A Tropical Count of Real Bitangents
to Plane Quartic Curves

Alheydis Geiger Marta Panizzut

Max-Planck-Institute for Mathematics in the Sciences,
Leipzig, Germany

{alheydis.geiger,marta.panizzut}@mis.mpg.de

Submitted: Mar 11, 2022; Accepted: May 13, 2023; Published: Jun 30, 2023
©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A smooth tropical plane quartic curve has seven tropical bitangent classes. Their
shapes can vary within the same combinatorial type of curve. We study deformations
of these shapes and we show that the conditions determined by Cueto and Markwig
for lifting them to real bitangent lines are independent of the deformations. From
this we deduce a tropical proof of Pliicker and Zeuthen’s count of the number of real
bitangents to smooth plane quartic curves.

Mathematics Subject Classifications: 14T15, 14T20

1 Introduction

The number of bitangent lines to a smooth plane quartic curve is a classical result from the
19th century. Pliicker proved in 1834 that such a curve in the complex projective plane has
28 bitangents [19]. Building on an extensive first count by Pliicker [20], Zeuthen proved
that a smooth quartic curve can have either 4, 8, 16 or 28 real bitangents depending on
the topology of the underlying real curve in the real projective plane [21]. In this paper
we provide a count of real bitangents to a tropically smooth plane algebraic quartic curve
using computations and techniques from tropical geometry.

Smooth tropical quartic curves can have exactly 7 or infinitely many bitangent tropical
lines grouped into 7 equivalence classes modulo continuous translations that preserve
bitangency. This was proven by Baker et al. [2] using the theory of divisors on tropical
curves. Bitangents to non-smooth tropical quartics were investigated in [13].

Questions about lifting tropical bitangents were first considered by Chan and Ji-
radilok [5] for Ky-curves. Len and Markwig [14] showed that under certain genericity
conditions, each class lifts to four bitangent lines over the complex Puiseux series, reproduc-
ing Pliicker’s theorem for tropically smooth quartic curves. These four lifts can be realized

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(2) (2023), #P2.55 https://doi.org/10.37236/11099


https://doi.org/10.37236/11099

by more than one representative in the class and with different multiplicities. Cueto and
Markwig [6] proved that each class lifts either zero or four times to real bitangent lines,
and they remarked that these real lifts are always totally real, meaning that also the
tangency points have real coordinates. As a consequence, every number of real bitangents
appearing for a tropically smooth real quartic curve must be divisible by 4. However, a
tropical proof of why only the numbers 4, 8, 16 and 28 are observed was still open. The
main result of this paper bridges this gap by providing a tropical version of Pliicker and
Zeuthen’s count.

Theorem 1. Let I" be a generic tropicalization of a smooth quartic plane curve defined
over a real closed complete non-Archimedean valued field. Fither 1, 2, 4 or 7 of its bitangent
classes admit a lift to real bitangents near the tropical limit. Every smooth quartic curve
whose tropicalization is generic has either 4, 8, 16 or 28 totally real bitangents.

To prove this theorem, we relied on the classification of the combinatorial structure
of the bitangent classes by Cueto and Markwig [6]. Smooth tropical quartics are dual
to unimodular triangulations of the fourth dilation of the standard 2-simplex. The dual
subdivision is also called the combinatorial type of a quartic. The shapes of bitangent
classes of tropical quartic curves with the same combinatorial type do not need to be
equal, as illustrated in Example 3. This motivates the introduction of deformation classes,
which collect for each bitangent class the varying shapes that appear within the same
combinatorial type. We provide a classification of deformation classes of tropical bitangents
that uniquely depend on the combinatorics of the tropical curve.

Theorem 2. There are 24 deformation classes of tropical bitangent classes to generic
smooth tropical quartic curves modulo Ss-symmetry. Orbit representatives of their dual
deformation motifs are summarized in Figure 11.

The real lifting conditions, i.e., the conditions for admitting a lift to a bitangent over a
real closed field with a non-Archimedean valuation, determined by Cueto and Markwig [6],
provide us with local information on the number of lifts of each bitangent shape.

The cones in the secondary fan of 4A, that induce unimodular triangulations parame-
terize tropically smooth plane quartics. Bitangent shapes can vary within a given cone,
since they depend on the edge lengths of the tropical quartic curve, rather then solely on
the input triangulation. However, Theorem 14 states that the lifting conditions over a
real closed complete non-Archimedean valued field depend solely on the triangulations.
This motivates the construction of deformation classes of bitangent shapes, which are
determined by the given triangulation and provide explicit sign rules for lifting each
deformation class (see Table 5).

Using polymake [8], we enumerate the deformation classes for every combinatorial
type of tropical quartic curves. We then check the real lifting conditions obtaining the
expected number of real bitangent lines. We impose the same genericity assumptions
as in [6, 14] and we discuss them further in Section 2. In particular, they include the
smoothness of the tropicalized curve. Note that the count over the reals follows from
working over a real closed field by Tarski-Seidenberg’s Transfer Principle [3, Theorem
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1.4.2]. Real tropicalization goes back to work of Maslov [17] and the study of logarithmic
limit sets of (real) algebraic varieties, see also [1].

This paper is organized as follows. In Section 2, we introduce the main definitions
and we report the classification of tropical bitangent classes and their lifting conditions,
as introduced in [6]. We assume that the reader is familiar with basic definitions and
results on tropical curves and regular triangulations. We refer to [7, 15] for further details.
Deformation classes are defined and classified in Section 3. In Section 4, we study their
real lifts and prove Theorem 1. The proof is based on the enumeration of deformation
classes in polymake. The technical description of the algorithms and their implementation
can be found in [10]. The proofs for the classification are always constructed by providing
details of few cases, and then summarizing the main ideas of the remaining ones. More
examples and figures are collected in the Appendix A in order to provide further geometric
intuition for the definitions and proofs.

2 Tropical quartic curves and their bitangents
A plane quartic curve V(f) is the zero set of a polynomial of degree four

f(z,y) = ago + alor + any + ax®® + anxy + agy’ + azpr’ + anz’y (1)

+ a197y* + agzy® + asr® + az Yy + anr®y? + a3y’ + agsy®.

We consider the tropicalization of curves defined over a real closed complete
non-archimedean valued field Kg and its algebraic closure K. For the tropicalization
of curves, we use the maz-convention. We write A;; for the valuations of the coefficients of
the polynomial, i.e., A\;; = val(a;;). Then, Trop(V(f)) is the tropical curve define by the
tropical polynomial with coefficients —\;;.

