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Abstract

This work examines the problem of clique enumeration on a graph by exploit-
ing its clique covers. The principle of inclusion/exclusion is applied to determine
the number of cliques of size r in the graph union of a set C = {c1, . . . , cm} of m
maximal cliques. This leads to a deeper examination of the sets involved and to
an orbit partition, Γ, of the power set P(Nm) of Nm = {1, . . . ,m}. Applied to the
cliques, this partition gives insight into clique enumeration and yields new results
on cliques within a clique cover, including expressions for the number of cliques of
size r as well as generating functions for the cliques on these graphs. The quotient
graph modulo this partition provides a succinct representation to determine cliques
and maximal cliques in the graph union. The partition also provides a natural and
powerful framework for related problems, such as the enumeration of induced con-
nected components, by drawing upon a connection to extremal set theory through
intersecting sets.

Mathematics Subject Classifications: 05A15, 05C30, 05C69

1 Introduction

For any graph G = (V,E) and node subset H ⊆ V , the induced subgraph G[H] has nodes
H and those edges in E whose endpoints lie in H. A clique of size r is induced whenever
G[H] is a complete graph on r nodes. Allowing trivial cliques (i.e., r = 1 or r = 2), a
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collection of cliques C = {c1, . . . , cm} can always be found (for some m) which covers the
graph G – in the sense that the graph union, G[c1] ∪ G[c2] ∪ · · · ∪ G[cm], of the induced
subgraphs has the same vertex set as G.

Such a collection is called a vertex clique cover of G. A collection of cliques whose
graph union contains all edges in G is called an edge clique cover.

This work sets to enumerate the number of r-cliques formed by the graph union of an
edge clique cover, for any edge clique cover.

Section 2 outlines a method for determining the number of cliques in a graph G when
the clique collection consists of all maximal cliques. Section 3 introduces the Γ partition,
which can be applied to any union of sets, and a motivating example which we use for
illustration throughout the remainder of the paper.

Section 3.1 shows that Γ partitions are orbit partitions and motivates the notion
of compressing graph information via quotient graphs. In Section 3.2, the concept of
signatures is introduced. Signatures provide a notion of graph isomorphism that takes
into account the additional structure provided by the partition. Section 3.2.1 provides
counting results regarding the signatures. Section 3.2.2 counts the number of connected
induced subgraphs using signatures. Section 3.2.3 investigates the necessary and sufficient
conditions to construct a clique using the quotient graph derived from the Γ-partition.
These results are extended in Section 3.2.4 where we examine maximal cliques and the
clique number.

Section 4 obtains clique count expressions for cliques that contain a particular sub-
graph H, establishes the clique count generating function of a clique collection and derives
several expressions for the clique counts. Finally, Section 5 summarizes the results of this
work and discusses potential research directions.

2 Counting by inclusion/exclusion

We begin by enumerating the r−cliques belonging to at least one of the members of the
clique collection C = {c1, . . . , cm}. Clearly, each of these cliques will appear in the union
of the clique collection.

Proposition 1. Let C = {c1, . . . , cm} be a collection of cliques. The number of r−cliques
that are contained in at least one cj for some j ∈ {1, . . . ,m} is∑

J :∅6=J⊆{1,...,m}

(−1)|J |+1

(
IJ
r

)
,

where IJ := |
⋂
j∈J cj|.

Proof. Let
(
cj
r

)
:= {{v1, . . . , vr} ⊆ cj : v1 6= · · · 6= vr} denote the set of r−cliques

contained in the clique cj. We will prove that for any nonempty J ⊆ {1, . . . ,m},∣∣∣∣∣⋂
j∈J

(
cj
r

)∣∣∣∣∣ =

(
IJ
r

)
,
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by showing that ⋂
j∈J

(
cj
r

)
=

(⋂
j∈J cj
r

)
.

If {v1, . . . , vr} ∈
⋂
j∈J
(
cj
r

)
, then {v1, . . . , vr} ⊂ cj for all j ∈ J and so

{v1, . . . , vr} ∈
(⋂

j∈J cj
r

)
.

Conversely, if {v1, . . . , vr} ∈
(⋂

j∈J cj
r

)
then {v1, . . . , vr} ⊂ cj for all j ∈ J . Therefore,

{v1, . . . , vr} ∈ cj,

for all j ∈ J and the claim follows.
Therefore, the total number of r−cliques which are contained in at least one clique in

C is

∣∣∣∣⋃j∈{1,...,m}

(
cj
r

)∣∣∣∣. By the principle of inclusion/exclusion (Wilf, 2005, p. 112),

∣∣∣∣∣⋃
j∈J

(
cj
r

)∣∣∣∣∣ =
∑

∅6=J⊆{1,...,m}

(−1)|J |+1

∣∣∣∣∣⋂
j∈J

(
cj
r

)∣∣∣∣∣ =
∑

∅6=J⊆{1,...,m}

(−1)|J |+1

(
IJ
r

)
,

as needed to be shown.

