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Universitat Politècnica de Catalunya
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Barcelona, Spain

juan.jose.rue@upc.edu

Submitted: Oct 21, 2022; Accepted: Apr 19, 2023; Published: Jun 30, 2023

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We analyse uniform random cubic rooted planar maps and obtain limiting dis-
tributions for several parameters of interest. From the enumerative point of view,
we present a unified approach for the enumeration of several classes of cubic planar
maps, which allow us to recover known results in a more general and transparent
way. This approach allows us to obtain new enumerative results.

Concerning random maps, we first obtain the distribution of the degree of the
root face, which has an exponential tail as for other classes of random maps. Our
main result is a limiting map-Airy distribution law for the size of the largest block L,
whose expectation is asymptotically n/

√
3 in a random cubic map with n+ 2 faces.
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We prove analogous results for the size of the largest cubic block, obtained from
L by erasing all vertices of degree two, and for the size of the largest 3-connected
component, whose expected values are respectively n/2 and n/4. To obtain these
results we need to analyse a new type of composition scheme which has not been
treated by Banderier et al. [Random Structures Algorithms 2001].

Mathematics Subject Classifications: 05C30, 05C69, 05C70, 05C80

1 Introduction

The enumeration of planar maps has a long history, starting with the seminal papers of
Tutte in the 1960s [32, 33, 34]. Since then, the theory has been extended to maps on
arbitrary surfaces and relevant connections have been found between map enumeration
and other areas from physics, algebra and probability.

In this work we focus on cubic (3-regular) planar maps. All planar maps considered
in this paper will be rooted at a directed edge uv, where u will be called the root vertex
and by convention the outer face will be the one to the right of uv and will be called
the root face. There are numerous papers devoted to the enumeration of cubic maps,
and most of them use the direct bijection with triangulations. The first such result was
the enumeration of 3-connected and 4-connected triangulations by Tutte [33]. He also
counted 2-connected cubic maps [32], but using a direct approach, while Mullin counted
cubic maps using bijections with triangulations [21]. More recently, Gao and Wormald [18]
enumerated simple cubic planar maps, as well as two other classes of cubic maps: simple 2-
connected and simple 3-connected triangle-free. Their proofs are again based on counting
the associated triangulations. The usual approach in the previous references is to consider
the more general class of near-triangulations, that are maps in which all faces except
possibly the root face have degree three. Near-triangulations are counted according to
the number of faces and the degree of the root face. Using the quadratic method (see [9],
and [8] for a far-reaching generalisation), one is usually able to find an expression for the
associated generating function.

Our approach is based instead on a direct decomposition of cubic maps, without
going through the corresponding dual triangulations. This approach was already used
by Tutte [32] as mentioned above, and extended by Bodirsky, Kang, Löffler and McDi-
armid [7] in order to study random cubic planar graphs (see also [24]). It avoids the
quadratic method and, we believe, makes the combinatorial decompositions and the cor-
responding algebraic formulation more transparent.

As a significant example, it is mentioned by Gao and Wormald in [18] that it would
be very interesting to find an alternative approach to the enumeration of simple cubic
maps. We provide such an approach which is technically simple and extends the results
in [18]. Furthermore, we recover in a unified way the enumeration of both arbitrary
and simple maps with given connectivity. We are also able to count triangle-free cubic
(both arbitrary and simple) maps, a problem considerably more challenging than counting
triangle-free 3-connected cubic maps as done in [18]. Using a similar strategy, but tech-
nically more involved, the present authors have recently been able to enumerate simple
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4-regular maps [23, 25].

In the second part of the paper we obtain limiting distributions of several parameters
in a uniform random cubic map. First, we analyse the degree of the root face. We show
that the probability that the root face has degree k for fixed k > 1 tends to a constant
pk > 0. We show that

∑
k>1 pk = 1 and obtain an explicit (although involved) expression

for the probability generation function p(u) =
∑

k>1 pku
k. We also deduce the estimate

pk ∼ c · k1/2qk as k →∞, for computable constants c > 0 and 0 < q < 1, which conforms
to the universal behaviour for tail estimates of the root degree in maps observed in [20],
and argue why it is expected that the maximum degree is asymptotically log1/q n.

Next we analyse the size of the largest block, a block being a maximal 2-connected
component, and of the largest 3-connected component in random cubic maps. The first
result of this kind was obtained by Bender, Richmond, and Wormald [5], who showed that
the largest 4-connected component in random 3-connected triangulations with n edges has
size asymptotically n/2. This was later extended in [17] to several types of components
in classes of maps, where it was also shown that the size of the second largest component
is O(n2/3+ε). The results from [5] and [17] were revisited by Banderier, Flajolet, Schaeffer
and Soria [3], who showed that the size of the largest component in many families of
random maps obey asymptotically a continuous law of the so-called map-Airy type. This
is a particular stable law of index 3/2, whose relevant properties are recalled in Section 2.3.
Let us mention that recently the sizes of blocks in random maps have been analysed using
probabilistic tools [1], reproving part of the results in [3] and determining for the first
time the distribution of the size of k-th largest block for k > 2.

We also study the size of the largest cubic block, obtained from the largest block
by erasing all vertices of degree two. To obtain these results we cannot apply directly
the techniques developed in [3], since the combinatorics of cubic maps differs from the
classical families of maps considered so far: when in a cubic map an edge is replaced
by a 2-connected map, a new edge in the corresponding block is created and has to be
accounted for.

We prove a limiting map-Airy distribution for the size of the largest block L, whose
expectation is asymptotically n/

√
3, where n is the number of edges, then show an anal-

ogous result for the size of the largest cubic block, obtained from L by erasing all vertices
of degree two, whose expected size is n/2. Finally, we prove the corresponding result for
the size of the largest 3-connected component, whose expectation is n/4. It is somehow
surprising to obtain these simple constants after a somewhat long analysis involving eval-
uations of bivariate Cauchy integrals. We remark that a limiting map-Airy distribution
for the size of the largest 3-connected component in random labelled cubic planar graphs
with n vertices was determined by Stufler in [27] (see also the work by Albenque, Fusy
and Lehéricy [2] and Stufler [31]), with expected value αn, where α ≈ 0.8509, a key step
in proving the scaling limit of random cubic planar graphs. In the concluding section
(Section 6) we argue why a similar results holds for the size of the largest block in cubic
planar graphs.

To obtain our results we need to study novel combinatorial schemes, different from
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the classical scheme C(wH(z)) from [3], where C(z) is the generating function of cores
(defined in Section 2.1), w marks the size of the core, and H(z) corresponds to the objects
replaced inside the core. There are several recent papers analysing general composition
schemes that go beyond the work in [3]. For instance, Banderier, Kuba and Wallner [4]
studied schemes of the form C(wH(z))F (z), which generalise the schemes C(wH(z))
from [3], with applications to trees and lattice paths enumeration. On the other hand,
Stufler [28, 29, 30] analyses so-called Gibbs partitions with applications to random graphs
from block-stable classes of graphs.

In our paper we also make a contribution on this line of research: for the largest block
the composition scheme is of the form

B

(
zw

1− zwL(z)

)
zw

1− zwL(z)
,

where w marks the size of the 2-core (defined in Section 2.1) and B and L are, respectively,
the generating functions of 2-connected cubic maps and cubic maps rooted at a loop. For
the largest 3-connected component the scheme is

M (zw(1 + zwD(z)))
1 + 2zwD(z)

1 + zwD(z)
,

where now w marks the size of the 3-core and M and D are, respectively, the generating
functions of 3-connected cubic maps and cubic maps not rooted at an isthmus.

We are able to analyse these compositions schemes by combining different ingredients.
Our approach is to prove first a limiting map-Airy distribution for the size of the 2- and
3-cores, and then transfer it using a double-counting argument to the size of the largest 2-
and 3-connected component. For the largest block, the analysis is technically demanding
as one has to consider simultaneously the size of the largest block and the number of
vertices of degree two, combining the fluctuations of an Airy law with those of a Gaussian
law. A similar situation arises for the largest 3-connected component.

1.1 Results on enumeration

Our first result (Theorem (1)) rediscovers different results that have appeared over the
years in the literature by using a unifying method: (a) and (b) were first derived by
Mullin et al. [22] and by Tutte [32], respectively, while (c) and (d) represent new proofs
of Corollaries 3.2 and 4.2 from Gao and Wormald [18], respectively. As a convention, if
an denotes a counting sequence of a class of cubic maps, a∗n denotes the corresponding
one for simple cubic maps.

Theorem 1 ([32], [22], [18]). Let cn and bn be respectively the number of arbitrary and
2-connected cubic planar maps with n + 2 faces. Then the following estimates hold as
n→∞:

(a) cn ∼
√

6√
π
n−5/2(12

√
3)n, where

√
6√
π
≈ 1.38198 and 12

√
3 ≈ 20.78461.
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(b) bn ∼
√

3

4
√
π
· n−5/2

(
27

2

)n
, where

√
3

4
√
π
≈ 0.24430.

(c) c∗n ∼ c · n−5/2ρ−n, where c ≈ 0.16559 and ρ−1 ≈ 10.38845, where ρ is the smallest
positive solution of

P (z) = 27z6 + 216z5 + 171z4 − 208z3 − 339z2 + 24z + 1 = 0. (1)

(d) b∗n ∼ b · n−5/2(5 + 3
√

3)n, where b =
(3 +

√
3)
√

2
√

41
√

3− 71

4
√
π

≈ 0.11201 and 5 +

3
√

3 ≈ 10.19615.

We notice that two corrections are needed in [18]. In Corollary 3.2, the authors give
the values c ≈ 0.0027278757 in the estimate for c∗n, and in Corollary 4.2 they give the
value b ≈ 0.0019155063 in the estimate for b∗n.

Our second result deals with the enumeration of triangle-free cubic maps. By duality
this amounts to count triangulations without vertices of degree three. This was done in [18]
for 3-connected maps, but the analogous result for arbitrary maps is more demanding since
we have to keep track of triangles in cubic maps. Indeed they can be created or destroyed
when maps are combined in series or in parallel. To that end, we use decompositions that
already proved useful in the graph setting (see [24]).

Theorem 2. Let fn be the number of triangle-free cubic planar maps with n + 2 faces.
Then the following estimates hold as n→∞:

(a) fn ∼ f · n−5/2φ−n, where f ≈ 0.72142, φ−1 ≈ 18.18695, and φ is a root of

22161087866383368192z29 − 110805439331916840960z28 + 128349633892803674112z27

+306063926988657131520z26 − 1017316468360256421888z25 + 731390086938712080384z24

+1412989605840194371584z23 − 3904918887380696432640z22 + 3286085170959772286976z21

+3062041896395210752000z20 − 13636190761420628951040z19 + 22452065614202935443456z18

−24015782846601940172800z17 + 18890731381294758887424z16 − 12618646835081595715584z15

+9454042977513918959616z14 − 8938299800000420075520z13 + 8330326495570886895360z12

−6335783442775792180480z11 + 3739491505211342742768z10 − 1707114753190595308440z9

+606877106680714207393z8 − 169460055073349524800z7 + 37432243036560849408z6

−6518789166080065536z5 + 864781240587780096z4 − 79062401625882624z3

+3851046019399680z2 − 14872398004224z − 3131031158784.

