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Abstract

A birth-death chain is a discrete-time Markov chain on the integers whose
transition probabilities pi,j are non-zero if and only if |i − j| = 1. We consider
birth-death chains whose birth probabilities pi,i+1 form a periodic sequence, so
that pi,i+1 = pi mod m for some m and p0, . . . , pm−1. The trajectory (Xn)n=0,1,...

of such a chain satisfies a strong law of large numbers and a central limit theo-
rem. We study the effect of reordering the probabilities p0, . . . , pm−1 on the velocity
v = limn→∞Xn/n. The sign of v is not affected by reordering, but its magnitude
in general is. We show that for Lebesgue almost every choice of (p0, . . . , pm−1), ex-
actly (m−1)!/2 distinct speeds can be obtained by reordering. We make an explicit
conjecture of the ordering that minimises the speed, and prove it for all m 6 7.
This conjecture is implied by a purely combinatorial conjecture that we think is of
independent interest.

Mathematics Subject Classifications: 90C27, 60J10, 60C05.
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1 Introduction and main results

Birth and death chains are (discrete-time, time-homogeneous) Markov chains on Z with
transition probabilities (pi,j)i,j∈Z satisfying pi,i+1 + pi,i−1 = 1 for each i ∈ Z. Often “birth
and death chain” allows pi,i > 0, but here for simplicity we assume that pi,i = 0.

In this paper we consider cyclic birth and death chains X = (Xn)n>0 on Z, by which
we mean that there exist m ∈ N and pm = (pi)

m−1
i=0 ∈ (0, 1)m such that for each i ∈ Z,

(pi,i = 0 and) pi,i+1 = pimodm. Such models have been studied in general dimensions in
e.g. [9, 13, 7], and have been called random walks in periodic environment. To avoid any
confusion with periodicity of a Markov chain we will refer to them as random walks in
cyclic environment, or cyclic birth and death chains (CBD). In the 1-dimensional setting
there is an elementary criterion for transience (|Xn| → ∞) and recurrence (Xn = 0
infinitely often), in which the crucial quantity is

γ = γ(pm) =
m−1∏
i=0

ρi, where ρi =
1− pi
pi

.

The following result can be proved using standard Markov chain techniques. Each con-
clusion holds with probability 1.

Proposition 1. Let X be a CBD with pm := (pi)
m−1
i=0 ∈ (0, 1)m. Then v(pm) :=

limn→∞ n
−1Xn almost surely exists and is deterministic, and

• v(pm) > 0 iff γ < 1

• v(pm) < 0 iff γ > 1

• v(pm) = 0 and X is recurrent iff γ = 1.

Proof. Observe the chain X first at time 0, and thereafter observe the chain X at times
at which its displacement is ±m from the previous observation. This new walk is (m×)
a simple random walk that is symmetric (hence recurrent, with velocity 0) in the third
case above and biased to the right or left otherwise (see Lemma 16 and its proof below
for more details). Since the expected time for X to reach ±m is finite, this proves the
claim for the original chain X as well.

Motivated by trapping behaviour prevalent in random walk in random environment
on Z (where (pi,i+1)i∈Z are chosen to be i.i.d. random variables), we are interested in how
the velocity v depends on the order of the pi for fixed m. According to Proposition 1,
the sign of v (or equivalently, whether or not Xn → ±∞) does not depend on the order
of the pi. If the velocity is 0 then it can’t be changed by changing the order of the pi,
but in this case the variance may be of interest. Therefore we are primarily interested in
the case where Xn → ∞ (and v > 0) with probability 1. In particular, given a sequence
pm = (pi)

m−1
i=0 ∈ (0, 1)m for which γ(pm) < 1, (so all velocities arising from permutations

will have positive sign), here are two natural questions that one can ask:
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Q1: What is the number N(pm) of distinct speeds achievable via permutations of pm?

Q2: In which order one should arrange these values to achieve the minimum speed, or
indeed the maximum speed?

The second of these questions has been considered elsewhere in some special cases. After
the conclusion of our work, we learned that in [3] Q2 is analysed in the case where
p0 = 1. The authors therein note the possible relevance of these kinds of combinatorial
optimisation problems to e.g. constructing intruder-resilient networks. In [8], a problem
similar to Q2 is considered in the case of vectors pm where each pi is either 1/2 or p for
some fixed p. Naturally each of these papers has features in common with our work, but
we shall see that e.g. the assumption p0 = 1 fundamentally changes the nature of the
optimisation problem. In particular, the main tool used in [3] fails to work in our setting.

Both Q1 and Q2 turn out to be interesting. In this paper we state some conjectures
and provide partial answers to these questions, with our main results being Theorems 2
and 6 below. There is trivially only 1 possible speed when m = 1, 2. Theorem 2 states
that for m > 3 and Lebesgue a.e. pm the answer to Q1 is (m − 1)!/2. This value arises
from the fact that the velocity is typically only invariant to rotations and reversal of the
elements of pm. Note that invariance under rotations is trivial, while invariance under
reversal seems to be a new (and we think surprising) result.

Theorem 2. For any m > 3 and for Lebesgue a.e. pm ∈ (0, 1)m the number of distinct
speeds satisfies

N(pm) =
m!

2m
=

(m− 1)!

2
.

Moreover, N(pm) 6 (m− 1)!/2 for every m > 3 and pm ∈ (0, 1)m.

Obviously the equality in Theorem 2 cannot be satisfied (for m > 3) for every pm =
(p0, . . . , pm−1) ∈ (0, 1)m, since e.g. if pi = pj then the permutation that simply switches
i and j also preserves the speed. Theorem 2 immediately implies that when m = 3 all
rearrangements of pm give the same velocity, while for m > 4 and typical pm, multiple
different velocities are achievable via rearrangement.

To simplify discussions about “optimal” permutations, it is convenient (and loses
no generality) to restrict attention henceforth to pm for which the elements are non-
increasing (so p0 > p1 > . . . > pm−1). In this case we believe that for fixed m there exists
a permutation σgreedy that is the universal minimiser of the speed for all such pm. That is,
for each m there is a unique (up to rotations and reversals) permutation that minimises
the speed no matter what the values of the p0 > p1 > . . . > pm−1.

