
Hadamard Matrices Related to Projective Planes

Hadi Kharaghani∗

Department of Mathematics and
Computer Science

University of Lethbridge
Lethbridge, Alberta, T1K 3M4, Canada

kharaghani@uleth.ca

Sho Suda†

Department of Mathematics
National Defense Academy of Japan
Yokosuka, Kanagawa 239-8686, Japan

ssuda@nda.ac.jp

Submitted: Apr 7, 2023; Accepted: Jun 9, 2023; Published: Jun 30, 2023

©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let n be the order of a quaternary Hadamard matrix. It is shown that the
existence of a projective plane of order n is equivalent to the existence of a balancedly
multi-splittable quaternary Hadamard matrix of order n2.

Mathematics Subject Classifications: 05B20, 05B25, 05B15

1 Introduction

K. A. Bush [2] was the first to establish a link between projective planes of even order
and specific Hadamard matrices, that was later labeled as Bush-type in 1971. H. J. Ryser
[11] found the same connection as an application of factors of design matrix in 1977. Eric
Verheiden [12] provided a direct construction for the matrices using the incidence matrices
of the corresponding projective planes.

Frans C. Bussemaker, Willem Haemers and Ted Spence [3] used an exhaustive search
and found no strongly regular graph with parameters (36,15,6,6) and chromatic number six
or, equivalently, there is no symmetric Bush-type Hadamard matrix of order 36. Many
Bush-type Hadamard matrices of order 100 are constructed, but none is known to be
symmetric. The proof of the nonexistence of a symmetric Bush-type Hadamard matrix
of order 100 would be exciting and is an alternative to the proof of the nonexistence of
projective plane of order 10, however, there has been no attempt at showing it so far.
The nonexistence of the projective plane of order 10 was finally established by a long
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computational method by C. W. H. Lam et al. in [9, 10], and an alternate approach is
still highly desirable.

The connection between projective planes and Hadamard matrices shown in [2, 11, 12]
are all one-sided results in which from a projective plane of even order symmetric Bush-
type Hadamard matrices are constructed.

Balancedly splittable Hadamard matrices were introduced by the authors in 2018 in
[8], and the results were widely expanded in a recent paper by Jonathan Jedwab et al. in
[5]. It is known [7] that the existence of a Hadamard matrix of order 4n would lead to
a balancedly splittable Hadamard matrix of order 64n2. However, there is no balancedly
splittable Hadamard matrix of order 4n2, n odd, see [8]. The case of Hadamard matrices
of order 16n2, n > 1 odd, remains open, and no balancedly splittable Hadamard matrix
of order 144 is known.

Concentrating on the order 144, the authors were led to some exotic classes of bal-
ancedly splittable Hadamard matrices, which is dubbed as balancedly multi-splittable
Hadamard matrices. There is a balancedly multi-splittable Hadamard matrix of order
4m for every positive integer m, and it seems that these are probably the only Hadamard
matrices with this property.

It will be shown in this paper that the existence of a projective plane of order 4n
is equivalent to the existence of a balancedly multi-splittable Hadamard matrix of order
16n2 provided that 4n is the order of a Hadamard matrix. In doing so we use the fact that
the existence of projective planes are equivalent to the existence of orthogonal arrays, see
[1, Theorems 3.18 and 3.20], and the latter is equivalent to the balancedly multi-splittable
Hadamard matrices.

There is also a similar equivalence between the projective plane of order 2n, n odd,
and balancedly multi-splittable quaternary Hadamard matrices will be presented too.

The establishment of the nonexistence of a balancedly multi-splittable (quaternary)
Hadamard matrix of order 144 (100) would be significant.