(b) f ∗n ∼ f ∗ · n−5/2(φ∗)−n, where f ∗ ≈ 0.015166, (φ∗)−1 ≈ 7.039997, and φ∗ is a root of

22161087866383368192z29 − 72023535565745946624z28 − 217455674688886800384z27

+1366192402856046231552z26 − 1408884772502960603136z25 − 5273526725499791867904z24

+18711657605588519485440z23 − 20661513660592621092864z22 − 15535239133496397004800z21

+90959874721137062576128z20 − 166070979940102503923712z19 + 193400402328142378696704z18

−162268637001045608759296z17 + 102897252166421987721216z16 − 51989933333416282030080z15

+24221605189030571544576z14 − 13520809952153729316864z13 + 9265021383768406435584z12

−6064247347538996966656z11 + 3267142329643563126000z10 − 1396980037043271835032z9

+473034839943808953505z8 − 127347508539288938304z7 + 27332424367753886208z6

−4657078534989938688z5 + 614598596098523136z4 − 58444903901822976z3

+3329729331462144z2 − 52444771909632z − 3131031158784.
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We can also obtain analogous results for 2-connected triangle-free cubic maps (both
arbitrary and simple) but do not include them here to avoid repetition. The asymptotic
estimates are of the same kind and the growth constants are, respectively, ψ−1 ≈ 11.49420
and (ψ∗)−1 ≈ 7.01866. For completeness, the number of these maps for small values of n
are shown in Section 6.

1.2 Results on random cubic maps

Next, we study properties of the uniform random cubic map Mn with n+2 faces as n→∞.
For some basic additive parameters, namely the number of cut vertices and isthmuses, we
can show convergence to a Gaussian law as n → ∞. Since the techniques are standard
we only display the asymptotic value of the first moment in each case without giving the
details:

Parameter Expectation

Cut vertices 3
4
n = 0.75n

Isthmuses 3
(

1−
√
3
2

)
n ≈ 0.40192n

One can compare these values with the corresponding ones in random cubic planar
graphs [24]: for cut vertices the expectation is ∼ 0.00188n and for isthmuses it is ∼
0.00094n. The intuition behind this discrepancy in the respective values is that in graphs
loops are not allowed, whereas in maps they appear linearly often. Let us remark that
the number of cut vertices is a difficult parameter to analyse in general planar maps [14]
but not in cubic maps, since in our case a cut vertex is necessarily incident to an isthmus.
Similarly to [24], one could also show asymptotic normality for the number of blocks and
triangles in Mn but the details would be relatively long and we prefer to concentrate on
more novel parameters.

The degree of the root face. Our first result is a discrete limit law for the degree
of the root face. Notice that this parameter does not make sense for cubic graphs, since
there is no embedding and faces are not defined. The asymptotic estimate for the tail of
the distribution follows the usual form c · k1/2qk for the degree of the root face, or root
vertex in random maps (see [20]), with c > 0 and 0 < q < 1. More precisely, we have:

Theorem 3. For k > 1, the probability that the root face of Mn has degree k tends to a
constant pk as n→∞. In addition,

∑
k>1 pk = 1, and

p(u) =
∑
k>1

pku
k

satisfies the cubic equation

a3(u)p(u)3 + a1(u)p(u) + a0(u) = 0,
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where

a0(u) = 2(211
√

3− 534)u4(4u6
√

3 + u7 − 6u5
√

3− 9u6 + 12u5 − 24u2
√

3

+ 60u
√

3 + 36u2 − 24
√

3− 90u+ 36),

a1(u) = 2(956
√

3− 1701)u2(36u9
√

3− 2u10 − 126u8
√

3 + 54u9 + 126u7
√

3− 81u8

− 6u6
√

3− 27u7 − 60u5
√

3 + 54u6 − 648u4 + 1944u3 − 2160u2 + 864u− 216),

a3(u) = 9(12u4
√

3 + 23u5 + 18u3
√

3 + 54u4 + 24u2
√

3 + 81u3 + 66u
√

3 + 108u2

+ 24
√

3 + 90u+ 108)(4u2
√

3 + 13u3 − 26u
√

3− 36u2 + 24
√

3 + 78u− 60)3.

Moreover, the tail of the distribution is of the form

pk ∼ c · k1/2qk, as k →∞,

where c ≈ 0.032328, q ≈ 0.90699 and q−1 is the unique positive root of the equation

13u3 +
(

4
√

3− 36
)
u2 +

(
78− 26

√
3
)
u+ 24

√
3− 60.

We show below a table containing the first values of pk:

k 1 2 3 4 5 6 7

pk

√
3

36

√
3

36

√
3

36

6
√

3− 1

216

25
√

3

864

√
3

36

35
√

3

1296

Largest components. Our first result on this topic is a limit law of the map-Airy
type for the size of the largest block of Mn, whose proof is an adaptation of the method
developed in [3]. More precisely, if A(x) is the density function of the Airy distribution
(see Subsection 2.3 for a precise definition) then we have

Theorem 4. Let Xn denote the size of the largest block in Mn. Then, uniformly for q in
a bounded interval, we have as n→∞

n2/3P
(
Xn = bn/

√
3 + qn2/3c

)
= cA(cq)(1 + o(1)),

where c = 2
√

3/(1− 1/
√

3)4/3 ≈ 10.9215218947.

Notice that a block of a cubic planar map M can have vertices of degree two, hence it
is not cubic in general. This motivates us to define the cubic block associated to a block
B of M . It is the 2-connected cubic map obtained from B as follows: for each vertex v
of degree two of B, with neighbours a and b, contract the edge av. Remark that at the
end of the process, every vertex of degree two of B has been deleted and we end up with
a cubic map (except when B is a cycle). Our next result is an analogous limit law of the
map-Airy type for the size of the largest cubic block of Mn. As will be seen in the proofs,
the process of counting the removed vertices of degree two constrains demands a much
more refined analysis for cubic blocks than for ordinary blocks.
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Theorem 5. Let X∗n denote the size of the largest cubic block in Mn. Then, uniformly
for q in a bounded interval, we have as n→∞

n2/3P
(
X∗n = bn/2 + qn2/3c

)
= c∗A(c∗q)(1 + o(1)),

where c∗ = 4/(1− 1/
√

3)4/3 ≈ 12.6110872117.

Finally, we obtain a limit law of the map-Airy type for the size of the largest 3-
connected component. Due to the differences between the decomposition of cubic maps
into their 3-connected components compared with other families of maps (see the discus-
sion in Section 2), the method from [3] does not directly apply to this case. But since
3-connected components are always cubic, the scheme developed for the size the largest
cubic block can also be used here.

Theorem 6. Let Zn denote the size of the largest 3-connected component in Mn. Then,
uniformly for q in a bounded interval, we have as n→∞

n2/3P
(
Zn = bn/4 + qn2/3c

)
= c′A(c′q)(1 + o(1)),

where c′ = 72(3/2− 1/
√

3)−4/3 ≈ 27.1635288451.

Let us point that the parameters c, c∗ and c′ quantify in some sense the dispersion of
their respective distributions and not the variance since the second moments of Xn, X∗n
and Zn do not exist.

Outline of the paper. The rest of the paper is organised as follows. Section 2 con-
tains several preliminary results, in particular the decomposition of cubic maps. Our
main counting results are proved in Section 3. The second part of the paper is devoted
to the analysis of parameters in a random cubic map. In Section 4 we find the limiting
distribution of the degree of the root face. And in Section 5 we obtain limiting distribu-
tions of the map-Airy type for the sizes of the largest block, cubic block and 3-connected
component.

2 Preliminaries

For some background on planar maps we refer the reader to [26], and to [10] for other
relevant definitions in graph theory. We nevertheless explicit some important notions
next.

Basic definitions. As mentioned in the introduction, all maps considered in this paper
are planar and rooted. A map is simple if it has no loops and no multiple edges. It
is 2-connected if it has at least two vertices, no loops and no cut-vertices, 3-connected
if it has at least four vertices, no 2-cuts and no multiple edges, and 4-connected if it
has at least five vertices and no 3-cuts. A map is cubic if it is 3-regular, and it is a
triangulation if every face has degree three. By duality, cubic maps are in bijection with
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triangulations. And since duality preserves 3-connectivity, 3-connected cubic maps are in
bijection with 3-connected triangulations. Notice that a general triangulation can have
loops and multiple edges, and that a simple triangulation that is not the single triangle
is necessarily 3-connected.

At the exception of Section 5, cubic maps will be counted with respect to the number
of faces minus two. By duality, this amounts to counting triangulations by the number
of vertices minus two. The smallest cubic maps are the one composed of an isthmus with
two loops attached to its endpoints, called the dumbbell, and the one composed of two
vertices connected by a triple edge, called the 3-bond ; they are depicted by the maps N1

and N3 (respectively) on the left of Figure 1. As a map, the 3-bond admits a unique
rooting, while the dumbbell has three: two on the loops and one on the isthmus. The
smallest triangulations are their respective duals: the triangle which has a single rooting,
and the loop with a bridge inside and another one outside.

2.1 Decompositions of cubic planar maps

3-connected cubic maps. Let T (x) and T4(z) be the generating functions of simple
and 4-connected triangulations of the sphere, respectively, where x marks the number of
vertices minus two and z the number of faces minus two. This convention on the variables
x and z makes both the algebra and the combinatorics simpler. A map on n+ 2 vertices
has exactly 3n edges and 2n faces. As proven in [33] and [18], the series T (x) and T4(z)
are algebraic functions given by

T (x) = U(x) (1− 2U(x)) , x = U(x)(1− U(x))3, (2)

and
T4(z) = z + V (z)(V (z)− 1)(V (z) + 1)−2 − z2, z = V (z)(1− V (z))2. (3)

By duality the generating function M(z) of 3-connected cubic maps is given by

M(z) = T (z)− z, (4)

where z encodes the 3-bond.

Edge replacement, cherries and beads. Given two cubic maps N and M , where st
is the root edge of N , and a directed edge e = uv of M , the replacement of e by N is the
following operation. Subdivide e twice producing a path uu′v′v in M , remove the edge
u′v′, and identify u′ and v′ with vertices s and t of N − st, respectively. These results in a
cubic map M ′, whose root edge is that of M , unless if e was originally the root of M then
there are two possible re-rootings, namely at uu′ and v′v. See Figure 1 for an illustration.
The reverse operation is called the removal of N from M ′ resulting in the map M .

Notice that the replacement of an edge e of M remains valid even when N is rooted
at a loop, i.e. s = t. In that case, N is called a cherry of M attached at e, while when
s 6= t it is called a bead of M attached at e. On the right of Figure 1 is an example of a
map M ′ with one cherry and two beads.
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M
N3

N1

N2

M ′

Figure 1: Left: the dumbbell N1 with one of its three possible rootings (one other is at
the same loop but in the reverse direction, the third one is at the isthmus), the 3-bond N2

with its unique rooting, and M and N3 which both form the map of the complete graph
on four vertices (K4) with its unique rooting. Right: the replacement of three edges of M
by N1, N2 and N3, resulting in the cubic map M ′ in which N1 now forms a cherry, while
N2 and N3 form beads.

2-connected cubic maps. Tutte showed in [34] that the family of 2-connected maps
can be partitioned into three subclasses, namely series, parallel and polyhedral maps.
Following [7] (see also [24]), we can easily adapt this idea to the setting of 2-connected
cubic maps. More precisely, let N be a 2-connected cubic map with root st. Then the
following three classes form a partition of the class B of 2-connected cubic maps:

• P (Parallel): N − {s, t} is not connected.

• S (Series): N − st is connected but not 2-connected.

• H (Polyhedral): N is a 3-connected cubic map C where every edge but st is possibly
replaced by some map in B.

We let B(z), P (z), S(z) and H(z) be the ordinary generating functions associated
to the classes defined above, where once more the variable z marks the number of faces
minus 2. This decomposition can be translated into a system of algebraic equations
characterizing those generating functions:

B(z) = S(z) + P (z) +H(z),

S(z) = B(z)(B(z)− S(z)),

P (z) = z(1 +B(z))2,

H(z) =
M(z(1 +B(z))3)

1 +B(z)
.