We note that this is a lower bound for the number of r−cliques contained in the
graph union of C. This is because there could be cliques that arise from the graph union
which do not properly belong to any member of the collection. For example, consider the
collection C = {{1, 2}, {1, 3}, {2, 3}}. While this collection of cliques induces the triangle
{1, 2, 3}, clearly the triangle is not contained within any individual clique.

When the collection C includes all the maximal cliques in G =
⋃
C∈C C, the lower

bound is an equality.

Proposition 2. Let C = {c1, . . . , cm} be the collection of all maximal cliques in G. The
number of r−cliques induced by C is∑

J :∅6=J⊆{1,...,m}

(−1)|J |+1

(
IJ
r

)
,

where IJ := |
⋂
j∈J cj|.

Proof. Proposition 1 implies that the provided expression serves as a lower bound, as
every clique present in a member cj of C is necessarily a clique in G. Therefore, it remains
to establish that all cliques in G belong to some cj ∈ C. Consider a clique H in G, which is
a subset of some maximal clique H ′ belonging to C. As such, H is contained in a member
of C.
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Note that it is not sufficient that C consist of maximal cliques in the graph union G –
all of the maximal cliques of G must be in C. Otherwise, Proposition 2 can only provide
a lower bound on the number of r−cliques in G. The bound is raised as the size of each
clique in C is increased, reaching the actual value only if C consists of all maximal cliques
in its graph union.

To get the exact number of r−cliques from any clique cover C, a different approach
must be taken, one based on a special graph partition, we call a Γ-partition. This more
general theory is developed in the next section.

3 Γ-partitions

This section presents an approach to solving the problem of determining the induced
number of cliques in the graph union of a given collection of cliques that cover a graph.
A special partition of the node set is introduced that captures the membership of nodes
in different cliques. Figure 1 provides a concrete example that illustrates the concepts
presented in the rest of the paper.

Proposition 3 details the process of constructing the partition. In this work, J denotes
the complement of a set J ⊆ Nm with respect to the set Nm, and is formally defined as
J := Nm \ J .

Proposition 3. For any m > 1, given a sequence (Ai)
m
i=1 of subsets of Nn = ∪mi=1Ai, the

family of sets given by

Γ :=

⋂
i∈J

Ai \

⋃
i∈J

Ai

 : J ⊆ Nm

 := {ΓJ : J ⊆ Nm}

is a partition of Nn. Moreover, for any i ∈ Nm,

Ai =
⋃

J⊆Nm: i∈J

ΓJ .

Proof. First, we show that

⋃
J⊆Nm

ΓJ =
⋃

J⊆Nm

⋂
i∈J

Ai \

⋃
i∈J

Ai

 = Nn.

For every J ⊆ Nm,

ΓJ =

⋂
i∈J

Ai \

⋃
i∈J

Ai

 ⊆ Nn,
as each Ai ⊆ Nn. To see the reverse inclusion, fix any choice x ∈ ∪mi=1Ai = Nn and let
Jx := {i : x ∈ Ai} ⊆ Nm denote the set of all indices i with x ∈ Ai, and its complement
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in Nm as Jx = (Nm \ Jx). Now x ∈ Nn appears in at least one Ai, since ∪mi=1Ai = Nn, so
it follows that x ∈ ∩i∈JxAi and x 6∈ ∪i∈Jx Ai. Thus,

x ∈

⋂
i∈Jx

Ai \

⋃
i∈Jx

Ai

 = ΓJx

for any x ∈ Nn, and hence

Nn =
⋃
x∈Nn

ΓJx =
⋃

J⊆Nm

ΓJ .

It remains only to show that the intersection of any two distinct non-null members of Γ is
empty – the proof is by contradiction. Let J,H ⊆ Nm be distinct, respectively producing

ΓJ =

[⋂
i∈J

Ai \

(⋃
i 6∈J

Ai

)]
and ΓH =

[⋂
i∈H

Ai \

(⋃
i 6∈H

Ai

)]

as members in Γ. Suppose x ∈ ΓJ ∩ ΓH 6= ∅, then x ∈ ΓJ =⇒ x ∈ Ai ∀i ∈ J and
x ∈ ΓH =⇒ x ∈ Ai ∀i ∈ H. Since J and H are distinct, there exists some k ∈ J \ H
for which x ∈ ΓJ appears in Ak. Now k 6∈ H means k ∈ H and hence Ak appears in the
union ∪i 6∈HAi being removed from ∩i∈HAi in the definition of ΓH . Therefore x 6∈ ΓH and,
so, x 6∈ ΓJ ∩ΓH , a contradiction. It follows that ΓJ and ΓH are disjoint, whenever J 6= H
and hence that the sets of Γ form a partition of their union, Nn.

Finally, for any i ∈ Nm, it remains only to show that the original sets Ai are the union
of those Γ-sets, ΓJ , whose index set J contains i. That is,

Ai =
⋃

J⊆Nm: i∈J

ΓJ .

If i ∈ J , then ΓJ =
[⋂

j∈J Aj \
⋃
j∈J Aj

]
intersects Ai, and hence ΓJ ⊆ Ai whenever i ∈ J .

