freiman [5]). Suppose that p is a prime, and A ⊆ Cp is a nonempty subset.
There is an arithmetic progression P ⊂ Cp with |P| 󰃑 (p+ 1)/2 terms such that

|A ∩ P| > 1

2
(1 + ηA)|A|.

Finally, we need the symmetric case of a version of the (3n − 4)-theorem due to
Grynkiewicz.

Theorem 10 (Special case of [7, Theorem 7.1]). Let A be a finite set of integers. If
|2A| 󰃑 3|A|−4, then A is contained in an arithmetic progression with at most |2A|−|A|+1
terms, and 2A contains an arithmetic progression with the same difference and at least
2|A|− 1 terms.
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3 Proof of Theorem 1

Throughout the proof, we identify Cp with the additive group of the p-element field;
accordingly, the automorphisms of Cp are identified with the dilates. We write d ∗A :=
{da : a ∈ A} where d is an integer or an element of Cp.

For u 󰃑 v, by [u, v] we denote both the set of all integers u 󰃑 z 󰃑 v and the image of
this set in Cp under the homomorphism ϕp. We may also occasionally identify integers
with their images under ϕp. For brevity, we write p′ := (p− 1)/2.

Assuming that A ⊆ Cp satisfies |2A| 󰃑 K|A| − 3 with K < 2.7652 and 10 󰃑 |A| <
1.25 · 10−6p, we prove that A is contained in an arithmetic progression with at most
(p+1)/2 terms; equivalently, there is an affine transformation that maps A into a subset
of an interval of length at most p′. This will show that A is rectifiable and imply the
result in view of Theorem 10.

Let A0 be a subset of A of the largest possible size such that A0 is contained in an
arithmetic progression with at most (p+1)/2 terms. We observe that, by the maximality
of |A0|, if A0 ⊆ [0, l] with an integer 0 󰃑 l 󰃑 p′, then the two intervals of length p′ − l− 1
adjacent to [0, l] “from the left” and “from the right” do not contain any elements of A;
that is,

[l + p′ + 1, p− 1] ∩A = [l + 1, p′] ∩A = ∅.

Therefore
A \ A0 ⊆ [p′ + 1, p′ + l] = p′ + [1, l]. (5)

Suppose first that A0 is contained in an arithmetic progression with at most 2 ·105|A0|
terms. Having applied a suitable affine transformation, we assume that A0 ⊆ [0, l] with
l < 2 · 105|A0|. By (5), we have

2 ∗A ⊆ (2 ∗A0) ∪ [1, 2l − 1] ⊆ [0, 2l].

In view of 2l+ 1 < 4 · 105|A0| 󰃑 4 · 105|A| 󰃑 p′, this shows that the affine transformation
z 󰀁→ 2z maps A into an interval of length at most p′, which is shown above to imply the
result.

We therefore assume from now on that A0 is not contained in an arithmetic progres-
sion with 2 · 105|A0| or fewer terms; in particular, the set A0 itself is not an arithmetic
progression.

In view of 10 󰃑 |A| < 1.25 · 10−6p < 10−5p, we can apply Corollary 8, and then
Lemma 9, to get

|A0| >
4

13
K|A|; (6)

it follows that

|2A0| 󰃑 |2A| 󰃑 K|A|− 3 <
13

4
|A0|−

9

4
. (7)

Recalling the way the setA0 has been chosen, we find a set A0 ⊆ Z such thatA0 = ϕp(A0),
|A0| = |A0|, and A0 is contained in an arithmetic progression with at most p′ + 1 terms;
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thus, A0 is Freiman-isomorphic to A0, and as a result,

|2A0| <
13

4
|A0|−

9

4
.

Since A0 is not contained in an arithmetic progression with 2 · 105|A0| or fewer terms,
neither is A0. (This does not follow from the mere fact that A0 and A0 are Freiman-
isomorphic, but does follow immediately by observing that A0 is the image of A0 under a
group homomorphism.) Consequently, by Proposition 4, we conclude that dim(A0) 󰃍 2,
and then, indeed, dim(A0) = 2 by Lemma 5. Applying Lemma 6, we derive that A0

is contained in the union of two arithmetic progressions, say P1 and P2, with the same
difference, such that |P1 ∪ P2| 󰃑 |2A0|− 2|A0|+ 3 and the sumsets 2P1, P1 + P2 and 2P2

are pairwise disjoint. Hence, A0 is contained in the union of the disjoint progressions
P1 := ϕp(P1) and P2 := ϕp(P2). Let A1 = A0 ∩ P1 and A2 = A0 ∩ P2. Without loss of
generality, we assume that |A1| 󰃍 |A0|/2.

