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Abstract

We prove a generalisation of Bollobás’ classical result on the asymptotics of the
chromatic number of the binomial random graph to the stochastic block model. In
addition, by allowing the number of blocks to grow, we determine the chromatic
number in the Chung-Lu model. Our approach is based on the estimates for the
weighted independence number, where weights are specifically designed to encapsu-
late inhomogeneities of the random graph.
Mathematics Subject Classifications: 05C80, 05C15

1 Introduction

The chromatic number χ(G) of a graph G, denoted by χ(G), is the smallest number of
colours needed for the assignment of colours to the vertices of G so that no two adjacent
vertices have the same colour. Understanding properties of the distribution of χ(G) for
random G is one of the most prominent problems in the random graph theory since the
seminal paper [12] by Erdős and Rényi.

The binomial random graph G(n, p) is the most studied in the literature. Recall that
G(n, p) is a graph on vertex set [n] := {1, 2, . . . , n} and each pair of distinct vertices
is connected by an edge independently of each other with probability p. A long line of
research led to many breakthrough results on the asymptotic behaviour and concentration
of χ(G(n, p)); see [2, 3, 7, 8, 10, 16, 17, 22, 25, 26, 28, 30, 33] — this list is far from being
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exhaustive. In particular, it is well known that if p = p(n) ∈ [0, 1] is such that np→∞ as
n→∞ and p 6 1− ε for some fixed ε > 0, then, whp (meaning with probability tending
to one) as n→∞,

χ(G(n, p)) = (1 + o(1))
n log

(
1

1−p

)
2 log(pn)

. (1)

Formally, “X(n) = (1 + o(1))Y (n) holds whp as n→∞” means that, for any fixed ε > 0,
the probability of the event that (1−ε)Y (n) 6 X(n) 6 (1+ε)Y (n) tends to 1 as n→∞.
Throughout the paper, we use log to denote the natural logarithm.

Our paper focuses on generalising formula (1) to a random graphG from the stochastic
block model, in which all vertices are distributed between several different blocks and
the probabilities of adjacencies of vertices depend only on the block they belong to; see
Section 2 for formal definitions. The chromatic number in this random graph model was
recently studied by Martinsson et al. [27]. Under the condition that the number of blocks
is fixed and all probabilities are constants from (0, 1), namely, they are all independent of
the number of vertices n, Martinsson et al. proved that, whp as n→∞,

χ(G) = (1 + o(1))
n

c∗ log n
,

where constant c∗ is the solution of a certain convex optimisation problem, which depends
only on the matrix of probabilities and the proportions for the distribution of n vertices
between the blocks.

In this paper, we extend the above result by Martinsson et al. [27] in two directions:

(1) the edge probabilities can be functions of n (in particular, vanishing or tending 1),

(2) the number of blocks can grow as a function of n.

We defer the exact statement of our main result (Theorem 5) to Section 2 in order to
obviate introducing the technical notations in the introduction. In the rest of this section,
we discuss several consequences of Theorem 5, which are interesting of their own.

1.1 A very dense binomial random graph

The classical binomial random graph G(n, p) can be considered as a random graph from
the stochastic block model with a single block. Even in this case, our main result (Theo-
rem 5) implies new information on the chromatic number of a very dense binomial random
graph when p = p(n)→ 1 as n→∞ which was not treated in the literature. Namely, as
a straightforward application of Theorem 5, we obtain the following result.

Theorem 1. If p = p(n) ∈ [0, 1] such that p→ 1 and 1− p = no(1), then (1) holds whp.

We believe that no(1) in Theorem 1 can not be improved. For example, if p1 = 1− 1
n logn

then whpG(n, p1) has a clique of size (1+o(1))n since its complement contains o(n) edges.
Thus, whp as n→∞

χ(G(n, p1)) = (1 + o(1))n.
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On the other hand, if p2 = 1 − log2 n
n

then whp the complement of G(n, p2) contains a
perfect matching as shown by Erdős and Rényi [13]. Thus, whp as n→∞

χ(G(n, p2)) 6 (1 + o(1))
n

2
.

Note that formula (1) is not valid for p = p1, but it might still be true for p = p2, because

log 1
1−p1

log(p1n)
= 1 + o(1) and

log 1
1−p2

log(p2n)
= 1 + o(1).

More generally, for the case when p = 1− nO(1), we conjecture the following.

Conjecture 2. Let r > 2 be a fixed integer and p = p(n) ∈ [0, 1] be such that

n−
2
r+1 � 1− p� n−

2
r .

Then, χ(G(n, p)) = (1 + o(1))n
r
whp as n→∞.

As observed above, G(n, p) can be coloured in n
2
colours if its complement has a perfect

matching. In fact, to achieve a colouring with at most (1 + o(1))n
2
colours, it is sufficient

that the complement of G(n, p) contains an almost perfect matching covering n − o(n)
vertices. Similarly, for any fixed integer r > 2, in order to show that χ(G(n, p)) 6
(1 + o(1))n

r
, it is sufficient to find an almost perfect Kr-matching in the complement

of G(n, p). (Throughout the paper, Kr denotes the complete graph with vertex set [r]
or the clique of size r.) For an arbitrary graph G, the thresholds for the existence of
perfect G-matchings and almost perfect G-matchings was studied by Ruciński [31] and
by Johansson, Kahn, and Vu [15]. In particular, [31, Theorem 4] establishes the existence
of an almost perfect Kr-matching if n(1 − p)r/2 � 1 which implies the upper bound of
Conjecture 2. However, the lower bound for χ(G(n, p)) does not follow from the known
results on G-matchings since an optimal colouring migh have colour classes of different
sizes.

Conjecture 2 was recently confirmed by Surya and Warnke; see [32, Theorem 13].

1.2 Percolations on blow-up graphs

Given a graph G = (V (G), E(G)) and p ∈ (0, 1), the percolated random graph Gp, which
is also known as a random subgraph of G, is generated from G by keeping each edge in
E(G) independently with probability p. In particular, if G = Kn, then Gp is equivalent
to the binomial random graph G(n, p). In this case, formula (1) can read as follows: whp

χ(Gp) = (1 + o(1))
log( 1

1−p)

2 log(pn)
χ(G), as n = |V (G)| → ∞. (2)

In this paper we show that (2) holds when G is a blow-up graph GH(n) constructed as
follows. Given a graph H on vertex set [k] and a vector n = (n1, . . . , nk)

T ∈ Nk, we denote
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by GH(n) the graph obtained from H by replacing each vertex i ∈ [k] with Kni . An edge
between any two vertices from different cliques appears in GH(n) if the corresponding
edge is present in H. One can consider the blow-up graph GH(n) as a special case of
a “random” graph from the stochastic block model by setting all probabilities 1 or 0
according to the adjacency matrix of the graph H.

Kn1 Kn2 Kn3

Kn4 Kn5

1 2 3

4 5

Figure 1: A blow-up graph GH(n) (left) for a graph H on 5 vertices (right).

Everywhere in this paper the norm notation ‖ · ‖ stands for the 1-norm:

‖n‖ = n1 + · · ·+ nk.

Theorem 3. Let ε ∈ (0, 1
4
) be fixed and H be a graph with vertex set [k]. Assume

n = n(n) ∈ Nk and p = p(n) ∈ (0, 1) are such that as n→∞,

‖n‖ → ∞, p > ‖n‖−
1
4

+ε, 1− p = ‖n‖−o(1).

Then, (2) with G = GH(n) holds whp.

We prove Theorem 3 in Section 3.3. Note that Theorem 3 with k = 1 and n1 = n
(and thus GH(n) = Kn) recovers Theorem 1.

Determining the chromatic number of a random subgraph Gp for a general graph G is a
much harder problem; see, for example, [4–6,29,34]. In particular, Bukh asks [6] whether
for any graph G, there exists a positive constant c such that Eχ(G1/2) > c

log(χ(G))
χ(G).

Using standard concentration results, Bukh’s question for blow-up graphs is equivalent to
that whp

χ(G1/2) >
c

log(|V (G)|)
χ(G).

Theorem 3 establishes this bound for blow-up graphs. It would be interesting to find
other classes of graphs that satisfy (2) (or at least its lower bound).

1.3 Chung-Lu model

As mentioned, our main result (Theorem 5) allows the number of blocks to grow. Thus,
one can study χ(G) for general inhomogenous random graphs G using approximations
by the stochastic block model. To demonstrate the idea, we consider the following two
random graph models. Given u = (u1, . . . , un)T ∈ [0, 1]n and p ∈ [0, 1], a random graph
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G×p ∼ G×(u, p) has vertex set [n] and edges ij are generated independently of each other
with probabilities

p×ij = p uiuj i, j ∈ [n].

Similarly, given u ∈ [0, 1]n and p ∈ [0, 1
2
], a random graph G+

p ∼ G+(u, p) has vertex set
[n] and edges ij are generated independently of each other with probabilities

p+
ij = p (ui + uj) i, j ∈ [n].

The model G×(u, p) is known as the Chung-Lu random graph model and it is of central
importance in the network analysis; for more extensive background, see, for example, [9]
and references therein. For decreasing p = p(n), the model G+(u, p) is asymptotically
equivalent to the complement of the Chung-Lu model.

Theorem 4. Let ε > 0 be fixed and p = p(n) be such 1 � p > n−
1
4

+ε as n → ∞. Then,
whp uniformly over u ∈ [0, 1]n satisfying

∑
i∈[n] ui = Ω(n), the following hold:

(a) χ(G×p ) = (1 + o(1))
p

2 log(pn)
max
U⊆[n]

1

|U |

(∑
i∈U

ui

)2

, where G×p ∼ G×(u, p);

(b) χ(G+
p ) = (1 + o(1))

p

log(pn)

∑
i∈[n]

ui, where G+
p ∼ G+(u, p).

We prove Theorem 4 in Section 3.4. Theorem 4 applies to the case when a constant
fraction of expected degrees of the random graphs G×p and G+

p are within a multiplicative
constant of the maximum expected degree. We believe that the formulas of Theorem 4
can be extended to allow a larger variation of components of u covering, for example,
power-law degree sequences.

2 Stochastic block model

Before stating our main result on the chromatic number of a random graph from the
stochastic block model, we first define the stochastic block model formally. For a positive
integer k, a vector n = (n1, . . . , nk)

T ∈ Nk, and a k × k symmetric matrix P = (pij)i,j∈[k]

with pij ∈ [0, 1], a random graph G from the stochastic block model G(n, P ), denoted by
G ∼ G(n, P ), is constructed as follows:

• the vertex set V (G) is partitioned into k disjoint blocks B1, . . . , Bk of sizes |Bi| = ni
for i ∈ [k] (and we write V (G) = B1 ∪ · · · ∪Bk);

• each pair {u, v} of distinct vertices u, v ∈ V (G) is included in the edge set E(G),
independently of one another, with the probability

p(u, v) := pij,

where i = i(u) ∈ [k] and j = j(v) ∈ [k] are such u ∈ Bi and v ∈ Bj.
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Throughout the paper, for all asymptotic notation, we implicitly consider sequences
of vectors n = n(n) ∈ Nk and k × k symmetric matrices P = P (n), where

k = k(n), n(n) = (n1(n), . . . nk(n))T , P =
(
pij(n)

)
i,j∈[k]

.

Our bounds (including whp results) hold uniformly over all sequences n(n) and P (n),
where n → ∞, satisfying stated assumptions where the implicit functions like in o(·)
depend on n only. Apart from the standard Landau notation o(·) and O(·), we also use
the notation an = ω(bn) or an = Ω(bn) if an > 0 always and bn = o(an) or bn = O(an),
respectively. We write an = Θ(bn) if an = O(bn) and bn = O(an). If both an and bn are
positive sequences, we also write an � bn if an = o(bn), and an � bn if an = ω(bn). For
example, k = ‖n‖o(1) means that log k(n)

log ‖n(n)‖ → 0.
In the following, we always assume that pij = pji and 0 6 pij < 1 for all i, j ∈ [k].

Define the k × k symmetric matrix Q = Q(P ) by

Q := (qij)i,j∈[k], where qij := log
(

1
1−pij

)
. (3)

Let R+ := [0,+∞) and, for x,y ∈ Rk, we denote

y � x wheneverx− y ∈ Rk
+.

Let w(·, Q) : Rk
+ → R+ be defined by

w(x, Q) := max
0�y�x

yT Qy

‖y‖
, x ∈ Rk

+, (4)

where 0 = (0, . . . , 0)T ∈ Rk and ‖y‖ := |y1| + · · · + |yk|. In (4), we take yT Qy
‖y‖ to be zero

for y = 0, so it is a continuous function of y, which achieves its the maximal value on
the compact set {y ∈ Rk

+ : y � x}. In fact, it is always achieved at a corner, where
yi ∈ {0, xi} for all i ∈ [k]; seeTheorem 10(b).

The quantity w(x, Q) is closely related to the minimum number of colours required
to properly colour an inhomogeneous graph with “balanced” colour classes. To illustrate
it, let us consider a random graph G ∼ G(n, P ), where n = (nx1, nx2, . . . , nxk)

T = nx
and number of blocks k and all probabilities pij ∈ (0, 1) are fixed. In order to determine
the size of the largest “balanced” independent set, we will present here some rough first
moment calculations, while the full details are given in Section 4 and Section 6.

The expected number of collections of k disjoint sets Si, each of which takes sxi vertices
from each block Bi, such that ∪i∈[k]Si is an independent set in G (see Figure 2) is given
by

∏
i∈[k]

(
nxi
sxi

)
(1− pii)sxi

·
∏
i,j∈[k]

(1− pij)s
2xixj = exp

(
−s

2

2
xTQx +O(s‖x‖)

)(en
s

)s‖x‖
, (5)
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nx1

sx1

nx2

sx2

nx3

sx3

· · · nxk

sxk

S

Figure 2: A “balanced” set S =
⋃
i∈[k] Si in G ∼ G(n, P ), where |Si| = sxi and ni = nxi.

where the RHS is derived via Stirling’s formula for any slowly growing s = s(n) �
√
n.