It follows, then, that ⋃
J⊆Nm: i∈J

ΓJ ⊆ Ai.

Conversely, for every x ∈ Ai, then i ∈ Jx and

x ∈

⋂
j∈Jx

Aj \
⋃
j∈Jx

Aj

 = ΓJx ⊆
⋃

J⊆Nm: i∈J

ΓJ .

So Ai ⊆
⋃
J⊆Nm: i∈J ΓJ ⊆ Ai, and it follows that Ai =

⋃
J⊆Nm: i∈J ΓJ .

Note that Proposition 3 remains valid for any countable collection of sets (Ai)i∈N and
the set Nn replaced by any set Ω with Ω =

⋃
i∈NAi. However, for counting cliques over a

collection of cliques, a weaker result suffices.
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(a) The graph union of C (b) The Γ sets (c) The Γ partition

Figure 1: C = {A,B,C} with A = {1, 2, 3, 5, 6}, B = {1, 2, 4, 7, 8} and C = {1, 2, 3, 4, 9}.

Figure 1(a) depicts a graph covered by a collection of three 5-cliques. Corresponding
partition indexing and membership classes of the nodes are depicted in Figure 1(b) and
Figure 1(c), respectively.

We will call a partition produced as in Proposition 3, a Γ-partition and note that it
will be peculiar to the sets Ai from which it is constructed.

For a collection of cliques C = {c1, . . . , cm}, defined by index sets cj ⊂ Nn, with graph
union

⋃m
j=1 cj = Nn, Proposition 3 provides a general means to find Γ-sets, namely as

(ΓJ)J⊆Nm with

ΓJ =

(⋂
j∈J

cj

)
∩

(⋂
j 6∈J

cj

)
where complement is with respect to Nn. That is, each cell ΓJ is the set of vertices
common to all cj for all j ∈ J and absent from every cj for which j 6∈ J . Again, the
cardinality of ΓJ is denoted as γJ = |ΓJ |.

The Γ-partition provides an equivalence relation on nodes u, v ∈ Nn via the indices
of those cliques which contain u or v – namely, Ju = {j ∈ Nm : u ∈ cj} and Jv = {j ∈
Nm : v ∈ cj}. The nodes u and v are equivalent, u ≡ v, if, and only if, Ju = Jv; that is,
u and v are in the same Γ-set. For example, nodes 1 and 2 from Figure 1(c) are in the
same class while nodes 1 and 4 are in different classes.

The Γ-partition can also be used directly to infer some properties of the graph union.
For example, the adjacency of nodes in the graph union is related to the intersection of
those Γ-sets which contain them:

Proposition 4. Let u and v be two nodes in the graph union,
⋃m
j=1 cj, of the clique

collection C = {c1, c2, . . . , cm}. If u ∈ ΓJu and v ∈ ΓJv , then u ∼ v if, and only if,
Ju ∩ Jv 6= ∅.
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Proof. We note that u ∼ v if, and only if, for some j ∈ Nm, u ∈ cj and v ∈ cj, which is
equivalent to Ju ∩ Jv 6= ∅.

It follows, for example, that u ∼ v for every pair of nodes u, v ∈ ΓJ (for any J ⊆ Nm).
Moreover, the cardinalities, γJ , determine the degree of every vertex in ΓJ . Proposition
5 establishes that all nodes in a cell of Γ have the same degree.

Proposition 5. For a non-null set J ⊂ Nm, every vertex in ΓJ has degree dJ where

dJ =
∑

I⊆Nm : I∩J 6=∅

γI − 1.

Proof. If u ∈ ΓJ , then u ∼ v if, and only if,

v ∈
⋃

I⊆Nm : I∩J 6=∅

ΓI =
⋃
j∈J

cj,

with v 6= u. Therefore, the degree of u is

deg(u) =

∣∣∣∣∣⋃
j∈J

cj

∣∣∣∣∣− 1

=

∣∣∣∣∣⋃
j∈J

( ⋃
I:j∈I

ΓI

)∣∣∣∣∣− 1

=
∑

I:j∈I, for some j∈J

γI − 1.

For instance, nodes 1 and 2 in Figure 1(a) both have degree 8.
Note that different clique collections having the same graph-union produce different

Γ-partitions, these being peculiar to the particular cliques in the collection. The cliques
of the collection Figure 1, for example, were all of size 5; had they all been of size 3 the
same graph union of (now many more) cliques in the collection would be the same but
the resulting Γ-sets would be different.

Having established the Γ−partitions, we investigate some of their traits. Notably, the
Γ-partitions are found to be orbit partitions, a property hinted by Proposition 4.

3.1 An orbit partition

This section focuses on exploring the graphs that can be constructed from the indexing
sets of the partition. Specifically, we analyze the quotient graphs of the graph union of
the clique collection using the intersection property of the underlying indices.

Proposition 4 demonstrates that Γ is an equitable partition (Godsil & Royle, 2001;
Lerner, 2005), that is, the number of neighbours in ΓH of vertex u ∈ ΓJ depends only on
the choice of H and J . We will prove that they exhibit a stronger property, specifically,
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that Γ is an orbit partition (defined in Lerner, 2005, Definition 9.3.4 and Proposition
9.3.5).