(5)

The first equation holds by definition. The second one follows from the fact that a series
map can be decomposed into an arbitrary map in B and a non-series map in B − S.
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The right hand-side of the third equation encodes all possible parallel maps: the 3-bond
(z), the maps whose root is in a double edge (2zB(z)), and the parallel composition of
two maps in B (zB(z)2). The last equation corresponds to the definition of the class H,
encoded as a composition scheme between the generating functions M(z) and z(1+B(z))3,
i.e. each non-root edge of a 3-connected cubic map is possibly replaced by a map in B.
The cube marks the fact that a cubic map with n + 2 faces has 3n edges, and we divide
by 1 +B(z) to account for the non-replacement of the root edge.

Cubic maps. Notice that a cubic map is either 2-connected or it admits an isthmus,
and that a loop is necessarily incident to an isthmus. We define the following two classes
which partition the class of cubic maps that are not 2-connected:

• L (Loop): the root edge is a loop.

• I (Isthmus): the root edge is an isthmus.

A map in L (resp. I) is obtained by possibly replacing by some cubic map the non-root
loop (resp. the two loops) of the dumbbell rooted at one of the loops (resp. rooted at an
isthmus).

The class C of cubic maps can then be partitioned as C = B ∪L∪I. To translate this
partition into a recursive decomposition, we define the class D = L ∪ S ∪ P ∪H of cubic
maps whose root edge is not an isthmus, and we let L(z), I(z) and D(z) be the ordinary
generating functions associated to these new classes. The system (5) can be rewritten
and extended as (see [7, Lemma 1] for a proof):

C(z) = D(z) + I(z),

D(z) = L(z) + S(z) + P (z) +H(z),

L(z) = 2z(1 +D(z) + I(z)),

I(z) =
L(z)2

4z
,

S(z) = D(z)(D(z)− S(z)),

P (z) = z(1 +D(z))2,

H(z) =
M(z(1 +D(z))3)

1 +D(z)
.

(6)

The equations for P (z), S(z) and H(z) are analogue to their counterpart in (5), with the
difference that they are not restricted to 2-connected cubic maps, in particular edges can
be replaced by loop maps.

Cores. Let M be a cubic map not rooted at an isthmus, and C be the map obtained
from M by iteratively deleting every isthmus while keeping the component containing the
root. If C is 2-connected, then it is called the 2-core of M . Notice that the 2-core is not
in general cubic as it can have vertices of degree two. The cubic 2-core of M is the cubic
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Figure 2: Top is a cubic map M . Bottom left is the 2-core of M obtained by contracting
each cherry of M to a vertex of degree two (in red). Bottom middle is the cubic 2-core of
M obtained by contracting one edge incident to each vertex of degree two in the 2-core
(or equivalently, obtained directly from M by removing all its cherries). Bottom right is
the 3-core of M obtained by removing all the beads of M .

map obtained after contracting exactly one edge incident to every vertex of degree two
of the 2-core of M . Let now C ′ be the map resulting from the removal of all the cherries
and beads of M . If C is cubic and 2-connected, then it is in fact the cubic 2-core of M . If
it is furthermore 3-connected, then it is called it the 3-core of M . Illustrations are given
in Figure 2. Note that several cherries and beads attached to the same edge e (as is the
case at the top of Figure 2) is in fact the result of the replacement of e by a series map.

Cubic maps in the classes S, P and H always admit a cubic 2-core, while those in I
and L never do. Furthermore, the only cubic maps that admit a 2-core but not a cubic
2-core are those in S obtained by attaching pending loop maps to the vertices of a rooted
cycle (see case (2) in the proof of Lemma 15). As pointed out in its definition, every cubic
map in the class H admits a 3-core. This is also the case for some of the cubic maps in
S, namely those obtained by replacing the root edge uv of a map in H by a map in D;
see the series cubic map M ′ depicted on the right of Figure 1 for an example.
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2.2 Asymptotic enumeration

For r > 0, ε > 0, and 0 < φ < π/2, a ∆-domain ∆(r, φ, ε) is a region of the complex
plane the form

∆(r, φ, ε) = {z ∈ C : |z| < r + ε, φ < |arg(z − r)| 6 π}.

The generating function A(z) with non-negative coefficients and radius of convergence
ρ > 0 is said to be ∆-analytic if it admits an analytic continuation around z = 0 to the
domain ∆(ρ, ψ, ε). Furthermore, an algebraic generating function A(z) is said to have a
3/2-singularity at z = ρ if for some values ψ, ε and for z ∼ ρ it admits a Puiseux expansion
in ∆(ρ, ψ, ε) of the form

A(z) = A0 − A2

(
1− z

ρ

)
+ A3

(
1− z

ρ

)3/2

+O

((
1− z

ρ

)2
)
, (7)

with A0 = A(ρ) > 0, A1 > 0, A2 = ρA′(ρ) > 0, and A3 > 0. In the case where A(z) is an
algebraic function, the constants ρ, A0, A2 and A3 are algebraic numbers themselves and
can be determined, at least implicitly.

The following lemma is an immediate consequence of the Transfer Theorem (see [15,
Corollary 6.1]).

Lemma 7. Let A(z) be a generating function with non-negative coefficients and radius of
convergence ρ > 0. Further assume that A(z) has a 3/2-singularity at z = ρ in the form
of (7). Then we have

[zn]A(z) ∼ 3A3

4
√
π
n−5/2 ρ−n, as n→∞.

The next lemma is directly adapted from [12, Theorem 2.31].

Lemma 8. Suppose that the generating function F (x, y) has a local expansion of the form

F (x, y) = g(x, y) + h(x, y)

(
1− y

ρ(x)

)3/2

+O

((
1− y

ρ(x)

)2
)
,

where the function ρ(x) is analytic around x0 such that ρ(x0) 6= 0, and the functions g(x, y)
and h(x, y) are analytic around (x0, y0) and satisfy (∂/∂y)g(x, y) 6= 1, h(x, y) 6= 0, and
ρ′(x) 6= (∂/∂x)g(x, y). Furthermore, assume that y = y(x) is a solution of the functional
equation y = F (x, y), with y(x0) = y0. Then y(x) has a local expansion of the form

y(x) = g1(x) + h1(x)

(
1− x

x0

)3/2

+O

((
1− x

x0

)2
)
,

where g1(x) and h1(x) are analytic around x0, and h1(x0) 6= 0.

the electronic journal of combinatorics 30(2) (2023), #P2.51 13



The proofs of the enumerative results presented in this paper will all follow a common
scheme, based on the following steps (we use the terminology and results of [15], notably
Section VII.7.1).

• By means of combinatorial decompositions, obtain a system of polynomial equa-
tions defining implicitly the generating function of interest A(z). Using polynomial
elimination, for instance a Gröbner basis or successive resultants algorithm, reduce
the system to a single bivariate polynomial P (y, z) such that P (A(z), z) = 0. If
P (y, z) is reducible, compute by hand sufficiently many coefficients of A(z) to de-
cide the irreducible factor Q(y, z) of P (y, z) that admits a solution y(z) with the
corresponding Taylor expansion at z = 0. As Q(y, z) is irreducible and satisfies
Q(A(z), z) = 0, it is called the minimal polynomial of A(z).

• Find the dominant singularity ρ of A(z) by looking at the roots of the discriminant
of Q(y, z) with respect to y. By Pringsheim’s theorem and due to the fact that A(z)
has only non-negative coefficients, ρ will always be a positive real number. Prove
that ρ is the unique dominant singularity of A(z). Since A(z) is algebraic, it is clear
that A(z) is then analytic in some ∆(ρ, φ, ε).

• Using for example the Newton-Puiseux polygon algorithm, compute the Puiseux
expansion of A(z) from Q(y, z), in a neighbourhood of ρ, corresponding to the
branch passing at zero (provided that it holds combinatorially that A(0) = 0). It
will always be of the form of (7).

• Conclude with Lemma 7.

In the rest of the paper when an algebraic generating function A(z) admits a 3/2-
singularity at z = ρ > 0, the notation Ai (for i > 0) will always denote the ith coefficient
of its Puiseux expansion for z ∼ ρ in ∆(ρ, ψ, ε), and we will omit the mention of the
∆-domain.

An illustrative example. As an application of the above scheme, we reprove the
estimate on the number of 3-connected cubic planar maps first derived in [33]. From the
equations (2) and (4) we eliminate U = U(z) and T = T (z) (setting x = x(z) = z) to
obtain the following irreducible polynomial equation

M4 +(4z+3)M3 +(6z2 +17z+3)M2 +(4z3 +25z2−14z+1)M +z4 +11z3−z2 = 0. (8)

The discriminant with respect to M is z2(256z − 27)3, whose unique positive root gives
the (unique) dominant singularity 27/256 of M(z). The Puiseux expansion of M(z) for
z ∼ 27/256 is readily computed from (8) and is equal to

M(z) = M0 −M2Z
2 +M3Z

3 +O(Z4), Z =
√

1− 256z/27, (9)

with M0 = 5/256, M2 = 21/256 and M3 =
√

6/24. We check that the conditions of
Lemma 7 are satisfied, and we obtain as n→∞

[zn]M(z) =
3M3

4
√
π
n−5/2

(
256

27

)n
(1 + o(1)) =

√
6

32
√
π
n−5/2

(
256

27

)n
(1 + o(1)).
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Figure 3: The map-Airy distribution.

2.3 The map-Airy distribution

Density. The map-Airy distribution (or Airy distribution of the ‘map-type’ ) has density
given by

A(x) = 2e−2x
3/3(xAi(x2)− Ai′(x2)),

where Ai(x) is the Airy function which satisfies the differential equation y′′ − xy = 0, i.e.

Ai(x) =
1

2π

∫ +∞

−∞
exp

(
i

(
t3

3
+ xt

))
dt.

The map-Airy distribution of parameter c is defined by the density cA(cy). The tails of
the distribution are extremely asymmetric, see a plot of A(x) shown in Figure 3, in fact
the left tail decays polynomially while the right tail decays exponentially:

A(x) ∼
x→−∞

1

4
√
π
|x|−5/2 and A(x) ∼

x→+∞

2√
π
x1/2 exp

(
−4

3
x3
)
.

Integral representations. A representation that proves useful in the context of sin-
gularity analysis is

A(x) =
1

2iπ

∫ ∞eiθ
∞e−iθ

exp

(
t3/2

3
− xt

)
dt, for any θ ∈

[
π

3
,
2π

3

]
.

From the above expression we get for any d1, d2 > 0 that

1

2πi

∫ ∞ei2π/3
∞e−i2π/3

exp
(
d2s

3/2 − d1ys
)
ds = (3d2)

2/3A
(
d1(3d2)

2/3y
)
. (10)

For an extended account on the Airy distribution as well as other representations
(series, etc.), we refer the reader to [3, Appendix B].
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3 Asymptotic enumeration of cubic planar maps

3.1 Cubic maps

Proof of Theorem 1(a). Consider the system of equations (6), where M is defined
by (2) and (4). By elimination we obtain the minimal polynomial of C(z) which is equal
to

64C3z3 + (192z3 − 96z2 + z)C2 + (192z3 − 192z2 + 32z − 1)C + 64z3 − 96z2 + 4z. (11)

Its discriminant with respect to C is z2(1−432z2)3, so that the unique dominant singularity
of C(z) is

√
1/432 =

√
3/36. From (11) we compute the Puiseux expansion of C(z) for

z ∼
√

3/36 which is

C(z) = 6
√

3− 10− (6
√

3− 12)Z2 +
4
√

6

3
Z3 +O(Z4), where Z =

√
1− 36z/

√
3.

Applying Lemma 7 gives the asymptotic estimate for cn = [zn]C(z) as claimed.