2 Preliminaries

2.1 Codes

Let n, q be positive integers n, q > 2, and let Q = {0, 1, . . . , q − 1}. A subset C of Qn is
called to be a q-ary code of length n. For x, y ∈ Qn with x = x1x2 · · ·xn and y = y1y2 · · · yn,
the Hamming distance between codewords x and y is given by dist(x, y) = |{i : xi 6= yi}|.
A code C is said to be an equi-distance code or a 1-distance set if the Hamming distance
d(x, y) does not depend on x, y ∈ C with x 6= y.

2.2 Hadamard matrices

An n×n matrix H is a Hadamard matrix of order n if its entries are 1,−1 and it satisfies
HH> = In, where In denotes the identity matrix of order n. A Hadamard matrix H of
order n is said to be balancedly splittable if there is an ` × n submatrix H1 of H such
that inner products for any two distinct column vectors of H1 take at most two values.
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More precisely, there exist integers a, b and the adjacency matrix A of a graph such that
H>1 H1 = `In + aA + b(Jn − A − In), where Jn denotes the all-ones matrix of order n.
We say the quadruple (v, `, a, b) the parameter. In this case we say that H is balancedly
splittable with respect H1. Only the special case of (v, `, a, b) = (4n2, 2n2, n,−n) will be
used in this note.

The same concept can be extended to orthogonal designs [7]. Here, we adopt the
following definition for quaternary Hadamard matrices. An n×n matrix H is a quaternary
Hadamard matrix of order n if its entries are ±1,±i and it satisfies HH∗ = nIn. A
quaternary Hadamard matrix H of order n is said to be balancedly splittable if there is
an `× n submatrix H1 of H such that the off-diagonal entries of H∗1H1 are in the set

{εα, εα∗, εβ, εβ∗ | ε ∈ {±1,±i}},

where α, β are some complex numbers. In this paper, we restrict to the case α = β
and we say that a quaternary Hadamard matrix H of order n is balancedly splittable if
H∗1H1 = `I +αS where α is some positive real number and S is a (0,±1,±i)-matrix with
zero diagonal entries and nonzero off-diagonal entries.

2.3 Orthogonal arrays

An orthogonal array of strength t and index λ is an N × k matrix over the set {1, . . . , q}
such that in every N × t subarray, each t-tuple in {1, . . . , q}t appears λ times. We denote
this property as OAλ(N, k, q, t). Note that N = λqt and (N, k, q, t) is the parameter of
the orthogonal array. For t = 2e, the following lower bound on N was shown by Rao (see
[6, Theorem 2.1]), namely, N >

∑e
i=0

(
k
i

)
(q − 1)i. An orthogonal array with parameters

(N, k, q, 2e) is said to be complete if the equality holds in above.
When t = 2 and λ = 1, the complete orthogonal array has the parameters OA1(q

2, q+
1, q, 2), and it is known that its existence is equivalent to that of a projective plane of
order q. For the orthogonal version of a projective plane is used in the next section.

The following lemmas will be used later.

Lemma 1. Let A be an N × k matrix over {1, . . . , q}. Write A =
∑q

i=1 iAi, where Ai
(i ∈ {1, . . . , q}) are disjoint N × k (0, 1)-matrices. Let D be the distance matrix, ie.,
D is an N × N matrix whose rows and columns indexed by the rows of A with (i, j)-
entry defined by the Hamming distance between the i-th row and the j-th row of A. Then∑q

i=1AiA
>
i = kJN −D holds.

Proof. See the proof of [6, Lemma 2.5 (i)].

Lemma 2. Assume that there exists an orthogonal array A with parameters (q2, q+1, q, 2).
Write A =

∑q
i=1 iAi, where Ai (i ∈ {1, . . . , q}) are disjoint q2 × (q + 1) (0, 1)-matrices.

Then the matrices Ai satisfy

(i)
∑q

i=1AiA
>
i = Jq2 + qIq2,

(ii)
∑q

i,j=1,i 6=j AiA
>
j = q(Jq2 − Iq2).
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(iii) Consider the code C obtained from the rows of A. Let {i1, . . . , is} be any s-element
subset of {1, . . . , q+ 1}. The code C ′ obtained from C by restricting the coordinates
on the set {i1, . . . , is} have the Hamming distances s or s− 1 between the codewords
in C ′.