Definition 3. Given a vector am = (a0, a1, . . . , am−1) ∈ (0,∞)m with
non-increasing entries, define the circular symmetric ordering to be

(a0, a2, a4, . . . , a5, a3, a1).
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This ordering has been called the pendulum arrangement in [3]. We have adopted the
terminology of [1], which is the earliest paper that we are aware of dealing with problems
of this type.

Let Sm be the set of permutations of (0, 1, . . . ,m−1). Of course, Sm can be considered
as the set of bijections from {0, 1, . . . ,m− 1} to itself. We will use standard () notation
for permutations, e.g. if m = 4 and σ = (0231) then σ(0) = 0, σ(1) = 2 etc.. For a vector
x = (xi)

m−1
i=0 and σ ∈ Sm, write xσ for the vector (xσ−1(i))

m−1
i=0 . For example, if m = 4 and

σ = (0231) then xσ = (x0, x3, x1, x2).
We call the permutation corresponding to the circular symmetric ordering

σgreedy, because it groups large values of am with each other, and small values of am
with each other in a circular way.

Definition 4. The greedy permutation σgreedy is given by

σ−1greedy(i) = 2i and σ−1greedy(m− 1− i) = 2i+ 1,

for i = 0, 1, . . . , bm/2c − 1.

By definition, the greedy permutation depends on m but not on the actual values am,
e.g. if m = 9 then σgreedy = (081726354). Let am ∈ (0,∞)m with decreasing entries. For
r ∈ [m] and a permutation σ ∈ Sm define

Pr(σ;am) =
m−1∑
k=0

r−1∏
i=0

aσ−1(k+i),

with indices interpreted modm. This quantity has been considered elsewhere (e.g. [1]) in
the case r = 2. A version of this quantity involving non-cyclic products has been analysed
in [3]. The non-cyclic version (which corresponds to setting some am−1 = 0) appears to
be easier to analyse.

The following conjecture says that the greedy permutation maximises Pr for each r.
We think that it is an interesting standalone open problem. It also immediately implies
that the greedy permutation minimises the speed (see Proposition 7 and Conjecture 8
below).

Conjecture 5 (Greedy cyclic products are maximal). Let am ∈ (0,∞)m have decreasing
entries. Then for every r ∈ [m], and every σ ∈ Sm,

Pr(σgreedy;am) > Pr(σ;am).

The cases r = 1 and r = m in Conjecture 5 are trivially true. The case r = 2 is not
difficult to prove, and appears as early as [1]. Such facts are termed circular rearrangement
inequalities in [14] (see also [2]). We present a simple proof for the case r = 2 and also
give a (non-trivial) proof in the case r = 3. Observe that∏r−1

i=0 bj∏m−1
i=0 bj

=
m∏
i=r

1

bj
,
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from which we conclude that if a is the product of all elements of am then

a−1Pr(σ;am) = Pm−r(σ;a−1m ), (1)

where a−1m = (a−10 , . . . , a−1m−1). This observation together with the aforementioned results
for r 6 3 gives rise to the following.

Theorem 6. The conclusion of Conjecture 5 holds for (m, r) such that r 6 3 or m− 3 6
r 6 m.

It is immediate from Theorem 6 that the conclusion of Conjecture 5 holds for all
r ∈ [m] when m 6 7. A version of Conjecture 5 for non-cyclic products (which arise in
the cyclic case precisely when some ai = 0) is known to hold [3, Theorem 6]. The proof
therein does not work for cyclic products.

The relevance of Conjecture 5 and Theorem 6 to Q2 can be seen from the following
explicit formula for the velocity, in which I denotes the identity permutation and ρm =
(ρ0, ρ1, . . . , ρm−1).

Proposition 7. For CBD with transition probabilities pm ∈ (0, 1)m such that γ < 1 we
have

v(pm) =
1− γ

1− γ + 2
m

∑m
r=1 Pr(I,ρm)

. (2)

Since for any r, sums over starting indices k of consecutive products of ρ terms are
invariant under rotations and reversals (reversing the order of pm), we can immediately
conclude from (2) that v(pm) is invariant under rotations and reversals of the elements
of pm, as claimed earlier. In particular, when m = 3 there is only one possible velocity,
since all permutations are combinations of rotations and reversal.

As noted earlier, we find the fact that the speed is invariant under reversals to be
somewhat surprising, and is not at all obvious from other expressions for the velocity.
For example, as in Lemma 14 in Section 2.1 below, the velocity can also be written as
v(pm) =

∑m−1
i=0 πi(2pi− 1), where π = (π0, . . . , πm−1) is the stationary distribution of the

chain X◦n = Xn modm. This stationary distribution behaves “nicely” under rotations but
not under reversal of the elements of pm- see Example 15 in Section 2.1 below.

As noted above, the following is an immediate corollary of Conjecture 5 (and Propo-
sition 7). It says that the greedy permutation minimises the speed.

Conjecture 8 (Greedy is least speedy). For any pm with non-increasing entries, such
that γ < 1 (so all possible speeds will be positive), then for every σ ∈ Sm,

v((pm)σgreedy) 6 v((pm)σ)

For example, if m = 9 and the pi are decreasing in i with ρ(pm) < 1 then according
to Conjecture 8, for any permutation σ ∈ Sm,

v
(
(p0, p2, p4, p6, p8, p7, p5, p3, p1)

)
6 v((pm)σ).

As a consequence of Theorems 2 and 6 above we obtain the following (we omit the
proof).
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Corollary 9. For m 6 7 and pm with non-increasing entries and ρ < 1, the speed is
minimised by the greedy permutation (i.e. Conjecture 8 holds for m 6 7).

Remark 10. Notice that for m 6 7 the ordering that minimises the speed is also the one
that minimises (interpret the following with indices mod m),

L(pm) :=
m−1∑
i=0

(pi+1 − pi)2

(expand the square, and note that only the sum of mixed terms depends on the order).
One might interpret this as saying that the speed is minimised by having a “smooth”
ordering (a cyclic arrangement of the elements of pm that has no large jumps).