Proof of Theorem 1(b). In this case we eliminate from (5) and obtain

16z2B3 + (48z2 + 8z)B2 + (48z2 − 20z + 1)B + 16z2 − z.

Its discriminant with respect to B is 256z3(2 − 27z)3. The unique dominant singularity
of B(z) is 2/27 and the Puiseux expansion for z ∼ 2/27 is

B(z) =
1

8
− 3

8
Z2 +

√
3

3
Z3 +O(Z4), where Z =

√
1− 27z/2.

The estimate for bn = [zn]B(z) follows again from Lemma 7.

Remark 9. Explicit formulas are known for the coefficients of C(z) and B(z), namely

cn =
22n+1(3n)!!

(n+ 2)!n!!
, bn =

2n+1(3n)!

n!(2n+ 2)!
,

where n!! = n(n − 2)(n − 4) · · · (see [21] and [32], respectively). In those cases, the
asymptotic estimates follow by applying Stirling’s formula. However, in the rest of the
paper closed formulas will not be available and one needs to rely on methods such as
Lemma 7.

Remark 10. Furthermore, if we eliminate S, P , H and M from the system composed of
(4) and (5), we obtain the simple identity B(z) = T (z(1 + B)3), which already appears
in [32].
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Proof of Theorem 1(c). We adapt (6) to encode the generating function C∗(z) =∑
n>0 c

∗
nz

n. We use the same letters as in (6) for the analogous generating functions but
with an exception: we need to redefine the class D to be the class of cubic maps which
become simple after the removal of their root edge.

First we subtract the term z from L(z) corresponding to the dumbbell rooted at a
loop, and the term z from P (z) corresponding to 3-bond. Then we modify the equation
for L(z) in order to avoid a double edge when replacing a loop with a loop map. Finally,
C∗(z) is obtained by adding I(z) to D(z) and subtracting the maps giving rise to either
loops or double edges, that are the maps encoded in L(z), in 2zD(z) (maps obtained from
the 3-bond by replacing only one edge), and in L(z)2 (the series composition of two loop
maps, which produces a double edge). This gives

C∗(z) = D(z) + I(z)− L(z)− 2zD(z)− L(z)2,

D(z) = L(z) + S(z) + P (z) +H(z),

L(z) = 2z(I(z) +D(z)− L(z)),

I(z) =
L(z)2

4z
,

S(z) = D(z)(D(z)− S(z)),

P (z) = 2zD(z) + zD(z)2,

H(z) =
M(z(1 +D(z))3)

1 +D(z)
.

(12)

By elimination we obtain the minimal polynomial of C∗(z) as

64z5(C∗)4 + p3(z)(C∗)3 + p2(z)(C∗)2 + p1(z)(C∗) + p0,

where

p0(z) = z2(z2 − 11z + 1)(1568z8 + 476z7 − 7456z6 − 8458z5 − 27z4 + 2672z3 + 130z2 − 330z + 41),

p1(z) = 784z11 + 13524z10 + 29478z9 − 51033z8 − 194686z7 − 166400z6 − 5454z5 + 43746z4 + 4030z3

− 5652z2 + 904z − 41,

p2(z) = −z(1743z8 + 13968z7 + 13344z6 − 52888z5 − 116934z4 − 71248z3 − 4064z2 + 3768z − 41),

p3(z) = 16z3(57z4 + 40z3 + 24z2 + 208z + 179).

The discriminant with respect to C∗ has two real roots between 0 and 1. One of
them is approximately 0.32, and can be discarded since it is greater than the dominant
singularity of the generating function of 2-connected simple cubic maps, approximately
0.099, computed in the next proof. The second one is ρ ≈ 0.096260, a root of P (z) defined
in (1), as claimed. The Puiseux expansion of C∗(z) for z ∼ ρ is

C∗(z) = C∗0 − C∗2Z2 + C∗3Z
3 +O(Z4), where Z =

√
1− z/ρ,
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and C∗0 , C∗2 and C∗3 are computable polynomials in ρ. Their expressions are too long to
be reproduced here, and we just write down the numerical approximations:

C∗0 ≈ 0.020004, C∗2 ≈ 0.14836, C∗3 ≈ 0.39135.

The asymptotic estimate on c∗n follows again from Lemma 7.

Proof of Theorem 1(d). We restrict the system (12) to 2-connected simple maps. To
this end we need to discard the classes of simple maps that produce cut vertices, namely
L and I. The generating functions D(z), S(z), P (z) and H(z) have the same meaning
as for simple cubic maps, except that they are now restricted to 2-connected simple cubic
maps. Similarly to the previous proof, B∗(z) is obtained from D(z) by removing the maps
containing a double edge, which are parallel maps encoded by zD(z)2, as follows:

B∗(z) = D(z)− 2zD(z),

D(z) = S(z) + P (z) +H(z),

S(z) = D(z)(D(z)− S(z)),

P (z) = 2zD(z) + zD(z)2,

H(z) =
M(z(1 +D(z))3)

1 +D(z)
.

By elimination we obtain the minimal polynomial of B∗(z), which is given by

16z2(B∗)3 − (16z4 + 120z3 − 48z2 − 8z)(B∗)2

+ (4z6 + 76z5 + 121z4 − 244z3 + 118z2 − 20z + 1)B∗

− 8z7 − 76z6 + 134z5 − 77z4 + 17z3 − z2.

The smallest positive root of its discriminant with respect to B∗ is (3
√

3− 5)/2. And the
the Puiseux expansion for z ∼ (3

√
3− 5)/2 is

B∗(z) =
33
√

3− 57

8
− 25− 15

√
3

8
Z2 +

(3 +
√

3)
√

2
√

41
√

3− 71

3
Z3 +O(Z4),

where Z =
√

1− z(5 + 3
√

3). The asymptotic estimate for b∗n from Lemma 7.

3.2 Triangle-free cubic maps

We need to adapt (6) to encode the decomposition of triangle-free cubic maps. The first
obstacle arises from the edge-replacement operation: when replacing an edge of a map M
by a map N we can potentially erase or create triangles, and the resulting map becomes
or stop being triangle-free.

To address this problem, we will encode whether the root edge of a map belongs or
not to a triangle. We will also keep track of triangular faces in 3-connected cubic maps.
The latter is in order to control whether at least one of the edges of each of those faces
gets replaced with a map. By duality, this is equivalent to keeping track of cubic vertices
in 3-connected triangulations.
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Cubic vertices in 3-connected triangulations. We introduce two bivariate generat-
ing functions: T1(x, u) which counts 3-connected triangulation with at least five vertices
and rooted at a cubic vertex, and T0(x, u) which counts those that are not rooted at a
cubic vertex. In both cases, x marks the number of vertices minus two and u marks the
number of cubic vertices.

In order to derive functional equations for T0 and T1, we will proceed as in [24, Section
4.1] (to which we refer the reader for a more complete proof). Start from the univari-
ate generating function T4(z) of 4-connected triangulations (see (3)), since 4-connected
triangulations cannot have cubic vertices, and introduce an auxiliary generating function
T (3)(x, u) which counts 3-connected triangulations and where now u marks the number
of inner cubic vertices, that is, not in the outer face. The triangulation K4 is treated
separately. This gives the following system of equations:

T (3)(x, u) =
T4(x(1 + x−1T (3)(x, u))2)

1 + x−1T (3)(x, u)
+ x2(1 + x−1T (3)(x, u))3 + x2(u− 1),

T1(x, u) = uxT (3)(x, u),

T0(x, u) = (1 + 2xu− 3x)T (3)(x, u)− x2u.

(13)

Proof of Theorem 2(a). We use the same letters as in (6) for the generating functions,
with the difference that those with the index 1 (resp. 0) will encode cubic maps that are
triangle-free with the exception of at least one triangle (resp. no triangle) incident with
the root edge. They will be called near-triangle-free (resp. triangle free).

The series S1(z), P1(z) and H1 (resp. S0(z), P0(z) and H0) encode near-triangle-free
(resp. triangle-free) cubic maps thats are respectively series, parallel and polyhedral. The
maps counted by L(z) and I(z) never have triangles at the root, so we omit their index.
Additionally, the polyhedral maps with K4 as a 3-core will be encoded by W0(z) and
W1(z). The next lemma, which is an adaptation of [24, Lemma 21] to the setting of
planar maps.

Lemma 11. The generating function F (z) =
∑

n>0 fnz
n, where fn (n > 0) is the number

of triangle-free cubic maps on n+ 2 faces, satisfies the following system of equations:

F = I + L+ S0 + P0 +W0 +H0,
D = L+ S0 + P0 +W0 +H0 + S1 + P1 +W1 +H1,
L = 2z(1 + I +D − L2 − z)− 4z2(D − L),
I = L2/(4z),
P0 = z(1 +D − L)2,
P1 = zDL,
S0 = (D − S0 − S1)D − S1,
S1 = 2zL+ 4z(D − L)L+ L3,
W0 = z2(4D2 + 8D3 + 5D4 +D5),
W1 = z2(D + 6D2 + 2D3),
H1 = T1(x, u)/(3D + 3D2 +D3),
H0 = (2D +D2)H1 + T0(x, u)/(1 +D),

(14)

where the arguments of the univariate series are omitted, and we set x = z(1 +D)3 and
u = (3D + 3D2 +D3)/(1 +D)3.
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Proof. The first two equations follow from their respective definitions. The rest of the
proof goes into the lines of [24, Lemma 21]: setting x2 = z and u = 0 in [24, Lemma
17]. In order to adapt it to the setting of maps, we remove the various graph symmetries
(encoded by the factor 1/2 in [24, Lemma 21]), add a factor 2 for the choice of the root
face, and add/remove the terms with loops or multiple edges. For instance, the terms
2z and −2z2 in the equation for L(z), the latter creating a triangle not at the root edge
coming from the added term z in the equation for P0(z). And the terms 2zL(z) and
z2D(z) in the equations for S1(z) and W1(z), respectively. Notice finally that all the
generating functions with index 2 in [24, Lemma 21] have been fused here with those of
index 1.

By elimination from the system composed of (3), (13) and (14), we obtain an irre-
ducible polynomial equation pF (F, z) = 0 which has degree 24 in F , and is too large to be
reproduced here. The discriminant with respect to F has four factors with positive roots
smaller than one. Only one such factor has a positive root φ ≈ 0.054984 larger than ρ,
the dominant singularity of all cubic maps. Hence φ must be the dominant singularity of
F . Its defining equation is given in the statement of Theorem 2(a). From pF we compute
the Puiseux expansion of F (z) for z ∼ φ:

F (z) = F0 − F2Z
2 + F3Z

3 +O(Z4), where Z =
√

1− z/φ.

The Fi’s are computable algebraic functions of φ that are too large to be displayed here,
and we only give numerical approximations

F0 ≈ 0.35300, F2 ≈ 1.05162, F3 ≈ 1.70491.

We conclude the proof by applying Lemma 7.

Since the next proof is very similar to the proof of the previous theorem, we only
provide a sketch of it.

Sketch of the proof of Theorem 2(b). We adapt the system (14) to the case of
simple triangle-free cubic maps encoded by F ∗ = F ∗(z). This is done by taking care
of possible appearances of loops or multiple edges that are not the root. This gives the
following system where the arguments of the funtions are omitted:

F ∗ = I +D − S1 − P1 −W1 −H1 − L2 − 2z(D − L),
L = 2z(I +D − 2z(D − L)− L2),
P0 = 2z(D − L) + z(D − L)2,
S1 = 4z(D − L)L+ L3.