We assume that the Newton polygon of f is the fourth dilation of the standard 2-
dimensional simplex 4A,. The polygon 4A, contains 15 lattice points p;; corresponding
to the monomials z°9’ of f. By duality, the combinatorics of the tropical curve I' =
Trop(V'(f)) is determined by the subdivision 7 (of the lattice points) of 4A, induced
by the coefficients —\;;. We use the notation -V to refer to the dual of a vertex or an
edge of I in T, and viceversa. We only consider smooth tropical plane quartic curves, so
the subdivisions of 4A, are unimodular triangulations. In particular, all lattice points
in 4A, are vertices in the triangulation 7. The set of points in R'® inducing the same
subdivision is a relative open cone called the secondary cone and denoted X(7T). For a
point ¢ € X(7), we use the notation T'. to indicate the tropical quartic curve defined by
the tropical polynomial with coefficients given by the coordinates of c.

Regular unimodular triangulations of 4A, have been enumerated by Brodsky et al.
in [4]. They counted 1278 orbits of combinatorial types under the action of the symmetric
group S3. This group acts on the homogenization of the lattice points of 4A, and on the
corresponding monomials of the polynomial f and its tropicalization Trop(f).

A tropical line A is bitangent to a smooth tropical plane quartic curve I' if their
intersection A NI has two components with stable multiplicity 2, or one component with
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Figure 1: Actions of the transpositions in S3 on 4A,.

stable multiplicity 4. See [15, Section 3.6] for an introduction to stable intersections. We
always assume that tropical bitangent lines are non-degenerate, i.e., each tropical line
consists of a vertex and three adjacent rays with directions —e;, —es and e; + ey given by
the standard basis of R?. For an impression of tropical bitangent lines, see Figure 3.

A tropical quartic curve I' has exactly 7 or infinitely many tropical bitangents. The
collection of bitangents can be grouped into 7 equivalence classes modulo continuous
translations that preserve bitangency as shown in [2]. Formally, the tropical bitangent
classes of a tropical quartic I' are defined as the connected components of R? containing
the vertices of tropical bitangents in the same equivalence class. Up to S3-symmetries,
they refine into 41 shapes of tropical bitangent classes given by coloring the points in the
class belonging to I, see Figure 2. Since a non-degenerate tropical line is determined by
its vertex, bitangent classes formally live in the dual plane. They are connected polyhedral
complexes, which are also min-tropical convex sets [6, Theorem 1.1, Corollary 3.3]. To
improve the visualization, we draw the curve and its bitangent classes on the same plane.

As remarked by Cueto and Markwig [6], the shapes of tropical bitangent classes of a
smooth tropical quartic curve I' impose combinatorial constraints on the regular unimodular
triangulation of 4 Ay dual to I'. More precisely, the existence of a representative of a
certain shape determines specific subcomplexes that must be contained in the triangulation,
see Figure 4. Such a subcomplex is only a necessary condition for the presence of its
corresponding tropical bitangent shape. Given a smooth tropical quartic curve I', the
shapes of its bitangent classes are not fully determined by the combinatorial type of T,
but they also depend on the length of the edges, as the following example illustrates.
This motivates us to introduce deformation classes of tropical bitangents in the following
section.

Example 3. We consider the quartic curve dual to the triangulation 7 in Figure 3a. The
colored subcomplex of T corresponds to shapes (E), (F) and (J) in the classification in
Figure 2. Let a denote the coefficient vector of an algebraic curve of degree 4 with entries
ordered as in (1).

We remark that there exists an equivalence class of bitangents of I' which adopts different
shapes for different choices of A = val(a) € (7). We observe shape (E) when choosing
A1 = (0,5,5,9,8,5,6.5,9,9,4,27,87,1), see Figure 3b. For A\ = (0,5,5,9,8,5,6,9,9,4,2,7.8,7,1)
we obtain shape (J) as in Figure 3c. Figure 3d shows shape (F'), which appears for
A3 = (0,5,5,9,8,5,5.5,9,9,4,1,7,.8,7,1).
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Figure 2: Shapes of bitangent classes on smooth quartics up to Ss3-symmetry. The black
numbers above the vertices indicate the lifting representatives in each class and their
lifting multiplicities. Red vertices or line segments are contained in the quartic curve, a
red vertex filled with white coincides with a vertex of the quartic curve. Figure taken
from [6, Figure 6.

(a) Triangu- P : bl Pl
lation T (b) Shape (E) (c) Shape (J) (d) Shape (F)

Figure 3: The dual triangulation does not fix the shapes of the bitangent classes, since
they can change when choosing different edge lengths for the curve.
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Let T be a smooth tropical quartic curve and V(f) a smooth plane quartic curve
defined over K such that Trop(V(f)) = I'. Following [14, Definition 2.8], we say that a
tropical bitangent A with tangency points P and P’ lifts over K if there exists a bitangent
¢ to V(f) defined over K with tangency points p and p’ such that

Trop(V(f)) =T, Trop(¢{) = A, Trop(p) = P, and Trop(p') = P’

The number of such ¢’s is the lifting multiplicity of A. In an equivalence class, the
number of tropical bitangents which lift and their lifting multiplicities can be one, two or
four, see [14, Theorem 4.1].

Similarly, we are interested in the number of real lifts, that is, the lifting multiplicity
when V(f) and ¢ are defined over Kg. In this case, as shown by Cueto and Markwig [6],
every bitangent class of a given shape has either zero or four lifts to real bitangents.
Moreover, the existence of a lift uniquely depends on the signs s;; of the coefficients a;; of
the polynomial f. Table 3 in Section 4 summarizes these conditions.

Lifting problems were studied under the genericity constraints explained in [6, Re-
mark 2.10], which also apply in our results next to the assumptions that the tropical curve
I' is smooth and that the tropical bitangent lines are non-degenerate. The assumption that
if the tropical curve I' contains a vertex adjacent to three bounded edges with directions
—ey, —e and e; + eg, the shortest of these edges is unique will be particularly relevant in
our analysis of the lifting conditions of shape (C).

We conclude this section by fixing some notation and conventions. We follow the
labeling of shapes of bitangent classes and the color patterns introduced in [6] by Cueto
and Marking, see Figures 2 and 4. The group S3 acts on bitangent shapes and their dual
subcomplexes. We refer to the bitangent shapes and subcomplexes in Figures 2 and 4 as
in identity position. We indicate the different elements in the orbit of a bitangent shape
not in identity position by adding the element of S3 acting on it to the index of the shape.
For example, the notation (B)(,,) means that the bitangent class has shape (B) with dual
complex given by the action of (zy) on the complex in identity position.