That is, let G be a graph, Aut(G) be the group of automorphisms of G, and H ⊆ G be
a subgroup of automorphisms. If two vertices u and v are equivalent under H, then there
exists an automorphism in H that maps u to v. The orbits of H define the equivalence
classes resulting from this equivalence, and the partition of G that contains the set of
orbits by H is known as an orbit partition of G.

Proposition 6. The partition (Γ)∅6=J⊆Nm is an orbit partition for the group of automor-
phisms Aut(G).

Proof. Let V denote the set of nodes of G and for a nonempty J ⊆ Nm, let πJ be any
permutation of the elements of ΓJ . Let π : V → V be the extension of the πJ to V . It
immediately follows that the orbits of π are the cells of Γ and, by Proposition 4, that π
is an automorphism of V .

For example, we note that for any Γ-set depicted in Figure 1(b), the node numbers in
Figure 1(c) can be permuted without changing the graph’s structure.

It will be demonstrated later that the reason for this property is that the intersec-
tionality of indexing sets provides a complete representation of the adjacency structure
of the graph union. For example, we will see that collections of pairwise nonempty inter-
sections indexing sets from the powerset of Nm, which are known as intersecting families
(Meyerowitz, 1995), corresponds to cliques in the graph union. As an illustration, con-
sider the three cliques A,B, and C from Figure 1 are captured by the intersecting families
F1,F2, and F3, where:

(i) F1 = {{A}, {A,C}, {A,B,C}},

(ii) F2 = {{B}, {B,C}, {A,B,C}},

(iii) F3 = {{C}, {A,C}, {B,C}, {A,B,C}}.

For any equitable partition, such as an orbit partition, Γ = {Γ1, . . . ,Γm}, of the vertex
set of a graph G, a directed multi- (or weighted) quotient graph can be defined having
nodes Γi and bij edges (or edge weights) from Γi to Γj where bij is the number of neighbours
in Γj of every vertex in Γi – called the quotient of G modulo Γ and denoted G/Γ (e.g.,
Lerner, 2005, Definition 9.3.2).

For the graph union of Figure 1(c), the partition Γ = {ΓA,ΓB,ΓC ,ΓAC ,ΓBC ,ΓABC}
produces the quotient graph and matrix B = [bij] shown in Figure 2. This graph can
be thought of as a compression of the original graph union. As such, some information
will be lost, but much remains. Its (weighted) adjacency matrix and graph are enough to
determine several properties of the graph union (for instance, see Godsil, 1993), including
the path distances between nodes, the graph diameter, and a partial spectral decompo-
sition – the characteristic roots of B are a subset of those of the adjacency matrix A of
the graph union.
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orbit ΓA ΓB ΓC ΓAC ΓBC ΓABC

ΓA

ΓB

ΓC

ΓAC

ΓBC

ΓABC


1 0 0 1 0 2
0 1 0 0 1 2
0 0 0 1 1 2
2 0 1 0 1 2
0 2 1 1 0 2
2 2 1 1 1 1

 = B

Figure 2: The quotient graph of the graph union of C modulo Γ and its edge weight matrix
B = [bij]. Edges are shown with width proportional to their weight in B.

The compression of the original graph hints at a means of counting cliques using the
quotient graph. If we choose an ordering of the orbits, say

(ΓA,ΓB,ΓC ,ΓAB,ΓAC ,ΓBC ,ΓABC)

from Figure 1(c), then a unique tuple of the counts of nodes from each orbit identifies a
set of subgraphs which are isomorphic to one another (under node permutation within
each orbit). Thus, both {1, 3, 6} and {2, 3, 6} share the tuple (1, 0, 0, 0, 1, 0, 1), but
{1, 2, 3} with tuple (0, 0, 0, 0, 1, 0, 2) is a unique subgraph (under permutation within
orbits). Each of these forms a 3-clique.

To prevent overcounting of cliques, it is crucial to ensure that the cliques identified
through this partition framework are uniquely constructed. This requires analyzing cliques
with respect to the notion of ‘type’, a generalization of graph isomorphism that plays a
critical role in this context.

3.2 Type equivalent graphs

Given a collection of cliques C = {c1, . . . , cm}, a subgraph H of G = ∪mi=1ci, we define the
signature of H with respect to the Γ-partition of C to be the function fH : P(Nm)→ N0

defined by fH(J) := |H∩ΓJ | for all J ⊆ Nm. Note that this is defined for any subgraph H,
not necessarily only cliques H. Two subgraphs H1 and H2 are said to be of the same type,
or to be type-isomorphic, if, and only if, they have identical signatures (i.e., fH1 = fH2).
Finally, the support of H (or of fH) is the set of all subsets J of Nm for which fH(J) > 0;
we write the support as Supp(H) = {J : J ⊆ Nm and fH(J) > 0}, or as Supp(fH) when
emphasizing the signature. Note also that all of these are predicated on the particular
clique collection C and its associated Γ-partition.