The first moment threshold corresponds to

exp
(
−1

2
sxTQx

)(en
s

)‖x‖
= 1,

which gives

s ≈ 2 log n · ‖x‖
xTQx

.

However, this might be significantly above the existence threshold due to the fact that
our random graph model is inhomogeneous. In particular, the appearance of “balanced”
independent sets inG implies the existence of a “balanced” independent set (with the same
size proportion s/n) in its subgraph G′ ∼ G(n′, P ) where n′ = ny for any 0 � y � x.
Repeating the arguments of (5) for such G′, we conclude that whp s can not exceed

2 log n · min
0�y�x

‖y‖
yT Qy

= 2 log n · 1

w(x, Q)
.

In Section 4, we show that it is indeed the existence threshold (for a more general setting
that allows vanishing probabilities); see Theorem 19.

Define w∗(·, Q) : Rk
+ → R+ by

w∗(x, Q) := inf
S∈F(x)

∑
y∈S

w(y, Q), x ∈ Rk
+, (6)

where F(x) consists of finite systems S of vectors from Rk
+ such that

∑
y∈S y = x. In fact,

the infimum of
∑

y∈S w(y) in (6) is always achieved by a system S ∈ F(x) consisting of
at most k vectors; see Theorem 10(f).

Similarly to w(x, Q), the quantity w∗(x, Q) has a combinatorial meaning as follows.
Consider again a random graph G ∼ G(n, P ), where n = (nx1, nx2, . . . , nxn)T = nx
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and all probabilities pij ∈ (0, 1) are fixed. Then whp the minimum number of colours
required to properly colour G utilising at most k different types of independent sets is
asymptotically equal to

n

2 log n
w∗(x, Q).

The next theorem shows that such colourings are asymptotically optimal, that is, no more
than k different types are required to determine χ(G) (for a more general setting that
allows vanishing probabilities). Let

q∗ := max
i∈[k]

qii and q̂(x) :=

∑
i∈[k] xiqii

‖x‖
, x 6= 0. (7)

For convenience, we also set q̂(0) := q∗.

Theorem 5. Let σ ∈ [0, σ0] for some fixed 0 < σ0 <
1
4
and let P = (pij)i,j∈[k] be such that

pij = pji and 0 6 pij < 1 for all i, j ∈ [k]. Let Q := (qij)i,j∈[k] where qij := log
(

1
1−pij

)
.

Let q∗, q̂(·), and w∗(·, Q) be defined by (7) and (6). Assume that the following asymptotics
hold:

‖n‖ → ∞, k = ‖n‖o(1), q∗ = ‖n‖−σ+o(1), q̂(n) = ‖n‖−σ+o(1). (8)

Assume also that (
1 + 1

q∗

)
max
i,j∈[k]

qij � log ‖n‖ (9)

and
w∗(n, Q)� kq̂(n)q∗

‖n‖
log ‖n‖

. (10)

Then, whp

χ(G) = (1 + o(1))
w∗(n, Q)

2(1− σ) log ‖n‖
, where G ∼ G(n, P ).

Remark 6. In Theorem 5, the parameter σ ∈ [0, σ0] governs the density of G. It is
convenient for our examples to have it not fixed, but treat σ as a bounded parameter
appearing in the formula for the chromatic number. We believe that the condition σ0 <

1
4

is an artefact of our proof techniques. Similarly to the dense case in [14, Section 7.4] and
also to [27], we rely on Janson’s inequality to find sufficiently large independent sets inside
any subset of remaining vertices. Generalisations of the techniques used by Łuczak [25]
should extend Theorem 5 to any σ0 < 1.

Remark 7. Informally, the assumptions of (8) say that the number of blocks in G(n, P ) is
not too big (sublinear in ‖n‖) and the maximum edge probability within a block deviates
not too much (also by a sublinear in ‖n‖ factor) from the average probability within
blocks. Next, the behaviour of edge probabilities between blocks is limited by assumption
(9): they can vary much more significantly than the diagonal probabilities, but we prohibit
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them to converge to 1 too quickly. Note that we allow some edge probabilities to be
small and even 0, but the upper bounds on the maximal probabilities are essential as
demonstrated in Section 1.1. Finally, (10) is a technical assumption that is usually not
very hard to verify. In particular, it follows from a stronger but more explicit condition
(kq∗)2 � q̂(n) log ‖n‖; see the lower bound of Theorem 10(d).

2.1 Proof of Theorem 5

In this section, we provide the proof of Theorem 5 based on two explicit probability
estimates for χ(G) to satisfy the upper and the lower bound stated below.

Theorem 8. Let G ∼ G(n, P ), where P = (pij)i,j∈[k] is such that pij = pji and 0 6 pij < 1
for all i, j ∈ [k]. Assume ‖n‖ → ∞ and (9) holds. Then, for any ε > 0,

Pr

(
χ(G) < (1− ε) w∗(n)

2 log(q∗‖n‖))

)
6 exp

(
−Ω

(
log(q∗‖n‖)
maxi,j∈[k] qij

))
. (11)

We prove Theorem 8 in Section 4.1. This lower tail bound follows from the existence
of large weighted independent sets, similarly to arguments of Bollobás [7] and Łuczak [25].
Comparing to the assumptions of Theorem 5, we note that Theorem 8 also applies for
sparser graphs with q∗ < ‖n‖− 1

4 ,because it does not require assumption (8) to hold.

Theorem 9. Let G ∼ G(n, P ), where P = (pij)i,j∈[k] is such that pij = pji and 0 6 pij < 1
for all i, j ∈ [k]. Let σ ∈ [0, σ0] for some fixed 0 < σ0 <

1
4
. Assume that (8) and (10)

hold. Then, for any ε > 0,

Pr

(
χ(G) > (1 + ε)

w∗(n)

2 log(q∗‖n‖)

)
6 exp

(
−‖n‖2−4σ+o(1)

)
. (12)

We prove Theorem 9 in Section 6.3, using/extending some results and standard ar-
guments on the chromatic numer of the classical binomial random graph. Comparing
to the assumptions of Theorem 5, we note that Theorem 9 allows more variation in the
off-diagonal probabilities pij,because it does not require assumption (9) to hold.

Now, we are ready to prove Theorem 5.

Proof of Theorem 5. Using the assumption q∗ = ‖n‖−σ+o(1) from (8), we observe that

log(q∗‖n‖) = (1 + o(1))(1− σ) log ‖n‖.

Note that all assumptions of Theorems 8 and 9 hold as they appear as the assumptions
of Theorem 5. Also, the quantities on the right hand sides of (11) and (12) satisfy

log(q∗‖n‖)
maxi,j∈[k] qij

→∞ and ‖n‖2−4σ →∞.

Thus, applying Theorems 8 and 9, we get that, for any fixed ε > 0, whp

(1− ε) w∗(n)

2(1− σ) log ‖n‖
6 χ(G) 6 (1 + ε)

w∗(n)

2(1− σ) log ‖n‖
.

This completes the proof.
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2.2 Properties of w and w∗

In this section, we collect some facts about the quantities w(·) = w(·, Q) and w∗(·) =
w∗(·, Q), defined by (4) and (6) for a general matrix Q. These properties are helpful for
applications of Theorem 5 and will also be repeatedly used in the proofs.

Theorem 10. Let Q = (qij)i,j∈[k] be a symmetric k × k matrix with non-negative en-
tries. Let q∗ and q̂(·) be defined according (7). Then, the following hold for any x =
(x1, . . . , xk)

T ∈ Rk
+.

(a) [Scaling and monotonicity]. If x′ ∈ Rk
+ and x′ � sx for some s > 0, then w(x′) 6

sw(x) and w∗(x′) 6 sw∗(x). In particular, w(sx) = sw(x) and w∗(sx) = sw∗(x).

(b) [Corner maximiser]. There is z = (z1, . . . , zk)
T with zi ∈ {0, xi} for all i ∈ [k] such

that
zT Q z
‖z‖ = w(x) := max

0�y�x
yT Qy
‖y‖ .

(c) [Pseudodefinite property]. If yTQy > 0 for all y ∈ Rk with
∑

i∈[k] yi = 0, then

w(x) = w∗(x) := inf
S∈F(x)

∑
y∈S

w(y).

(d) [Upper and lower bounds]. We have

q∗‖x‖ > q̂(x)‖x‖ > w∗(x) >
(q̂(x))2∑
i∈[k] qii

‖x‖ > (q̂(x))2

kq∗
‖x‖,

where the lower bounds for w∗(x) hold under the additional condition that q∗ > 0.

(e) [Triangle inequality]. For any x′ ∈ Rk
+, we have w∗(x) + w∗(x

′) > w∗(x + x′).

(f) [Minimal system of k vectors]. There exists a system of vectors (x(t))t∈[k], each from
Rk

+, such that
∑

t∈[k] x
(t) = x and

∑
t∈[k] w(x(t)) = w∗(x).

(g) [Near-optimal integer system]. If x ∈ Nk then there exists a system of vectors
(x(t))t∈[k], each from Nk, such that

∑
t∈[k] x

(t) = x and
∑

t∈[k] w(x(t)) 6 w∗(x)+k2q∗.

The proof of Theorem 10 is technical and not very insightful, but for completeness it
is provided at the end of the paper in Section 7.

Remark 11. An interesting question not covered in this paper is how to compute or at
least approximate w∗(·) efficiently. We give some examples in Section 3, but the question
remains open in general. We believe that the optimization problems of finding w∗(·) and
w(·) can be efficiently solved by fast converging iterative methods such as gradient descent
and analogues of the simplex method.
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2.3 Structure of the rest of the paper

Section 3 covers applications of our main result, Theorem 5. We consider first the case
of two blocks in detail and then prove Theorems 3 and 4. In addition, we study the
unions of two independent random graphs from the stochastic block model. In Section
4, we introduce the weighted independence number and prove the lower tail probability
estimate of Theorem 8. Sections 5 and 6 are devoted to the upper tail probability es-
timate of Theorem 9. In Secton 5 we derive some preliminary estimates based on idea
of separately colouring the blocks of G(n, P ). In Section 6, we derive an asymptotically
optimal bound on the chromatic number using the estimates for the existence of large
weighted independent sets given in Section 4.2. Finally, we prove Theorem 10 in Section
7.

3 Applications of the main theorem

In this section, we discuss some applications of Theorem 5. Specifically, we consider the
case of two blocks (Section 3.1), the union of two independent random graphs from the
stochastic block model (Section 13), percolations on a blow-up graph (Section 3.3), and
Chung-Lu model and its complement (Section 3.4).

3.1 Two blocks

Consider the random graph G ∼ G(n, P ) with two blocks, where

k = 2, n = (n1, n2)T ∈ N2, P =

[
p11 p12

p12 p22

]
with p12 = p21.

Let B1 and B2 denote the two blocks of G, i.e., a partition of the vertex set V (G), and let
G1 := G[B1] ∼ G(n1, p11) and G2 := G[B2] ∼ G(n2, p22) denote the induced subgraphs
of G ∼ G(n, P ) on B1 and B2, respectively. Since B1 and B2 are disjoint, we have

max{χ(G1), χ(G2)} 6 χ(G) 6 χ(G1) + χ(G2). (13)

For fixed p11, p22 ∈ (0, 1), Martinsson et al. observed in [27, Section 4.1] that there are two
threshold values p and p such that whp χ(G) is asymptotically equal to the lower bound
of (13) if p12 6 p, but it is equal to the upper bound of (13) if p12 > p. Using Theorem 5,
we extend this result to non-fixed p11 = p11(n) or p22 = p22(n) that are allowed to vanish
asymptotically. We also obtain the asymptotic formula for χ(G) when p 6 p12 6 p.

To state our results, define

p = p(p11, p22) := 1− (1− p11)
1
2 (1− p22)

1
2 ,

p = p(n, p11, p22) := 1−min
{

(1− p11)
1
2 · (1− p22)

− n2
2n1 , (1− p22)

1
2 · (1− p11)

− n1
2n2

}
.
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Obviously, 1 > p > p since p11, p22 ∈ (0, 1). Observe also p > 0 since

min

{
(1− p11)

1
2

(1− p22)
n2
2n1

,
(1− p22)

1
2

(1− p11)
n1
2n2

}
6

(
(1− p11)

1
2

(1− p22)
n2
2n1

) n1
n1+n2

(
(1− p22)

1
2

(1− p11)
n1
2n2

) n2
n1+n2

= 1.

Recall from (3) that Q = Q(P ) = (qij)i,j∈{1,2} is defined by qij := log( 1
1−pij ).

Theorem 12. Let σ ∈ [0, σ0] for some fixed 0 < σ0 <
1
4
. Assume that

‖n‖ → ∞, q11 = ‖n‖−σ+o(1), q22 = ‖n‖−σ+o(1),
q2

11

q22

+
q2

22

q11

� log ‖n‖.

Then the following hold whp.

(i) If p 6 p12 6 p then

χ(G) = (1 + o(1))
nTQn

2(1− σ)‖n‖ log ‖n‖
.

(ii) If p 6 p12 6 1 then

χ(G) = (1 + o(1)) (χ(G1) + χ(G2)) = (1 + o(1))
n1q11 + n2q22

2(1− σ) log ‖n‖
.

(iii) If 0 6 p12 6 p then

χ(G) = (1 + o(1)) max {χ(G1), χ(G2)} = (1 + o(1))
max {n1q11, n2q22}
2(1− σ) log ‖n‖

.

Proof. Let q∗, q̂(·), w(·, Q) and w∗(·, Q) be defined by (7), (4), and (6). We will first check
that the assumptions of Theorem 5 are satisfied in part (i). To this end, note that (8) are
given in Theorem 12 and observe that

p12 6 p ⇐⇒ q12 6
1
2
q11 + 1

2
q22.

In particular, we get that q12 6 q∗, thus(
1 + 1

q∗

)
max

i,j∈{1,2}
qij 6 q∗ + 1 6

(q∗)2

q̂(n)
+ 1 6

q2
11

q22

+
q2

22

q11

+ 1� log ‖n‖.

Using alsothe bounds of Theorem 10(d), we find that

w∗(n, Q) >
(q̂(n))2

2q∗
‖n‖ � q̂(n)q∗‖n‖

log ‖n‖
.