3 Deformation classes of tropical bitangents

In this section we introduce deformation classes of tropical bitangents and we classify
them. Our terminology is inspired by the one introduced in [11, 18] for the classification
of the combinatorial positions of tropical lines on cubic surfaces.

Definition 4. Let I' be a tropical smooth quartic curve with dual triangulation 7, and
let B be a bitangent class of I' of a fixed shape. The dual bitangent motif of (I', B) is the
subcomplex of T that is fully and uniquely determined by the shape of B and its position
with respect to I'. Dual bitangent motifs are classified in [6, Figure 19].

In pictures of dual bitangent motifs, we use the same color coding as Cueto and
Markwig [6]. Black and colored solid edges must be part of the triangulations, while dotted
ones represent possible edges, of which one must occur. Black vertices are always present,
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Figure 4: Dual bitangent motifs of bitangent classes. The color coding is explained in [6,
Remark 4.13]. Figure taken from [6, Figure 19].

while the colored ones are endpoints of colored possible edges or they form a triangle with
an edge of the same color. Different colors correspond to different types of tangencies, see
[6, Remark 4.13].

The summary of the dual bitangent motifs as shown in Figure 4 is very condensed,
and, as a consequence, for some figures with dotted edges not all combinations lead to
the assigned bitangent shape. For example, when choosing the red and green edges propi1
and Poip17 in the picture of (A), the shape, which will occur, will be either (S) or (P), but
never (A). Therefore, the dual bitangent motifs will be subdivided more in the following
classification of the deformation classes.

Definition 5. Given a tropical quartic I'. with dual triangulation 7, ¢ € (7)), and
a tropical bitangent class B, we say that a tropical bitangent class B’ is in the same
deformation class as B if the following conditions are satisfied:

> There exists I'v with ¢ € ¥(7) having B’ as one of its bitangent classes.

> There is a continuous deformation from I'. to I'» given by a path in the secondary
cone %(7) from ¢ to ¢ that induces B to change to B’.

We use the notation B,, to indicate the deformation of B in I', for w in the path. Given a
unimodular triangulation 7 of 4A, and a dual quartic curve I', let D be the deformation
class of one of its seven bitangent classes. The dual deformation motif of (T,D) is the
union of the dual bitangent motifs of all shapes belonging to bitangent classes in D.

We label deformation classes using the letters of the shapes of tropical bitangents. In
Example 3 we saw a deformation class (E J F). If the class contains the image of shapes
under the action of an element o € S3, we use the notation +0. We remark that ¢ acts on
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all shapes in the deformation class, but some of them might be invariant. For example, the
deformation class (B H” H)+(yz) consists of the shapes (B), (H’), (H) = (H).), (H")(y-)
and (B)(yz).

Remark 6. Each smooth tropical quartic I' has 7 deformation classes, and it follows from
the definition that they only depend on the dual triangulation 7 of I'. Changing the
coefficients defining I" in the secondary cone X(7) induces a variation in the shapes of the
tropical bitangents within the deformation class.

In order to classify deformation classes, we need to distinguish between the different
subcomplexes which give a bitangent shape, e.g. the two different choices of blue edges for
shape (E). We have to do this because the combinatorial type of the curve determines
how the shapes can deform.

Figure 5: Dual bitangent motifs of bitangent classes with constant shape in their deforma-
tion class.

Lemma 7. Let I" be a tropical smooth quartic curve dual to a triangulation T of 4A,.
Let B be a bitangent class of I' with dual bitangent motif belonging to the collection in
Figure 5, modulo Ss-symmetry. Then, the shape of the bitangent classes is constant in the
deformation class of B.

Proof. The proof works similarly for each of the cases. The main argument for each case
is that due to the combinatorial structure of 7, the two tangencies cannot change the
type of their intersection, and this fully determines the bitangent class and its shape. We
explain the details for shape (E) and summarize the remaining cases in Table 1.

Figure 6: Example of a dual bitangent motif with constant shape (E).

Let B be a bitangent class of shape (E). We may assume that the dual bitangent motif
looks as in Figure 6. One tangency point is a transversal intersection in the edge of I’
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dual to F = pyop13- The second tangency point is a non-transversal intersection of the
horizontal ray of A with the bounded edge of I" dual to pigp11 or pripiz. We can exclude
the edge p12p13 since it does not define a dual bitangent motif of shape (E).

The bitangent class B is a line segment. Its two endpoints are determined by intersecting
rays with direction —(e; + e2) through the vertices of the edge EY of I with a ray with
direction e; passing through the non-transversal intersection. See Figure 6 for an example.
Independently of the lengths of the edges of I', the endpoints of B cannot lie in I' because
of the slopes of the edges of T' that connect the vertices A(piop11p20)” and A(piapizp20)”.

Table 1 contains the remaining bitangent classes from the statement. For each de-
formation class, we draw the dual deformation motif in the dual triangulation and the
relevant part of the tropical quartic curve. When there are several possible dual bitangent
motifs condensed in a picture, we draw one tropical curve dual to only one of them. From
the combinatorial shape of the tropical curve, we can see that changes of edge lengths
cannot induce a deformation of the shape of the bitangent class. m

— : o~ —~ . —~

a2 S = 2 =

0 B n . n @ 0

n H 7 . 7] ] 7

= : = = =2 z

3} : o [3] 3} =

= o a =

2 2 ) 3 5

= ! £ = E =

= B — = 55 =

£ £ B = £

L R R L 2 .
=} A A A =)

— ~ — —~ —~ =
< O ) <7 = =
= N = = = =
wn wn w 0 wn w
0w n w0 w2 |7} w
£ < B < £ £
= =< = = ~ =
() o < o o <
g g =] = ] =]
9 2 .2 .9 ] g
g g = IR R ] = =t
- L] = — = - -
£ i) P st e £ PR
% — 5 ) < 5 J*3
[ A A A =) (=)

AT Ry R

Table 1: Deformation classes from Lemma 7. A thickened vertex of an edge in the curve
indicates that this edge must be bounded.

Lemma 7 describes the deformation classes containing bitangent classes of a unique
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shape. We now consider two cases of deformation classes of not constant shape. Further
details on the proofs of the upcoming lemmas can be found in [9].