Applying a suitable affine transformation, we can arrange that P1 = [0, b] and P2 =
[c, d], where 0 󰃑 b < c 󰃑 d < p are integers such that

c− b 󰃑 p− d. (8)

Recalling (6), we obtain

b+ d− c = |P1|+ |P2|− 2 󰃑 |2A0|− 2|A0|+ 1

󰃑 |2A|− 2|A0|+ 1 < K|A|− 8

13
K|A| = 5

13
K|A| < 2|A|,

whence
b+ (d− c) < 2|A|. (9)

Writing n := |A|, we therefore have

A1 ⊆ [0, b] ⊆ [0, 2n], A2 ⊆ c+ [0, d− c] ⊆ c+ [0, 2n], (10)

and also
(c− b) + (p− d) = p− (d− c)− b > p− 2n.

Along with (8), the last estimate gives p− d 󰃍 p′ − n + 1 and, consequently, d 󰃑 p′ + n.
In fact, we have

4n < d < p′ − 4n; (11)

here the lower bound follows immediately from the assumption that A0 is not contained in
a progression with 2·105|A0| or fewer terms, and the upper bound follows by observing that
if we had p′−4n 󰃑 d 󰃑 p′+n, in view of (9) this would imply [c, d] = [d−(d−c), d] ⊆ [d−
2n, d] ⊆ p′+[−6n, n] and, consequently, 2∗A0 ⊆ [0, 2b]∪[−12n−1, 2n−1] ⊆ [−12n−1, 4n],
in a contradiction with the same assumption.

We have 2A0 = 2A1 ∪ (A1 +A2) ∪ 2A2 where the union is disjoint; therefore, by the
Cauchy–Davenport theorem,

|2A0| 󰃍 (2|A1|− 1) + (|A1|+ |A2|− 1) + (2|A2|− 1) = 3|A0|− 3. (12)
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It follows that for any a ∈ A\A0 we have (a+A1)∩(2A0) ∕= ∅, as assuming the opposite,

|2A| 󰃍 |2A0| + |a + A1| 󰃍 3|A0| − 3 +
1

2
|A0| >

7

2
· 4

13
K|A| − 3 =

14

13
K|A| − 3,

a contradiction. Therefore, recalling (10),

A \ A0 ⊆ 2A0 −A1 ⊆ {0, c, 2c}+ [−2n, 4n]. (13)

On the other hand, since d < p′, we can apply (5) with l = d to get

A \ A0 ⊆ p′ + [1, d]. (14)

Comparing (13) and (14), and observing that, in view of (11), both intervals [−2n, 4n]
and c+ [−2n, 4n] are disjoint from the interval p′ + [1, d], we conclude that

A \ A0 ⊆ 2c+ [−2n, 4n] (15)

and, consequently, using (10) once again,

A ⊆ {0, c, 2c}+ [−2n, 4n].

We notice that the set 2(A\A0) is not disjoint from the set 2A0 as otherwise using (12)
we would get

|2A| 󰃍 |2(A \ A0)|+ |2A0| 󰃍 2|A \ A0|− 1 + 3|A0|− 3

= 2|A|+ |A0|− 4 󰃍
󰀕
2 +

4

13
K

󰀖
|A|− 4 > K|A|− 3.

Since 2(A\A0) ⊆ 4c+[−4n, 8n] by (15), and 2A0 ⊆ {0, c, 2c}+[0, 4n] in view of (10), we
conclude that kc ∈ [−8n, 8n] for some k ∈ {2, 3, 4}. Therefore k∗A0 ⊆ {0, kc}+[0, 2kn] ⊆
[−8n, (8 + 2k)n]. Hence, A0 is contained in an arithmetic progression with at most
(16 + 2k)n+ 1 < 25n < 2 · 105|A0| terms, a contradiction.
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