Proof. The proof for (i) and (ii) are exactly the same as [6, Lemma 2.5].
The assumed orthogonal array is a 2-design and 1-distance set with Hamming distance

q in the Hamming association scheme. The case (iii) follows from the fact that C is a
1-distance set with Hamming distance q.

Lemma 3. [4, Theorem 5.14] Let C be an equidistance code of length q+1 over the symbol
set {1, . . . , q}. Then

|C| 6 q2

holds. Equality holds if and only if the matrix whose rows consists of the codewords of C
is an orthogonal array OA1(q

2, q + 1, q, 2).

3 Balancedly multi-splittable Hadamard matrices

We consider the following property of a Hadamard matrix. Let H be a Hadamard matrix
of order 4n2. Assume that H is normalized so that the first column of H is the all-ones
vector. A Hadamard matrix H is said to be balancedly multi-splittable if there is a block
form of H =

[
1 H1 · · · H2n+1

]
, where each Hi is of order 4n2 × (2n − 1) such that

H is balancedly splittable with respect to a submatrix
[
Hi1 · · · Hin

]
for any n-element

subset {i1, . . . , in} of {1, 2, . . . , 2n+ 1}, that is, the inner product of any distinct rows of[
Hi1 · · · Hin

]
is ±n.

The main results of this paper are as follows:

Theorem 4. Let n be a positive integer. The following are equivalent.

(i) There exists a balancedly multi-splittable Hadamard matrix of order 16n2.

(ii) There exist an OA1(16n2, 4n+ 1, 4n, 2) and a Hadamard matrix of order 4n.

Theorem 5. Let n be a positive integer. The following are equivalent.

(i) There exists a balancedly multi-splittable quaternary Hadamard matrix of order 4n2

(ii) There exist an OA1(4n
2, 2n+ 1, 2n, 2) and a quaternary Hadamard matrix of order

2n.

3.1 Proof of Theorem 4

The proof of (ii) ⇒ (i). Assume that there exists a Hadamard matrix H of order 4n.
Write H as

H =


1 r1
1 r2
...

...
1 r4n

 ,
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where ri is a 1× (4n− 1) matrix for any i.

Lemma 6. (i) For any i, rir
>
i = 4n− 1.

(ii) For any distinct i, j, rir
>
j = −1.

Assume that there exists an OA(16n2, 4n+1, 4n, 2), say A, of index 1 over {1, . . . , 4n}.
Write A =

∑4n
i=1 iAi, where the Ai’s are disjoint 16n2× (4n+ 1) (0, 1)-matrices. We then

define the 16n2 × (16n2 − 1) matrix D by D =
∑4n

i=1Ai ⊗ ri and D̃ =
[
1 D

]
.

Lemma 7. (i) DD> = 16n2I16n2 − J16n2.

(ii) D̃ is a Hadamard matrix of order 16n2.

Proof. (i): By Lemma 2 and Lemma 6,

DD> =
4n∑
i,j=1

AiA
>
j ⊗ rir>j

=
4n∑
i=1

AiA
>
i ⊗ rir>i +

∑
i 6=j

AiA
>
j ⊗ rir>j

= (4n− 1)
4n∑
i=1

AiA
>
i −

∑
i 6=j

AiA
>
j

= (4n− 1)J16n2 + (4n− 1) · 4nI16n2 − 4n(J16n2 − I16n2)

= 16n2I16n2 − J16n2 .

(ii) immediately follows from (i).

Let A′ be a submatrix of A obtained by restricting the columns to a 2n element set.
Write A′ =

∑4n
i=1 iA

′
i, where A′i (i ∈ {1, . . . , 4n}) are disjoint 16n2 × 2n (0, 1)-matrices.