Lemma 8. Let I" be a tropical smooth plane quartic curve with dual triangulation T and
B a bitangent class with dual bitangent motif contained in one of the subcomplexes depicted
in Figure 7 modulo Ss-symmetry. For every ¢ € ¥(T), the bitangent class B. has shapes

(E), (F) or (J).

. [
. L] L]

Figure 7: Dual deformation motifs of deformation class (E J F).

Proof. Let B be a bitangent class with dual bitangent motif as in Figure 7. The first
tangency point is the transversal intersection of the diagonal ray of the bitangent with
the edge of I' dual to E = Dyop31. The second tangency point is a non-transversal
intersection with one of the three bounded edges of I' dual to piopi1, P11p12 OF Pi2pi3. Since
T is unimodular, we remark that the subcomplexes we are considering contain the dual
bitangent motifs of shapes (E), (F) and (J) in identity position. We need to show that for
any I'. with ¢ € 3(7T) the bitangent class B can only deform between these shapes.

Let E’ be the vertical red dotted edge in T that forms a triangle with the red circled
lattice point pag. The bounded edge of I dual to £’ will always have y-coordinate smaller
than the vertex v = A(paop3ip21)”. Hence, for any T, the tangent points of the bitangent
class are contained in the edge dual to F and the bounded edge dual to E’.

Changes in the length of the edge dual to E influence the position of the intersections.
Depending on the y-coordinate of the bounded edge dual to E’ in comparison with the
vertex v, we obtain shape (E), (J) or (F) for B. This is illustrated in Figure 8 for the case
E" = p1ap13. The other two cases are analogous. We cannot obtain another shape for B
because the value of the z-coordinate of the points in the edge dual to £’ and of v do not
influence the shape. [

Figure 8: Deformation of bitangent shapes (E), (J) and (F).
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Lemma 9. Let I' be a tropical smooth plane quartic curve dual to a triangulation T .
Let B be a bitangent class with dual bitangent motif contained in one of the two cases
illustrated in Figure 9, modulo Sz-symmetry. For every c € T, the bitangent class B, can
deform through the shapes (G), (K), (U), (U’), (T), (T°), (T”), (V) and into the images
of the action by (xy) of the shapes (T°), (U), (U’), (K) and (G).

Figure O: The two dual deformation motifs of deformation class

GKUUTT T V)+(zy).

Proof. We distinguish the two cases in Figure 9 depending on whether the edge p11pas or
the edge pripos is contained in the triangulation 7. Figure 10 shows deformations of B
into the claimed shapes by edge length changes of I' when the blue edge is £ = pr11pas.
Analogous pictures can be drawn for p11pos. The edge lengths can be interpreted in terms
of relative positions of vertices of I'. This approach is considered in the proof of the
classification of bitangent shapes in [6, Section 4]. It remains to argue that these are the
only shapes B can deform into.

NN AR
(G) (K) (U)

(W)

(V) (T") (2y) (U") (ay) (U) () (K) (ay) (G)(ay)

Figure 10: Deformation of bitangent shapes (G), (K), (U), (U"), (T7), (T), (V), (T?),
(W, (Wey: K@y, (Gay):

We see that B cannot deform into any other shapes by considering Figure 10. Rays
with direction e; + ey passing through the vertices of EV cannot intersect the upper vertex
of (po1ip11)Y or the right vertex of (p1opi1)Y. Thus, B cannot deform further. O

Similar reasoning leads us to complete the classification in Theorem 2. Orbit represen-
tatives of the dual complexes describing the deformation classes are illustrated in Figure 11.
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Proof of Theorem 2. The general idea behind the proof is as follows: We look at
the classification of dual bitangent motifs summarized in Figure 4. We identify common
subcomplexes in the dual bitangent motifs and check whether deformations between
corresponding bitangent shapes are possible. Lemma 7 describes deformation classes
with constant shapes, and Lemmas 8 and 9 cover deformation classes (E J F) and

(GKUU TT T” V)+(zy). The remaining cases are summarized in the following table.

Figures of the deformation classes are provided in Appendix A. For details see [9].

(B H' H)

First tangency: Non-transversal intersection on
(Prip12)” or (Pizpis)’-

Second tangency: Depending on the edge
lengths, vertex of the bitangent lying on the edge
(pglpgl)v (B), (p21p40)v (H) or on their shared
vertex (H’).

No further deformations: The vertices

A(paopaip11)” resp.  A(paipsipao)’ must have
y-coordinate smaller resp. larger than (p1ip12)”

and (P12p13)v-

(BH H)+(yz) = (B H H H.) Bgys)

First tangency: Non-transversal intersection on
(p1vp1,v+1)v-

Second tangency: Depending on the edge
lengths, vertex of the bitangent lying on the edge
(P21p31)" (B), (P21Pa0)” (H), (pzlpso)v (B)(yz) or
on their shared vertices (H’), (H’)(,z) resp..

No further deformations: The lowest ver-
tex of (P21pso)” has y-coordinate smaller than

A(p21p1vp1,v+1)v~

B M

)+(y2) = (BM Bys))

First tangency: Non-transversal intersection on
(ProPro+1) "

Second tangency: Depending on the edge
lengths, vertex of the bitangent lying on the
edge (Pa1ps1)” (B), (P21ps0)” (B)(yz) or on the
ray of direction e; starting at A(p21psops1)” (M).
No further deformations: The lower vertex
of (Paipso)¥ has always smaller y-coordinate
than A(p1,p1v+1p21), and the upper vertex of
(P21031)" has always larger y-coordinate than

(plvpl,erl)v-
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DL’ Q)

First tangency: Transversal intersection of the
diagonal, vertical ray of the bitangent line with
(P11p22)", (P22P10)", respectively.

Second tangency: Depending on the edge
lengths, the non-transversal intersection with
(P1op11)” in the horizontal ray of the bitangent
line (D) deforms to a transversal intersection of
(Poop11)” with the diagonal ray (Q), through the
shared vertex (L’).

No further deformation: Due to the edge direc-
tions determined by the dual bitangent motif.

DL QQR)

First tangency: Same as for (D L’ Q).

Second tangency: Depending on the edge
lengths, the non-transversal intersection with
(Prop11)” in the horizontal ray of the bitangent
line (D) deforms through the shared vertex (L7)
to a transversal intersection of (Poopir)¥ with
the diagonal ray (Q), through the shared vertex
(Q’) to a non-transversal intersection of (po1pi1)”
with the vertical ray (R).