For example, consider the clique collection of Figure 1(c) and the subgraphs H1 =
{1, 2, 3, 4}, H2 = {1, 2, 3, 5}, H3 = {1, 2, 3, 6}, and H4 = {1, 2, 3, 5, 6}. The first three are
graph isomorphic to each other and the complete graph, K4 while H4 is isomorphic to
K5. In contrast only H2 and H3 are type isomorphic; H1 has a different signature (and
support), while H4 shares the same support as H2 and H3 but is of a different type.
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Because it differs from the usual graph equivalence, the notion of type could be of
interest whenever the node labels, or the cliques defining the collection, carry additional
meaning.

3.2.1 Γ-signatures

This section develops a number of counting results obtained types of subgraphs (as defined
by signature) from any specific clique collection.

The number of different types of induced subgraphs is easily captured by the cell sizes
of the partition:

Proposition 7. The number of distinct signatures for the Γ-partition of a collection of
m cliques is ∏

J∈P(Nm)

(γJ + 1).

Proof. A function f : P(Nm)→ N0 is a signature if, and only if, |f(J)| 6 γJ . Thus, there
are γJ + 1 choices for every J ∈ P(Nm).

Proposition 8. For any signature fH , the number of signatures having the same support,
Supp(H), is ∏

J∈Supp(H)

γJ .

Proof. For signatures fH1 and fH2 to have the same support, they must have the same
Γ-cells, ΓJ for J ∈ Supp(H1) = Supp(H2), and each signature can have values 1, . . . , γJ
for the Jth cell. The total possible is therefore

∏
J∈Supp(H) γJ .

Proposition 9. Let f : P(Nm)→ N0. The number of induced subgraphs having signature
f in the graph union of the clique collection {c1, . . . , cm} is∏

J∈Supp(f)

(
γJ
f(J)

)
.

Proof. The signature is invariant to the choice of nodes within each Γ-cell – provided the
same number of nodes from each cell is chosen, the signature is the same. Each cell has
γj nodes giving ∏

J∈Supp(f)

(
γJ
f(J)

)
choices for type-isomorphic induced subgraphs.
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3.2.2 Connected subgraphs

The Γ-signature of an induced graph also indicates whether it is connected. This is
captured by the notion of a path-intersecting collection of sets. We call a collection of sets
F path intersecting if, for any A,B ∈ F there exists a sequence sets J1, J2, . . . , J` in F
from A = J1 to B = J` having that Jj ∩ Jj+1 6= ∅ for all j = 1, 2, . . . , `− 1. For example,
the collection {{A}, {B}, {C}, {A,B}, {A,C}} from Figure 1(b) is path intersecting, but
is not an intersecting family.

Proposition 10. A subgraph H of the graph union over a clique collection is connected
if, and only if, its support is path-intersecting.

Proof. Since, fH is defined by the Γ-partition of C, every node must appear in exactly
one set J of Supp(H). Moreover, any pair of nodes u, v ∈ H appearing in the same set
J ∈ Supp(H) are connected by construction of the partition. So, we need only consider
nodes u and v which lie in different sets of the support.

Suppose Supp(H) is path-intersecting. Then for any pair of nodes u, v ∈ H, which
appear in different subsets Ju, Jv ∈ Supp(H), a sequence of sets Jw1 , Jw2 , . . . , Jw`

can be
found in Supp(H) such that Ju = Jw1 , Jv = Jw`

, and Jwi
∩Jwi+1

6= ∅ for all i = 1, . . . , (`−
1). From Proposition 4 wi ∼ wi+1 for all i = 1, . . . , (`−1), u = w1 → w2 → · · · → w` = v,
is a path from u to v in H, and so the subgraph H is connected.

Conversely, suppose H is connected. Every pair of nodes u, v appearing in separate
sets Ju and Jv of Supp(H) have a path connecting them in H. By the construction of Γ,
this path can be chosen to be u = w1 → w2 → · · · → w` = v such that each wi comes
from a different Ji in Supp(H). Again, by Proposition 4, wi ∼ wi+1 implies Ji∩Ji+1 6= ∅,
and hence that {J1, . . . , J`} is path-intersecting. This holds for any u, v ∈ H and hence
any Ju, Jv ∈ Supp(H), implying that it holds for the whole of Supp(H). It follows that
Supp(H) is path-intersecting.

Proposition 11. Let IP be the set of all path-intersecting collections of non-empty cells
from the Γ-partition of a clique collection C. The number of distinct signatures that induce
a connected subgraph in the graph union over C is∑

F∈IP

∏
J∈F

γJ .

Proof. Proposition 10 states that for a subgraph H to be connected, its support must be
path-intersecting; Proposition 10 determines the number of distinct signatures having the
same support. Together they give the result.