(15)

From there, we compute the minimal polynomial pF ∗(F
∗, z) which also has degree

24 in F ∗. By carefully analysing its discriminant, we obtain the dominant singularity
φ∗ ≈ 0.142046, whose minimal polynomial Pφ∗ is given in the statement of Theorem 2(a).
Finally we compute the Puiseux expansion as before and obtain the estimate for [zn]F ∗(z).
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4 The degree of the root face

We continue with the convention that z marks faces minus two in a cubic map. Let
C(z, u) be the generating function of cubic maps, where u marks the degree of the root
face, and let M(z, u) be the analogous series for 3-connected cubic maps. We first find
an expression for M(z, u) using the fact that the number of loopless maps with n edges
and root face of degree k equals the number of 3-connected cubic maps with n + 2 faces
and root face degree k + 2; see also a bijective proof of this fact in [16].

The generating function A(x, y) of loopless maps, where x marks edges and y marks the
root face degree was obtained in [6] as follows. The univariate function A1(x) = A(x, 1)
is given by

A1(z) = A(z, 1) = (1 + q)2(1− q), (16)

where q = q(x) satisfies q = x(1 + q)4, which in fact is the generating function of 4-ary
trees. We notice that A1(x) = x−1T (x), where T (x) is as in Section 2, and that the unique
singularity of q agrees with that of T , namely x = τ = 27/256. It is further shown in [6]
that A = A(x, y) is the solution of

xyA2 + (1− y − xyA1)A+ y − 1 = 0. (17)

Solving the quadratic equation and eliminating from the previous equations, we arrive
at [6, Equation (4)]

A(x, y) =
(1 + q)2

2qy2

(
y + 3qy − (1 + q)2 − (1 + q)(1 + q − y)

√
1− 4qy

(1 + q)2

)
, (18)

where the sign in front of the square root is taken so that A(x, y) has non-negative
coefficients. From the bijection between loopless maps and 3-connected cubic maps it
follows that

M(z, u) = zu2(A(z, u)− 1) = u3z2 + (u3 + 2u4)z3 + (3u3 + 5u4 + 5u5)z4 + · · · . (19)

Our next result extends (6) by considering the degree of the root face as an additional
parameter. Let D(z, u) be the generating function of the class D of cubic maps defined
in Section 2, where u marks de degree of the root face, and similarly for L1, L2, I, S, P
and H.

Lemma 12. Let D(z) = D(z, 1) and I(z) = I(z, 1) the univariate series as in (6). Then
the following equations hold:

C(z, u) = D(z, u) + I(z, u),
D(z, u) = L1(z, u) + L2(z, u) + S(z, u) + P (z, u) +H(z, u),
L1(z, u) = zu(1 +D(z) + I(z)),
L2(z, u) = zu4(1 +D(z, u) + uI(z, u)),
I(z, u) = L2(z, u)2/(zu4),
S(z, u) = D(z, u)(D(z, u)− S(z, u)),
P (z, u) = zu2(1 +D(z))(1 +D(z, u)),
H(z, u) = M (a, b) /(1 +D(z, u)),

(20)
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where a = z(1 +D(z))3 and b = (1 +D(z, u))/(1 +D(z)).

Proof. We revisit (6) and enrich it in order to mark the degree of the root face. The
main differences are the equations for the generating functions counting loop, parallel and
h-maps.

The series L1 and L2 count loop maps in which the root face has size one and at least
two, respectively. For instance, the maps counted by L1 are obtained from the dumbbell
rooted at a loop, encoded by zu, in which the non-root loop is possibly replaced by an
arbitrary map, hence the factor 1 + D(z) + I(z). Thoses series are univariate since the
maps attached to the non-root loop do not contribute to the degree of the root face. For
L2 however, the dumbbell (rooted at a loop) is now encoded by zu4 and the root face
degree of the attached map contribute to the total degree.

In the equation for I, the difference with the univariate case is that one can only attach
loop maps whose root face degree contributes to the total degree, i.e. those counted by
L2. In the equation for P , the 3-bond is now encoded by z2u. And maps attached to the
edge directly to the right of the root edge contribute to the root face degree, while maps
attached to the left do not. Finally, in the equation for H every non-root internal edge
of a 3-connected cubic map is possibly replaced by a non-isthmus map whose root face
degree is not marked. Whereas, the maps attached to the external edges contribute to
the resulting root face degree.

Next we analyse the singularities of both M(z, u) and D(z, u). We remark that the
condition |u| 6 1 and u close enough to the real axis is sufficient to determine the probabil-
ity generating function p(u) (see the proof of Theorem 3 below) by analytic continuation.
It could have been replaced by a different condition for u close to 1, but this one is
convenient for the proof.

Lemma 13. Suppose that z and u are complex numbers sufficiently close to the real axis
and that |u| 6 1. Then the singularity of M(z, u) does not depend on u and is equal to
τ = 27/256. Furtermore, for fixed u ∼ 1 the Puiseux expansion of M(z, u) for z ∼ τ is
of the form

M(z, u) = M0(u) +M2(u)Z2 +M3(u)Z3 +O(Z4), Z =
√

1− z/τ ,

where M0(u), M2(u) and M3(u) are algebraic functions, analytic for |u| 6 1 sufficiently
close to the positive real axis.

Proof. Given the expression in Equation (18), the singularities of A(x, y), hence those of
M(z, u), have only two possible sources: a) those coming from u, or b) the vanishing of
the term 1 − 4uy/(1 + u)2 inside the square-root. We can rule out source b) easily as
follows. A simple calculation shows that function 4u(x)/(1+u(x))2 is increasing for x > 0
and its maximum is at the radius of convergence τ , where it takes the value 3/4. Since

|y| 6 1, for x and y sufficiently close to the positive real line, we have
∣∣∣ 4uy
(1+u)2

∣∣∣ < 1.

The analogous statement for D(z, u) needs more work.
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Lemma 14. Suppose that z and u are sufficiently close to the positive reals and that
|u| 6 1. Then the dominant singularity of D(z, u) does not depend on u and is equal to
σ =
√

3/36. Furtermore, for fixed u ∼ 1 the Puiseux expansion for z ∼ σ is of the form

D(z, u) = D0(u) +D2(u)Z2 +D3(u)Z3 +O(Z4), Z =
√

1− z/σ,

where D0(u), D2(u) and D3(u) are algebraic functions, analytic for |u| 6 1 sufficiently
close to the positive real axis.

Proof. Eliminating from (20), we get

2uD = 2uM + (1 +D)(1−
√

1− 4zu5(1 +D))

+ 2zu2(1 +D)(1 +D1 + I) + 2zu3(1 +D)2(1 +D1),
(21)

where M = M(z(1 + D1)
3, (1 + D)/(1 + D1)), D = D(z, u), D1 = D(z) and I = I(z).

Observe that the singularities of D(z, u) can either arise from the square-root term, i.e.
when 4zu5(1 + D) = 1, from a branch point, i.e. a zero of the derivative of (21) with
respect to D, or from the singularities of D1, I and M .

We will first rule out any singularity coming from the term
√

1− 4zu5(1 +D). Adapt-
ing the proof of Theorem 1(a), we observe that σ is the dominant singularity of D(z) and

D(σ, 1) = D(σ) =
3

4

√
3− 1. (22)

Because its coefficients are non-negative, D(z, u) is increasing in both variables on (0, σ]×
(0, 1]. Hence if |u| 6 1 then |D(z, u)| 6 D(|z|, |u|) 6 D(|z|, 1) converges when |z| < σ ≈
0.04811. But then assuming 4zu5(1 +D(z, u)) = 1, we get a contradiction using (22):

|z| = 1

|4u5(1 +D(z, u))|
>

1

4 + 4D(σ, 1)
=

1

3
√

3
≈ 0.19245.

Next, we rule out the possibility of a branch point coming from (21). The derivative
of (21) with respect to D can be written as follows

2u = 2u
M2

1 +D1

+ 1−
√

1− 4zu5(1 +D) +
2zu5(1 +D)√

1− 4zu5(1 +D)

+ 2zu2(1 +D1 + I) + 4zu3(1 +D)(1 +D1),

(23)

where M2 = M2(z, u) = (∂/∂u)M(z(1+D1)
3, (1+D)/(1+D1)) can be computed from (17)

and (19), and verifies

∂

∂u
M(z, u) =

zu(A− 2)(2uA− A1)− (u− 2)(A− 1)

2Azu2 − A1zu− u+ 1
, (24)

with A = A(z, u) and A1 = A(z). We assume that there exists a pair (z0, u0) with |z0| 6 σ
and |u0| 6 1 and sufficiently close to the real plane which satisfies (23), and then reach a
contradiction.
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Both D(z) and I(z) have non-negative coefficients and are thus increasing functions
on (0, σ]. Hence, as a byproduct of Theorem 1(a) we get

|I(z0)| 6 I(|z0|) 6 I(σ) = 21
√

3/4, (25)

|z0(1 +D(z0))
3| 6 |z0|(1 +D(|z0|))3 6 σ(1 +D(σ))3 = τ, (26)

where the last equality is a so-called critical composition scheme. Notice also that as
|u0| 6 1 we have ∣∣∣∣1 +D(z0, u0)

1 +D(z0)

∣∣∣∣ 6 1. (27)

Further remark that the coefficients of M2(z, u)/(1 + D1(z)) are also non-negative
integers, as they count 3-connected cubic maps where an additional edge of the root face
is distinguished and in which every edge but the distinguished one is possibly replaced
by a non-isthmus cubic map. It is thus an increasing function over (0, σ] × (0, 1]. And
using (26) and (27) we get∣∣∣∣M2(z0, u0)

1 +D(z0)

∣∣∣∣ 6 1

1 +D(|z0|)
∂

∂u
M

(
|z0(1 +D(z0))

3|,
∣∣∣∣1 +D(z0, u0)

1 +D(z0)

∣∣∣∣)
6

1

1 +D(σ)

∂

∂u
M (τ, 1) =

√
3

32
,

(28)

where the last equality is computed from (22) and (24) using the value A(τ, 1) = A(τ) =
32/27 obtained from (16). From the right hand-side of (23) it now remains to consider
the generating function

F (z, u) =
1

2u

(
1−

√
1− 4zu5(1 +D) +

2zu5(1 +D)√
1− 4zu5(1 +D)

+ 2zu2(1 +D1 + I) + 4zu3(1 +D)(1 +D1)
)
.

Since every series within the brackets has non-negative coefficients (z, u) is increasing on
(0, σ]× (0, 1]. Using (22) and (25) we obtain

|F (z0, u0)| 6 F (|z0|, |u0|) 6 F (σ, 1) = 1− 35
√

3

96
. (29)

Finally, plugging (28) and (29) together in (23) we reach a contradiction:

1 =

∣∣∣∣M2(z0, u0)

1 +D(z0)
+
F (z0, u0)

2u0

∣∣∣∣ 6 1−
√

3

3
< 0.423.

As mentioned above, this means that the dominant singularity of D(z, u) is that of
D(z), I(z) and M(z, u). Its singular behaviour can then be deduced from Lemma 13
together with Lemma 8. Note that the functions D0(u), D2(u) and D3(u) are the first
coefficients of the Puiseux expansion of D(z, u) for z ∼ σ, which can be computed from
the minimal polynomial of D(z, u) of degree 9 and obtained by elimination from (20).
This concludes the proof.
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Proof of Theorem 3. Using the singular expansion of D(z, u) and the equations in (20)
we obtain an analogous expansion for I(z, u) and thus for C(z, u) when |u| 6 1 and u is
sufficiently close to the real line:

C(z, u) = D(z, u) + I(z, u) = C0(u) + C2(u)Z2 + C3(u)Z3 +O(Z4), Z =
√

1− z/σ.

Then we have

pk = lim
n→∞

[zn][uk]C(z, u)

[zn]C(z)
.

It follows that the probability generating function is equal to

p(u) =
∑
k

pku
k =

C3(u)

C3(1)
.