This establishes (9) and (10).
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To prove part (i) by applying Theorem 5, it remains to show that if p 6 p12 6 p then

w∗(n, Q) =
nTQn

‖n‖
.

The inequality q12 6 1
2
q11 + 1

2
q22 is also equivalent to yTQy > 0 for any y ∈ R2 with

y11+y22 = 0 (clearly, one only needs to consider y = (1,−1)T ). Usingthe corner maximiser
and the pseudodefinite properties in Theorem 10(b,c), we get that

w∗(n, Q) = w(n, Q) = max
{
n1q11, n2q22,

nTQn
‖n‖

}
.

Observe that

n1q11 6
nTQn

‖n‖
=
n2

1q11 + 2n1n2q12 + n2
2q22

n1 + n2

holds whenever q12 > 1
2
q11 − n2

2n1
q22. Similarly, n2q22 6 nTQn

‖n‖ holds whenever q12 >
1
2
q22 − n1

n2
q11. Next, we recall the second assumption of part (i) that p12 > p, which is

equivalent to
q12 > max

{
1
2
q11 − n2

2n1
q22,

1
2
q22 − n1

2n2
q11

}
.

Thus, we conclude that

w∗(n, Q) = max
{
n1q11, n2q22,

nTQn
‖n‖

}
= nTQn
‖n‖ ,

which completes the proof of (i).
For part (ii), we consider the random graph G ∼ G(n, P ) such that G ⊂ G, where

the diagonal entries of P are the same as of P while the off-digonal entries of P equal p.
Using (13), we get that

χ(G) 6 χ(G) 6 χ(G1) + χ(G2).

Thus, it is sufficient to show that whp

χ(G) = (1 + o(1))
n1q11 + n2q22

2(1− σ) log ‖n‖
, (14)

χ(G1) + χ(G2) = (1 + o(1))
n1q11 + n2q22

2(1− σ) log ‖n‖
. (15)

Applying part (i) to G, we get that

χ(G) = (1 + o(1))
nTQn

2(1− σ)‖n‖ log ‖n‖
,

where Q is the matrix corresponding to P . Note that

nTQn

‖n‖
=
n2

1q11 + n1n2(q11 + q22) + n2
2q22

n1 + n2

= n1q11 + n2q22.
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Thus, (14) holds.
Next, observe that (15) is implied by Theorem 1 if n1 = ‖n‖1+o(1) and n2 = ‖n‖1+o(1).

Otherwise, if one of the parts is very small, say G1, then we have

‖n‖ = (1 + o(1))n2 and n1q11 + n2q22 = (1 + o(1))n2q22.

Applying Theorem 1 to G2, we get whp

χ(G2) = (1 + o(1))
n2q22

2 log(p22n2)
= (1 + o(1))

n1q11 + n2q22

2(1− σ) log ‖n‖
.

Let n′1 = n2q22
q11 log ‖n‖ . By the assumptions, n′1 = ‖n‖1+o(1) � n1. Using the embedding

G1 ⊂ G(n′1, p11), we estimate

χ(G1) 6 χ(G(n′1, p11)) = (1 + o(1))
n′1q11

2 log(p11n′1)
= o(1)

n1q11 + n2q22

log ‖n‖
.

The above two bounds for χ(G1) and χ(G2) prove (15), completing the proof of part (ii).
Part (iii) is proved in a similar way to part (ii).

3.2 Union of two independent random graphs

Consider two independent binomial random graphs G1 = G(n, p1) and G2 = G(n, p2) on
the same vertex set [n], where p1, p2 are some constants from (0, 1). It is easy to show that
their unionG1∪G2 is also a binomial random graphG(n, p), where 1−p = (1−p1)(1−p2).
This is equivalent to

log
(

1
1−p

)
= log

(
1

1−p1

)
+ log

(
1

1−p2

)
. (16)

Then, by formula (1), we get that whp

χ(G1 ∪G2) = (1 + o(1)) (χ(G1) + χ(G2)) . (17)

That is, the chromatic number of the union of two independent random graphs is whp
asymptotically equal to the sum of the chromatic numbers of the two binomial random
graphs. In this section, we prove a generalisation of this observation to the stochastic
block modelbased on Theorem 5. Apart from the assumptions of Theorem 5, we also
insist that both random graph models satisfy the pseudodefinite property of Theorem
10(c).

Theorem 13. Let G1 ∼ G(n, P1) and G2 ∼ G(n, P2) be independent random graphs
from the stochastic block models, where P1 and P2 satisfy the assumptions of Theorem 5
(with the same σ). Assume also that yTQ1y > 0 and yTQ2y > 0 for all y ∈ Rk with
y1 + . . .+ yk = 0, where Q1 = Q(P1) and Q2 = Q(P2) are defined by (3). Then, whp

χ(G1 ∪G2) 6 (1 + o(1)) (χ(G1) + χ(G2)) . (18)

In addition, if w(n, Q1) = nTQ1n
‖n‖ and w(n, Q2) = nTQ2n

‖n‖ then (17) holds whp.
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Proof. Applying Theorem 5, we find that whp

χ(G1) = (1 + o(1))
w∗(n, Q1)

2(1− σ) log ‖n‖
, χ(G2) = (1 + o(1))

w∗(n, Q2)

2(1− σ) log ‖n‖
. (19)

Observe that the union G1 ∪G2 also belongs to the stochastic block model G(n, P )with
the entries of P defined similarly to (16). Observe that

Q = Q1 +Q2,

where Q = Q(P ) is defined by (3). In particular, we get that w∗(n, Q) > w∗(n, Q1)
and w∗(n, Q2). It is straightforward to check that P and Q satisfy the assumptions of
Theorem 5 (with the same σ). Thus, we get whp

χ(G1 ∪G2) = (1 + o(1))
w∗(n, Q1 +Q2)

2(1− σ) log ‖n‖
. (20)

Next, by the pseudodefinite property in Theorem 10(c), we get that

w∗(n, Q1) = w(n, Q1), w∗(n, Q2) = w(n, Q2).

Note also yTQy = yTQ1y + yTQ2y > 0 for all y ∈ Rn with y1 + . . . + yn = 0. Using
Theorem 10(c) again, we find that

w∗(n, Q1 +Q2) = w(n, Q1 +Q2)

= max
0�y�n

yT (Q1+Q2)y
‖y‖ 6 max

0�y�n
yTQ1y
‖y‖ + max

0�y�n
yTQ2y
‖y‖

= w(n, Q1) + w(n, Q2) = w∗(n, Q1) + w∗(n, Q2).

Combining the above, we prove (18).
Now assume that w(n, Q1) = nTQ1n

‖n‖ and w(n, Q2) = nTQ2n
‖n‖ . To establish (17), we will

show that
w∗(n, Q1 +Q2) = w∗(n, Q1) + w∗(n, Q2).

Then, the result would follow by (19) and (20). We already proved that w∗(n, Q1) =
w(n, Q1), w∗(n, Q2) = w(n, Q2), w∗(n, Q1 +Q2) = w(n, Q1 +Q2), and w(n, Q1 +Q2) 6
w(n, Q1) + w(n, Q2). Thus, it remains to prove that

w(n, Q1 +Q2) > w(n, Q1) + w(n, Q2). (21)

Note that

nTQ1n
‖n‖ + nTQ2n

‖n‖ =
nT (Q1+Q2)n

‖n‖ 6 max
0�y�n

yT (Q1+Q2)y
‖y‖ = w(n, Q1 +Q2).

Recalling the assumptions that w(n, Q1) = nTQ1n
‖n‖ and w(n, Q2) = nTQ2n

‖n‖ , we derive (21),
thus completing the proof.
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3.3 Percolations on blow-up graphs: proof of Theorem 3

In order to prove Theorem 3 by applying Theorem 5, we need the following auxiliary result
on the chromatic number of any deterministic graph which can be found as a solution of
a discrete optimisation problem similar to (6).

For a graph G, let mad(G) denote the maximum average degree over all subgraphs of
G.

Lemma 14. For any graph G, we have

χ(G) = min
U

∑
S∈U

(1 + mad(G[S])),

where the minimum is over all partitions U of the vertex set V (G) and G[S] denotes the
induced subgraph of G.

Proof. It is a standard fact from the graph theory that

χ(G) 6 1 + max
U⊆V (G)

δG(U), (22)

where δG(U) is the minimum degree in the induced graph G[U ]. The proof of (22) is by
a straightforward induction on |V (G)|; see, for example, [14, Lemma 7.12].

Clearly, we have that
max

U⊆V (G)
δG(U) 6 mad(G),

which together with (22) implies that, for any S ∈ V (G),

χ(G[S]) 6 1 + mad(G[S]).

Thus, for any partition U of V (G), we get

χ(G) 6
∑

S∈U
χ(G[S]) 6

∑
S∈U

(1 + mad(G[S]))

by colouring all parts of U in different colours.
On the other hand, for the partition U of V (G) corresponding to the colour classes of

an optimal colouring of G, we observe that mad(G[S]) = 0 for all S ∈ U . Thus, we get
that ∑

S∈U
(1 + mad(G[S])) = χ(G).

This completes the proof.

We proceed to the proof of Theorem 3. The three key proof ingredients are the
following:

• the asymptotic formula for the chromatic number of the stochcastic block model in
terms of w∗(·) given in Theorem 5;
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• Lemma 14 that expresses the chromatic number of an arbitrary graph in terms of
the maximum average degree that is similar to the underlying optimisation problem
for w∗(·);

• the existence of a small near-optimal integer system given by Theorem 10(g) that
approximates w∗(·).

Proof of Theorem 3. Let ε ∈ (0, 1
4
) and H be a graph on vertex set [k]. Assume that

p = p(n) satisfies the conditions in Theorem 3. Let A denote the adjacency matrix of H
and I be the k × k identity matrix.

First, we note that the percolated random graph Gp, where G = GH(n), is distributed
according to G(n, P ) with P = p(I +A). Let Q = Q(P ) be defined according to (3). We
apply Theorem 5 with σ := − log p

log ‖n‖ 6 σ0 := 1
4
− ε. All assumptions of Theorem 5 are

straightforward to check. Since (1−σ) log ‖n‖ = log(p‖n‖) by definition of σ, Theorem 5
implies that

χ(Gp)= (1 + o(1))
w∗(n, Q)

2(1− σ) log ‖n‖
= (1 + o(1))

w∗(n, Q)

2 log(p‖n‖)
.

Note that all elements of matrix Q are log( 1
1−p) or 0. More precisely, Q = log( 1

1−p)Q̃,
where Q̃ := I + A. By the scaling property in Theorem 10(a), we have

w∗(n, Q) = log( 1
1−p) w∗(n, Q̃).

Thus, to prove (2), it remains to show that

χ(G) = (1 + o(1))w∗(n, Q̃) (23)

To show (23), we employ Lemma 14. To this end, for any S ⊆ V (G), we define

b(S) = (b1(S), . . . , bk(S))T ∈ Nk with bi(S) := |S ∩Bi| for i ∈ [k], (24)

and observe that, for any U ⊆ S

b(U)T Q̃b(U) =
∑
i∈[k]

bi(U)2 + 2
∑
ij∈H

bi(U)bj(U)

= ‖b(U)‖+ 2

∑
i∈[k]

bi(U)(bi(U)−1)
2

+
∑
ij∈H

bi(U)bj(U)


= |U |+ 2|E(G[U ])|.

(25)

Using (25) and the corner maximiser property in Theorem 10(b), we find that

w(b(S), Q̃)= max
U⊆S

b(U)T Q̃ b(U)

‖b(U)‖
= max

U⊆S

|U |+ 2|E(G[U ])|
|U |

=1 + mad(G[S]).
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By the definition of w∗(n, Q̃), we obtain that

w∗(n, Q̃) 6 min
U

∑
S∈U

(1 + mad(G[S])), (26)

where the minimum is over all partitions U of the vertex set V (G). On the other hand,
due to the near-optimal integer system of Theorem 10(g), there exists a partition U∗ of
V (G) such that

min
U

∑
S∈U

(1 + mad(G[S])) 6
∑

S∈U∗
(1 + mad(G[S])) 6 w∗(n, Q̃) + k2q̃∗.

This together with (26) gives

w∗(n, Q̃) 6 min
U

∑
S∈U

(1 + mad(G[S])) 6 w∗(n, Q̃) + k2q̃∗.

Note that the bounds of Theorem 10(d) imply w∗(n, Q̃) → ∞. Because q̃∗ = 1 and
k = |V (H)| is a fixed constant, using Lemma 14, we get that

χ(G) = min
U

∑
S∈U

(1 + mad(G[S])) = w∗(n, Q̃) +O(1),

which implies (23) and completes the proof.

3.4 Chung-Lu model: proof of Theorem 4

Let k = k(n) ∈ N be such that 1 � k � log n. Let S1 = [0, 1
k
], S2 = ( 1

k
, 2
k
], . . . , Sk =

(k−1
k
, 1]. Define n(u) = (n1, . . . , nk)

T by

ni = ni(u) := |{t ∈ [n] : ut ∈ Si}| .

Define two k × k matrices PL = (pLij)i,j∈[k] and PU = (pUij)i,j∈[k] by

pLij := p · (i−1)(j−1)
k2

, pUij := p · ij
k2
.

Then, for any two vertices a, b ∈ V (G×p ) = [n], we have

pLij 6 p×ab 6 pUij,

where i = i(a) and j = j(b) are such that ua ∈ Si and ub ∈ Sj. Therefore, there are two
random graphs GL ∼ G(n(u), PL) and GU ∼ G(n(u), PU) such that GL ⊆ G×p ⊆ GU .
Furthermore, we find that

χ
(
GU
)
6 χ

(
G×p
)
6 χ

(
GL
)
.