We stress that the maximiser of Pr appears to be universal. In other words we be-
lieve that the greedy permutation maximises Pr for every r and every am with decreasing
entries. In the language of [14] this says that the circular symmetrical order maximises
Pr. In [14] it was shown that the so-called circular alternating order minimises P2. As
noted earlier, Conjectures 5 and 8 have been verified in the special case p0 = 1 in [3]. In
[3] a natural and key tool used is the utilisation of a special class of so-called “improv-
ing permutations”. These permutations are pm-dependent permutations (that permute
p1, . . . , pm−1) that are shown to increase the value of Pr (when p0 = 1). The case p0 = 1
however means one is not dealing with cyclic permutations at all since terms involving ρ0
are zero in this case. There are numerical counterexamples showing that the “improving
permutations” of [3] do not in general increase Pr when ρ0 6= 0, even when r = 3 (fixing
p0 to be the maximum of the pi and permuting the rest) or r = 4 (where we permute all
pi). It would be of interest to find a sufficiently rich class of “improving permutations” in
the cyclic setting.

The following two examples (which can be verified by simply evaluating the cyclic
products for all possible permutations) show that the minimal ordering is neither constant
over r for fixed am, nor constant over am for fixed r.

Example 11. For the vector am = (9, 7, 6, 5, 4, 3), the minimal value of P2(σ;am) is
achieved by the ordering (9, 3, 7, 5, 6, 4) (and not by the ordering (9, 3, 6, 7, 4, 5)) while
the minimal value of P3(σ;am) is achieved by the ordering (9, 3, 6, 7, 4, 5) (and not by
(9, 3, 7, 5, 6, 4)).

Example 12. For the vector am = (10, 5, 4, 3, 2, 1), the minimal value of P3(σ;am) is
achieved by the ordering (10, 1,4,5, 2, 3) (and not by the ordering (10, 1,5,4, 2, 3)). For
the vector a′m = (10, 9, 6, 5, 3, 1) the minimal value of P3(σ;a′m) is achieved by the ordering
(10, 1,9,6, 3, 5) (and not by (10, 1,6,9, 2, 3)).

Since the permutations which minimise products of r consecutive terms in the cycle are
not constant over r, the above observations don’t give any conclusion for permutations
that maximise the speed. Nevertheless, we have the following.

Example 13.
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(i) If pm = (9, 8, 7, 6, 5, 4, 3)/10 then the maximum value of the speed v((pm)σ) is
obtained by v

(
(6, 7, 4, 9, 3, 8, 5)/10

)
≈ 0.19857, corresponding to the permutation

σ = (3510624).

(ii) If p′m = (8, 7, 6, 5, 4, 3.5, 3)/10 then the maximum value of the speed v((p′m)σ′) is
obtained by v

(
(6, 5, 3.5, 8, 3, 7, 4)/10

)
≈ 0.04675, corresponding to the permutation

σ′ = (3501624).

Moreover, in case (i) above the speed is not maximised at v((pm)σ′) ≈ 0.19787, and in
case (ii) above the speed is not maximised at v((p′m)σ) ≈ 0.04668.

The remainder of this paper is organised as follows: In Section 2 we further discuss the
context of our results: we present some elementary (implicit) speed formulae, compare
results about the velocity for the cyclic birth and death chain to that of a related model
of random walk in random environment, and briefly discuss the central limit theorem. In
Section 3 we prove Proposition 7. To do this we follow an approach that will be familiar
to researchers in the area of Random Walk in Random Environment (RWRE), and then
manipulate the resulting expression to get (2). Some understanding of discrete-time
Markov chains (specifically birth and death chains) is required to understand Sections 2
and 3. The reader who is happy to start with (2) as given can proceed directly to Sections
4 and 5 where we prove Theorems 2 and 6 respectively.

Theorem 2 will be proved by showing: (i) that the speed is invariant to rotations and
reversal of the elements of pm (the former is trivial, while we find the latter to be rather
surprising), and; (ii) for typical pm these kinds of permutations are the only ones which
do not change the speed.

Theorem 6 will be proved by induction on m for r = 2, 3. The cases 3 < r < m − 3
remain open.

2 Discussion

In this section we further discuss the context of our results. Let us begin with some simple
(and standard) implicit formulas for the velocity.

2.1 Elementary speed formulae

Let X◦n = Xn modm. Then X◦ = (X◦n)n>0 is also an irreducible discrete-time Markov
chain (typically non-reversible), with finite state space {0, 1, . . . ,m − 1} and transition
probabilities p0,m−1 = 1−p0, pm−1,0 = pm−1, and pi,i+1 = pi for i < m−1 and pi,i−1 = 1−pi
for i > 1. Let π = (πi)

m−1
i=0 denote the stationary distribution of X◦ (which depends on

pm). Then we have the following.

Lemma 14. v(pm) =
∑m−1

i=0 πi(2pi − 1).

Readers familiar with random walk in random environment might interpret Lemma
14 as a formula for the speed given in terms of the environment viewed from the particle.
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One can find an explicit (albeit complicated) formula for π, and hence for v, by solving a
recursion for mean return times, but we will not present this here. The following example
however demonstrates that the invariance of the speed (under all rotations) in the case
m = 3 is not at all trivial.

Example 15. For the case m = 3, the stationary distribution satisfies (with subscripts
interpreted mod 3) for i = 0, 1, 2,

πi(p0, p1, p2) =
pi+1pi+2 − pi+1 + 1

p0p1 + p0p2 + p1p2 − p0 − p1 − p2 + 3
.

The denominator d = d({p0, p1, p2}) is invariant under permutations. Note that e.g.

π0(p2, p1, p0) =
p1p0 − p1 + 1

d
,

which is not equal to any of the πi(p0, p1, p2) in general. E.g

π(0.4, 0.6, 0.8) = (22, 13, 21)/56,

while π(0.8, 0.6, 0.4) = (16, 23, 17)/56. Nevertheless, v(0.4, 0.6, 0.8) = v(0.8, 0.6, 0.4) =
27/140.