We observe that p(u) is uniquely determined by analytic continuation. Furthermore, using
Maple we obtain that p(u) is the unique power series with non-negative coefficients which
is a solution of the irreducible polynomial

Q(p, u) = a0(u) + a1(u)p+ a3(u)p3, (30)

where a0(u), a1(u) and a3(u) are the polynomials given in the statement of Theorem 3.
The dominant singularity u0 of p(u) is computed from the discriminant of Q(p, u) with

respect to p. It is the unique real root of

13u3 + (4
√

3− 36)u2 + +(78− 26
√

3)u+ 24
√

3− 60 = 0,

and we have u0 ≈ 1.10254. The former equation can be rationalized and is equivalent to

13u6 − 72u5 + 252u4 − 504u3 + 600u2 − 432u+ 144.

The Puiseux expansion of p(u) for u ∼ u0 is of the form

C3(u) = aU−3 +O(U−1), with a ≈ 0.028650 and U =
√

1− u/u0.

Using a suitable transfer theorem, see for instance [15], we finally obtain the estimate

pk ∼ c · k1/2qk,

where c = a/κ(3/2) and q = u−10 . Let us remark that u0 > 1 and q < 1, in accordance to
the fact that the pk are the tail of a probability distribution.

The maximum face degree. Let pk be as before, and let p∗k be the limiting probability
that a random face has degree k. A double counting argument [20] shows that the two
distributions are related by

kp∗k = µpk,
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where µ is the expected degree of a random face (notice that
∑
kp∗k = µ). It follows that

p∗k ∼ c∗k−1/2qk, c∗ = cµ.

Let Yn,k be the number the number of faces of degree at least k + 1 in maps of size n.
As discussed in [13], in this situation one has

EYn,k ≈
c∗q

1− q
k−1/2qkn.

Denote by ∆n the maximum degree of a random cubic map. Then we have

P(∆n > k) = P(Yn,k > 0) 6 EYn,k.

Thus, if k−1/2qkn → 0, then ∆n 6 k almost surely when n → ∞. This happens if
k = (1 + ε) log n/ log(1/q). Usually such a threshold is tight, so one can expect the
converse statement also to be true. This would imply that ∆n ∼ log n/ log(1/q). In order
to prove this rigorously, one needs to estimate the variance of Yn,k then apply the second
moment method. This can be achieved by analysing the degree of a second root face
(see [13] for details in a similar situation). This program could in principle be carried out
by extending Lemma 12 to mark a second face with a new variable v. After verifying the
conditions of [13, Theorem 1.1] one would obtain

∆n

log n
→ log(1/q), E∆n ∼

1

log(1/q)
log n.

Although we expect that the former estimates hold, we have refrained from doing the
necessary lengthy calculations.

5 Largest components

This section is devoted to proving Theorems 4, 5 and 6. The proof strategy follows the
approach from [3], which works for many different classes of maps (see [3, Table 4]). It
consists in first proving a map-Airy limiting distribution for the component (block, cubic
block and 3-connected) containing the root edge, the cores defined in Section 2, then
transferring it to the largest component via a double-counting argument. This strategy
(see [3, Appendix D] or [17]) works by rooting maps at a secondary edge and then ‘ex-
changing the role of the two roots’, so that one can relate the number of maps whose core
has size t with those whose largest component has size t.

However, the last step does not extend directly to the size of the largest cubic block
or the largest 3-connected component of a random cubic map, that is, in the proofs
of Theorems 5 and 6. The reason is twofold. First, when counting maps by faces or
vertices the argument from [3, Appendix D] fails, as rooting a cubic map at a face or at
a vertex does not carry sufficient information, unlike rooting at an edge. Secondly, the
recursive decomposition of cubic maps based on replacements of edges in the core has
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the particularity that each replacement increases the number of edges in the core by one.
Thus, when counting cubic maps by edges, one needs to account for this fact in order to
encode the number of edges of the largest component containing the root.

Our solution is to introduce an extra variable u that encodes the number m of (non-
empty) edge replacements in the core. In our context, each replacement is accounted for
by subdividing the edge once, thus creating a vertex of degree two. Adapting the proof
method developed in [3], we show a limit law of the map-Airy type, with fluctuations of
order O(n2/3), for the number of edges of the core taking into account vertices of degree
two. Finally, we transfer this result to the size of the core without vertices of degree two
by showing that the fluctuations of m are typically Gaussian, of order O(n1/2+ε) for some
ε > 0. The results in this section are thus obtained for cubic maps counted by edges, but
the same limiting distributions and constants hold when considering cubic maps counted
by faces.

Pure periodicities. We note that when counting cubic planar maps by edges one has to
take care of so-called pure periodicities, that is, the parameters satisfy several congruence
relations. More precisely, the number of edges e and the number of faces f satisfy the
relations e = 3(f−2) so that e is always a multiple of 3. This is reflected by the appearance
of singularities that are not located on the positive real line.

For instance, if a generating function F (z) with non-negative coefficients has the prop-
erty that the only positive coefficients are those whose indices are multiples of 3, then we
can write F (z) = F̂ (z3), for some function F̂ (z). Furthermore, in this case the dominant

singularity z = ρ′ > 0 of F̂ (z) has three singularities of F (z) as natural counterparts,
z1 = ρ, z2 = ρei2π/3 and z3 = ρei4π/3, where ρ3 = ρ′. Hence, if we perform Cauchy
integration to obtain an asymptotic expansion for the coefficient [zn]F (z) we have to take
into account the contribution of the integral close to ρ, ρei2π/3 and ρei4π/3. Due to the
relation between F (z) and F̂ (z), these three contributions are the same up to a third root
of unity. So that if n is a multiple of 3 then the total contribution is three times the
contribution coming from the singularity z = ρ. On the other hand, if n is not a multiple
of 3 then the three contributions sum up to zero.

In order to make the following analysis more transparent and readable, we assume
that no pure periodicity appears, that is, no congruence relation between the non-zero
coefficients is considered. This means in particular that we do not take into account
whether n is a multiple of 3 or not, and thus neglect the factor 3. However, we will
eventually compute ratios of the form ([zn]F (z))/([zn]G(z)) so that the factor 3 finally
cancels. Thanks to this simplification we just have to consider the positive dominant
singularity. Clearly, all computations can be made completely rigorous.

5.1 Map-Airy law for the size of the 2-core

This section is devoted to the proof of a map-Airy law for the size (number of edges) of
the 2-core of a random cubic planar map with n edges, as n→∞, but parameterised by
a variable u marking the number of vertices of degree two in the 2-core. Before stating
and proving it, we will however need to establish preliminary results.
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Our first preliminary result allows us to encode, using trivariate generating functions,
the number of edges of the 2-core of a cubic map while keeping track of the number of
vertices of degree two.

Lemma 15. Let B(y) be the generating function of 2-connected cubic maps and C(z, w, u)
that of cubic maps, where y and z mark, respectively, the total number of edges, while w
and u mark, respectively, the number of edges and vertices of degree two in the 2-cores.

Furthermore, let L(z) be the generating function of loop cubic maps where z marks
only non-root edges. Then the following equation holds:

C(z, w, u) = B

(
zw

1− zwuL(z)

)
1

1− zwuL(z)
+

zwuL(z)

1− zwuL(z)
+
L(z)2

4z
. (31)

Proof. After iteratively removing all the cherries from a cubic map, we are left with three
possible configurations: the resulting map is either a dumbbell (1), a rooted cycle of length
at least one (2), or is 2-connected and is thus the 2-core (3).

Case (1): cubic maps in this case are counted by L(z)2/4z. Dumbbells are not 2-
connected and thus there is no occurrence of the variables w and u here.

Case (2): those cubic maps can be derived by attaching a loop map at each vertex of a
rooted cycle of size at least one. Attaching a loop map at a vertex v is done by removing
its root edge and identifying its root vertex with v. Each such vertex (originally of degree
two) amounts for one in the size of the 2-core. So that the generating function for this
family of cubic maps is zwuL(z)/(1− zwuL(z)).

Case (3): any 2-core of some cubic map can be obtained by replacing the edges of
some 2-connected cubic map by (possibly empty) paths. The length of each added path
contributes to as many vertices of degree two in the 2-core. Conversely, one recovers
the original map from its 2-core by attaching a loop map at each vertex of degree two.
Such maps are thus encoded by B (zw/(1− zwuL(z))) /(1−zwuL(z)). The factor 1/(1−
zwuL(z)) amounts for the extra re-rooting of the map when the root edge of the core was
replaced by a non-empty path.

In order to adapt the methods of [4] to the composition scheme in (31), we will need
a notion of ’criticality’. This is our next preliminary result.

Critical composition scheme. When considering the first summand of the right side
of (31), i.e. of the composition scheme, the variables z and w always appear together as
zw since an edge in the 2-core contributes to the total number of edges. This motivates
the changes of variables

x = zw and v = uL(z),

which transforms (31) into

C(x, v) = B

(
x

1− xv

)
· 1

1− xv
+

xv

1− xv
+
L(z)2

4z
.
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Thus, for t > 0 we have

[wt]C(z, w, u) = [xt]B

(
x

1− xv

)
· 1

1− xv
zt + vtzt, (32)

We will eventually see that only the first summand of (32) contributes to the total mass
of the distributions of Xn and X∗n, the random variables in Theorems 4 and 5 respectively.
Hence, we can safely restrict our study to the composition scheme

C̃(z, w, u) = C̃(x, v) = B

(
x

1− xv

)
· 1

1− xv
,

and define x(v) = τ/(1 + τv) so that

x(v)

1− x(v)v
= τ and x(v)−1 = τ−1 + v. (33)

This composition scheme is ‘critical’ when z ∼ ρ and w = u = 1 in the sense that

v = uL(z) ∼ L0, x(v) ∼ ρ, and
zw

1− zwuL(z)
=

x

1− xv
∼ ρ

1− ρL0

= τ,

that is,

ρ =
τ

1 + τL0

and ρ−1 = τ−1 + L0.

Our last preliminary result is to derive asymptotic estimates for the number of cubic
maps, analogue to those in Section 3, but this time counted by edges.

Estimates for cubic maps counted by edges. We already mentioned that there are
three times as many edges as faces minus two in a cubic map. Hence, the corresponding
generating functions and their dominant singular behaviour can be obtained by applying
the change of variable z → z3 in the proofs of Theorem 1(a) and (b).

The generating function B(y) (where the exponent of y takes care of the number of
edges) has its dominant singularity at τ = 21/3/3 and for y ∼ τ we have the expansion

B(y) = B0 −B2Y
2 +B3Y

3 +O(Y 4), Y =

√
1− y

τ
, (34)

with B0 = 1/8, B2 = 9/8 and B3 = 3. There are corresponding singularities at τei2π/3

and τei4π/3 that we neglect. So in what follows we assume that B(y) is ∆-analytic so that
Lemma 7 implies

[yn]B(y) =
3B3

4
√
π
n−5/2τ−n(1 + o(1)), as n→∞. (35)

As mentioned above we omit a factor 3 and the restriction to n that are multiples of 3.
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Similarly we assume that, both C(z) and L(z) are ∆-analytic at ρ = 21/3
√

3/6. And
for z ∼ ρ and Z =

√
1− z/ρ it holds that

C(z) = C0 − C2Z
2 + C3Z

3 +O(Z4) and L(z) = L0 − L2Z
2 + L3Z

3 +O(Z4), (36)

with C0 = 6
√

3 − 10, C2 = 18(2 −
√

3), C3 = 12
√

2, and L0 = 22/3(
√

3 − 3/2), L2 =
22/3(3−

√
3), L3 = 21/64. In particular, this means that the number of rooted cubic maps

with n edges is

[zn]C(z) =
3C3

4
√
π
n−5/2ρ−n(1 + o(1)), as n→∞, and with ρ = 21/3

√
3/6. (37)

Again we omit here a factor 3 and the restriction to n that are multiples of 3.