It follows that the number of induced disconnected subgraphs is∏
J∈P(Nm)

(γJ + 1)−
∑
F∈IP

∏
J∈F

γJ

where IP denotes the set of all path-intersecting collections of non-empty cells from Γ.
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Proposition 12. Let IP be the set of all path-intersecting collections of non-empty cells
from the Γ-partition of a clique collection C. The number of induced connected subgraphs
of size k in the graph union over C is the k-th coefficient of the generating series∑

F∈IP

∏
J∈F

[(1 + x)γJ − 1] .

Proof. By Proposition 10, every induced connected subgraph H is contained in some
path-intersecting family. In fact, there exists a unique smallest path-intersecting family
FH := Supp(H) containing it. Clearly, the contribution of H to the generating function∑

H′

x|V (H′)|

is xk, where |V (H)| = k, and the sum is over all H ′ induced connected subgraphs whose
support is FH .

Conversely, given a path-intersecting family F , the induced connected subgraphs
whose support is F are constructed uniquely by choosing αJ > 1 nodes from ΓJ for
every J ∈ F . The generating series corresponding to this is∏

J∈F

[(1 + x)γJ − 1] .

3.2.3 Γ-support and cliques

The support of a subgraph H provides information on whether H is a clique and whether
it is maximal.

Proposition 13. For any clique collection C = {c1, . . . , cm}, the subgraph induced by H
on the graph union

⋃m
j=1 cm, is a clique, if, and only if, is support, Supp(H) = {J : J ⊆

Nm and ΓJ ∩H 6= ∅} is an intersecting family.

Proof. Suppose the induced graph on H is a clique. Fix two distinct sets J1, J2 ∈
Supp(H). Let u1 ∈ ΓJ1 ∩H and u2 ∈ ΓJ2 ∩H. Since u1 ∼ u2, it must be that u1, u2 ∈ cj
for some j ∈ Nm. Therefore, it follows that j ∈ J1 and j ∈ J2, by the definition of the
partition (ΓJ)J⊆Nm . Thus, |J1 ∩ J2| > 1 and Supp(H) is an intersecting family.

On the other hand, suppose that Supp(H) is an intersecting family. Fix u, v ∈ H and
suppose that u ∈ ΓJu and v ∈ ΓJv . Since Supp(H) is an intersecting family, |Ju ∩ Jv| > 1
and there exists some j ∈ Nm with j ∈ Ju ∩ Jv. Thus, we have that u, v ∈ cj and since cj
is a clique, u ∼ v.

So a subgraph H is connected if, and only if, its support is path-intersecting (Propo-
sition 10) and is a clique if, and only if, its support is an intersecting family (Proposition
13).

When an intersecting family F is not a proper subset of any other intersecting fam-
ily, it is called a maximally intersecting family (Meyerowitz, 1995). For example, the
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family F3 = {C,AC,BC,ABC} in Figure 1(b) is a maximally intersecting family and
corresponds to the maximal clique C.

We note that maximal intersecting families are not necessarily isomorphic to maximal
cliques. For example, the only other maximal intersecting family in Figure 1 (b) is F4 =
{AB,AC,BC,ABC} corresponds to the 4-clique {1, 2, 3, 4} which is not maximal.

Theorem 14 provides the necessary and sufficient conditions for a clique to be maximal.

Theorem 14. For any clique collection C = {c1, . . . , cm}, a clique induced by H on the
graph union

⋃m
j=1 cm, is maximal, if, and only if, for any J ⊆ Nm,

1. J ∈ Supp(H) =⇒ |ΓJ ∩H| = γJ , and

2. J 6∈ Supp(H) =⇒ either ΓJ = ∅ or ΓJ 6= ∅ and {J} ∪ Supp(H) is not an inter-
secting family.

Proof. First, to prove necessity, assume H is a maximal clique. For any J ∈ Supp(H),
at least one node in ΓJ is in H, and, so, connected to all other nodes in H. It follows
from Proposition 4 that every node of ΓJ is also in H and hence |ΓJ ∩H| = γJ for all
J ∈ Supp(H). To show statement 2 holds, suppose now that J 6∈ Supp(H). Further,
suppose that {J} ∪ Supp(H) is an intersecting family and so, by Proposition 13, that
ΓJ ∪ J is a clique. Since J 6∈ Supp(H), ΓJ ∩H = ∅ and, since H is maximal, it follows
that ΓJ = ∅.

To prove sufficiency, assume H is a clique and that both statements 1 and 2 hold. By
statement 1, all nodes in ΓJ for J ∈ Supp(H) are in H and no nodes remain in ΓJ to
increase H. Statement 2 ensures that no nodes exist in any ΓJ with J 6∈ Supp(H) that
could enlarge H and still be a clique. Hence, H is maximal.

Statement 2 of Theorem 14 shows that, not only does a maximal clique have an
intersecting family as its support (like all cliques), but that its intersecting family can
only be expanded by sets J 6∈ Supp(H) having no nodes in ΓJ .

3.2.4 The Γ-quotient graph and maximal cliques

Theorem 14 suggests that instead of considering intersecting families that are subsets of
the entire power set, P(Nm), we need only those that are subsets of the support of the
graph union G = ∪mj=1cj, namely, Supp(G) = {J : J ⊆ Nm and ΓJ 6= ∅} ⊆ P(Nm).