Proof of Lemma 14. Let (∆j,i : j = 0, . . . ,m− 1, i ∈ N) be independent random variables
with

P(∆j,i = 1) = pj = 1− P(∆j,i = −1).

For j = 0, 1, . . . ,m− 1, and n > 1, let Nn(j) = #{r < n : Xr modm = j}. Then

Xn =
m−1∑
j=0

Nn(j)∑
i=1

∆j,i.

Thus,

n−1Xn =
m−1∑
j=0

Nn(j)

n

1

Nn(j)

Nn(j)∑
i=1

∆j,i.

Note that Nn(j) is the number of visits by (the irreducible, finite-state discrete-time
Markov chain) X◦ to j prior to time n. Therefore n−1Nn(j) → πj almost surely. Since
∆j,i are independent this implies that

n−1Xn →
m−1∑
j=0

πjE[∆j,1] =
m−1∑
j=0

πj(2pj − 1).

Let T denote the first hitting time of {−m,m} by the chain X, and let h = P(XT =
m) = 1− P(XT = −m). Then a standard Markov chain calculation gives h = (1 + γ)−1

(see for example page 67 of [4]), and we have the following formula.
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Lemma 16. v(pm) =
E[XT ]

E[T ]
= m · 2h− 1

E[T ]
.

Proof. Let T (0) = 0, and for i > 1 let T (i) = inf{k > T (i−1) : Xk −XT (i−1) ∈ {−m,m}}.
Since n−1Xn → v almost surely we have that XT (i)/T (i) → v as i→∞. By the law of large
numbers, i−1T (i) → E[T ] and i−1XT (i) → E[XT ] = m(P(XT = m)− P(XT = −m)).

Note that E[T ] is trivially finite, so v > 0 as soon as h > 1/2, i.e. as soon as γ < 1. Let
T+ denote the first hitting time of m by the chain X. Then standard renewal arguments
give the following.

Lemma 17. If γ < 1 then v(pm) =
m

E[T+]
.

Proof. Let T
(0)
+ = 0 and for i > 1 let T

(i)
+ = inf{k > T

(i−1)
+ : Xk −XT

(i−1)
+

= m}, which is

finite almost surely since γ < 1. Now proceed as in the proof of Lemma 16.

Each of the above representations for v is standard, but we would describe as implicit
in the sense that π in Lemma 14 and the expectations in the denominators in Lemmas
16 and 17 are not explicit functions of pm. Nevertheless, we will use Lemma 17 to prove
Proposition 7. It is intuitively obvious that for γ < 1 the denominator in Lemma 17 is
strictly decreasing in each pi. This can be made rigorous via a simple coupling argument
to obtain the following.

Lemma 18. v(pm) is strictly increasing in each pi ∈ (0, 1).

Proof. Let pm ∈ (0, 1)m be given. Symmetry arguments allow us to assume without loss
of generality that γ = γ(pm) 6 1. Let p′m be equal to pm except that p′i > pi. If γ = 1
then the claim holds by Proposition 1. Otherwise γ < 1 and E[T+] < ∞ in Lemma 17.
It is easy (see e.g. [5, 6]) to define a probability space on which copies of the CBD pm
and the CBD p′m are both defined, and such that: (i) T ′+ 6 T+ almost surely, and (ii)
T ′+ < T+ with positive probability. This shows that E[T ′+] < E[T+] in Lemma 17 which
completes the proof.

For u ∈ [0, 1), let Pm(u) = {pm ∈ (0, 1)m : v(pm) = u} denote the set of (ordered)
vectors of length m that have speed u. According to Lemma 18, for each p1, . . . , pm−1
there is at most one value of p0 for which v(pm) = u. Therefore Pm(u) is a subspace of
dimension at most m− 1, and it has Lebesgue measure 0.

2.2 Comparison with RWRE

If one adds a uniform random shift of the environment (shift the environment by i ∈
{0, 1, . . .m−1} with probability 1/m for each i), this model can be viewed as an example
of a random walk in a (quenched) ergodic environment. To be precise, given the vector of
elements pm = (pi)

m−1
i=0 let Ω be the set of bi-infinite sequences ω = (ωx)x∈Z taking values

in {p0, . . . , pm−1} for which there exists some i ∈ {0, . . . ,m − 1} such that (ωj)
m−1
j=0 =

(p(j+i)modm)m−1j=0 and ωx = ωxmodm for each x ∈ Z. There are at most m distinct elements
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in Ω. Let F be the power set of Ω, and µ be the uniform measure on Ω. Then (Ω,F , µ)
is ergodic with respect to the shift operator θ((ωx)x∈Z) = (ωx+1)x∈Z

1. As such, any
result from the theory of random walk in ergodic random environment that holds for
a.e. environment holds for the CBD with ωx = pxmodm etc. For example, a law of large
numbers with an implicit formula for the speed, is known to hold for random walk in
ergodic random environment, see e.g. [15].

It is natural to compare results for cyclic birth and death (CBD) processes to those for
(uniformly elliptic) i.i.d. RWRE with right step probability from each site being uniformly
selected from our set of probabilities {p0, p1, . . . , pm−1} (counting multiplicities if there are
any). The results of Solomon [10] in this special setting become:

• The walker is transient to +∞ if and only if

m−1
m−1∑
i=0

log(ρi) < 0 ⇐⇒
m−1∏
i=0

ρi < 1. (3)

• If the walker is transient to +∞ then the velocity is strictly positive if and only if
m−1

∑m−1
i=0 ρi < 1, in which case the velocity is equal to

1−m−1
∑m−1

i=0 ρi

1 +m−1
∑m−1

i=0 ρi
.