No further deformation: The upper vertex of
(Porp11)" has always larger y-coordinate than any
intersection of the ray of direction —(e; + e2)
starting at A<p22p11p12)v with (m)v

(D L 0)

First tangency: Same as for (D L’ Q).

Second tangency: Depending on the edge
lengths, the non-transversal intersection with
(Prop11)” in the horizontal ray of the bitangent
line (D) deforms through the shared vertex (L) to
a non-transversal intersection of (poip11)” with
vertical ray (O).

No further deformation: Same as for

(DL Q Q R).
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(GIN)+(zy) = (GIN Iay) Gay)

First tangency: Transversal intersection of the
diagonal ray with (p1ip2z)Y, (Pripos)’, respec-
tively.

Second tangency: Non-transversal intersection
of the horizontal ray with (p1op17)Y (G,I,N), non-
transversal intersection of the diagonal ray with
(P1opo1)” (IN), non-transversal intersection of
the horizontal ray with (Poipir)” (N, Lizy),Gay)),
depending on the edge lengths.

No further deformations: Rays of direction
—(e1 + e2) starting from the two vertices of
(PriP22)", (Pripoa)” always intersect (Poipir)”,
(Prop11)” under, left of their other vertex, respec-
tively (not A(piopoipi1)")-

(GKUTT)

First tangency: Transversal intersection of the
diagonal ray with (p11pag)¥, (P1ip22)” respec-
tively.

Second tangency: Non-transversal intersection
of the horizontal ray with (p1op11)Y (G,K,U),
transversal intersection of the diagonal ray with
A(pooprop1n)? (K,U,T?), transversal intersection
of the diagonal ray with (poop11)¥ (U,T7,T), de-
pending on the edge lengths.

No further deformations: Similar to (G I
N)+(z y).
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(W X(mz) Y(wz) EE GG)

First tangency: Transversal intersection of the
diagonal ray with (pagpi3)”.

Second tangency: Transversal intersection of
the horizontal ray with (po1p20)” (W). Depend-
ing on the edge lengths, additionally: Transver-
. sal intersection with (Propo1)" (X(az), Y (22),GG),
vertex of bitangent line contained in (pgoipzg)”
(Y(:vz)aEE>GG)'

No further deformations: Due to its position
and slope, (P2op13)” never intersects the the bi-
tangent class; the diagonal ray starting from
A(p1apaop13)” never meets A(po1paopi1)”; the in-
tersection of the diagonal rays from the vertices
of (Pzop13)” with the horizontal rays from the ver-
tices of (Po1pao)” always lead to a 2-dimensional
bounded cell.

(W...HH)+(zz) = (W X Y Z AA BB CC DD EE FF GG HH

Due to (z z)-symmetry, we describe the tangency
types only once.

Tangency: Transversal intersection of the diago-
nal ray of the bitangent line with (pops1). De-
pending on the edge lengths, there are additional
types: transversal intersection with (Psgps1)
. (X,Y,Z,AA,AA,.),BB,CC,DD,FF,GC,.),HH,

. . HH(,.)), vertex of bitangent line contained
in (])3,17])20)\/ (Y,AA,BB,CC,CC(IZ),DD,EE(IZ),
. . FF(mz)7GG(mz)7HH(mz))

\/ No further deformations: (paop13)” and (Po1pao)”
v v are always in relative position such that the in-
tersection of rays of direction —(e; +e3) starting
from the vertices of (papr3)¥ with rays of direc-
tion e; starting from the vertices of (Poipag)
(with T" as boundary where necessary) will al-
ways form a bounded 2-dimensional cell in the
area between the two edges.
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4 Real lifting conditions of deformation classes

In this section, we focus on the real lifting conditions determined by each shape in a
deformation class. This leads to a new proof of Pliicker and Zeuthen’s count for tropically
smooth quartics. First, we focus on the two deformation classes discussed in Lemmas 8
and 9. Then, we analyze the sign rules for the deformation class (C) which requires a
special argument, as is explained in Example 12. There are six cases to treat depending on
the relative order of the edge lenghts of three relevant bounded edges of I' yielding shape
(C). Sign rules for lifting the remaining deformation classes are provided in Theorem 14.
Table 5 contains a summary of our fundings.

Our starting point are the real lifting conditions determined by Cueto and Markwig [6]
and reported in Table 3. With the notation s,,, we indicate the sign of the coefficient c¢,,,
of the monomial corresponding to the lattice point p,,,. In the proofs, we will consider five
parameters ¢, j, k, v and v. The edge Dy1pu+1.1 is the green edge in a dual bitangent motif.
The parameter j specifies the point p;p forming a triangle with the green edge. The edge
P1oD1ot+1 is the red edge in a dual bitangent motif. The parameter ¢ specifies the point py;
forming a triangle with the red edge. Finally, & parametrizes a blue edge p11pra—z-

Shape Lifting conditions
(A (—51081,041)"S0:522 > 0 and (—Sy1Su+41,1)” SjoS22 > 0
+1 1
(B (_Slvsl,erl)H_ S0iS21 > 0 and (—sg1 )" 8%151u51,v+15j0 >0

Q
N m\’\_/\_/\_/

(—811)i+]’8i128]2180i8j0 > 0 and (—821>k+j811€28{18k74_k8j0 >0
<_51v51,v+1)i+150i521 > 0 and —s2151451,041540 > 0
<_31v31,v+1)i+1301321 > 0 and $3151451,041530 > 0
(—510511)"80i522 > 0
(—Slel,vﬂ)iHSoz’Szo >0
(—510511)"50iSk,a—k > 0
—510511501Sk,a—k > 0

—~
~—
—~

o=

~~

t

~—
Py N F
e
S— | —
=

[

N~——

!
Z\_/

—~

~—
- S~— |~

7
=
32

V) 500Sk,4—k > 0

=

El=
L
5

—510511801522 > 0

—~

=
PN
=
QO
—~
=
O

NI

R),(S) S00522 > 0

rest no conditions

Table 3: The real lifting conditions of the bitangent shapes in their identity positions as
determined in [6, Table 11].

Lemma 10. Let I' be a smooth tropical plane quartic with dual triangulation T and a
bitangent shape B in the deformation class (E J F). For every ¢ € ¥(T) the real lifting
conditions of B, in I'. are independent of the shape of the bitangent class.