This effectively ignores empty cells of the Γ partition to focus on intersecting families
formed from the index sets that define the nodes of the quotient graph G/Γ. The relevant
families are intrinsic to the quotient graph. For example,

• any path on G/Γ corresponds to a path-intersecting set (Proposition 10),

• any clique on G/Γ determines an intersecting family and hence a clique on G, and

• any maximal clique on G/Γ gives a maximal intersecting family and, so, a maximal
clique on G.
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The last two points are proved below in Proposition 15.

Proposition 15. If F is a nonempty intersecting family on Supp(G), then the graph HF
induced by {ΓJ : J ∈ F} is a clique. Furthermore, F is a maximal intersecting family on
Supp(G) if, and only if, HF is a maximal clique.

Proof. The fact that is a clique follows immediately from Proposition 4.
Suppose F is a maximal intersecting family on Supp(G) and HF is not a maximal

clique. Then there exists some u ∈ V (G) with u adjacent to all nodes in HF . Suppose
u ∈ ΓJu , then ΓJu is nonempty and by Proposition 4, ΓJu∩J 6= ∅ for all J ∈ F . Therefore,
either F is not a maximal intersecting family or HF was not the subgraph induced by F
– a contradiction.

The proof of the converse is almost identical.

Corollary 16. If ΓJ 6= ∅ for all ∅ 6= J ⊆ Nm, then every maximal intersecting family
on P(Nm) induces a unique maximal clique in G.

Proof. Suppose ΓJ 6= ∅ for all ∅ 6= J ⊆ Nm. Then Supp(G) is the set of all nonempty
subsets of P(Nm). Therefore, by Proposition 15, each maximal intersecting family gives
to a unique maximal clique.

This means that the number of maximal cliques, M(C), in G is equal to the number of
maximal intersecting families on Supp(G) which in turn is bounded above by the number
of maximal intersecting families on Nm.

Corollary 17. The number, M(C), of maximal cliques in the graph union of C = {c1, . . . , cm}
is bounded above by λ(m), the number of maximal intersecting families on Nm.

Proof. By Theorem 14, each maximal intersecting family would correspond to at most
one maximal clique in the graph union of the collection {c1, . . . , cm}. Thus, λ(m) is an
upperbound for M(C).

Corollary 18. The clique number of the graph union of the collection of cliques {c1, . . . , cm}
is

max
F∈M

∑
J∈F

γJ ,

where M is the set of all maximal intersecting families on Nm.

Proof. By Theorem 14, a clique H is maximal if, and only if, its corresponding intersecting
family FH is only extendible by trivial elements and H uses all of the vertices in the cells
ΓJ that contain members from H. Therefore, for every maximal intersecting family F ,
there is a corresponding unique maximal clique H contained within the union of the cells
{ΓJ : J ∈ F}.

Since the clique number is the maximum of the size of all maximal cliques in a graph,
and each maximal clique has the form

∑
J∈F γJ for some maximal intersecting family F ,

the proof follows.
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To summarize, an intersecting family on Supp(G) identifies a clique (Prop 13) and that
clique is maximal if, and only if, its corresponding intersecting family is also maximal
(Proposition 15). Whether an intersecting family, F , is maximally intersecting can be
determined from its cardinality, namely an intersecting F ⊂ Nm is a maximal intersecting
family if, and only if, |F| = 2m−1 (e.g., see Lemma 2.1 Meyerowitz, 1995); note that
the intersecting family corresponding to an identified clique might have to be extended
by adding subsets J ∈ Nm having ΓJ = ∅ to achieve this cardinality (Theorem 14).
Every such maximal intersecting family produces a unique maximal clique (Corollary
16). The number of such maximal cliques is bounded above by λ(m), the number of
maximally intersecting families on Nm (Corollary 17). Unfortunately, λ(m) is typically
computationally intractable (e.g., see Brouwer, Mills, Mills, & Verbeek, 2013) though is
presently feasible on today’s laptops for m 6 10, for example. In the special case where
γJ > 0 for all J ⊆ Nm, every maximal intersecting family induces precisely one maximal
clique so that the upper bound (Corollary 17) is achieved and M(C) = λ(m).

4 Counting cliques

For a family of sets F , let N(F) :=
∑

J∈F γJ denote the number of nodes in the sets
contained in the family.

Given the collection of all maximal intersecting families on the support of G, we can
apply the principle of inclusion-exclusion in the following manner.

Proposition 19. Let H be a clique in the graph union of {c1, . . . , cm} and let FH denote
its support. Let MH be the set of all maximal intersecting families F on Supp(G) that
extend FH . The number of cliques that contain H in the graph union of {c1, . . . , cm} is

1 +
∑
J⊆MH

(−1)|J |+1
(

2N(
⋂

F∈J F)−|H| − 1
)
.