Lemma 8. There exists a symmetric (0, 1)-matrix B with diagonal entries 0 such that

(i)
∑4n

i=1A
′
iA
′>
i = 2nJ16n2 −

(
2nB + (2n− 1)(J16n2 − I16n2 −B)

)
, and

(ii)
∑4n

i,j=1,i 6=j A
′
iA
′>
j = 2nB + (2n− 1)(J16n2 − I16n2 −B).

Proof. The rows of the matrix A is a 1-distance set with Hamming distance 4n and A′

is obtained from A by restricting some 2n coordinates. Therefore by Lemma 1(iii), the
Hamming distances between the rows of A′ are 2n or 2n− 1. Thus, the distance matrix
of the code of rows of A′ is 2nB + (2n− 1)(J16n2 − I16n2 −B) for some symmetric matrix
(0, 1) B with zero diagonals.

Since
∑4n

i=1A
′
i = J16n2,2n, we have

4n∑
i,j=1

A′iA
′>
j = (

4n∑
i=1

A′i)(
4n∑
j=1

A′
>
j ) = J16n2,2nJ2n,16n2 = 2nJ16n2 .

This with (i) shows (ii).
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Now we consider D′ =
∑4n

i=1A
′
i ⊗ ri. Then, by Lemma 8,

D′D′
>

=
4n∑
i,j=1

A′iA
′>
j ⊗ rir>j

=
4n∑
i=1

A′iA
′>
i ⊗ rir>i +

∑
i 6=j

A′iA
′>
j ⊗ rir>j

= (4n− 1)
4n∑
i=1

A′iA
′>
i −

∑
i 6=j

A′iA
′>
j

= (4n− 1)(2nJ16n2 − (2nB + (2n− 1)(J16n2 − I16n2 −B))

− (2nB + (2n− 1)(J16n2 − I16n2 −B))

= (8n2 − 2n)I16n2 + 2n(J16n2 − I16n2 − 2B).

Therefore the Hadamard matrix D′ is balancedly multi-splittable.

The proof of (i) ⇒ (ii). Assume thatH is a balancedly multi-splittable Hadamard matrix
of order 16n2 with respect to the following block form:

H =
[
1 H1 · · · H4n+1

]
,

where each Hi is a 16n2 × (4n− 1) matrix.

Lemma 9. For any i, HiH
>
i is a (4n− 1,−1)-matrix.

Proof. We show the case i = 1. Since H is a Hadamard matrix of order 16n2, HH> =
16n2I16n2 , that is,

J16n2 +
4n+1∑
i=1

HiH
>
i = 16n2I16n2 .

By the assumption of balanced multi-splittability, we have that all inner products of
distinct rows in both

[
H2 · · · H2n+1

]
and

[
H2n+2 · · · H4n+1

]
are ±2n. Thus,

2n+1∑
i=2

HiH
>
i = (8n2 − 2n)I16n2 + 2nS,

4n+1∑
i=2n+2

HiH
>
i = (8n2 − 2n)I16n2 + 2nS ′,

where S and S ′ are (0, 1,−1)-matrices with diagonal entries 0 and off-diagonal entries ±1.
Then

H1H
>
1 = 16n2I16n2 − J16n2 − ((16n2 − 4n)I16n2 + 2nS + 2nS ′)

= 4nI16n2 − J16n2 − 2n(S + S ′).

Since both S and S ′ are (0,±1)-matrix, by inspecting the equation involving H1H
>
1 it can

be seen that S +S ′ is a (0,±2)-matrix with diagonal entries 0. However, the off-diagonal
entries of H1H

>
1 cannot be −4n− 1, S + S ′ is (0,−2)-matrix. Therefore, H1H

>
1 is a

(4n− 1,−1)-matrix.
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For each i, consider the matrix H̃i =
[
1 Hi

]
. Then, by Lemma 9, H̃iH̃

>
i is a (4n, 0)-

matrix. Thus some of rows of H̃i coincide. Since H̃>i H̃i = 16n2I4n, the rank of H̃i is
4n. Therefore there exist exactly 4n distinct rows of H̃i that correspond to the rows of a
Hadamard matrix, say K̃i, of order 4n.