In other words, the criteria for transience (for RW i.i.d. RE and for cyclic birth and
death chains) “match”, but the criteria for positivity of the speed do not. Both of these
observations are to be expected - in the former case one can see the criteria as coming from
a calculation involving the resistance to +∞ (and −∞) together with the LLN for the
limiting proportion of time that each environment appears. In the latter case obviously
the velocity of the RWRE above should be invariant to permutations of the elements of
pm since choosing a uniform i.i.d. sample from pm ignores any ordering. Moreover, the
disorder in the environment allows much stronger traps to be created. In view of the
last observation, it is natural to ask whether the speed for this RWRE is always less
than the CBD (when (3) holds). This can be easily checked when m = 2. Numerical
examples (e.g. pm = (0.57, 0.87, 0.98, 0.79, 0.64, 0.56)) suggest that this is not the case in
general when m > 4. In other words we believe that for each m > 4 there exist examples
where the speed v(pm) of the CBD is strictly positive, but smaller than the speed of the
corresponding RWRE. We interpret this observation as saying that when m is large it is
possible to create really bad traps in CBD by very specific orderings of pm and that traps
as bad or worse occur extremely rarely in the i.i.d. RE. When m is small any particular
ordering of the pm will appear fairly often in the i.i.d. RE, as will “even worse” traps.

1Indeed any B ∈ F can be expressed as an event depending only on the state of (ω0, . . . , ωm−1),
i.e. B = {(ω0, . . . , ωm−1) ∈ D} for some D. If µ(B) > 0 then there exists i ∈ {0, 1, . . . ,m− 1} such that
(p(i+j)modm)m−1j=0 ∈ B, and therefore at least one of θ−k(B) occurs, so µ(∪n∈Nθ−n(B)) = 1.
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2.3 CLT

Thus far we have only discussed how the deterministic limiting velocity behaves as a
function of pm. One might also ask about the variance, and a central limit theorem. Let
T0 = 0 and Tk = inf{n > Tk−1 : |Xn − XTk−1

| = m} and Wk = m−1XTk . Then (Wk)k∈N
is a nearest-neighbour simple random walk on Z with P(Wk = Wk−1 + 1) = h (recall
that h is the probability that the walk X hits m before −m). It follows immediately that
k−1Wk → 2h− 1 almost surely. Moreover,

k−1/2(Wk − k(2h− 1))
w→ N (0, 4h(1− h)).

We cannot apply the standard CLT for random walk in ergodic random environment
(e.g. [15, Theorem 2.2.1]) because our environment is non-mixing (it is completely deter-
mined by its value in any interval of length m). Nevertheless one can use the Markov
chain central limit theorem to obtain a CLT (see e.g. [9]): For each pm ∈ (0, 1)m there
exists a deterministic σ2 = σ2(pm) > 0 such that

Xn − nv√
n

w→ N (0, σ2).

The constant σ2 can be expressed in terms of π and k-step transition probabilities for all
k, but is not really tractable in this form. It would be of interest to find a more explicit
expression in terms of pm. In the case v = 0, Takenami [13] has proved a local limit
theorem for the walk.

3 Proof of Proposition 7

Fix m, pm, and recall Lemma 17. For i > 0 let

Si := min{n > 0 : Xn = i}.

Note that since the random walk is transient to the right, we have that Si < ∞ a.s. We
will derive a set of m linear equations for E0[S1],E1[S2], . . . ,Em−1[Sm], where Ej denotes
expectation with respect to the law of the chain X, starting from state j. Note that

Ei[Si+1] = 1 + (1− pi)Ei−1[Si+1] = 1 + (1− pi)
(
Ei−1[Si] + Ei[Si+1]

)
.

Therefore piEi[Si+1] = 1+(1−pi)Ei−1[Si]. This set of equations can be written as Me = 1
where

M :=



p0 0 0 · · · 0 −(1− p0)
−(1− p1) p1 0 · · · 0 0

0 −(1− p2) p2 · · · 0 0
. . . · · · . .
. . . · · · . .
. . . · · · pm−2 0
0 0 0 · · · −(1− pm−1) pm−1


,
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e := (E0[S1], . . . ,Em−1[Sm]) and 1 := (1, . . . , 1). Now note (by Laplace expansion) that

|M | = p0p1 · · · pm−1 − (1− p0)(1− p1) · · · (1− pm−1)

=
m−1∏
i=0

pi −
m−1∏
i′=0

(1− pi′),

which is invariant under permutations on the sub-indices 0, 1, . . . ,m−1. It is also non-zero
since γ < 1. Hence, we can apply Cramer’s rule to get that for i = 0, . . . ,m− 1,

Ei[Si+1] =
|M (i+1)|
|M |

where M (j) is the matrix obtained after replacing the j-th column of M by 1, and |A|
denotes the determinant of A. Since E[T+] =

∑m−1
i=0 Ei[Si+1] we have from Lemma 17 that

v = m · |M |∑m−1
i=0 |M (i+1)|

.

Also note that

|M (m)| =
m−2∏
j=0

pj +
m−3∏
j=0

pj(1− pm−1) +
m−4∏
j=0

pj(1− pm−2)(1− pm−1)

+ · · ·+ p0

m−1∏
j=2

(1− pj) +
m−1∏
j=1

(1− pj)

=
m−1∑
j=0

j−1∏
i1=0

pi1

m−1∏
i2=j+1

(1− pi2),

while the other |M (i+1)| are of the same form but with the vector (pi)
m−1
i=0 changed to

(pσi)
m−1
i=0 , where σ is a rotation. Let Rm be the set of rotation permutations, that is,

compositions of the permutation (123 . . . 0). It follows that the velocity can be written as

v(pm) = m ·

m−1∏
i=0

pi −
m−1∏
i=0

(1− pi)

∑
σ∈Rm

m−1∑
j=0

j−1∏
i1=0

pσ(i1)
m−1∏
i2=j+1

(1− pσ(i2))

=

m ·
m−1∏
i=0

pi · (1− ρ)

m−1∑
k=0

m−1∑
j=0

(pj+k + (1− pj+k))
j−1∏
i1=0

pi1+k
m−1∏
i2=j+1

(1− pi2+k)
.