Proof. Any clique that contains H would be a subclique of one of the maximal cliques
that contain H. Therefore, by Theorem 14, it suffices to examine the collection MH of
maximal intersecting families that generate a unique maximal clique in the graph union
of {c1, . . . , cm}. If F ∈ MH corresponds to a maximal clique with N(F) total nodes,
then the selection of a nonempty subset from (∪J∈FΓJ) \H corresponds to a clique that
properly contains H. This can be done in(

2N(F)−|H| − 1
)

ways.
Since some cliques are are subgraphs of several different maximal cliques, we use the

principle of inclusion/exclusion and obtain∑
J⊆MH

(−1)|J |+1
(

2N(
⋂

F∈J F)−|H| − 1
)

cliques. However, this count does not include the clique H on its own and hence we add
a 1.
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The proof of Proposition 19 relies on the fact that every clique is contained in some
maximal clique.

Then notion of signatures can also be used for obtaining clique count expressions.

Theorem 20. The generating function for clique counts induced by a collection {c1, . . . , cm}
is

Φ(x) =
∑
F∈Im

∏
J∈F

[(1 + xJ)γJ − 1] ,

where I is the set of all intersecting families on P(Nm), and x is the vector
(xJ : J ∈ P(Nm)).

Proof. A clique H is determined uniquely by its signature and the node labels. By Propo-
sition 13, the support must be an intersecting family on on Supp(G), and hence it is also
an intersecting family on P(Nm).

For a cell J to contribute αJ > 1 nodes to H is accomplished in
(
γJ
αJ

)
ways, which

corresponds to the coefficient of xαJ
J in the generating series

[(1 + xJ)γJ − 1] ,

and the result follows.

Extracting the coefficient of xr in the generating function Φ(xJ → x) in Theorem 20 yields
the number of r−cliques as given in Corollary 21:

Corollary 21. The number of r−cliques in the graph union of the clique collection
{c1, . . . cm} is

r∑
`=1

∑
(α1,...,α`)

∑
(J1,...,J`)

∏̀
i=1

(
γJi
αi

)
where (J1, . . . , J`) is an intersecting family on Supp(G) of size ` with signature (α1, . . . , α`)
being an integer composition of r having 1 6 αi 6 γi.

A third expression for the total number of cliques of any size, induced by the collection,
can also be had by substituting xJ = 1 in the generating series in Theorem 20. The
expression is given as Corollary 22:

Corollary 22. The total number of cliques of size at least 1 induced by a collection
{c1, . . . , cm} is ∑

F∈Im

∏
J∈F

[2γJ − 1] ,

where Im is the set of all intersecting families on P(Nm).

When r = 2, the interesting special case of the edge count is obtained (e.g., essential to
edge count distributions for many random graph models, such as the Erdős-Rényi model):
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Corollary 23. The number of edges induced by the collection of r-cliques {c1, . . . , cm} is

∑
J⊆Nm

(
γJ
2

)
+

1

2

∑
J⊆Nm

γJ
∑

I 6=J : |I∩J |>1

γI .

Alternatively, edges can also be enumerated via the degree sequences of the vertices in
the various cells ΓJ . For every J ⊆ Nm, any two nodes within ΓJ have the same degree.
For instance, if u ∈ Γ{k} for some k ∈ Nm, then it must be that deg(u) = r − 1 because
u ∈ ck and u 6∈ cj for all j 6= k by the definition of Γ{k}. On the other extreme, if u ∈ ΓNm ,
then u ∈ cj for all j ∈ Nm and hence u must be adjacent to all other nodes in G which
are in at least one of the {c1, . . . , cm}. Therefore,

deg(u) = n− γ∅ − 1 = n− 1,

The “handshaking lemma” immediately gives the number of edges induced by the collec-
tion as below:

Proposition 24. The number of edges induced by the collection of cliques {c1, . . . , cm} is

1

2

∑
J :∅6=J⊆Nm

γJ

 ∑
I: |I∩J |>1

γI − 1

 .

Proof. Follows immediately from Proposition 5 and the fact that number of edges in the
graph is half the sum of the degrees in the graph.

5 Discussion

In this work, connections were established and exploited between several graph-theoretic
properties of clique covers, and notions of intersecting families on a special partition, the
Γ-partition, of a graph G = ∪mi=1ci formed from a collection of C = {c1, . . . , cm} of m
cliques ci. The Γ-partition frames the unique contributions to G from the various cliques
of {c1, . . . , cm} via sets from the power set of Nm.

The Γ-partition induces the quotient graph, G/Γ, which efficiently summarizes the in-
formation present in the clique collection. This creates a mapping between graph-theoretic
concepts, such as cliques, maximal cliques, and induced subgraphs, and their correspond-
ing set-theoretic counterparts, such as intersecting families, maximal intersecting families,
and path-intersecting families. Further investigation is needed to explore the potential of
this framework in studying other graphic structures.

Of course, the Γ-partition and quotient graph are determined by the particular cliques
given as elements of the collection. Coarser partitions (those which produce fewer ΓJ
cells) are preferred – ideally, the collection would consist of a minimal number of unique
maximal cliques. Investigating the notion of optimal representations of graphs by means
of clique collections is an interesting avenue for research.
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