Write K̃i =
[
1 Ki

]
and fix i. Some rows of Hi also coincide and any row of Hi

coincides with some row of Ki. In the matrix
[
1 H1 · · · H4n+1

]
, we then assign a

symbol j to any row in Hi, which equals the j-th row of Ki. Let A be the resulting
16n2 × (4n+ 1) matrix over the symbol set {1, . . . , 4n}.

Lemma 10. The code C with codewords consisting of the rows of A is an equidistance
code with the number of codewords 16n2, equidistance 4n, of length 4n+ 1.

Proof. It is enough to see the case for the first row and second row. Let the first and
second rows of H be the following forms:[

1 r1,1 · · · r1,4n+1

]
,[

1 r2,1 · · · r2,4n+1

]
.

Consider the inner product between them:

1 +
4n+1∑
i=1

r1,ir
>
2,i = 0.

By Lemma 9, r1,ir
>
2,i ∈ {4n− 1,−1} for any i. Then there exists i0 such that r1,i0r

>
2,i0

=
4n− 1 and r1,ir

>
2,i = −1 for any i 6= i0. Therefore the distance between the first row and

second row is 4n.

Since the code C attains the upper bound in Lemma 3, A is an orthogonal array
OA1(16n2, 4n+ 1, 4n, 2).

3.2 Proof of Theorem 5

The proof of (ii) ⇒ (i). Assume that there exists a quaternary Hadamard matrix H of
order 2n. Write H as

H =


1 r1
1 r2
...

...
1 r2n

 ,
where ri is a 1× (2n− 1) matrix for any i.

Lemma 11. (i) For any i, rir
∗
i = 2n− 1.

(ii) For any distinct i, j, rir
∗
j = −1.

Assume that there exists an OA(4n2, 2n+ 1, 2n, 2), say A, of index 1 over {1, . . . , 2n}.
Write A =

∑2n
i=1 iAi, where the Ai’s are disjoint 4n2 × (2n+ 1) (0, 1)-matrices. We then

define the 4n2 × (4n2 − 1) matrix D by D =
∑2n

i=1Ai ⊗ ri and D̃ =
[
1 D

]
.
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Lemma 12. (i) DD> = 4n2I4n2 − J4n2.

(ii) D̃ is a quaternary Hadamard matrix of order 4n2.

Proof. (i): By Lemma 2 and Lemma 11,

DD∗ =
2n∑
i,j=1

AiA
>
j ⊗ rir∗j

=
2n∑
i=1

AiA
>
i ⊗ rir∗i +

∑
i 6=j

AiA
>
j ⊗ rir∗j

= (2n− 1)
2n∑
i=1

AiA
>
i −

∑
i 6=j

AiA
>
j

= (2n− 1)J4n2 + (2n− 1) · 2nI4n2 − 2n(J4n2 − I4n2)

= 4n2I4n2 − J4n2 .

(ii) immediately follows from (i).

Let A′ be a submatrix of A obtained by restricting the columns to an n element set.
Write A′ =

∑2n
i=1 iA

′
i, where A′i (i ∈ {1, . . . , 2n}) are disjoint 4n2 × n (0, 1)-matrices.

Lemma 13. There exists a symmetric (0, 1)-matrix B with diagonal entries 0 such that

(i)
∑2n

i=1A
′
iA
′>
i = nJ4n2 −

(
nB + (n− 1)(J4n2 − I4n2 −B)

)
, and

(ii)
∑2n

i,j=1,i 6=j A
′
iA
′>
j = nB + (n− 1)(J4n2 − I4n2 −B).