The denominator is equal to

m−1∑
k=0

m−1∑
j=0

j∏
i1=0

pi1+k

m−1∏
i2=j+1

(1− pi2+k) +
m−1∑
k=0

m−1∑
j=0

j−1∏
i1=0

pi1+k

m−1∏
i2=j

(1− pi2+k).
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Recalling that ρi = (1− pi)/pi, this can be written as

m−1∏
i=0

pi ·

[
m−1∑
j=0

m−1∑
k=0

m−1∏
i2=j+1

ρi2+k +
m−1∑
j=0

m−1∑
k=0

m−1∏
i2=j

ρi2+k

]
. (4)

Letting r = m− j and i = m− 1− i2 and using the fact that the sum over k is a sum
over the whole cycle, we see that the second term in the square brackets in (4) is equal to

m∑
r=1

m−1∑
k=0

r−1∏
i=0

ρi+k.

By separating off the term j = m − 1, and using the fact that an empty product is
equal to 1, the first term in the square brackets in (4) is

m−2∑
j=0

m−1∑
k=0

m−1∏
i2=j+1

ρi2+k +
m−1∑
k=0

1 =
m−2∑
j=0

m−1∑
k=0

m−1∏
i2=j+1

ρi2+k +m. (5)

Now let r = m− j − 1 and i = m− 1− i2 to see that this is equal to

m−1∑
r=1

m−1∑
k=0

r−1∏
i=0

ρi+k +m =
m∑
r=1

m−1∑
k=0

r−1∏
i=0

ρi+k −mγ +m.

It follows that

v(pm) = m · 1− γ

m−mγ + 2
m∑
r=1

m−1∑
k=0

r−1∏
i=0

ρi+k

.

Cancelling factors of m and using the definition of Pr completes the proof.

4 Proof of Theorem 2

Given a subset E ⊂ Rd and x ∈ Rd, we write E + x = {y + x : y ∈ E} and define

Ex = E ∩ (E + x),

and for a sequence (xn)n>1 we define Ex1,x2 = (Ex1)x2 = E∩(E+x1)∩(E+x2)∩(E+x1+x2),
and recursively

Ex1,...,xn+1 = (Ex1,...,xn)xn+1 .

In what follows we will denote the Lebesgue measure on Rd by λ and for y ∈ Rd,
|y|2 its l2-norm. We will need the following multi-point variant of Steinhaus’s Theorem
(see [11]) in Rd. Although we expect that this is well-known, we have not found this
particular statement in the literature, so we include a proof for completeness.
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Lemma 19. Let E ⊂ Rd with λ(E) > 0. Then, for every n ∈ N, there exists a δ =
δ(n,E) > 0 such that for all y1, . . . , yn ∈ Rd with |yi|2 < δ, 1 6 i 6 n, the set

Ey1,...,yn

is non-empty.

Proof. We may assume that E is bounded, since if not then there exists a bounded set A
such that λ(A ∩ E) ∈ (0,∞) and applying the theorem to E ′ = A ∩ E yields the claim
for E as well.

We claim that if λ(E) > 0 then for every ε > 0 there exists δ(ε) > 0 such that
λ(Ex) > (1− ε)λ(E) whenever |x| < δ.

This follows from the proof of Weil’s general version of Steinhaus’s Theorem in [12].
We repeat parts of the argument here: Since Lebesgue measure is regular we may assume
that E is compact and therefore there exists an open set U ⊃ E with λ(U) < (1+ε)λ(E).
Then there exists δ > 0 such that {v + y : v ∈ E, |y| < δ} ⊂ U . This implies that for any
x with |x| < δ,

E ∪ (E + x) ⊂ U.

Now we deviate very slightly from the proof in [12]. Note that

(1 + ε)λ(E) > λ(U) (6)

> λ(E ∪ (E + x)) = λ(E) + λ(E + x)− λ(Ex) (7)

= 2λ(E)− λ(Ex). (8)

This proves the claim.
Now fix m ∈ N and ε > 0 let δ = δ(ε/m). Let u1, u2, . . . , um be such that |ui| < δ for

all i ∈ [m]. Then λ(Eui > (1− ε/m)λ(E) for each i ∈ [m]. Since

λ(∩k+1
i=1Eui) = λ(∩ki=1Eui) + λ(Euk+1

)− λ
(

(∩ki=1Eui)) ∪ Euk+1

)
, (9)

we can prove by induction that λ(∩ki=1Eui) > (1 − kε/m)λ(E). Indeed, the case k = 1
holds, and assuming the result for all j 6 k we have from (9) that

λ(∩k+1
i=1Eui) > (1− kε/m)λ(E) + (1− ε/m)λ(E)− λ(E)

> (1− (k + 1)ε/m)λ(E).

Finally, let n be given, and let δ = δ(ε/2n). Let y1, y2, . . . , yn be such that |yi| < δ/n.
All partial sums uI =

∑
i∈I yi (for I ⊂ [n]) satisfy |uI | < δ. By the result that we have

already proved (with m = 2n), for such yi, we have

λ(∩kI⊂[n]:I 6=∅EuI ) > (1− 2nε/2n)λ(E).

In particular, the set on the left is non-empty. This proves the result.
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Note that

v(pm) =
1− γ

1− γ +
2

m

m∑
r=1

m−1∑
k=0

r−1∏
i=0

ρi+k

=
1− γ

1 + γ +
2

m

m−2∑
r=0

m−1∑
k=0

r∏
i=0

ρi+k

.

Proof of Theorem 2. The set of pm for which γ = 0 has Lebesgue measure 0, so we may
assume that γ 6= 0. By symmetry (apply the result to 1−pm when γ > 1) we may assume
that γ < 1, so we can use the formula (2).

The statement is trivial for m = 3 since there is exactly 1 speed for each pm in this
case. We fix m > 4 in what follows.

Let Jm denote the set of permutations of {0, . . . ,m− 1} that are not compositions of
rotations and reversal. To prove the theorem, it is sufficient to show that for Lebesgue
a.e. pm any permutation σ ∈ Jm does not give the same velocity, i.e. v(pm) 6= v((pm)σ).
Given a permutation σ of {0, . . . ,m− 1}, for i 6= j, 0 6 i, j 6 m− 1, we will say that σ(i)
is adjacent to σ(j) if σ(i) = σ(j) + 1 or σ(i) = σ(j)− 1, where the sum is mod m. Note
that Jm is precisely the set of permutations that do not preserve all adjacency relations,
i.e. σ ∈ Jm if and only if there exists a k ∈ {0, . . . ,m− 1} such that σ(k) is not adjacent
to σ(k + 1).