We are now in a position to state and prove the main result of this section.

Proposition 16. Let α0 > 0 (that will be fixed later), q = O(1) and 0 < ε < 1/6.
Then for t = α0n+ qn2/3 and u = 1 +O(t−1/2+ε) the following holds as n→∞

[znwt] C̃(z, w, u) =
3B3

4
√
π

(1 + τuL0)
5/2ρ−n+t

(
τ−1 + uL0

)t
n−5/2α

−3/2
0 n−2/3cA(cq)(1 + o(1)),

(38)

where c = (3L3/L2)
2/3 α−10 (1− α0)

−2/3.

Proof. From the notation in (33), let us set

X =

√
1− x

x(v)
, so that x = x(v)(1−X2).

Thus, when y = x/(1− xv) ∼ τ and considering Y from (34), we can write

Y 2 = 1− y

τ
= 1−

x
1−xv

τ
= 1−

x(v)(1−X2)
1−x(v)(1−X2)v

x(v)
1−x(v)v

=
X2

1− x(v)v
+O(X4). (39)

So that the following asymptotic estimates hold

[xt] C̃(x, v)zt ∼ [xt]B3Y
3 1

1− xv
zt, by applying Lemma 7 to (34) as y ∼ τ,

∼ [xt]B3
X3

(1− x(v)v)3/2
1

1− xv
zt, using (39),

∼ B3
3

4
√
π

(1− x(v)v)−5/2x(v)−tt−5/2zt, by Lemma 7 as t→∞,

= B3
3

4
√
π

(1 + τuL(z))5/2
(
τ−1 + uL(z)

)t
t−5/2zt, using (33).

Hence,

[wt]C(z, w, u) ∼ [xt] C̃(x, uL(z))zt ∼ B3
3

4
√
π

(1 + τv)5/2
(
τ−1 + v

)t
t−5/2zt.
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Figure 4: The contour of integration γ in the z-plane.

Looking at each term of the above estimate, we first obtain using (36) and as z ∼ ρ(
τ−1 + uL(z)

)t ∼ (τ−1 + uL0 − uL2Z
2 + uL3Z

3
)t

∼
(
τ−1 + uL0

)t
exp

(
− uL2

τ−1 + uL0

tZ2 +
uL3

τ−1 + uL0

tZ3

)
.

(40)

And similarly, as z ∼ ρ we get

(1 + τuL(z))5/2 ∼ (1 + τuL0)
5/2 exp

(
− τuL2

1 + τuL0

5

2
Z2 +

τuL3

1 + τuL0

5

2
Z3

)
. (41)

With this at hand, we are in a position to compute the coefficient [zn][xt] C̃(x, uL(z))zt

via Cauchy’s formula, using a suitable contour γ in the z-plane that will be defined later:

[zn][xt] C̃(x, uL(z))zt = [zn−t][xt] C̃(x, uL(z)) =
1

2iπ

∫
γ

[xt]C̃(x, uL(z))

zn−t
dz

z
. (42)

In fact, as argued in the proof of [3, Theorem 5(ii)], the asymptotically significant part
of (42) arises when z is at distance (n − t)−2/3 from ρ, for instance when Z2 in (40)
scales with (n − t)−2/3. This justifies the following definition of the contour γ, depicted
in Figure 4. It includes a positively oriented “loop” that is made of two rays at an angle
of π/3 and −π/3 with (0,+∞), and intersecting on the real axis at distance ρn−2/3 of ρ
from the left. This contour is called γ2 in the proof of [3, Theorem 5(ii)]. Furthermore,
this motivates the following change of variable

s = s(z) = (n− t)2/3(1− z/ρ). (43)

So that

Z2 =
s

(n− t)2/3
, z = z(s) = ρ

(
1− s

(n− t)2/3

)
and dz = − ρ

(n− t)2/3
ds.
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Consequently, this changes (40) into

(
τ−1 + uL(z)

)t ∼ (τ−1 + uL0

)t
exp

(
− uL2

τ−1 + uL0

ts

(n− t)2/3
+

uL3

τ−1 + uL0

ts3/2

n− t

)
. (44)

While (41) becomes

(1 + τuL(z))5/2 ∼ (1 + τuL0)
5/2.

And the shifted Cauchy kernel is also transformed into

z−(n−t) = ρ−(n−t)es(n−t)
1/3+o(n−1/3). (45)

Now, from t = α0n+ qn2/3 we get the following estimates as n→∞

n− t = (1− α0)n− qn2/3, t−5/2 = α
−5/2
0 n−5/2 +O(n−17/6),

(n− t)−1 =
1

1− α0
n−1 +O(n−4/3), (n− t)−2/3 =

1

(1− α0)2/3
n−2/3 +O(n−1/3),

t(n− t)−1 =
α0

1− α0
+O(n−1/3), (n− t)1/3 = (1− α0)

1/3n1/3 − q

3(1− α0)2/3
+O(n−1),

t(n− t)−2/3 =
α0

(1− α0)2/3
n1/3 +

(
2α0

3(1− α0)5/3
+

1

(1− α0)2/3

)
q +O(n−1/3).

Hence, the exponential part of the product of (44) with (45) is asymptotically given by

sn1/3
(

(1− α0)1/3 − uL2

τ−1 + uL0

α0

(1− α0)2/3

)
− qs

(
1

3(1− α0)2/3
+

uL2

τ−1 + uL0

(
2α0

3(1− α0)5/3
+

1

(1− α0)2/3

))
+

α0

1− α0

L3

τ−1 + uL0
s3/2.

(46)

Notice then that, using the values in (34) and (36), if we set

α0 =
τ−1 + L0

τ−1 + L0 + L2

=
1√
3
, (47)

this ensures that

(1− α0)
1/3 − L2

τ−1 + L0

α0

(1− α0)2/3
= 0 and

L2

τ−1 + L0

=
1− α0

α0

.

And from u = 1 +O(t−1/2+ε) we further get that (46) reduces asymptotically to

L3

L2

s3/2 − 1

α0(1− α0)2/3
qs+ o(1).

Remark finally that under the change of variable (43), γ evolves into a contour made of
two segments of angle 2π/3 and −2π/3, intersecting at −1, and each of length O(log2 n).

the electronic journal of combinatorics 30(2) (2023), #P2.51 32



As argued in the proof of [3, Theorem 5(ii)], this contour can be extended back to infinity
at the expense of exponentially small error terms.

Taking all the above assumptions into account, then reverting the orientation of the
new contour and shifting it by one, we can transform (42) into

[zn][wt] C̃(z, w, u) ∼ 3B3(1 + τuL0)5/2

4
√
π

α
−5/2
0 ρ−n+t

(
τ−1 + uL0

)t
(1− α0)2/3n2/3n5/2

1

2πi

∫ ∞ei2π/3
∞e−i2π/3

e
L3
L2
s3/2− 1

α0(1−α0)2/3
qs
ds.

The claimed estimate is then deduced by setting d1 = α−10 (1−α0)
−2/3 and d2 = L−12 L3 in

the integral representation from (10).

5.2 Proofs of the main results

Proof of Theorem 4. In order to study the distribution of Xn in the central regime,
that is, when blocks can have vertices of degree two and size in the range α0n+O(n2/3),
we first consider the random variable Yn denoting the size of the 2-core in Mn. Let q be
in some bounded interval, then we have

P
(
Yn = bα0 n+ qn2/3c

)
∼ [znwt] C̃(z, w, 1)

[zn]C(z)
∼ B3

C3

(1 + τL0)
5/2α

−3/2
0 n−2/3cA(cq).

It follows then from the double-counting lemma used to prove Theorem 7 in [3, Appendix
D] that, for t = α0n+ qn2/3, there exists some A < 1 such that

P (Xn = t) =
n

t
P (Yn = t) (1 +O(An)).

Since from (47) α0 = 1/
√

3, and using the values in (34) and (36)

B3

C3

(1 + τL0)
5/2α

−5/2
0 = 1, (48)

it immediately follows that

P
(
Xn = bn/

√
3 + qn2/3c

)
∼ n−2/3cA(cy),

with c = 2
√

3/(1− 1/
√

3)4/3, as claimed.

We now focus on proving the first intermediate result required for the proof of Theo-
rem 5, that is, in a random cubic map whose 2-core has t edges and m vertices of degree
two, m has Gaussian fluctuations centered around t.

Lemma 17. Fix some 0 < ε, ε′ < 1/6, and let as before t = α0n + qn2/3 and u =
1 +O(t−1/2+ε), where α0 = 1/

√
3 and q = O(1). Further let m = β0t+ r, for some β0 > 0

(that will be fixed later) and r = O(t1/2+ε
′
). Then as n→∞ we have

[znwtum] C̃(z, w, u) ∼ 3B3

4
√
π

(1 + τL0)
5/2

α
3/2
0

ρ−n

n5/2

e−r
2/(2σ2α0n)

√
2πσ2α0n

n−2/3cA(cq), (49)

where c is as in (38).
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Proof. By using the identity ρ = (τ−1 + L0)
−1, we obtain from (38)

[znwt] C̃(z, w, u) ∼ 3B3

4
√
π

(1 + τuL0)
5/2

α
3/2
0

ρ−n

n5/2

(
τ−1 + uL0

τ−1 + L0

)t
n−2/3cA(cq). (50)

Remark that the function

u 7→
(
τ−1 + uL0

τ−1 + L0

)t
can be considered as the probability generating function of the sum of t iid random
variables. In the present context, this leads to the binomial distribution.

A known method to obtain a local limit theorem is to use Cauchy’s formula and a
saddle point like integration for the contour |u| = 1 (see for instance [11]). For r =
O(t1/2+ε

′
), this yields

[um]

(
τ−1 + uL0

τ−1 + L0

)t
=

1

2πi

∫
|u|=1

(
τ−1 + uL0

τ−1 + L0

)t
du

um+1
∼ e−r

2/(2σ2t)

√
2πσ2t

, (51)

when

β0 =
L0

τ−1 + L0

= 1−
√

3

2
and σ2 =

L0

τ(τ−1 + L0)2
.

It is important to note that the asymptotic leading term e−r
2/(2σ2t)/

√
2πσ2t in (51) comes

from the part of integration where |u− 1| = O(t−1/2+ε). This justifies the above assump-
tions and also shows that the asymptotic leading term of (50) is indeed equal to the
claimed estimate.

Remark 18. Concerning the other regimes of t outside the central region t = α0n+O(n2/3)

of the distribution of [znwtum] C̃(z, w, u)/[zn]C(z), one can show that the left tail decays
like O(t−1/2t−3/2) = O(t−2) when either t = O(1) or t = αn with α < α0 and m = β0t+ r.
Just like for the central regime, this can be derived by adapting the proof of [3, Theorem
5](i) to the present context.

It can similarly be shown (see [3, Theorem 5](iii)) that the right tail decays like O(An)
for some A < 1 when t = αn with α > α0.

In order to transfer this asymptotic result on the 2-core to the largest block, we need
a generalisation of the double-counting lemma from [3, Appendix D] to account for the
vertices of degree two.

Lemma 19. Let α0, β0 ∈ (0, 1) be as above, let q = O(1), and assume that r = O(t1/2+ε)
for some 0 < ε < 1/6. Let then cn,t,m be the number of cubic maps with n edges, and a
2-core with t = α0n + qn2/3 edges and m = β0t + r vertices of degree two. Further let
c∗n,t,m denote the number of cubic maps with n edges, and a largest block with t edges and
m vertices of degree two.