Proof. The rows of the matrix A is a 1-distance set with Hamming distance 2n and A′

is obtained from A by restricting some n coordinates. Therefore by Lemma 1(iii), the
Hamming distances between the rows of A′ are n or n− 1. Thus, the distance matrix of
the code of rows of A′ is nB + (n− 1)(J4n2 − I4n2 −B) for some symmetric matrix (0, 1)
B with zero diagonals.

Since
∑2n

i=1A
′
i = J4n2,n, we have

2n∑
i,j=1

A′iA
′>
j = (

2n∑
i=1

A′i)(
2n∑
j=1

A′
>
j ) = J4n2,nJn,4n2 = nJ4n2 .

This with (i) shows (ii).

Now we consider D′ =
∑2n

i=1A
′
i ⊗ ri. Then, by Lemma 13,

D′D′
∗

=
2n∑
i,j=1

A′iA
′>
j ⊗ rir∗j

=
2n∑
i=1

A′iA
′>
i ⊗ rir∗i +

∑
i 6=j

A′iA
′>
j ⊗ rir∗j
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= (2n− 1)
2n∑
i=1

A′iA
′>
i −

∑
i 6=j

A′iA
′>
j

= (2n− 1)(nJ4n2 − (nB + (n− 1)(J4n2 − I4n2 −B))

− (nB + (n− 1)(J4n2 − I4n2 −B))

= (2n2 − n)I4n2 + n(J4n2 − I4n2 − 2B).

Therefore the quaternary Hadamard matrix D′ is balancedly multi-splittable.

The proof of (i) ⇒ (ii). Assume that H is a balancedly multi-splittable quaternary Had-
amard matrix of order 4n2 with respect to the following block form:

H =
[
1 H1 · · · H2n+1

]
,

where each Hi is a 4n2 × (2n− 1) matrix.

Lemma 14. For any i, HiH
∗
i is a (2n− 1,−1)-matrix.

Proof. We show the case i = 1. Since H is a quaternary Hadamard matrix of order 4n2,
HH∗ = 4n2I4n2 , that is,

J4n2 +
2n+1∑
i=1

HiH
∗
i = 4n2I4n2 .

By the assumption of balanced multi-splittability, we have that the inner product of
distinct rows of matrices

[
H2 · · · Hn+1

]
or
[
Hn+2 · · · H2n+1

]
are ±2n,±2i. Thus,

n+1∑
i=2

HiH
∗
i = (2n2 − n)I4n2 + nS,

2n+1∑
i=n+2

HiH
∗
i = (2n2 − n)I4n2 + nS ′,

where S and S ′ are (0,±1,±i)-matrix with diagonal entries 0 and off-diagonal entries
±1,±i. Then

H1H
∗
1 = 4n2I4n2 − J4n2 − ((4n2 − 2n)I100 + nS + nS ′)

= 2nI4n2 − J4n2 − n(S + S ′).

Since both S and S ′ are (0,±1,±i)-matrix, by inspecting the equation involving H1H
∗
1

it can be seen that S + S ′ is a (0,±2,±2i)-matrix with diagonal entries 0. However, the
absolute values of off-diagonal entries of H1H

∗
1 cannot exceed 2n− 1, S + S ′ is (0,−2)-

matrix. Therefore, H1H
∗
1 is a (2n− 1,−1)-matrix.

For each i, consider the matrix H̃i =
[
1 Hi

]
. Then, by Lemma 14, H̃iH̃

∗
i is a (2n, 0)-

matrix. Thus some of rows of H̃i coincide. Since H̃∗i H̃i = 4n2I2n, the rank of H̃i is 2n.
Therefore there exist exactly 2n distinct rows of H̃i that correspond to the rows of a
Hadamard matrix, say K̃i, of order 2n.