Step 1. Let σ ∈ Jm. It is enough to show that the set E of ρm = (ρ0, . . . , ρm−1) ∈ (0,∞)m

for which
m−2∑
r=0

m−1∑
k=0

r∏
i=0

ρi+k =
m−2∑
r=0

m−1∑
k=0

r∏
i=0

ρσ(i+k) (10)

has Lebesgue measure 0. We will assume that λ(E) > 0 and obtain a contradiction.

Step 2. Note that the terms in (10) with r = 0 and r = m− 2 cancel out, so we have that
(ρ0, . . . , ρm−1) ∈ E if and only if

H(ρ0, . . . , ρm−1) = 0,

where

H(x0, . . . , xm−1) =
m−3∑
r=1

m−1∑
s=0

∏
i=0

xi+s −
m−3∑
r=1

m−1∑
s=0

r∏
i=0

xσ(i+s)

Step 3. For each 0 6 i 6 m− 1, h > 0 and function g : Rm → R define

∆i
hg(x0, . . . , xm−1)

= 1
h

(g(x0, . . . , xi−1, xi + h, xi+1, . . . , xm−1)− g(x0, . . . , xm−1)) .

Note that the operator ∆i
h is simply a discrete derivative.

Let us describe how iterations of these operators act on products of ρi, which is a
central component of the proof. Consider a function G : Rm → R of the form

G(x0, . . . , xm−1) =
∏
i∈A

xi,
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where A ⊂ {0, 1, . . . ,m− 1}. It is easy to see that

∆j
hG(x0, . . . , xm−1) =

{∏
i∈A\{j} xi, if j ∈ A

0, otherwise.

It follows that if #A 6 ` then

∆j`
h . . .∆

j2
h ∆j1

h G(x0, . . . , xm−1) =

{
1 if {j1, . . . , j`} = A

0 otherwise.
(11)

For 0 6 j 6 m− 1 and a permutation σ′ let

Hσ′,j(x0, . . . , xm−1) =
m−1∏
i=2

xσ′(i+j).

Note that xσ′(j) and xσ′(j+1) are “missing” from this product.
Since σ ∈ Jm, there exists k ∈ {0, . . . ,m − 1} such that σ(k) and σ(k + 1) are not

adjacent. It follows from (11) that

∆
σ(2+k)
h ∆

σ(3+k)
h · · ·∆σ(m−1+k)

h Hσ,j(x0, . . . , xm−1) = δj,k.

Recall that I is the identity permutation. Then HI,j(x0, . . . , xm−1) =
∏m−1

i=2 xi+j is missing
xj and xj+1, where j and j+1 are adjacent. The set {σ(i+k) : i = 2, . . . ,m−1} is missing
σ(k) and σ(k+ 1) which are not adjacent. It follows that {σ(k), σ(k+ 1)} 6= {j, j + 1} so
by (11),

∆
σ(2+k)
h ∆

σ(3+k)
h · · ·∆σ(m−1+k)

h HI,j(x0, . . . , xm−1) = 0.

There are m−2 discrete derivatives here, and in the definition of H, only r = m−3 gives
a product of m− 2 terms. From (11) we see that

∆
σ(2+k)
h · · ·∆σ(m−1+k)

h H(x0, . . . , xm−1) (12)

= ∆
σ(2+k)
h · · ·∆σ(m−1+k)

h

[
m−1∑
s=0

m−3∏
i=0

xi+s −
m−1∑
s=0

m−3∏
i=0

xσ(i+s)

]
.

Using the substitution j = s− 2 (mod m) shows that the term in square brackets is

m−1∑
j=0

HI,j(x0, . . . , xm−1)−
m−1∑
j=0

Hσ,j(x0, . . . , xm−1),

and therefore (12) is equal to 0− 1 = −1 for every (x0, . . . , xm−1).
Now, suppose that λ(E) > 0. From Lemma 19 (with d and n therein both equal to m),

there exists δ(m,E) > 0 such that for all y0, . . . , ym−1 ∈ Rm with |yi|2 < δ, 0 6 i 6 m−1,
the set Ey0,...,ym−1 is non-empty. Taking yi = hei+1 for h ∈ (0, δ), where e1, . . . , em are the
canonical basis vectors in Rm, it follows that there exists a point (ρ0, . . . , ρm−1) ∈ E such
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that (ρ0 +h, ρ1, . . . , ρm−1), (ρ0, ρ1 +h, ρ2, . . . , ρm−1), (ρ0 +h, ρ1 +h, ρ2, . . . , ρm−1), etc., are
all in E also. Let B be this set of points. Then

B ⊂ {(x0, . . . xm−1) : xi ∈ {ρi, ρi + h} for every i = 0, . . . ,m− 1}.

By definition
∆
σ(2+k)
h ∆

σ(3+k)
h · · ·∆σ(m−1+k)

h H(ρ0, . . . , ρm−1) (13)

is a linear combination of terms of the form H(xi0, . . . , x
i
m−1) with each xi ∈ B. But by

Step 2 H(x) = 0 for all x ∈ B, so (13) is equal to 0, which contradicts the fact that (11)
is equal to 1 for all x.

5 Proof of Theorem 6

In this section we prove Theorem 6. Recall that for r ∈ [m] and a permutation σ ∈ Sm
we have

Pr(σ;am) :=
m−1∑
k=0

r−1∏
i=0

aσ−1(k+i),

with indices interpreted modm.
Suppose that we prove the result for r = k ∈ [m]. Since the entries of am are

decreasing, the reciprocals a−1m of am listed in reverse order (write this vector as a†m) are
also decreasing. So we know that the σgreedy maximises Pk(·,a†m). But each Pr is trivially
invariant to reversals so σgreedy maximises Pk(·,a−1m ). The observation (1) then shows that
σgreedy maximises Pm−k(·,am). It therefore suffices to prove the claim for r = 2, 3. We
prove each of these results by induction on m.