Then there exists A < 1, independent from the choices of q and r, such that

c∗n,t,m =
n

t
cn,t,m (1 +O(An)) .
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Proof. The statements in [3, Appendix D] translate almost directly to our setting. Let
an,t,m be the number of cubic maps whose 2-core is also the largest block and has t
edges and m vertices of degree 2. Similarly, let bn,t,m be the number of cubic maps
whose 2-core has t edges and m vertices of degree 2, but is not the largest block. Then
cn,t,m = an,t,m + bn,t,m. Furthermore, by rooting each cubic map at a second edge we get
the following identity

2ncn,t,m = 2nan,t,m + 2nbn,t,m = 2tc∗n,t,m + 2nbn,t,m, (52)

where the second equality can be derived as follows. Among the 2ncn,t,m cubic maps with
a 2-core of size t and a second root edge, 2nbn,t,m of them have a largest block of size
` > t. The remaining ones have a 2-core which is the largest block and, upon exchanging
the rôle of the two roots, those maps are identified with the 2tc∗n,t,m cubic maps with a
largest block L of size t and a secondary root chosen in L.

Let now B be one of the cubic maps counted by bn,t,m, that is B has n edges, a 2-core T
of size t with m vertices of degree two, and a largest block L of size ` > t. By construction,
L is contained in a loop cubic map H of size h attached to v, a vertex of degree two of T.
Let D be the cubic map of size n− h obtained from B by removing H. Then the 2-core of
D is also T.

Conversely, B can be uniquely reconstructed from D, H and v. Thus, bn,t,m is bounded
above by the number of such triples: there are O(cn−h,t,m) many maps D whose 2-core of
size t contains m vertices v of degree two; and to every v there are O(c∗h,`,m) many possible
loop cubic maps H to be attached. This means that there exists a constant A0 such that

bn,t,m 6 A0

∑
`,h

t<`<h<n−t

mcn−h,t,mc
∗
h,`,m 6 mA0

∑
`,h

t<`<h<n−t

cn−h,t,m
h

`
(ch,`,m − bh,`,m)

6 mA0

∑
`,h

t<`<h<n−t

h

`
cn−h,t,mch,`,m,

where the second inequality stems from (52). Thus,

bn,t,m
cn,t,m

6 mA0

∑
`,h

t<`<h<n−t

h

`

cn−h,t,m
[zn−h]C(z)

ch,`,m
[zh]C(z)

[zn−h]C(z) · [zh]C(z)

[zn]C(z)

[zn]C(z)

cn,t,m
.

We now separately bound the ratios present in the right hand-side of this inequality
as n→∞. First, from (37) we get

[zn−h]C(z) · [zh]C(z)/[zn]C(z) = O(n5/2h−5/2(n− h)−5/2).

Second, when ` and h are fixed we fall under the regime of the left tail of the distribution
of [znwtum] C̃(z, w, u)/[zn]C(z) (see Remark 18), so that ch,`,m/[z

h]C(z) = O(`−1/2`−3/2).
While (49) implies that

cn,t,m/[z
n]C(z) = O(n−2/3n−1/2).
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Furthermore, we have t/(n− h) > α0/(1− α0) > α0. This is the regime of the right tail

of the distribution of [znwtum] C̃(z, w, u)/[zn]C(z) (see again Remark 18), thus

cn−h,t,m/[z
n−h]C(z) = O(At1) for some A < 1.

All together, this implies the existence of constants A2 and A3 such that

bn,t,m
cn,t,m

6 mA2A
t
1

∑
`,h

t<`<h<n−t

`−3h−3/2(n− h)−5/2n11/3 6 A3A
n. (53)

And the claim follows by combining (52) with (53).

With this at hand, we can now transfer the estimate (49) to the distribution of X∗n.

Proof of Theorem 5. Let c∗n,t∗ denote the number of cubic maps of size n whose largest
cubic block has size t∗. By definition, we have

P (X∗n = t∗) =
c∗n,t∗

[zn]C(z)
=

1

[zn]C(z)

∑
m,t: t−m=t∗

c∗n,t,m.

And consequently, by Lemma 19

P (X∗n = t∗) ∼ 1

[zn]C(z)

∑
m,t: t−m=t∗

n

t
cn,t,m ∼

1

α0

1

[zn]C(z)

∑
m,t: t−m=t∗

cn,t,m.

We recall that n and t are (almost) proportional, with an error of order n2/3, and m
and t are (almost) proportional too, with an error of order n1/2. Thus, n and t∗ = t−m
are again (almost) proportional, with an error of order n2/3. And by representing t∗ as

t∗ = t−m = (1− β0)t− r = α0(1− β0)n+ q(1− β0)n2/3 − r = α0(1− β0)n+ q∗n2/3,

where q∗ is considered as the new parameter, and using the values in (34) and (36)

α0(1− β0) = 1/2.

We see that q = q∗/(1−β0)+O(nε−1/6) that is, we certainly have A(cq) ∼ A(cq∗/(1−β0)).
Similarly, m = β0t+ r rewrites to

m =
β0

1− β0
t∗ + r∗, where r∗ =

r

1− β0
.

In particular, this means that if t∗ is fixed and m varies then corresponding consecutive
r differ by 1− β0. Hence, we obtain

1

α0

1

[zn]C(z)

∑
m,t: t−m=t∗

cn,t,m ∼
1

α0

∑
r∗=r/(1−β0)=O(n1/2+ε)

B3

C3

(1 + τL0)5/2

α
3/2
0

e−r
2/(2σ2α0n)

√
2πσ2α0n

n−2/3cA(cq)

∼ 1

α0

B3

C3

(1 + τL0)5/2

α
3/2
0

1

1− β0
n−2/3cA(cq∗/(1− β0))

= n−2/3c∗A(c∗q∗),
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where the last equality is implied by (48) and by setting c∗ = c/(1−β0) = 4/(1−1/
√

3)4/3.
Finally, we make a plausibility check. For any fixed constant a > 0 we have

n−2/3
∑

|x|6K :xn2/3∈Z

aA (ax) = 1 + o(1), as K,n→∞.

Hence, all neglected parts in our computations have no asymptotic weight.
This concludes the proof.

Proof of Theorem 6. We only give a short sketch of the proof here, as it follows the
lines of the proof of Theorem 5. First, to obtain a decomposition of cubic maps in terms
of their 3-cores, we consider the near 3-core of a cubic map, that is, we contract each
bead then each cherry to a single vertex of degree two. The family of near 3-cores of cubic
maps can be obtained by considering all 3-connected cubic maps then possibly replacing
each of their edges by a path of two edges. Special care must be taken to re-root the
resulting map when the original root edge was effectively replaced.

Let C(z, w, u) be the generating function counting cubic maps where the variable
z marks the number of edges, while w marks the number of edges and u the number of
vertices of the near 3-core. And let M(y) be the generating function counting 3-connected
cubic maps where y marks the number of edges. Then the decomposition of cubic maps
in terms of their near 3-core gives an equation analogue to (31):

C(z, w, u) = M
(
zw(1 + zwuD(z))

)1 + 2zwuD(z)

1 + zwuD(z)
+ zA(z), (54)

where both D(z) and A(z) encode cubic maps without their root edge, D(z) count those
not rooted at an isthmus, while A(z) count those without a 3-core, namely

A(z) = L(z) + I(z) + P (z) + (D(z)−H(z))(D(z)−H(z)− S(z)).

Again, omitting periodicities and setting z → y3 in (9), we get that M(y) is ∆-analytic
at θ = 21/33/8, and furthemore we have for y ∼ θ that

M(y) = M0 −M2Y
2 +M3Y

3 +O(Y 4), Y =

√
1− y

θ
, (55)

with M0 = 5/256, M2 = 63/256 and M3 = 3
√

2/8. Similarly, setting z → z3 in the proof
of Theorem 1(a) implies that D(z) is ∆-analytic at σ = 21/3

√
3/6, and for z ∼ σ

D(z) = D0 −D2Y
2 +D3Y

3 +O(Z4), Z =

√
1− z

σ
, (56)

with D0 = 22/3(9/4 −
√

3), D2 = 22/3(9/2 +
√

3) and D3 = 21/636. Then, we apply the
change of variables x = zw and v = uD(z) to (54), and focus on the composition scheme

M
(
x(1 + xv)

)1 + 2xv

1 + xv
,
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using the exact same strategy as in the proof of Theorem 5 (including an analogue version
of Lemma 19), but where D2 plays the rôle of L2, D3 of L3, and 2θ(1 + 4θD0)

−1/2(1 +√
1 + 4θD0)

−1 of (τ−1 + L0)
−1. Thus, the constants α0, β0 and c become

α0 =
2θ − σ

2θ − σ(1− σD2)
=

1

2
−
√

3

9
, β0 =

σ2D0

2θ − σ
=

19

46
− 3
√

3

23
, c =

1

α0

(
3D3

(1− α0)D2

)2/3

.

And, for q in a bounded interval, we obtain the final estimate

P
(
Zn = bα0(1− β0)n+ qn2/3c

)
∼ M3

C3

(
1 + 2σD0

1 + σD0

)5/2

α
−5/2
0 n−2/3c′A(c′q) as n→∞.

From the values in (36), (55) and (56), we get α0(1 − β0) = 1/4, c′ = c/(1 − β0) =
72(3/2− 1/

√
3)−4/3 and

M3

C3

(
1 + 2σD0

1 + σD0

)5/2

α
−5/2
0 = 1,

which concludes the proof.

6 Concluding remarks

We include a table of small values for the various number sequences counting cubic planar
maps that are 2-connected (bn), arbitrary (cn), 2-connected simple (b∗n), simple (c∗n),
2-connected triangle-free (gn), triangle-free (fn), 2-connected triangle-free simple (g∗n),
triangle-free simple (f ∗n). The index n is now the total number of faces. For completeness
we also include the numbers tn = [zn]M(z) of 3-connected cubic maps, which are equal
to the numbers of 3-connected triangulations.

n tn bn cn b∗n c∗n gn fn g∗n f∗n
3 1 4 1 4
4 1 4 32 1 1 3 19
5 3 24 336 3 3 12 147
6 13 176 4096 19 19 64 1432 1 1
7 68 1456 54912 128 143 432 16547 3 3
8 399 13056 786432 909 1089 3244 206520 12 12
9 2530 124032 11824384 6737 8564 2596 2707135 59 59

10 16965 1230592 184549376 51683 69075 217806 36818912 325 325
11 118668 12629760 2966845440 407802 569469 1893226 515736964 1863 1890

OEIS A000260 A000309 A002005 A058860 A058859

To conclude, let us mention that it would be also possible to analyse the size of the
largest block in random cubic planar graphs (see [24] for recent results on this topic).
The main differences with the present work are the following. Given a vertex-rooted
cubic planar graph G, one cannot just define the 2-core as the block containing the root
vertex as there may be several such blocks. This can be circumvented by considering
coreless graphs as in [19]. However the main difficulty even if the 2-core is well defined is
that it may contain double edges. One needs thus to consider rooted 2-connected cubic
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planar graphs counted by number of vertices and double edges (the total number of edges
is determined by the number of vertices). If B•(x, y) is the associated generating function,
where x marks vertices and y marks double edges, then the composition scheme is

B•
(
wxQ(x,w)3/2,

Q(x,w)2 − 1

2Q(x,w)2

)
, (57)

where w marks the size (number of vertices) of the 2-core and Q(x,w) is the generating
function of sequences of ‘cherries’, playing the same role as 1/(1−zL(z)) in Equation (31).

We see that this is a bivariate composition scheme in which the substitution in both
variables contributes to the size of the core. It is possible to show that a bivariate scheme
of the form C(wH(z), F (z))G(z) leads to a map-Airy law assuming suitable analytic
conditions. And we believe this can be extended to prove a map-Airy law for the size of
the largest block in a random cubic planar graph (and also for a random simple cubic
map), but this would be technically more demanding and we leave it as a future project.
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