Proof. From the proof of Lemma 8 we know that a bitangent class in the deformation
class (E J F) can deform into any of the three shapes, all in the same position with respect
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to the action of S3. As the triangulation 7T is fixed, the values that have to be substituted
for v and ¢ in the formula from Table 3 do not change for the three shapes. O

Lemma 11. Let ' be a smooth tropical plane quartic curve with dual triangulation T
and a bitangent shape B in a deformation class (G K U U T T° T” V)+(xy). For
every ¢ € X(T) the real lifting conditions of B. in I'. are independent of the shape of the
bitangent class.

Proof. Figure 9 shows the two dual deformation motifs of the deformation class. The
lifting conditions of shape (G) and shapes (K), (U), (U’), (T), (T7), (T”), (V) in identity
position differ by the factor (—si9s11)’. Since the vertex relevant to the value of i is poo,
the value of 7 is 0, so the two conditions coincide. This value does not change under the
(xy) permutation. The sign si 4 is uniquely determined by the dual motif, so again it
stays the same for all shapes. Thus, we can conclude for both dual deformation motifs in
Figure 9 that the real lifting conditions are independent of the shapes. O

We now focus on the special case of deformation class (C). In [6], the lifting conditions
for the bitangent class (C) are computed for generic tropical quartics satisfying the following
condition: If I contains a vertex v adjacent to three bounded edges with directions —eq,
—eg and e + ey, then there exists a unique shortest edge. The vertex of a tropical bitangent
of shape (C) coincides with v. Cueto and Marking chose the edge with direction —ey as
shortest edge. We denote with A\;, As and A3 the lattice lengths of the edges adjacent to
the vertex v with direction —ey, —e; and e + eq, respectively. When A\; < Ay < A3, we
call this the identity case of the genericity condition.

Any generic tropical quartic having a bitangent class of shape (C) at a vertex v, but
with different edge lengths, can be brought into this position by applying an action of Ss.
This changes the dual subdivision accordingly and, as consequence, also the formula for
the real lifting conditions of (C). We illustrate this in Example 12.

Figure 12: There are 8 unimodular triangulations refining this subdivision. Any tropical
quartic curve with dual triangulation one of these 8 refinements does not satisfy the
genericity condition.

For some tropical quartic curves with bitangent class (C), the genericity condition of a
unique shortest edge adjacent to v can never be satisfied. This happens when the dual
triangulation only allows a pair of shortest edges adjacent to v. Up to Sz-action, these
triangulations are unimodular refinements of the partial subdivision in Figure 12.

Example 12. We consider the two smooth tropical quartic curves dual to the triangulation
T shown in Figure 13. These quartic curves have a bitangent class of shape (C). For the
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tropical curve in Figure 13b, the lengths A1, Ao, A3 satisfy the identity case of the genericity
condition: A\; < Ay < A3. We substitute ¢ = 2,7 = 1, kK = 2 in the real lifting condition for
(C) in Table 3 obtaining

— 811521502510 > 0 and — S91511522510 > 0. (2)

« (b) Generic curve in (c) Generic curve not in
(a) Triangulation 7 identity position. identity position.

Figure 13: Smooth tropical quartic with bitangent class of shape (C). We have i = 2,
j=1,and k = 2.

By choosing a different weight vector in 3(7), we can deform the edge lengths such
that Ay < A1 < A3. An example of this is shown in Figure 13c. In this case, we are no
longer in the identity case, so in order to apply the lifting formula, we need to apply the
action of (zy) to switch the lengths A\; and Ay, inducing also an action on the triangulation
7. The image of the curve and of 7 under (zy) is depicted in Figure 14. Now, we have
to substitute i = 1, j = 2, k = 2 in the lifting conditions for shape (C) obtaining

—511812501S20 > 0 and $93890 > 0.

N\

(a) Image of Figure 13a
under (zy). (b) Image of Figure 13c under (zy).

Figure 14: The (xy)-transformation of the tropical curve in Figure 13c and its dual
triangulation. We have 1 =1, j = 2, and k = 2.

We then deduce the lifting conditions for the original quartic with Ay < A\ < A3 by
applying (zy)™" = (zy):

— 5115921510502 > 0 and S99502 > 0. (3)
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The second inequalities in (2) and (3) are different. However, we observe that the first
inequality —s118921810802 > 0 is true if and only if sgo = —s11521519. Substituting this
equation into the second inequality, we see that the real lifting conditions are equivalent.

Proposition 13. Let I' be a smooth tropical plane quartic curve with dual triangulation
T and a bitangent class B of shape (C). For every generic ¢ € 3(T), the real lifting
conditions of B, in I, are equivalent.

Proof. We fix the following notation, see also Figure 15: i is the y-coordinate of the vertex
Poi, which forms a triangle with the (red) edge pi1piz, j is the x-coordinate of the vertex
pjo, which forms a triangle with the (green) edge pi1pz1 and k is the z-coordinate of the
vertex py4—g, which forms a triangle with the (pink) edge Prapar.

AN

Figure 15: The dual deformation motif to shape (C) in identity position. The choices of
the green, red, pink lattice points determine the values of j, 7, k, respectively.

We compute the real lifting conditions of shape (C) for a bitangent class not in identity
position. Suppose that I'. has a unique shortest edge among Ay, As, A\3. Then, there
exists o € Sz such that for o(I") the lattice lengths of the edges adjacent to o(B) satisfy
A1 < A2 < Az. This corresponds to o(B) being in identity position. We can then determine
the real lifting condition for o(B) using Table 3 and the parameters from o (7). In order to
do this, we first need to look at the images of the three lattice points po;, p;jo and pj 4— under
o. Their images will lie in the boundary of 4Ay: a(po;), o(pjo), o (Pra—r) € {Poi» Pios Pra_i)-
Secondly, we substitute the values of the tilde indices into the lifting conditions, and then
apply 0! to obtain the real lifting conditions of B = ¢ '(¢(B)) in ' = ¢! (o(T')). Finally,
we have to compare the lifting conditions of the bitangent class B of shape (C) in I' with
the ones of B. of shape (C) in I'. where ¢ € 3(7) such that the dual deformation motif of
(T'¢,B.) is in identity position and T, satisfies A\; < Ay < A3.