Let QL = Q(PL) and QU = Q(PU) be defined according to (3).
Next, we show that w∗

(
n(u), QL

)
= Ω(n) and w∗

(
n(u), QU

)
= Ω(n). Then the

assumptions of Theorem 5 hold for both random graphs GL and GU . Indeed, setting
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σ := − log p
log n

and using the assumptions of Theorem 4, that is, 1 � p > n−1/4+ε and∑
i∈[n] ui = Ω(n), we get

q∗, q̂((n(u)) = Θ(p) = Θ(n−σ) = n−σ+o(1) � 1

for GL and GU . Recalling also k � log n, we obtain (8) and (9). Finally (10) holds if
w∗
(
n(u), QL

)
and w∗

(
n(u), QU

)
are Ω(n) since kq̂(n(u))q∗ � log n. Thus, to complete

the proof of Theorem 4(a), it remains to establish the following lemma.

Lemma 15. Suppose the assumptions of Theorem 4 hold. Then

max
U⊆[n]

1
|U |

(∑
t∈U

ut

)2

=
1+o(1)
p

w∗
(
n(u), QL

)
=

1+o(1)
p

w∗
(
n(u), QU

)
= Ω(n).

Proof. Since
∑

t∈[n] ut = Ω(n), we find that

M := max
U⊆[n]

1

|U |

(∑
t∈U

ut

)2

>
1

n

(∑
t∈[n]

ut

)2

= Ω(n). (27)

Since p = o(1), we have log 1
1−pxy = (1 + o(1))pxy uniformly over all x, y ∈ [0, 1]. Then,

by the definition of w∗(·), we derive that

w∗
(
n(u), QL

)
= (1 + o(1))w∗

(
n(u), PL

)
,

w∗
(
n(u), QU

)
= (1 + o(1))w∗

(
n(u), PU

)
.

For any x ∈ Rk, we have

xTPLx = p
k2

(∑
i∈[k]

xi(i− 1)

)2

> 0. (28)

Using the pseudodefinite property in Theorem 10(c), we find that w∗
(
n(u), PL

)
=

w
(
n(u), PL

)
. Similarly, we get that w∗

(
n(u), PU

)
= w

(
n(u), PU

)
. Thus, it remains to

show that
M =

1+o(1)
p

w
(
n(u), PL

)
=

1+o(1)
p

w
(
n(u), PU

)
. (29)

Let U∗ ⊆ [n] be the set that maximises 1
|U |

(∑
t∈U ut

)2, that is,

M =
1

|U∗|

(∑
t∈U∗

ut

)2

.

Using the trivial bound
∑

t∈U∗ ut 6 |U∗| and (27), we get that∑
t∈U∗

ut >
1

|U∗|

(∑
t∈U∗

ut

)2

= Ω(n). (30)

Let

x(U∗) := (x1, . . . , xk)
T ∈ Nk, xi := |{t ∈ [n] : ut ∈ Si ∩ U∗}.
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Combining (30) and the trivial bound ‖x(U∗)‖ = |U∗| 6 n, we get that∑
t∈U∗

ut = (1 +O(k−1))
∑
i∈[k]

i− 1

k
xi = (1 +O(k−1))

∑
i∈[k]

i

k
xi.

Due to (28) and a similar formula for PU , we get that (
∑

t∈U∗ ut)
2 is equivalent to

xT (U∗)PLx(U∗) and xT (U∗)PUx(U∗) up to the factor p. Recalling ‖x(U∗)‖ = |U∗|,
we get that

pM = (1 + o(1))
xT (U∗)PLx(U∗)

‖x(U∗)‖
= (1 + o(1))

xT (U∗)PUx(U∗)

‖x(U∗)‖
.

This implies
w
(
n(u), PU

)
> w

(
n(u), PL

)
> (1 + o(1))pM.

For the other direction, using the corner maximiser property in Theorem 10(b), we
get that there is W ⊆ [k] such that

w
(
n(u), PU

)
=

p∑
i∈W ni

(∑
i∈W

i

k
ni

)2

.

Let U(W ) := {t ∈ [n] : ut ∈ ∪i∈WSi}. Then,
∑

i∈W ni = |U(W )|. We also have∑
i∈W

i− 1

k
ni 6

∑
t∈U(W )

ut 6
∑
i∈W

i

k
ni.

We already established that w
(
n(u), PU

)
> (1 + o(1))pM = Ω(pn). Thus,

∑
i∈W

i

k
ni >

1∑
i∈W ni

(∑
i∈W

i

k
ni

)2

= Ω(n).

Therefore,
1∑

i∈W ni

(∑
i∈W

i

k
ni

)2

= (1 +O(k−1))
1

|U |

(∑
t∈U

ut

)2

.

This implies
w
(
n(u), PL

)
6 w

(
n(u), PU

)
6 (1 + o(1))pM.

This completes the proof of required bound (29) and of the lemma.

We proceed to the proof of Theorem 4(b). Define two k × k matrices P̂L = (p̂Lij)i,j∈[k]

and P̂U = (p̂Uij)i,j∈[k] by

p̂Lij := p · (i−1)+(j−1)
k

, p̂Uij := p · i+j
k
.
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Then, for any two vertices a, b ∈ V (G+
p ) = [n], we have

p̂Lij 6 p+
ab 6 p̂Uij,

where i = i(a) and j = j(b) are such that ua ∈ Si and ub ∈ Sj. Therefore, there are two
random graphs Ĝ

L
∼ G(n(u), P̂L) and Ĝ

U
∼ G(n(u), P̂U) such that Ĝ

L
⊆ G+

p ⊆ Ĝ
U
.

Furthermore, we find that

χ
(
Ĝ
U
)
6 χ

(
G+
p

)
6 χ

(
Ĝ
L
)
.

Then Theorem 4(b) follows immediately by combining Theorem 5 and the following
lemma.

Lemma 16. Let the assumptions of Theorem 4 hold. Let Q̂L = Q(P̂L) and QU = Q(P̂U)
be defined according to (3). Then∑

t∈[n]

ut =
1+o(1)
p

w∗

(
n(u), Q̂L

)
=

1+o(1)
p

w∗

(
n(u), Q̂U

)
= Ω(n).

Proof. Since p = o(1), we have log 1
1−p(x+y)

= (1+o(1))p(x+y) uniformly over x, y ∈ [0, 1].
Then, by the definition of w∗(·), we observe that

w∗

(
n(u), Q̂L

)
= (1 + o(1))w∗

(
n(u), P̂L

)
,

w∗

(
n(u), Q̂U

)
= (1 + o(1))w∗

(
n(u), P̂U

)
.

For any x ∈ Rk
+, we have

w
(
x, P̂L

)
= max

0≺y≺x

yT P̂Ly

‖y‖
= p · max

0≺y≺x

∑
i∈[k]

i− 1

k
yi = p ·

∑
i∈[k]

i− 1

k
xi.

By the definition of w∗(·), we find that

w∗

(
n(u), P̂L

)
= p ·

∑
i∈[k]

i− 1

k
ni.

Observing that ∑
i∈[k]

i

k
ni >

∑
t∈[n]

ut >
∑
i∈[k]

i− 1

k
ni

and recalling
∑

t∈[n] ut = Ω(n), we derive

w∗

(
n(u), P̂L

)
= (1 +O(k−1))p ·

∑
t∈[n]

ut.

Similarly, we prove w∗

(
n(u), P̂U

)
= (1 + O(k−1))p ·

∑
t∈[n] ut. This completes the

proof.
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4 Weighted independence number

A set U ⊆ V (G) is an independent set of a graph G if the induced graph G[U ] has no
edges. Let I(G) denote the set of all the independent sets of G. The independence number
α(G) equals the size of a largest independent set of G. It is well known that (see, for
example [19,25]) if np→∞ and p < 1− ε for a constant ε ∈ (0, 1), then whp

χ(G(n, p)) = (1 + o(1))
n

α(G(n, p))
. (31)

That is, for an asymptotically optimal colouring of G(n, p), almost all vertices are covered
with colour classes of approximately equal size α(G(n, p)).

One may think that, to approach the chromatic number of inhomogeneous random
graphs, one can also start with its independence number. In fact, Doležal et al. [11]
studied the clique number in inhomogeneous random graphs. Note that the clique number
of a graph equals the independence number of its complement. However, we find little use
of the results of [11] in determining the chromatic number of a random graphG ∼ G(n, P )
from the stochastic block model. Unlike the homogeneous binomial random graphG(n, p),
some parts of the random graph G ∼ G(n, P ) will typically contain substantially larger
independent sets than other parts of the graph so one can not achieve an optimal colouring
using colour classses of approximately same size.

To take the inhomogeneity of G ∼ G(n, P ) into account, we assign special weights to
subsets of vertices (depending on the edge probabilities) and introduce a new parameter,
called weighted independence number, which is the maximal weight of an independent set.
Formally, for a set U ⊆ V (G), define

h(U) = h(U,n, P ) :=
− log(Pr(U ∈ I(G)))

|U |
.

Then, for a graph G on vertex set V (G) = V (G), let

αh(G) = αh(G,n, P ) := max
U∈I(G), U 6=∅

h(U). (32)

It might be not obvious but nevertheless true that the weights h(U) are designed in such
a way that all maximal independent sets U in the random graph G have similar weights
whp. This is a natural generalisation of the idea of the balanced colouring of G(n, p)
except we use the weight instead of the size of a colour class.

In this section, we show, in particular that, under the assumptions of Theorem 5
and provided that not all blocks Bi are very small, the quantity αh(G) is concentrated
around (1− σ) log ‖n‖ whp; see Theorem 19. Moreover, we establish fast decreasing tail
bounds for the probability of αh(G) being too large or too small; see Lemmas 17 and
18, respectively. Lemma 17 almost immediately leads to the proof of Theorem 8. Even
though, Lemma 18 does not immediately give Theorem 9, it will be the crucial instrument
for our construction of an optimal colouring of G in further sections.
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Let Q = Q(P ) be defined by (3), where P is the matrix of edge probabilities for
G ∼ G(n, P ). For simplicity, everywhere in this section, let

w(·) ≡ w(·, Q) and w∗(·) ≡ w∗(·, Q);

see (4), (6) for definitions. Let q∗ and q̂(·) be defined according to (7). In addition, we
consider the vector-valued function b : 2V (G) → Nk that maps U ⊆ V (G) into b(U)
defined by

b(U) = (b1(U), . . . , bk(U))T with bi(U) := |U ∩Bi| for i ∈ [k].

Here, Bi are the blocks of vertices in the stochastic block model G(n, P ). Note that, for
any U ⊆ V (G), we have that ‖b(U)‖ = |U | and

b(U)TQ b(U) = −2 log (Pr(U ∈ I(G))) +
∑
i∈[k]

qiibi(U) (33)

6 −2 log (Pr(U ∈ I(G))) + q∗|U |. (34)

4.1 Lower tail bound: proof of Theorem 8

First, we estimate the probability of αh(G) to be large for a general random graph G
with independent adjacencies.

Lemma 17. Let G be a random graph on n vertices where edges appear independently of
each other. Assume stet > 6n for some t > 0, where

st := min
{
|U | : ∅ 6= U ⊆ V (G), Pr(U ∈ I(G)) 6 e−t|U |

}
.

Then
Pr(αh(G) > t) 6 21−st .

Proof. Let Xs denote the number of independent sets U of size s in G such that

Pr(U ∈ I(G)) 6 e−t|U |.

By definition of st, we have that Xs = 0 for any s < st. If s > st then we bound

Pr(Xs > 0) 6 EXs 6
∑
U

Pr(U ∈ I(G))

6

(
n

s

)
e−ts 6

( en
set

)s
6 2−s,

where the sum is over all U that contribute to Xs. Thus, we can bound

Pr(αh(G) > t) 6
n∑

s=st

Pr(Xs > 0) 6
n∑

s=st

2−s 6 21−st ,

which concludes the proof.
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Next, applying Lemma 17 to G ∼ G(n, P ), we derive the required probability bound
for the event that the chromatic number χ(G) is small.

Proof of Theorem 8. Take t := log(q∗‖n‖). To apply Lemma 17, we need to bound the
quantity st in Lemma 17. If U is such that Pr(U ∈ I(G)) 6 e−t|U |, then using (33), we
get that

t|U | 6 − log (Pr(U ∈ I(G))) 6 1
2
|U |2 max

i,j∈[k]
qij.

Then, by the assumptions, we get that

st >
2t

maxi,j∈[k] qij
=

2 log(q∗‖n‖)
maxi,j∈[k] qij

→∞ (35)

and
ste

t >
2tet

maxi,j∈[k] qij
=

2q∗‖n‖ log(q∗‖n‖)
maxi,j∈[k] qij

� ‖n‖.

Applying Lemma 17, we find that

Pr(αh(G) > log(q∗‖n‖)) 6 21−st . (36)

Next, using the corner maximiser property in Theorem 10(b) and (34), we find that, for
any U ∈ I(G),

w(b(U)) = max
∅6=W⊆U

b(W )TQb(W )
|W | 6 max

∅6=W⊆U

(
−2Pr(W∈I(G))

|W | + q∗
)
6 2αh(G) + q∗. (37)

In the above, we also used that if W ⊆ U ∈ I(G) then W ∈ I(G). Recall that
log(q∗‖n‖) = Θ(log ‖n‖) by (8) and q∗ 6 maxi,j∈[k] qij � log ‖n‖ by (9). Thus, if
αh(G) 6 log(q∗‖n‖) then, by (37), we have that

max
U∈I(G)

w(b(U)) 6 2 log(q∗‖n‖)) + q∗ = (2 + o(1)) log(q∗‖n‖)).

Let {Ui}i=1,...,χ(G) be the partition of V (G) into colour classes of any optimal colouring
of G. Cosidering the system consisting of vectors b(Ui) for i = 1, . . . , χ(G), and recalling
definition (6), we find that

w∗(n) 6
χ(G)∑
i=1

w(b(Ui)).

We conclude that, with probability at least 1− 21−st ,

χ(G) >

∑χ(G)
i=1 w(b(Ui))

maxiw(b(Ui))
>

w∗(n)

(2 + o(1)) log(q∗‖n‖)
> (1− ε) w∗(n)

2 log(q∗‖n‖)
.

Using (35), we get that

21−st = exp

(
−Ω

(
log(q∗‖n‖)
maxi,j∈[k] qij

))
.