Write K̃i =
[
1 Ki

]
and fix i. Some rows of Hi also coincide and any row of Hi

coincides with some row of Ki. In the matrix
[
H1 · · · H2n+1

]
, we then assign a symbol

j to any row in Hi, which equals the j-th row of Ki. Let A be the resulting 4n2× (2n+ 1)
matrix over the symbol set {1, . . . , 2n}.
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Lemma 15. The code C with codewords consisting of the rows of A is an equidistance
code with the number of codewords 4n2, equidistance 2n, of length 2n+ 1.

Proof. It is enough to see the case for the first row and second row. Let the first and
second rows of H be the following forms:[

1 r1,1 · · · r1,2n+1

]
,[

1 r2,1 · · · r2,2n+1

]
.

Consider the inner product between them:

1 +
2n+1∑
i=1

r1,ir
∗
2,i = 0.

By Lemma 14, r1,ir
∗
2,i ∈ {2n− 1,−1} for any i. Then there exists i0 such that r1,i0r

∗
2,i0

=
2n− 1 and r1,ir

∗
2,i = −1 for any i 6= i0. Therefore the distance between the first row and

second row is 2n.

Since the code C attains the upper bound in Lemma 3, A is an orthogonal array
OA1(4n

2, 2n+ 1, 2n, 2).

4 Example

In this section, we present an example of balancedly multi-splittable Hadamard matrices
following the construction in Theorem 4.

Example 16. Take an OA1(16, 5, 4, 2) A and a Hadamard matrix H of order 4 as:

A> =
4∑
i=1

A>i =


1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
1 2 3 4 3 4 1 2 4 3 2 1 2 1 4 3
1 2 3 4 4 3 2 1 2 1 4 3 3 4 1 2

 ,

H =


1 r1
1 r2
1 r3
1 r4

 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
Then the matrix D constructed in Theorem 4 is a balancedly multi-splittable Hadamard
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matrix of order 16:

D =
4∑
i=1

iAi ⊗ ri

=
[
1 H1 H2 H3 H4 H5

]

=



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1
1 1 1 1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 −1
1 1 1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1
1 −1 1 −1 1 1 1 −1 1 −1 1 −1 −1 −1 −1 1
1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 −1 −1 −1 1 1 1 1 −1 1 −1
1 −1 1 −1 −1 −1 1 1 −1 −1 −1 1 −1 1 1 1
1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 −1 1 −1
1 1 −1 −1 −1 1 −1 −1 −1 1 1 −1 −1 1 1 1
1 1 −1 −1 1 −1 −1 1 1 1 −1 1 −1 −1 −1 1
1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1 1 −1 −1
1 −1 −1 1 1 1 1 −1 −1 1 −1 1 −1 1 −1 −1
1 −1 −1 1 −1 1 −1 1 −1 −1 1 1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 −1 1 −1 −1 −1 1 1 1 1
1 −1 −1 1 −1 −1 1 1 1 1 1 −1 −1 −1 1 −1



.

Conversely, we demonstrate how an orthogonal array and a Hadamard matrix can be
constructed from a balancedly multi-splittable Hadamard matrix D. Consider the 16× 4
submatrix H̃1 =

[
1 H1

]
of D. Then, there are exactly four distinct rows

(1, 1, 1, 1), (1,−1, 1,−1), (1, 1,−1,−1), (1,−1,−1, 1)

in H̃1. These form a Hadamard matrix of order 4 and set

K̃1 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 =


1 r1,1
1 r1,2
1 r1,3
1 r1,4

 .
Similarly we define

K̃i =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 =


1 ri,1
1 ri,2
1 ri,3
1 ri,4

 .
for i ∈ {2, 3, 4, 5}. In the matrix

[
H1 · · · H5

]
, we assign a symbol j ∈ {1, 2, 3, 4} to

any row in Hi, which equals the j-th row of Ki. The resulting matrix A is reconstructed
as aforementioned.

Remark 17. There exist no balancedly multi-splittable quaternary Hadamard matrices of
orders 36 and 100.
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