Inequalities Shape Sign Rules

A1 < Ao < /\3 (C) (—811)1—4H8112.8%1$0i5j0 >0
(=521)" 7 sfy5115k,4- k550 > 0

A2 <AL < A3 | (C)ay (*511)Z+J521245J215015j0 >0

ki ok
(=512)" "5 811 Ska—nS0i > 0
k1) ok
Az <A <A1 (C)asy | (—521)"H sTas], 5k k—a550 > 0
(—811)1+J81128J21$0i5j0 >0

)\1 < )\3 < )\2 (C)(yz) )i+k8i18§150¢5k74_k >0

(*512
(—Sgl)iJerJnS]fQSkA_ijo >0
)\3 < )\1 < )\2 (C)(acyz) (7821)j+k.9]11$]1€28j05k74_k >0
(
(

ktini ok

—s12)" 1" s1,55150i5ka—k > 0
1172

—812)" 7831811 8k,a—kS0i > 0

N
(*511)]“521511253‘0507: >0

Ao < A3 <\ (C)(wzy) ki
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The sign rules in the table are obtained by applying the corresponding permutation to
each formula for the identity position (row 1 of the table) and replacing the values of i, j,
k by the corresponding ones. The procedure should be clear from Figure 1. For example,
when applying (zyz), the values of (i, j, k) should be replaced with (j, k, 7).

Then, it suffices to use the same techniques as in Example 12 to confirm the sign
rules for all 6 cases are equivalent. For example, to show the equivalence between cases
1 and 2, it is enough to check that the first inequalities in both cases agree, whereas
replacing s;o by (—s11)"*7si,85;50; (which follows from the first inequality) in the second
inequality for case 1 yields the remaining inequality in case 2. The equivalence between
case 1 and the remaining cases follows by similar reasoning since they always share a
common inequality. O]

Theorem 14. Let I' be a generic tropical smooth quartic curve with dual triangulation T,
and let B be a tropical bitangent class. For every ¢ € X(T), the real lifting conditions of
B. in T, are independent on the shape of the bitangent class. In other words: real lifting
conditions of tropical bitangent classes only depend on the dual subdivision T of T'.

Proof. We prove this by going through all deformation classes not considered in Lemma 10
and 11 and Proposition 13, and by comparing the lifting conditions of the different shapes.
The shapes in the deformation classes (W X(,.y Y(;.) EE GG) and (W...HH) have no
real lifting conditions, so the statement holds. The remaining deformation classes are
summarized below. For the lifting conditions of the shapes we refer to Table 3.

Deformation class parameters

The dual bitangent motif of (B) yields j = 4.
Substituting it gives the same real lifting condi-
tions for (B), (H’) and (H). The lifting conditions

(B H H),, (B H

H)+(y 2) for (H) and (H)(,.) are the same, so the state-
ment follows by symmetry.
The dual bitangent motif of (B) yields j = 3.
Substituting it gives the same real lifting condi-
(B M)+(y z) S ond ;

tions for (B) and (M). The real lifting conditions
for (M) and (M), .) are the same.

The dual bitangent motif of shape (D) yields
MDLQ), (DL’ Q Q" R) |i=0, so the real lifting conditions for all shapes
in the two deformation classes coincide.

The dual bitangent motif of shape (D) yields
(DL O) 1 = 1, so the real lifting conditions for all shapes
in this deformation class coincide.

The dual bitangent motif of shape (G) yields
i = 1, so the real lifting conditions of (G), (I)
and (N) coincide. Also, (N) and (N)(,) have
the same real lifting conditions.

(GIN)+(zy)
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Deformation class parameters

The dual bitangent motif of shape (G) yields
(GKUTT) 1 = 0, so the real lifting conditions for all shapes
in this deformation class coincide.

[]

Remark 15. Markwig, Payne and Shaw characterize the lifting conditions of bitangent
shapes over more general fields [16]. An analogous investigation to the proof of Theorem 14
shows that the lifting conditions again stay constant in every deformation class. Therefore,
deformation classes are relevant for the lifting behavior of tropical bitangents over other
fields, not only over real closed fields.

Table 5 summarizes the real lifting conditions for the deformation classes described in
Lemmas 10, 11, Proposition 13 and Theorem 14.

Deformation class Lifting conditions
(A) (—51051,041)"50i522 > 0 and (—su15u41,1)? 850522 > 0
1T 1),
(B H' H)+(yz), (—S1081,04+1) 1 s0is21 > 0 and —s9151451,p41540 > 0
(H)
(B M)+(yz) (—51081,0+1) T 50i821 > 0 and $3181451,04+1530 > 0
(B) (—81081,0+1)  ts0is21 > 0 and (—s21) 18] 51081041850 > 0
with j € {0,1,2}
(C) (—s511)"7 88080, 50i850 > 0 and (—s21) sk, 87 s 4850 > 0
(D) (—810811)i80i822 > (0 with 7 € {2,3,4}
(D L O), (P) —510511801522 > 0
(DL’ Q),
(D L’'QQ R), S00S22 > 0
(5), (T)
(E), (E J F) (—811)8171,4_1)14_180,'820 >0
(G) (—810811)1801'811“4_1C > 0 with 7 € {2,3,4}
(G I N)+(Iy) —510511501Sk,4—k > 0
GKUUTT),
(GKUU T- 5008k,4—k > 0
-T"T” V)+(xy)
rest no conditions

Table 5: Real lifting conditions of the deformation classes in their positions as in Figure 11.

We are now ready to give a proof of our main result.

Proof of Theorem 1. Let I' be a generic tropicalization of a tropically smooth quartic
curve V' (f) defined over Kg and T its dual triangulation. By Theorem 14, the real lifting
conditions of the 7 bitangent classes of I' only depend on their 7 deformation classes.
Furthermore, the deformation classes are uniquely determined by their dual deformation
motifs in the triangulation 7, as pointed out in Remark 6. Therefore, the real lifting
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conditions for the tropical bitangent classes of I only depend on the triangulation 7.

In order to prove the statement, we need to enumerate the dual deformation motifs
of the deformation classes in the 1278 unimodular regular triangulations of 4A; modulo
Ss-symmetry as computed in [4]. Of these Ss-representatives exactly eight do not satisfy
the genericity constraint that a vertex of the curve with adjacent edges of directions —ey,
—e9, €1 + €5 needs to have a unique shortest adjacent edge, see Figure 12. For these
eight cones we did run the same computations as for the generic cones, but we could
not compute the lifting behavior of the bitangent class of shape (C) since this is not yet
understood. However, since the numbers of real bitangents are already known classically,
our computations might help to understand these special cases.