This completes the proof.

the electronic journal of combinatorics 30(2) (2023), #P2.56 24



4.2 Existence of heavy independent sets

We consider a special class of sets distributed between the blocksB1, . . . , Bk proportionally
to its sizes (up to rounding). For a vector x = (x1, . . . , xk)

T ∈ Rk, denote

bxc := (bx1c, . . . , bxkc)T and x∗ := min
i∈[k]

xi.

For a positive real ν, let Iν(G) denote the family of independent sets U ⊆ I(G) such
that b(U) = bνnc.

Lemma 18. Let G ∼ G(n, P ), where P = (pij)i,j∈[k] is such that pij = pji and 0 6 pij < 1
for all i, j ∈ [k]. Let Q = Q(P ) be as in (3) and σ ∈ [0, σ0) for some fixed 0 < σ0 <

1
2
.

Assume that ‖n‖ → ∞, w(n) > ‖n‖1−σ,

n∗ = ‖n‖1+o(1), n∗ �
w(n)

log ‖n‖
, (38)

where n∗ := mini∈[k] ni. Then, there exists ν ∈ R+ such that ν = (2 + o(1))
log(w(n))
w(n)

and

Pr (Iν(G) = ∅) 6 exp
(
−‖n‖2−4σ+o(1)

)
.

Proof. Since n∗ � w(n)
log ‖n‖ , we can find some r(n) such that

w(n)
n∗
� r(n)� log ‖n‖. (39)

For example, one can take r(n) :=
(
w(n)
n∗

log ‖n‖
) 1

2 . Define

ν :=
2

w(n)

(
log(w(n))− 2 log log(w(n))− log

(
‖n‖
n∗

)
− r(n)

)
. (40)

Note that the assumptions imply that

log(w(n)) >
1

2
log ‖n‖, ν = (2 + o(1))

log(w(n))

w(n)
. (41)

Let ` = (`1, . . . , `k) = bνnc. That is, we have ` = b(U) for all U ∈ Iν(G). Using the
assumptions, we get, for all i ∈ [k],

`i = (2 + o(1))
ni log(w(n))

w(n)
> (2 + o(1))

n∗ log(w(n))

w(n)
� 1. (42)

Observe that the number of ways to pick the set U ∈ V (G) such that b(U) = ` equals∏k
i=1

(
ni
`i

)
. Then, using (33) that relates Pr(U ∈ Iν(G)) and e−

b(U)TQ b(U)
2 = e−

`TQ `
2 , we get
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that

E |Iν(G)| = Pr(U ∈ Iν(G))
k∏
i=1

(
ni
`i

)
= e−

`TQ`
2

k∏
i=1

(
ni
`i

)
(1− pii)−`i/2

> e−
`TQ`

2

k∏
i=1

(
ni
`i

)`i
> e−

`TQ`
2 ν−‖`‖.

Using the scaling property in Theorem 10(a) and the definition (40) of ν, we get

`T Q `

2‖`‖
= ν

(ν−1`)T Q (ν−1`)

2‖ν−1`‖
6
ν w(n)

2
= log

(
w(n)n∗

log2(w(n))‖n‖

)
− r(n). (43)

From (42), we also get that

‖`‖ = (2 + o(1))
‖n‖ log(w(n))

w(n)
.

Using (39), (41), (43), the obvious inequality n∗ 6 ‖n‖, and w(n) > ‖n‖1−σ, we get that

E |Iν(G)| > e−
`TQ`

2 ν−‖`‖ >

((
1
2

+ o(1)
)

log(w(n))
‖n‖
n∗

er(n))

)‖`‖
� e‖`‖r(n) = exp

(
ω

(
‖`‖w(n)

n∗

))
= ‖n‖ω(1).

(44)

Next, let
∆ :=

∑
|U∩W |>2

Pr (U ∈ Iν(G) and W ∈ Iν(G)) ,

where the sum is over all possible ordered pairs (U,W ) of subsets of V (G) such that
|U ∩W | > 2. Note that if |U ∩W | 6 1 then the events {U ∈ Iν(G)} and {W ∈ Iν(G)}
are independent. By Janson’s inequality, see [20, Theorem 1], we have

Pr (Iν(G) = ∅) 6 exp

(
− (E |Iν(G)|)2

2E |Iν(G)|+ 2∆

)
. (45)

We have already established a lower bound for E |Iν(G)| in (44). Thus, it remains to
bound ∆

(E |Iν(G)|)2 from the above. Using (33), we find that

∆

(E |Iν(G)|)2
=
∑
m

e
mTQm

2

k∏
i=1

(
`i
mi

)(
ni−`i
`i−mi

)(
ni
`i

) (1− pii)mi/2,

where the sums are over m = (m1, . . . ,mk)
T ∈ Nk with ‖m‖ > 2 and m � `. Observe

that (
`i
mi

)(
ni−`i
`i−mi

)(
ni
`i

) =
((`i)mi)

2(ni − `i)`i−mi
mi!(ni)`i

6
((`i)mi)

2

mi!(ni)mi
6

1

mi!

(
`2
i

ni

)mi
=

((1 + o(1))ν2ni)
mi

mi!
6

1

mi!

(
5ni

(
log(w(n))

w(n)

)2
)mi

.
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Denote

θm := max
‖m‖=m

mTQm

2‖m‖
,

where the maximum is over m ∈ Nk with ‖m‖ = m and m � `. Then, we obtain

∆

(E |Iν(G)|)2
6
‖`‖∑
m=2

(
5

(
log(w(n))

w(n)

)2

eθm

)mi k∏
i=1

nmii
mi!

=

‖`‖∑
m=2

1

m!

(
5‖n‖

(
log(w(n))

w(n)

)2

eθm

)m

.

(46)

There are two ways we can estimate the quantity θm. First, repeating the arguments
of (43) with ` replaced by any m � `, we find that

θm 6
ν w(n)

2
= log

(
w(n)n∗

log2(w(n))‖n‖

)
− r(n). (47)

Second, observing n∗
‖m‖m � n and using the monotonicity property in Theorem 10(a), we

get

mT Qm

2‖m‖
6
‖m‖w

(
n∗
‖m‖m

)
2 n∗

6
‖m‖w(n)

2n∗
.

Thus, we get

θm 6
mw(n)

2n∗
, (48)

which is better than (47) for small m.
Using (39), we can find m0 ∈ N such that

1� log ‖n‖
r(n)

+
n∗
w(n)

� m0 �
n∗ log ‖n‖
w(n)

. (49)

Using the inequality m! > mme−m and the bound eθm 6 w(n)n∗
log2(w(n))‖n‖

e−r(n) implied by

(47), we find that

‖`‖∑
m=m0

1

m!

(
5‖n‖

(
log(w(n))

w(n)

)2

eθm

)m

6
‖`‖∑

m=m0

(
5e1−r(n)n∗
mw(n)

)m

�
‖`‖∑

m=m0

e−mr(n) 6 ‖`‖e−ω(log ‖n‖) = ‖n‖−ω(1),

(50)

where the last two inequalities used the lower bounds of (49): first m > m0 � n∗
w(n)

and
then m > m0 � log ‖n‖

r(n)
. we have θm � log ‖n‖ by (48). Recalling our assumptions
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that w(n) > ‖n‖1−σ and ‖n‖1+o(1) = n∗ � w(n)
log ‖n‖ , we find that the following sum is

dominated by the first term:

m0−1∑
m=2

1

m!

(
5(log(w(n)))2‖n‖eθm

(w(n))2

)m
=
(
1
2

+ o(1)
)(‖n‖eo(log ‖n‖)

(w(n))2

)2

6 ‖n‖4σ−2+o(1).

(51)
Putting (50) and (51) in (46), we obtain that

∆

(E |Iν(G)|)2
6 ‖n‖2−4σ+o(1) + ‖n‖−ω(1) = ‖n‖2−4σ+o(1).

Recalling from (44) that E |Iν(G)| = ‖n‖ω(1), we conclude that

∆ + E |Iν(G)|
(E |Iν(G)|)2

6 ‖n‖2−4σ+o(1).

Applying (45), we complete the proof.

4.3 Concentration of the weighted independence number

The estimates of Sections 4.1 and 4.2 lead to the following result.

Theorem 19. Let G ∼ G(n, P ), where P = (pij)i,j∈[k] is such that pij = pji and 0 6 pij <
1 for all i, j ∈ [k]. Let Q = Q(P ) be as in (3). Let σ ∈ [0, σ0] for some fixed 0 < σ0 <

1
2
.

Assume that (8), (9) hold and

n∗ = ‖n‖1+o(1), n∗ �
w(n)

log ‖n‖
,

where n∗ := mini∈[k] ni. Then, whp

αh(G) = (1− σ + o(1)) log ‖n‖.

Proof. All the assumptions of Theorem 8 also present in this theorem, so we can use the
formulas and arguments given in its proof. Using (36) and the assumption q∗ = ‖n‖−σ+o(1)

by (8), we find that whp

αh(G) 6 log(q∗‖n‖) = (1− σ + o(1)) log ‖n‖.

Next, using Theorem 10(d) and the assumptions q̂(n), q∗ = ‖n‖−σ+o(1) by (8), we have
that

w(n) > w∗(n) >
(q̂(n))2

kq∗
‖n‖ = ‖n‖1−σ+o(1).

Thus, all assumptions of Lemma 18 hold. Applying Lemma 18, we find that whp Iν(G) 6=
∅ for some ν = (2 + o(1)) log(w(n))

w(n)
. If U ∈ Iν(G) then for all i ∈ [k]

bi(U) = bνnic >
(
ν − 1

n∗

)
ni.
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Combining the above, the monotonicity property in Theorem 10(a), and (8), we get that

w(b(U)) > (ν − 1
n∗

)w(n) = (2 + o(1)) log(w(n)) > (2− 2σ + o(1)) log ‖n‖.

Thus, using (37) and the arguments below (37) showing that q∗ � log ‖n‖, we find that,
whp

αh(G) > 1
2

(w(b(U))− q∗) = (1− σ + o(1)) log ‖n‖.

This completes the proof.

We note that the proof of our main result, Theorem 5, does not rely on Theorem 19, but
the study of the distribution of the parameter αh(G) is of independent interest. Observe
that definition (32) extends to any random graph model. We believe that Theorem 19
carries over as well. In particular, we conjecture the following.

Conjecture 20. Let G = G(n) be a random graph on vertex set [n] where edges ij
appear independently of each other with probabilities pij = pij(n) ∈ (0, 1). Assume that
there exist q = q(n) and constants c1, c2 > 0 such that

qn→∞, q � log n,

as n→∞, and, for all edges ij,

e−c1q 6 1− pij 6 e−c2q.

Then, whp
αh(G) = (1 + o(1)) log(qn).

In fact, proceeding from Lemma 17 similarly to (36), one can derive that αh(G) 6
log(qn) whp under the assumptions of Conjecture 20. However, proving the counterpart
would require significant modifications of the arguments given in Section 4.2.

5 Crude upper bound

In this section, we establish a crude upper bound on χ(G), where G ∼ G(n, P ) based on
a simple idea of colouring each block separately. To do so, we only need the results for
the classical binomial random graph G(n, p).

Lemma 21. Let σ ∈ [0, σ0] for some fixed 0 < σ0 <
1
4
and p = p(n) ∈ (0, 1) is such that

log n� q := log 1
1−p > n−σ.

Then, for any ε > 0 and any s = n1+o(1), with probability at least 1 − exp
(
−n2−4σ+o(1)

)
,

there is a colouring of G(n, p) with at least n − s vertices using at most (1 + ε) qn
2 log(qn)

colours.
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Proof. This argument is well known for a constant p ∈ (0, 1); see for example, [14, Section
7.4]. For the sake of completeness, we repeat it here and check that it extends to p = p(n)
satisfying the assumptions of Lemma 21.

We will apply Lemma 18 to subgraphsG(n′, p) ofG(n, p) with n′ > s, by setting k = 1,
n = (n′), and P = (p). Then, by definition, we have n∗ = ‖n‖ = n′ and w(n) = qn′ so
all assumptions of Lemma 18 hold. Using Lemma 18, we show that the probability that
there is a subgraph in G(n, p) with at least s vertices without an independent set of size
(2− ε) log(qn)

q
is at most

2n exp(−s2−4σ+o(1)) = exp
(
−n2−4σ+o(1)

)
.

Thus, we can keep colouring such independent sets and deleting them from the graph
until we are left with fewer than s vertices. The number of colours used in this process is
bounded above by

n

(2− ε) log(qn)
q

6

(
1

2
+ ε

)
qn

log (qn)
.

Note that, in the above, we can assume that ε < 1 since the statement of the lemma
becomes stronger. Then, the inequality 1

2−ε 6 1+ε
2

holds.

To colour the remaining vertices, we use the following lemma.

Lemma 22. Let G = G(n, p), where p = p(n) ∈ (0, 1) is such that pn→∞ as n→∞.
Then, for any positive integer s > p−1, we have

Pr
(
∃ W ⊆ V (G) : |W | = s and χ(G[W ]) > ps log n+ 1

)
6 exp

(
−ω(p2s2 log2 n)

)
.

Proof. First, for any postive integer u 6 s, we estimate the probability of the event that
the minimal degree of G′ = G(u, p) is at least ps log n. This event implies that G′ has at
least 1

2
psu log n edges. Let Nu :=

(
u
2

)
. Since the distribution of the number of edges in

G′ is Bin(Nu, p), we find that

Pr
(
G′ has at least 1

2
psu log n edges

)
=

∑
i> 1

2
psu logn

(
Nu

i

)
pi(1− p)Nu−i

6
∑

i> 1
2
psu logn

(
epNu

i

)i
6 2

(
e

log n

) 1
2
psu logn

= n−ω(psu).

To derive the last inequality in the above, we observe that

pNu

i
6

pu2

psu log n
6

1

log n
.

Note also that if u 6 ps log n then G′ has less than 1
2
psu log n edges with probability 1.
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Using the union bound over all choices for W ⊆ V (G) with |W | = s, for u such that
ps log n < u 6 s, and for U ⊆ W with |U | = u, we get that

Pr
(
∃W ⊆ V (G) : |W | = s and max

U⊆W
δG(U) > ps log n

)
6 2

(
n

s

) ∑
u>ps logn

(
s

u

)
n−ω(psu)

6 2
(en
s

)s ∑
u>ps logn

(es
u
n−ω(ps)

)u
= exp

(
−ω(p2s2 log2 n)

)
.