Proof for r = 2. For the base case m = 2 there is nothing to prove. We will assume
the result for m and prove it for m + 1. Let am+1 be such that a0 > . . . > am. Write
am+1 = (am, am). Let σ denote a permutation of {0, 1, . . . ,m}, and let jσ = σ(m). We
have that

P2(σ,am+1) = P2(σ, (am, am)) =
m∑
i=0

aσ−1(i)aσ−1(i+1) =
m∑
i=0

bibi+1,

where bi = aσ−1(i) (and bm+1 = b0). Note that bjσ = am. Let σ̂ denote the permutation of
{0, 1, . . . ,m− 1} defined by

σ̂−1(i) =

{
σ−1(i), if i < jσ

σ−1(i+ 1), if i ∈ [jσ,m− 1],

where if jσ = m, the second situation doesn’t arise. Now note that

P2(σ, (am, am)) = P2(σ̂,am) +R(σ,am+1),
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where

R(σ,am+1) = bjσ−1am + bjσ+1am − bjσ−1bjσ+1.

We claim that the greedy permutation σgreedy(m + 1) on {0, 1, . . . ,m} maximises both
P2(σ̂,am) and R(σ,am+1), and hence it maximises P2(σ, (am, am)).

Note that σ̂greedy(m + 1) = σgreedy(m). By the induction hypothesis, σgreedy(m + 1)
then maximises P2(σ̂,am).

Let f(x, y) = xam+yam−xy be defined for all x, y > am, and note that R(σ,am+1) =
f(bjσ−1, bjσ+1). The partial derivatives are f1(x, y) = am−y 6 0 and f2(x, y) = am−x 6 0.
Therefore the largest possible value of f(x, y) for x = bi, y = bi′ with i 6= i′ occurs with
{bi, bi′} = {am−1, am−2}. In other words, any permutation σ that puts am between am−1
and am−2 maximises R(σ,am+1). Since σgreedy(m + 1) has this property, this completes
the proof for r = 2.

We now prove the result for r = 3, using the same notation as above.

Proof for r = 3. For m = 3 there is nothing to prove. Note that

P3(σ,am+1) = P3(σ̂,am) +R(σ,am+1),

where now

R(σ,am+1) = bjσ−2bjσ−1am + bjσ−1bjσ+1am + bjσ+1bjσ+2am

− bjσ−2bjσ−1bjσ+1 − bjσ−1bjσ+1bjσ+2.

By the induction hypothesis, the term P3(σ̂,am) is maximised by any σ such that
σ̂ = σgreedy(m). Note that σ = σgreedy(m+ 1) has this property.

For x−2, x−1, x1, x2 ∈ [am, 1) let

f(x−2, x−1, x1, x2) = x−2x−1am + x−1x1am + x1x2am − x−2x−1x1 − x−1x1x2.

Note that R(σ,am+1) = f(bjσ−2, bjσ−1, bjσ+1, bjσ+2). The partial derivatives are:

f1(x−2, x−1, x1, x2) = x−1(am − x1) 6 0

f2(x−2, x−1, x1, x2) = x−2(am − x1) + x1(am − x−2) 6 0

f3(x−2, x−1, x1, x2) = x−1(am − x2) + x2(am − x−1) 6 0

f4(x−2, x−1, x1, x2) = x1(am − x−1) 6 0.

The term R(σ,am+1) is therefore maximised at some σ for which
{bjσ−2, bjσ−1, bjσ+1, bjσ+2} = {am−4, am−3, am−2, am−1}. Note that σgreedy(m + 1) also has
this property. We proceed assuming that

{bjσ−2, bjσ−1, bjσ+1, bjσ+2} = {am−4, am−3, am−2, am−1},
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and we will show that σgreedy(m + 1) maximises R(σ,am+1) among all σ for which
{bjσ−2, bjσ−1, bjσ+1, bjσ+2} = {am−4, am−3, am−2, am−1}. This suffices to prove then that
σgreedy(m+ 1) maximises P3(σ,am+1).

Now note that by adding and subtracting the terms bjσ+2bjσ−2bjσ−1
and bjσ+1bjσ+2bjσ−2 we can write

R(σ,am+1) = P3

(
I5, (bjσ−2, bjσ−1, am, bjσ+1, bjσ+2)

)
− P3

(
I4, (bjσ−2, bjσ−1, bjσ+1, bjσ+2)

)
,

where Ik is the identity permutation on k elements. The first term on the right hand side
is equal to

2∏
i=−2

bjσ−i × P2

(
I5, (1/bjσ−2, 1/bjσ−1, 1/am, 1/bjσ+1, 1/bjσ+2)

)
=

4∏
i=0

am−i × P2

(
I5, (1/bjσ−2, 1/bjσ−1, 1/am, 1/bjσ+1, 1/bjσ+2)

)
.

The product prefactor is constant. By the result already established for r = 2 and the
symmetry of the greedy permutation, the quantity P2 here is maximised (among those as
above) by any permutation σ for which the vector
(1/bjσ−2, 1/bjσ−1, 1/am, 1/bjσ+1, 1/bjσ+2) is already the greedy ordering (or a symmetry
of it) of {am−4, . . . , am}. Note that σ = σgreedy(m+ 1) has this property.

Finally, the term P3

(
I4, (bjσ−2, bjσ−1, bjσ+1, bjσ+2)

)
is equal to

P1

(
I4, (1/bjσ−2, 1/bjσ−1, 1/bjσ+1, 1/bjσ+2)

)
,

and since P1 does not depend on the permutation, we have that σgreedy(m + 1) is a
minimiser of this term as well. This completes the proof.
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Saint Flour 2001, Lecture Notes in Mathematics, no. 1837. Springer-Verlag, Berlin,
(2004).

the electronic journal of combinatorics 30(2) (2023), #P2.52 20

https://arxiv.org/abs/2007.13232
https://arxiv.org/abs/1010.4137

	Introduction and main results
	Discussion
	Elementary speed formulae
	Comparison with RWRE
	CLT

	Proof of Proposition 7
	Proof of Theorem 2
	Proof of Theorem 6