We implemented the search for the dual deformation motifs of the deformation classes
in polymake [8]. For each deformation class, we considered the real lifting conditions
determined in Theorem 14 and summarized in Table 5, and we evaluated them for all
possible 2!'° sign vectors. Again, we implemented this in polymake obtaining that each
sign vector satisfies the lifting conditions of 1, 2, 4 or 7 deformation classes. A more
detailed description of the computational procedure and codes can be found in [10].

Finally, by [6, Theorem 1.2 and Corollary 7.3], each bitangent class has either zero or
exactly four lifts to totally real bitangents. Therefore, the smooth quartic curve V(f) with
smooth tropicalization I' has either 4, 8, 16 or 28 totally real bitangents. 0

Example 16. We consider the following regular unimodular triangulation of 4As:

{[poopmpoﬂ, [p01p11p02]7 [p02p21p12], [p02p12p03], [2903]913;004], [2911]902;021], [plopzopn], [onp:aopzﬂa

[P30p401931], [p21p31p22], [P12p22p13], [p10p01p11], [p12p03p13], [p30p21p31], [P2op11p21], [p21p12p22]]

It contains six dual deformation motifs of type (A) and one of type (G I N)+(zy).

Deformation class Lifting conditions
(A) —512503522513 > 0 and —S30521531S22 > 0

(A)(mz) —S02512503513 > 0 and s99Sp2 > 0
(A) (22 — 502512503513 > 0 and —5109801511520 > 0
(A)(a:yz) —810501511520 > 0 and spaS92 > 0
(A) (221 — 820530521531 > 0 and —s10801520511 > 0
(A)(J:z) Sp2S922 > 0 and S20S02 > 0

((G I N)—i‘(iﬁy))(m) —5890530521531 > 0

Of the 15 coefficients of the lifted algebraic curve, the maximal number of 12 is involved
in the sign conditions. We fix all signs s;; positive except for sig, s21 and sp3. When
varying these three signs, different lifting conditions will be satisfied, and consequently,
the lifted real algebraic quartic curves will have different numbers of bitangent lines as
summarized in the table below. The topological type of the curves near the tropical limit
is also determined by the signs and can visualized via patchworking in polymake [12].
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Negative signs | Pliicker numbers | Topological type
None 4 1 oval
$10 8 2 ovals
$10, S21 16 3 ovals
$10, S21 and Spg 28 4 ovals
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A

In this section we provide further figures to help understanding the classification statement
in Section 3. We recommend considering the figures together with the table in the proof
of Theorem 2.

A.1 Example of deformation class (B H’ H)

Let T" be a smooth tropical quartic curve with a bitangent class B with dual bitangent
motif in identity position contained in the subcomplex in Figure 16. Note that we are
choosing the red edge piapi3 in the corresponding picture in Figure 11. A similar example

can be drawn for pi1pis.

Figure 16: Example of deformation class (B H” H).

(B) (H) (H)

A.2 Example of deformation class (B H’ H)+(y 2z)

Let T" be a smooth tropical quartic curve with a bitangent class B with dual bitangent
motif in identity position contained in the subcomplex in Figure 17. Note that we are
choosing the red edge p1ap13 in the corresponding picture in Figure 11. Similar examples
can be drawn for piop1; and p1ipis.

(H7)(y z) (B)(y z)

Figure 17: Example of deformation class (B H’ H)+(y 2).
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A.3 Example of deformation class (B M)-+(y 2)

Let I' be a smooth tropical quartic curve with a bitangent class B with dual bitangent
motif in identity position contained in the subcomplex in Figure 18. Note that we are
choosing the red edge p12pi3 in the corresponding picture in Figure 11. Similar examples
can be drawn for piop11 and pripiea.

(M) (B)(y z)

Figure 18: Example of deformation class (B M)+(y 2).

A.4 Example of deformation class (D L’ Q)

Let I" be a smooth tropical quartic curve with a bitangent class B with dual bitangent
motif in identity position contained in the subcomplex in Figure 19.

(D) (L)

Figure 19: Example of deformation class (D L’ Q).

A.5 Example of deformation class (D L’ Q Q’ R)

Let T" be a smooth tropical quartic curve with a bitangent class B with dual bitangent
motif in identity position contained in the subcomplex in Figure 20.

(L)
Figure 20: Example of deformation class (D L’ Q Q’ R).
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A.6 Example of deformation class (D L O)

Let I' be a smooth tropical quartic curve with a bitangent class B with dual bitangent
motif in identity position contained in the subcomplex in Figure 21.

(D)
Figure 21: Example of deformation class (D L O).

A.7 Deformation class (G I N)+(z y)

For this deformation class there are two different cases of how the second tangency arises.
Let I' be a smooth tropical quartic curve with a bitangent class B with dual bitangent
motif in identity position contained in the subcomplex in Figure 22. This figure depicts
the case where one tangency is given by the blue edge piipas.

(@ | ) Dew @y

Figure 22: Example of deformation class (G I N)+(z y) with one tangency given by pi1paz.

The situation is similar if we choose the other blue edge p11pos, as illustrated in Figure 23.

(G) (D (N) (D (zy) (G)(ay)

Figure 23: Example of deformation class (G I N)+(z y) with one tangency given by pi1pos.
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A.8 Deformation class (G K U T T?)

As for deformation class (G I N)+(zy) there are two different cases of how the second
tangency arises. Let I' be a smooth tropical quartic curve with a bitangent class B with
dual bitangent motif in identity position contained in the subcomplex in Figure 24. This
figure depicts the case where one tangency is given by the blue edge piipas.

72 =

(G) (K) (U) (T") (T)
Figure 24: Example of deformation class (G K U T T’) with one tangency given by p11p2z.

The situation is similar if we choose the other blue edge p11pag, as illustrated in Figure 25.

Figure 25: Example of deformation class (G K U T T’) with one tangency given by P11pao-

A.9 Deformation class (W X(;.) Y(.) EE GG)

Let T" be a smooth tropical quartic curve with a bitangent class B with dual bitangent
motif in identity position contained in the subcomplex in Figure 26.

1

(EE) V(GG)

SR
™ (Y)e )

(X) (z2)

Figure 26: Example of deformation class (W X(z.) Y(z.) EE GG).

A.10 Deformation class (W...HH)+(x 2)

Let T" be a smooth tropical quartic curve with a bitangent class B with dual bitangent
motif in identity position contained in the subcomplex in Figure 27.
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Figure 27: Example of deformation class (W X Y Z AA ... HH).
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