Combining this and the upper bound (22) on the chromatic number in terms of the
minimal degree of subgraphs, we complete the proof.

Combining Lemma 21 and Lemma 22, we get the following result for G ∼ G(n, P ).
This result will be important in the proof of Theorem 9 to show that the number of colours
required for the remaining vertices (given by a set U ⊆ V (G)) after a certain “optimal”
colouring process is negligible.

Theorem 23. Let G ∼ G(n, P ), where P = (pij)i,j∈[k] is such that pij = pji and 0 6
pij < 1 for all i, j ∈ [k]. Let q∗ and q̂ be defined in (7). Let σ ∈ [0, σ0] for some fixed
0 < σ0 <

1
4
. Assume that n is such that

n > ‖n‖1+o(1), k = no(1), log n� q∗ > n−σ.

Let u = (u1, . . . , uk)
T ∈ Rk

+ be such that q̂(u) = q∗no(1). Then, for any ε > 0,

Pr

(
max
b(U)6u

χ(G[U ]) > (1 + ε)
q̂(u)‖u‖

2 log (q∗n)

)
6 exp

(
−n2−4σ+o(1)

)
,

where the maximum is over all subsets U ⊆ V (G) such that |U ∩Bi| 6 ui for all i ∈ [k].

Proof. For each i ∈ [k], we let Gi = G(ni, pii) denote the induced subgraph of G[Bi]. Let

n′i := ni + s, where s :=

⌊
q̂(u)‖u‖

kq∗ log3 ‖n‖

⌋
.

Define p′ii ∈ (0, 1) to be such that

q′ii := log
1

1− p′ii
= qii + q0, where q0 :=

q̂(u)

k log ‖n‖
.

Since log n� q∗ > n−σ and q̂(u) = q∗no(1), we get that

log n� qii + o(q∗) > q′ii > q0 > n−σ+o(1). (52)

By adding s dummy vertices to each block Bi and introducing some rejection probability,
for each i ∈ [k] there is a coupling (G′i,Gi) such that G′i = G(n′i, p

′
ii) and Gi is a subgraph

of G′i with probability 1.
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Consider any Ui ⊆ V (Gi) such that |Ui| 6 ui and let U ′i consist of the union of Ui and
s dummy vertices of G′i. Note that, by assumptions,

n1+o(1) 6 s 6 u′i := |U ′i | 6 ui + s.

Using (52), we find that sq0 = q∗‖u‖no(1) and

(ui + s)(qii + q0) = uiqii + o

(
q̂(u)‖u‖no(1)

k

)
,

(ui + s)(qii + q0) 6 (1 + o(1))q∗‖u‖.
(53)

Since q∗ > n−σ, we get that

log(q′iiu
′
i) = (1 + o(1)) log (q∗n) .

Using (52), we find that the assumptions of Lemma 21 hold for Gi[U
′
i ] = G(u′i, p

′
ii).

Applying Lemma 21 with ε′ = ε
2
, we find that there is a colouring of u′i − s = ui vertices

of G′i using at most

(1 + ε′)
q′iiu

′
i

2 log(q′iiu
′
i)

6
(

1 + ε
2

+ o(1)
) q′iiu

′
i

2 log (q∗n)

colours with probability at least

1− exp
(
−(u′i)

2−4σ+o(1)
)
> 1− exp

(
−n2−4σ+o(1)

)
.

Recalling that 2−4σ > 1 and applying the union bound, we get that the probability that
there are some i ∈ [k] and Ui ⊆ V (Gi) with |Ui| 6 ui for which such colouring does not
exist is bounded above by

k∑
i=1

2ni+s exp
(
−n2−4σ+o(1)

)
= exp

(
−n2−4σ+o(1)

)
.

Next, we show that only a small number of colours is needed to colour the remaining
s vertices from each V (G′i). Applying Lemma 22, we get that any subset W ⊆ V (G′i)
with s > n1+o(1) > (p′ii)

−1 vertices can be coloured using at most

p′iis log n′i + 1 6 q∗s log n′i + 1� q̂(u)‖u‖
k log(q∗n)

colours with probability at least

1− exp
(
−ω((p′ii)

2s2 log2 n′i)
)
> 1− exp

(
−n2−2σ+o(1)

)
.

The last inequality is clear for p′ii > 1
2
. For p′ii <

1
2
, one can use (52) together with

the inequality p′ii >
q′ii

2 log 2
, which follows from the fact that t−1 log 1

1−t is monotonically
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increasing for t ∈ (0, 1). Applying the union bound, we can complete the colouring of all
sets U ′i for i ∈ [k] using at most∑

i∈[k]

(p′iis log n′i + 1)� q̂(u)‖u‖
log(q∗n)

colours with probability at least

1− k exp
(
−n2−2σ+o(1)

)
> 1− exp

(
−n2−4σ+o(1)

)
.

Now, consider any U ⊆ V (G) such that |U ∩ Bi| 6 ui for all i ∈ [k]. Combining the
above bounds and using the inequality in the second line of (53), we get that U can be
coloured with at most∑

i∈[k]

(
1 +

ε

2
+ o(1)

) q′iiu
′
i

2 log(q∗n)
+
∑
i∈[k]

(p′iis log n′i + 1)

=
(

1 +
ε

2
+ o(1)

) ∑
i∈k

(
uiqii + o

(
q̂(u)‖u‖

k

))
2 log(q∗n)

+ o

(
q̂(u)‖u‖
log(q∗n)

)
6 (1 + ε)

q̂(u)‖u‖
2 log(q∗n)

colours with probability at least 1− exp
(
−n2−4σ+o(1)

)
.

6 Optimal colouring: proof of Theorem 9

In this section we prove Theorem 9. First, applying Lemma 18 multiple times, we find
there are approximately w(n)

2 log(q∗‖n‖) independent sets covering almost all vertices of G ∼
G(n, P ). Then, we use Theorem 23 to estimate the number of colours for the remaining
vertices, proving that

χ(G) 6 (1 + o(1))
w(n)

2 log(q∗‖n‖)
+O

(
kq̂(n)q∗‖n‖
log2(q∗‖n‖)

)
with probability sufficiently close to 1. Finally, we obtain Theorem 9 by applying this
upper bound to each random graph corresponding to an optimal system of k vectors
(x(t))t∈[k] from Rk

+ such that

n =
∑

t∈[k]
x(t) and w∗(n) =

∑
t∈[k]

w(x(t)).

Everywhere in this section, we use notations w(·) and w∗(·) in place of w(·, Q) and w∗(·, Q),
where Q = Q(P ) is the matrix defined by (3), and q∗, q̂(·) are the same as in (7).
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6.1 Covering by independent sets

Recall that, for x = (x1, . . . , xk)
T ∈ Rk

+, we defined

bxc := (bx1c, . . . , bxkc)T and x∗ := min
i∈[k]

xi.

Provided x∗ > 0, we have, for any s > 0,

s‖x‖ > ‖bsxc‖ >

(
s− 1

x∗

)
‖x‖. (54)

Similarly, using the monotonicity and scaling properties in Theorem 10(a), we get that

sw(x) > w(bsxc) >
(
s− 1

x∗

)
w(x). (55)

The next lemma shows that we can cover almost all vertices of a random graph from the
stochastic block model with the large “balanced” independent sets provided by Lemma 18.

Lemma 24. Let G ∼ G(n, P ), where P = (pij)i,j∈[k] is such that pij = pji and 0 6 pij < 1
for all i, j ∈ [k]. Let σ ∈ [0, σ0] for some fixed 0 < σ0 <

1
4
. Assume that w(n) and n∗

satisfy the following as ‖n‖ → ∞:

w(n) > ‖n‖1−σ, n∗ = ‖n‖1+o(1), n∗ �
w(n)

log ‖n‖
.

Then, for any fixed constant ε ∈ (0, 1), with probability at least

1− exp
(
−‖n‖2−4σ+o(1)

)
,

there is a colouring of G with at most (1 + ε)
w(n)

2 log(w(n))
colours covering at least

ni

(
1− 1

log2 ‖n‖
− 5ε−1 w(n)

n∗ log(w(n))

)
vertices from each block Bi for all i ∈ [k].

Throughout this section we let ε ∈ (0, 1) be fixed and set

ν := (2− ε) log(w(n))

w(n)
and θ :=

1

2 log2 ‖n‖
+ 3ε−1 w(n)

n∗ log(w(n))
.

To prove Lemma 24 we first claim some auxiliary results, whose proofs we defer to the
end of this section.

Claim 25. With probability at least

1− exp
(
−‖n‖2−4σ+o(1)

)
there exists a sequence (U1, . . . , U`) of disjoint independent sets in G satisfying the fol-
lowing.
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(i) For all j ∈ [`], we have

b(Uj) =

⌊
ν‖n‖
‖n(j)‖

n(j)

⌋
,

where

n(j) = (n
(j)
1 , . . . , n

(j)
k )T := n−

j−1∑
i=1

b(Ui) (56)

satisfies ‖n(j)‖ > θ‖n‖.

(ii) The set
⋃`
j=1 Uj covers all but at most θe

1
2ni vertices from each block Bi. That is,

for all i ∈ [k], we have
∑`

j=1 bi(Uj) >
(

1− θe 1
2

)
ni.

Our next claim gives the upper bound on the length of the sequence (U1, . . . , U`) of
disjoint independent sets in G from Claim 25.

Claim 26. Suppose there exists a sequence (U1, . . . , U`) of disjoint independent subsets in
G such that condition (i) of Claim 25 holds. Then

` 6 (1 + ε)
w(n)

2 log(w(n))
.

We are ready to establish Lemma 24 based on the claims given above.

Proof of Lemma 24. We take the independent sets U1, . . . , U` provided by Claim 25 as our
colour classes. Note that 1

2
e

1
2 6 1 and 3 e

1
2 6 5 so the condition (ii) of Claim 25 ensures

that this colouring covers all but at most ni
(

1
log2 ‖n‖ + 5ε−1 w(n)

n∗ log(w(n))

)
vertices from each

block Bi. Claim 26 establishes the upper bound for the number of colours as desired.

In the rest of this section we will prove first Claim 26 and then Claim 25. To this end
we need the following lower bounds on n(j)

∗ defined by

n(j)
∗ := min

i∈[k]
n

(j)
i .

Claim 27. Suppose there exists a sequence (U1, . . . , U`) of disjoint independent subsets in
G such that condition (i) of Claim 25 holds. Then, for all j ∈ [`] such that j 6 w(n)

log(w(n))
,

we have

n(j)
∗ >

(
1− ε

3

)
n∗
‖n(j)‖
‖n‖

.

Proof of Claim 27. It is sufficient to prove that, for all j ∈ [`] such that j 6 w(n)
log(w(n))

,

n(j)
∗ > n∗

‖n(j)‖
‖n‖

− j + 1. (57)
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Indeed, by the condition (i) of Claim 25 we have ‖n(j)‖ > θ‖n‖. From the definition of
θ, we get that, for every j ∈ [`],

‖n(j)‖ > θ‖n‖ =
‖n‖

2 log2 ‖n‖
+ 3ε−1 ‖n‖w(n)

n∗ log(w(n))
. (58)

Using the trivial bound ‖n‖ > n∗, we immediately get from (58) that

n∗
‖n(j)‖
‖n‖

> 3ε−1 w(n)

log(w(n))
. (59)

Thus, if j 6 w(n)
log(w(n))

then Claim 27 follows from (57) and (59).

We will prove (57) by induction on j. Clearly, it is true for j = 1 since n(1) = n.
Suppose, we established the claim for j = i such that i < `. By definition and using (54)
with x = n(i) and s = ν‖n‖

‖n(i)‖ , we get that

‖n(i+1)‖
‖n(i)‖

6 1− ν‖n‖
‖n(i)‖

+
1

n
(i)
∗
. (60)

Combining the induction hypothesis, the bound of (60), and ‖n
(i+1)‖
‖n(i)‖ 6 1, we find that

n(i+1)
∗ >

(
1− ν‖n‖
‖n(i)‖

)
n(i)
∗ >

(
‖n(i+1)‖
‖n(i)‖

− 1

n
(i)
∗

)
n(i)
∗

> n∗
‖n(i+1)‖
‖n‖

− (i− 1)
‖n(i+1)‖
‖n(i)‖

− 1 > n∗
‖n(i+1)‖
‖n‖

− i.

Note also that the induction hypothesis and (59) imply that n(i)
∗ is positive, since it is

at least
(

1− ε
3

)
n∗
‖n(i)‖
‖n‖ . Thus, the claim is true for j = i + 1 and, by induction, for all

j ∈ [`] such that j 6 w(n)
log(w(n))

.

Proof of Claim 26. Assume otherwise that ` > (1 + ε)
w(n)

2 log(w(n))
. By definition (24) we

have |Uj| = ‖b(Uj)‖ and by Claim 25(i) and (54) with x = n(j) and s = ν‖n‖
‖n(j)‖ we have

‖b(Uj)‖ >
(
ν‖n‖
‖n(j)‖

− 1

n
(j)
∗

)
‖n(j)‖.

Note further that, by definition of ν and the assumptions n∗ � w(n)
log ‖n‖ , w(n) > ‖n‖1−σ,

we have ν � 1/n∗. Then, using Claim 27, we get that ν‖n‖
‖n(j)‖ �

1

n
(j)
∗

for all j ∈ [`] such

that j 6 w(n)
log(w(n))

. Therefore,

|Uj| = ‖b(Uj)‖ >
(
ν‖n‖
‖n(j)‖

− 1

n
(j)
∗

)
‖n(j)‖ = (1− o(1))ν‖n‖. (61)
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Using (61) and our assumption that ` > (1 + ε)
w(n)

2 log(w(n))
, we get

‖n‖ >
∑
j∈[`]

|Uj| > (1− o(1))ν‖n‖ (1 + ε)
w(n)

2 log(w(n))

= (1− o(1))(2− ε) (1 + ε)
‖n‖

2
> ‖n‖.

The last inequality is true for any fixed ε ∈ (0, 1) when o(1) gets sufficiently small. This
contradiction proves Claim 26.

Proof of Claim 25. In order to show the existence of such a sequence (U1, . . . , U`) of dis-
joint independent sets in G, we repeatedly apply Lemma 18. Suppose we already con-
structed sets U1, . . . , Uj−1. We will show that if ‖n(j)‖ > θ‖n‖ then, with sufficiently
high probability, we can find another independent set Uj in the induced subgraph of G
on remaining vertices, which satisfies condition (i) of Claim 25. By Claim 26, we get that

j 6 (1 + ε)
w(n)

2 log(w(n))
6

w(n)

log(w(n))
. (62)

For all i < j, using (54) with x = n(i) and s =
ν‖n‖
‖n(i)‖ , we find that

‖n(i+1)‖
‖n(i)‖

> 1− ν‖n‖
‖n(i)‖

. (63)

From (55) (with the same x and s), we obtain

w(n(i+1)) 6

(
1− ν‖n‖
‖n(i)‖

+
1

n
(i)
∗

)
w(n(i)). (64)

Due to (62), we can apply Claim 27 to obtain

n(i)
∗ >

(
1− ε

3

)
n∗
‖n(i)‖
‖n‖

>
3− ε
ε

w(n)

log(w(n))

‖n(i)‖
‖n(i+1)‖

,

where the last inequality follows from (59) by taking j = i+ 1 which gives

n∗
‖n‖

>
3

ε

w(n)

log(w(n))

1

‖n(i+1)‖
.

Then, combining this with (63), we have

1− ν‖n‖
‖n(i)‖

+
1

n
(i)
∗

6
‖n(i+1)‖
‖n(i)‖

(
1 +

ε log(w(n))

(3− ε)w(n)

)
,

which in (64) implies

w(n(i+1))

w(n(i))
6
‖n(i+1)‖
‖n(i)‖

(
1 +

ε log(w(n))

(3− ε)w(n)

)
. (65)
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Multiplying (65) together for i = 1, . . . , j − 1, we obtain

w(n(j))

w(n)
=

j−1∏
i=1

w(n(i+1))

w(n(i))
6
‖n(j)‖
‖n‖

(
1 +

ε log(w(n))

(3− ε)w(n)

)j−1

6
‖n(j)‖
‖n‖

exp

(
ε(1 + ε)

2(3− ε)

)
6
‖n(j)‖
‖n‖

e
ε
2 , (66)

where the penultimate inequality is due to 1 + x 6 ex and the first inequality in (62).
Similarly to (65) and (66), we get

w(n(i+1))

w(n(i))
>

(
‖n(i+1)‖
‖n(i)‖

− 1

n
(i)
∗

)
>
‖n(i+1)‖
‖n(i)‖

(
1− ε log(w(n))

(3− ε)w(n)

)
,

which leads to the bound
w(n(j))

w(n)
>
‖n(j)‖
‖n‖

e−
ε
2 . (67)

Thus, we obtain from (66) and (67) that

‖n(j)‖
‖n‖

e−
ε
2 6

w(n(j))

w(n)
6
‖n(j)‖
‖n‖

e
ε
2 . (68)

From (58), we have ‖n
(j)‖
‖n‖ > θ > 1

2 log2 ‖n‖
and obviously ‖n

(j)‖
‖n‖ 6 1. Using the assumption

n∗ = ‖n‖1+o(1), we get that

log(‖n‖) = (1 + o(1)) log ‖n(j)‖. (69)

By Claim 27 and the assumption n∗ � w(n)
log ‖n‖ we find that

n(j)
∗ >

(
1− ε

3

)
n∗
‖n(j)‖
‖n‖

� ‖n
(j)‖
‖n‖

· w(n)

log ‖n‖)
> e−

ε
2
w(n(j))

log ‖n‖
,

where the last inequality follows from (66). Combining this with (69), we get

n(j)
∗ �

w(n(j))

log ‖n(j)‖
.

Combining, Claim 27, the assumption n∗ = ‖n‖1+o(1), and (69), we find that

1 >
n

(j)
∗

‖n(j)‖
>
(

1− ε
3

) n∗
‖n‖

= ‖n‖o(1) = ‖n(j)‖o(1).

Furthermore, the assumption w(n) > ‖n‖1−σ together with (68) and (69) implies

w(n(j)) > w(n)
‖n(j)‖
‖n‖

e−
ε
2 > e−

ε
2‖n‖1−σ−o(1) = ‖n(j)‖1−σ−o(1).
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Thus, all assumptions of Lemma 18 hold for the random graph G(j) ∼ G(n(j), P ).
Applying Lemma 18 to G(j) ∼ G(n(j), P ) we show the existence of an independent

set U ′ ⊂ V (G(j)) in G(j) with probability at least 1 − exp
(
−‖n‖2−4σ+o(1)

)
such that

b(U ′) = bν ′nc, where

ν ′ = (2 + o(1))
log
(
w(n(j))

)
w(n(j))

.

Moreover, since 2 − 4σ > 1, the probability that there exists W ⊆ V (G) such that
b(W ) = n(j) and G[W ] does not contain such an independent set U ′ is at most(

‖n‖
‖n(j)‖

)
exp

(
−‖n‖2−4σ+o(1)

)
= exp

(
−‖n‖2−4σ+o(1)

)
.

In particular, we get that the graph obtained from G by removing U1, . . . , Uj−1 contains
such U ′ with probability at least 1− exp

(
−‖n‖2−4σ+o(1)

)
.

Next, we show that it is possible to find Uj ⊆ U ′ such that b(Uj) =
⌊
ν‖n‖
‖n(j)‖n

(j)
⌋
. To

do this, it is sufficient to show that ν ′ > ν‖n‖
‖n(j)‖ . Using (68), (69), and the assumption

w(n) > ‖n‖1−σ, we find that

log
(
w(n(j))

)
= (1 + o(1)) log (w(n)) .

Observe that g(ε) := (2− ε)eε/2 is decreasing on R+, so g(ε) < g(0) = 2. Therefore, using
(68) and the first inequality in (55), we get that

ν ′ > (2− ε)eε/2 log (w(n))

w(n(j))
> (2− ε)‖n‖ log(w(n))

‖n(j)‖w(n)
=

ν‖n‖
‖n(j)‖

.

The probability that there exists the required sequence (U1, . . . , U`) can be estimated
as follows. Using Claim 26 and applying the union bound for the event that there is no
suitable choice for Uj+1 after removing U1, . . . , Uj from G, we get that∑

j∈[`]

exp
(
−‖n‖2−4σ+o(1)

)
6

(
1

2
+ ε

)
w(n)

log(w(n))
exp

(
−‖n‖2−4σ+o(1)

)
= exp

(
−‖n‖2−4σ+o(1)

)
.

To derive the last inequality, we use the assumptions to estimate w(n)
log(w(n))

� n∗ 6 ‖n‖
and recall that 2− 4σ > 1.

The construction of the sequence (U1, . . . , U`) is terminated when ‖n(`+1)‖ < θ‖n‖.
Note that, for any i ∈ [k],

n
(j+1)
i 6 n

(j)
i −

ν‖n‖
‖n(j)‖

n
(j)
i + 1 6

(
1− ν‖n‖
‖n(j)‖

+
1

n
(j)
∗

)
n

(j)
i .

Repeating the arguments of (65) and (66), we find that

n
(`+1)
i 6 e

ε
2
‖n(`+1)‖
‖n‖

ni 6 θe
1
2ni.

Thus, condition (ii) of Claim 25 is satisfied. This completes the proof of Claim 25.
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6.2 Final ingredient for colouring completion

In this section, we combine Lemma 24 and Theorem 23 to estimate the chromatic number
of G ∼ G(n, P ) under the additional condition that w∗(n) is asymptotically equal to
w(n). In the general case of Theorem 9, this additional condition will be satisfied by
each part of the random graph G corresponding to a near-optimal integer system given
by Theorem 10(g); see Section 6.3.

Lemma 28. Let G ∼ G(n, P ), where P = (pij)i,j∈[k] is such that pij = pji and 0 6 pij < 1
for all i, j ∈ [k]. Let σ ∈ [0, σ0] for some fixed 0 < σ0 <

1
4
. Assume that, as ‖n‖ → ∞:

k = ‖n‖o(1), log ‖n‖ � kq∗ > ‖n‖−σ.

Assume also that
w∗(n) = (1 + o(1))w(n) > (q∗‖n‖)1+o(1).

Then, for any fixed ε ∈ (0, 1),

Pr

(
χ(G) > (1 + ε)

w(n)

2 log(q∗‖n‖)
+ 20ε−2kq̂(n)q∗‖n‖

log2(q∗‖n‖)

)
6 exp

(
−‖n‖2−4σ+o(1)

)
.

Proof. Let
n0 :=

εw(n)
2kq∗

.

Consider the vector ñ = (ñ1, . . . , ñk)
T ∈ Nk defined by

ñi :=

{
ni, if ni > n0,

0, otherwise.

Let Ubig be the union of blocks Bi for which ni > n0. We will apply Lemma 24 for the
induced subgraph G̃ := G[Ubig] ∼ G(ñ, P ) (ignoring zero components of ñ). Then, we
will use Theorem 23 to colour the rest of the vertices of G.

First, we check that G̃ satisfies the assumptions of Lemma 24. From the triangle
inequality in Theorem 10(e) and the assumptions, we find that

w(ñ) > w∗(ñ) > w∗(n)− w∗(n− ñ) > (1 + o(1))w(n)− w∗(n− ñ).

Using the upper bound of Theorem 10(d) and by the definitions of ñ, n0, we get

w∗(n− ñ) 6
∑
i∈[k]

n0qii=
∑
i∈[k]

εw(n)
2kq∗

qii 6
ε
2
w(n).

Therefore, by the assumptions

w(ñ) >
(

1− ε

2
+ o(1)

)
w(n) > (q∗‖n‖)1+o(1) > ‖n‖1−σ+o(1) > ‖ñ‖1−σ+o(1). (70)
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Using our assumption that w(n) = (1 + o(1))w∗(n) and Theorem 10(d) again, we get

‖n− ñ‖ 6 kn0 =
εw(n)
2q∗

= (1 + o(1))
εw∗(n)
2q∗

6 (1 + o(1))ε
2
‖n‖. (71)

In particular, we get ‖ñ‖ = ‖n‖1+o(1). By the definition of ñ, all non-zero components
of ñ are at least n0. Using the bounds of Theorem 10(d) and the assumptions, we have
that

q∗‖n‖ > w∗(n) > (1 + o(1))w(n) > (q∗‖n‖)1+o(1).

Thus, w(n)
q∗‖n‖ = ‖n‖o(1). Recalling also k = ‖n‖o(1), we find that

n0 =
εw(n)
2kq∗

= ε
2k
· w(n)
q∗‖n‖ · ‖n‖ = ‖n‖1+o(1) = ‖ñ‖1+o(1) (72)

and, since kq∗ � log ‖n‖ and ñ � n,

n0 � w(n)
log ‖n‖ >

w(ñ)
log ‖n‖ =

w(ñ)
(1+o(1)) log ‖ñ‖ .

Thus, all assumptions of Lemma 24 for G̃ ∼ G(ñ, P ) hold.
Applying Lemma 24 with ε̃ := ε

3
, we show that, with probability at least

1− exp
(
−‖ñ‖2−4σ+o(1)

)
= 1− exp

(
−‖n‖2−4σ+o(1)

)
,

there is a colouring of G̃ with at most

(1 + ε̃)
w(ñ)

2 log(w(ñ))
6 (1 + ε̃+ o(1))

w(n)
2 log(q∗‖n‖)

colours covering all vertices from each block Bi that ni > n0 except at most

ni

(
1

log2 ‖ñ‖
+ 5(ε̃)−1 w(ñ)

n0 log(w(ñ))

)
vertices.

Using (70) and recalling σ < 1
4
, we find that w(ñ) = (w(n))1+o(1) = (q∗‖n‖)1+o(1). Us-

ing also the assumption kq∗ � log ‖n‖, we conclude that the set of remaining uncoloured
vertices (with sufficiently high probability) has at most

ui := n0 + ni

(
1

log2 ‖ñ‖
+ 5(ε̃)−1 w(ñ)

n0 log(w(ñ))

)
= n0 + (1 + o(1))

30kq∗ni
ε2 log(q∗‖n‖)

vertices in each block Bi. Since n0 = ‖n‖1+o(1) by (72) and k = ‖n‖o(1) by our assump-
tions, we find that ui = ‖n‖1+o(1) and ‖u‖ = ‖n‖1+o(1), where u = (u1, . . . , uk)

T . Then,
we get that

q∗ > q̂(u) :=

∑
i∈[k] uiqii

‖u‖
>
q∗n0

‖u‖
= q∗‖n‖o(1).
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By the definitions of ui and n0, we observe that

q̂(u)‖u‖ 6 kq∗n0 + (1 + o(1))
30kq∗‖n‖q̂(n)

ε2 log(q∗‖n‖)

=
ε

2
w(n) + (1 + o(1))

30kq∗‖n‖q̂(n)

ε2 log(q∗‖n‖)
.

Using Theorem 23 with n := ‖n‖ with any ε′ < 1
3
, we can colour the remaining vertices

using at most

(1 + ε′)
q̂(u)‖u‖

2 log(q∗‖n‖)
6

(1 + ε′)ε

4
· w(n)

log(q∗‖n‖)
+ 20ε−2kq

∗‖n‖q̂(n)

log(q∗‖n‖)

colours with a probability at least 1 − exp
(
−‖n‖2−4σ+o(1)

)
. Thus, the total number of

colours is at most(
1 + ε̃+

(1 + ε′)ε

2
+ o(1)

)
w(n)

2 log(q∗‖n‖)
+ 20ε−2kq

∗‖n‖q̂(n)

log(q∗‖n‖)
.

The claimed bound on χ(G) follows since ε̃ = ε/3 and (1+ε′)ε
2

< 2ε/3.

6.3 Upper tail bound: proof of Theorem 9

By the near-optimal integer system property given in Theorem 10(g), we can find k vectors
(n(t))t∈[k] from Nk such that

n =
∑
t∈[k]

n(t) and
∑
t∈[k]

w(n(t)) 6 w∗(n) + k2q∗. (73)

We treat our graph G as the union of the vertex disjoint random graphs G(t) ∼ G(n(t), P ),
for t ∈ [k]. Since we can colour them with different colours, we have that, with probability
1,

χ(G) 6
∑
t∈[k]

χ(G(t)). (74)

Let
Tsmall =

{
t ∈ [k] : w(n(t)) <

w∗(n)

k2 log ‖n‖

}
.

The proof of Theorem 9 consists of two parts. First, applying Theorem 23, we show that,
with sufficiently high probability,

∑
t∈Tsmall

χ(G(t)) � w∗(n)
log(q∗‖n‖) . Second, we use Lemma

28 to estimate χ(G(t)) for t /∈ Tsmall.
Before proceeding, we derive some preliminary bounds implied by our assumptions.

Since k = ‖n‖o(1) and q̂(n), q∗ = ‖n‖−σ+o(1), we find that

(q̂(n))2

kq∗
= ‖n‖−σ+o(1) = ‖n‖o(1)kq∗.
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Then, using the bounds of Theorem 10(d), we get

q∗ > q̂(n) >
w∗(n)

‖n‖
>

(q̂(n))2∑
i∈[k] qii

>
(q̂(n))2

kq∗
= ‖n‖o(1)kq∗. (75)

Since kq∗‖n‖ = ‖n‖1−σ+o(1) we derive from (75) that

w∗(n) = (q∗‖n‖)1+o(1) = ‖n‖1−σ+o(1) � k2 log(q∗‖n‖). (76)

Using (75) and assumption (10), we get that

q̂(n) >
w∗(n)

‖n‖
� kq∗q̂(n)

log ‖n‖
,

which implies
q∗ 6 kq∗ � log ‖n‖,

which is needed to apply Theorem 23 and Lemma 28. Also, by the definition of w∗(·),
we know that

w∗(n) 6
∑
t∈[k]

w∗(n
(t)).

which, together with (73), implies that∑
t∈[k]

(w(n(t))− w∗(nt)) 6 k2q∗

Since every term of the sum above is non-negative, using the assumption k = ‖n‖o(1) and
the estimate q∗ � log ‖n‖, we derive that, for any t ∈ [k],

w(n(t)) 6 w∗(n
(t)) + k2q∗ = w∗(n

(t)) + ‖n‖o(1).

Then, using the first equality of (76) and our assumption k = ‖n‖o(1), for any t ∈
[k] \ Tsmall, we get

w(n(t)) >
w∗(n)

k2 log ‖n‖
= (q∗‖n‖)1+o(1) > (q∗‖n(t)‖)1+o(1). (77)

This implies that

w∗(n
(t)) = (1 + o(1))w(n(t)) > (q∗‖n(t)‖)1+o(1)

as required by Lemma 28.
Now, consider any t ∈ Tsmall. Define u = (u1, . . . , uk)

T ∈ Rk
+

ui := n
(t)
i +

w∗(n)

k2q∗ log ‖n‖
.
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Using the bound w∗(n) 6 q∗‖n‖ of Theorem 10(d) and the assumption k = ‖n‖o(1), we
get

‖n(t)‖ 6 ‖u‖ 6 ‖n(t)‖+
∑
i∈[k]

w∗(n)

k2q∗ log ‖n‖

6 ‖n(t)‖+
‖n‖

k log ‖n‖
6 ‖n‖+ ‖n‖1+o(1) = ‖n‖1+o(1).

(78)

Using the lower bounds of Theorem 10(d) and the inequality q̂(n(t)) 6 q∗, we find that

w(n(t)) > w∗(n
(t)) >

(q̂(n(t)))2‖n(t)‖
kq∗

>
q̂(n(t))‖n(t)‖

k
.

This implies q̂(n(t))‖n(t)‖ 6 kw(n(t)) < w∗(n)
k log ‖n‖ because w(n(t)) < w∗(n)

k2 log ‖n‖ since t ∈ Tsmall.
Using the definition of ui we get that

q̂(u)‖u‖ =
∑
i∈[k]

qiiui =
∑
i∈[k]

qii

(
n

(t)
i +

w∗(n)

k2q∗ log ‖n‖

)
= q̂(n(t))‖n(t)‖+

w∗(n)

k2q∗ log ‖n‖
∑
i∈[k]

qii �
w∗(n)

k
.

(79)

Using (76), the inequality q̂(u) 6 q∗, and q∗ = ‖n‖−σ+o(1) by (8), observe also that

q̂(u)‖u‖ > w∗(n)

k2q∗ log ‖n‖
∑
i∈[k]

qii >
w∗(n)

k2 log ‖n‖
= q∗‖n‖1+o(1).

Recalling from (78) that ‖u‖ 6 ‖n‖1+o(1) and using q̂(u) 6 q∗, we derive that

q∗ = q̂(u)‖n‖o(1).

Applying Theorem 23 with n := ‖n‖ and using q̂(u)‖u‖ � w∗(n)
k

from (79) we get
that

χ(G(t)) = O

(
q̂(u)‖u‖

2 log(q∗‖n‖)

)
� w∗(n)

k log(q∗‖n‖)
with probability at least 1 − exp

(
−‖n‖2−4σ+o(1)

)
. Applying the union bound, it follows

that, with sufficiently high probability,∑
t∈Tsmall

χ(G(t))� w∗(n)

log(q∗‖n‖)
. (80)

Next, we consider any t ∈ [k] \ Tsmall. Since w∗(n(t)) 6 q∗‖n(t)‖ by Theorem 10(d)
and w∗(n(t)) = (1 + o(1))w(n(t)), we have ‖n(t)‖ > (1 + o(1))w(n(t))

q∗
. Using (77) and the

bound k = ‖n‖o(1), we find also that

‖n‖ > ‖n(t)‖ > (1 + o(1))
w(n(t))

q∗
> (1 + o(1))

w∗(n)

k2q∗ log ‖n‖
= ‖n‖1+o(1).
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That is, we get ‖n(t)‖ = ‖n‖1+o(1). Applying Lemma 28 with any 0 < ε′ < ε, we derive
that,

χ(G(t)) 6 (1 + ε′)
w(n(t))

2 log(q∗‖n(t)‖)
+O

(
kq∗‖n(t)‖q̂(n(t))

log2(q∗‖n(t)‖)

)
,

with probability at least 1 − exp
(
−‖n‖2−4σ+o(1)

)
. Using the union bound for all such

event over t /∈ Tsmall, we get that, with sufficiently high probability,∑
t∈[k]\Tsmall

χ(G(t)) 6 (1 + ε′ + o(1))
w∗(n) + k2q∗

2 log(q∗‖n‖)
+O

(
kq∗‖n‖q̂(n)

log2(q∗‖n‖)

)
6 (1 + ε′ + o(1))

w∗(n)

2 log(q∗‖n‖)
.

(81)

For the first inequality in (81), we estimated the O(·) term using∑
t∈[k]\Tsmall

‖n(t)‖q̂(n(t)) =
∑

t∈[k]\Tsmall

∑
i∈[k]

qiin
(t)
i 6

∑
i∈[k]

qiini = ‖n‖q̂(n).

Finally, substituting the bounds of (80) and (81) into (74) and bounding

1 + ε′ + o(1) 6 1 + ε,

we complete the proof of Theorem 9.

7 Proof of Theorem 10

The part (a) follows directly by the definition.
The part (b) is trivial if w(x) = 0 as we can take y = 0. Thus, we can assume that

w(x) > 0. Observe that the function y 7→ yTQy
‖y‖ (defined to be 0 at origin) is continuous

on the compact set Kx defined by

Kx := {y ∈ Rk
+ : y � x}.

Therefore, there exists a maximiser y∗ = (y∗1, . . . , y
∗
k) ∈ Kx. Furthermore, for each i ∈ [k],

fi(yi) :=
yT Qy

‖y‖
= qii(yi − a) +

b

y1 + · · ·+ yn
,

where y differ from y∗ in the i-th component only and a = a(y∗), b = b(y∗). If b 6 0 then
qii 6= 0 because fi(y∗i ) = w(x) > 0. This implies that qii > 0 so the function yi 7→ fi(yi) is
strictly increasing. If b > 0 then the function yi 7→ fi(yi) is strictly convex. In any case,
the maximum lies on the boundary {0, xi}. Repeating the same argument for the other
components, we get (b).
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Before proceeding, we introduce an additional notation. For a positive integer ` and
x ∈ Rk

+, let

w`(x) := min
(x(t))t∈[`]

∑̀
t=1

wQ(x(t)) (82)

subject to
∑̀
t=1

x(t) = x and x(t) ∈ Rk
+ for all t ∈ [`].

A minimum system of ` vectors (x(t))t∈[`] in (82) exists since
∑`

t=1 wQ(x(t)) is a continuous
function on the compact set of all systems that

∑`
t=1 x

(t) = x and x(t) ∈ Rk
+. Using

definitions (4) and (6), we find that

w(x) = w1(x) > w`(x) > w∗(x) and w∗(x) = lim
`→∞

w`(x).

We will also use the following identity.

Lemma 29. For any y, z ∈ Rk
+, we have

yT Qy

‖y‖
+

zT Q z

‖z‖
− (y + z)T Q (y + z)

‖y‖+ ‖z‖

=
‖y‖‖z‖
‖y‖+ ‖z‖

(
y

‖y‖
− z

‖z‖

)T
Q

(
y

‖y‖
− z

‖z‖

)
,

where xTQx
‖x‖ is 0 if ‖x‖ = 0 and the RHS is taken to be 0 if ‖y‖ = 0 or ‖z‖ = 0.

Proof. This follows by expanding
(

y
‖y‖ −

z
‖z‖

)T
Q
(

y
‖y‖ −

z
‖z‖

)
and (y + z)T Q (y + z),

using linearity, and direct substitution.

We proceed to part (c). Take any y ∈ Kx such that yTQy
‖y‖ = w(x), which exists by

part (b). Using Lemma 29, we find that

w`(x) > w`(y) =
∑̀
t=1

w(y(t)) >
∑̀
t=1

(yt)TQyt

‖yt‖
>

yTQy

‖y‖
= w(x).

Taking the limit `→∞, we prove (c).
The upper bound

w∗(x) 6 q̂(x)‖x‖ =
∑
i∈[k]

xiqii

follows by definition (6) taking the system of k vectors (x(t))t∈[k], where, for each t ∈
[k], the t-th component of x(t) equals xt while other components are 0. Also we have
q̂(x)‖x‖ 6 q∗‖x‖. Next we prove the lower bound for w∗(x) of part (d). Let (x(t))t∈` be
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such that w`(x) =
∑

t∈[`] w(x(t)) and
∑

t∈[`] x
(`) = x. By the Cauchy-Schwarz inequality,

we find that

w(x(t)) >
(x(t))TQx(t)

‖x(t)‖
>

∑
i∈[k] qii(x

(t)
i )2

‖x(t)‖
>

(∑
i∈[k] qiix

(t)
i

)2

‖x(t)‖
∑

i∈[k] qii
.

Using the Cauchy-Schwarz inequality again, we obtain

∑
t∈[`]

‖x(t)‖ ·
∑
t∈[`]

(∑
i∈[k] qiix

(t)
i

)2

‖x(t)‖
>

∑
t∈[`]

∑
i∈[k]

qiix
(t)
i

2

=

∑
i∈[k]

qiixi

2

= (q̂(x)2)‖x‖2.

Therefore,

w`(x) =
∑
t∈[`]

x(`) >
(q̂(x)2)∑
i∈[k] qii

‖x‖.

Taking the limit `→∞ and observing
∑

i∈[k] qii 6 kq∗, we complete the proof of (d).
For (e), consider any two vector systems S ∈ F(x) and S ′ ∈ F(x′); see definition (6).

Then, the union system S ∪ S ′ belongs to F(x + x′). Thus,∑
y∈S

w(y) +
∑
y∈S′

w(y) =
∑

y∈S∪S′
w(y) > w∗(x + x′).

Taking the infimum over S,S ′, we get (e).
For (f), assume ` > k. Then, we can find real constants c(t), t = 1, . . . , `, such that

∑̀
t=1

c(t)x(t) = 0.

Next, we show that x(t)
ε = (1 + εc(t))x(t) gives another optimal solution of (82). Observe

that
∑`

t=1 x
(t)
ε = x. If |ε| is sufficiently small that x(t)

ε ∈ Rk
+ then

f(ε) :=
∑̀
t=1

w(x(t)
ε ) =

∑̀
t=1

(1 + εc(t))w(x(t)),

that is, f(ε) is a linear function of ε. Since ε = 0 gives the minimum value of f(ε), it
should be a constant function. Then, we can make at least one of x(t)

ε to be trivial while
others remain in Rk

+ without changing the value of the target function
∑`

t=1 w(x
(t)
ε ). This

implies w`(x) = w`−1(x). Repeating these arguments several times we find that

w`(x) = w`−1(x) = · · · = wk(x).

Taking the limit `→∞, we get (f).
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Finally, we proceed to part (g). Using part (f), we can find a system (y(t))t∈[k] such
that

k∑
t=1

w(y(t)) = w∗(x) and
k∑
t=1

y(t) = x.

In particular, by definition of w∗(·), we find that

w∗(y
(t)) = w(y(t)). (83)

Define x(t) := by(t)c. Combining (83) and parts (d), (e), we also find that for all t ∈ [k]

w(y(t)) = w∗(y
t) 6 w∗(x

(t)) +w∗(y
(t)−x(t)) 6 w∗(x

(t)) + q∗‖y(t)−x(t)‖ 6 w∗(x
(t)) + kq∗.

Thus, we get that

k∑
t=1

w(x(t)) >
k∑
t=1

(w(y(t))− kq∗) = w∗(x)− k2q∗.

Now, we can increase some components of x(t) to ensure that
∑

t∈[k] x
(t) = x. By part

(a), this would only increase the values of w(x(t)). This completes the proof of part (g)
and Theorem 10.
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