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Abstract

Let X be a convex polyomino such that its vertex set is a sublattice of N2. Let
k[X] be the toric ring (over a field k) associated to X in the sense of Qureshi, J.
Algebra, 2012. Write the Hilbert series of k[ X] as (14-hyt+hot?+- - - )/ (1—¢)dimEX]),
For k£ € N, let rr be the number of configurations in X with k£ pairwise non-
attacking rooks. We show that hy < ry if X is not a thin polyomino. This partially
confirms a conjectured characterization of thin polyominoes by Rinaldo and Romeo,
J. Algebraic Combin., 2021.

Mathematics Subject Classifications: 13F65, 05E40, 13D40

1 Introduction

A polyomino is a finite union of unit squares with vertices at lattice points in the plane
that is connected and has not finite cut-set [9, 4.7.18]. (Definitions are given in Section 2.)
A. A. Qureshi [6] associated a finitely generated graded algebra k[X| (over a field k) to
polyomino X. For k € N, a k-rook configuration in X is an arrangement of k£ rooks in
pairwise non-attacking positions. The rook polynomial 7(¢) of X is Y, rxt" where 7y
is the number of k-rook configurations in X. The h-polynomial of k[X] is the (unique)
polynomial h(t) € Z[t] such that the Hilbert series of k[X] is h(t)/(1 — )¢ where d =
dimk[X]. A polyomino is thin if it does not contain a 2 x 2 square of four unit squares
(such as the one shown in Figure 2).
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G. Rinaldo and F. Romeo [7, Theorem 1.1] showed that if X is a simple thin polyomino,
then h(t) = r(t) and conjectured [7, Conjecture 4.5] that this property characterises thin
polyominoes. In this paper, we prove this conjecture in the following case:

Theorem 1. Let X be a convex polyomino such that its vertex set V(X) is a sublattice of
N2, Let h(t) = 1+hyt+hot>+- - - be the h-polynomial of K[ X]| and r(t) = 14rit+ryt?+- - -
be the rook polynomial of X. If X is not thin, then hy < ro. In particular h(t) # r(t).

Its proof proceeds as follows: we first observe that k[X] is the Hibi ring of the dis-
tributive lattice V(X)) and that the Hilbert series of the Hibi ring of a distributive lattice
and that of the Stanley-Reisner ring of its order complex are the same. We then use the
results of [1] relate the h-polynomial to descents in maximal chains of V' (X), and find an
injective map from the set of maximal chains of V(X)) to the rook configurations in X,
to conclude that hy < 7, in general. We then show that if X is not thin, this map is
not surjective to show that hy < r5. In Corollary 11 we extend our result to L-convex
polyominoes.

Section 2 contains the definitions and preliminaries. Proof of the theorem is given in
Section 3.
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2 Preliminaries

Definition 2. A cell in R? is a set of the form {(z,y) e R? |a < x < a+1,b<y < b+1}
where (a,b) € Z2. We identify the cells of X by their top-right corners: For v € Z2
C(v) is the cell whose top-right corner is v. A polyomino X is a finite union of cells
that is connected and has no finite cut-set (i.e., removing finite sets from X leaves X
connected) [9, 4.7.18]. We say that a polyomino X is horizontally convez if for every
line segment ¢ parallel to the x-axis with end-points in X, ¢ C X. Similarly we define
vertically conver polyominoes. We say that a polyomino X is convez if it is horizontally
convex and vertically convex. The set of cells of X is denoted by C(X). The vertex set
V(X) of X is X NZ* By the left-boundary vertices of X, we mean the elements of
72N OX that are top-left vertices of the cells of X; the bottom-boundary vertices of X are
the elements of Z? N X that are bottom-right vertices of the cells of X;

Qureshi [6] associated a toric ring to a polyomino.

Definition 3. Let X be a convex polyomino. Let R = k[{x, | v € V(X)}] be a polynomial
ring. An interval in X is a subset of X of the form [a,b] := {c € V(X) | a < ¢ < b} where
a < be V(X) and < is the partial order on R? given by componentwise comparison:
a = (a,az) < b= (by,be) if a; < by and ay < be. Let Ix be the R-ideal generated by the
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binomials of the form z,2, — z.x4 where a < b € V(X) and ¢,d € V(X) are the other two
corners of the interval [a,b]. Let k[.X| = R/Ix.

Setup 2.1. Let X be a convex polyomino such that V(X) is a sublattice of N?. Let
JI(X) be the poset of join-irreducible elements of V' (X). After a suitable translation, if

necessary, we assume that (0,0) and (m,n) are the elements 0 and 1 of V(X). Hence
| JI(X)| =m + n.

Definition 4. Let L be a finite distributive lattice. Let R = k[{z, | a € L}|. The
Hibi ideal [4] I, of L is the R-ideal generated by the binomials of the form z,x, — z.24

where a,b € L and ¢ and d are the join and the meet of a and b. The Hibi ring of L is
k[L] := R/I}.

Definition 5. Let R be a standard graded k-algebra. The h-polynomial of R is the
polynomial h(t) such that the Hilbert series of R is h(t)/(1 — t)¢ where d = dim R.

Remark 6. When X is as in Setup 2.1, the polyomino ring k[X] is the Hibi ring k[V (X)].
Hence we are interested in the h-polynomial of the Hibi ring of a distributive lattice.
Let L be a distributive lattice. The order complex A(L) is the simplicial complex whose
faces are the chains of L. The Stanley-Reisner ring kK[A(L)] of A(L) is the quotient of
k[{z. | @ € L}] by the ideal generated by {z,x; | a,b incomparable}. There is a flat
deformation from k[L] to k[A(L)]; see, e.g., [2, Section 7.1], after noting that Hibi rings
are ASLs. Hence the h-polynomials of k[X] and of k[A(V(X))] are the same. We use the
results of [1] to relate the h-polynomial of A(L) to the descents in the maximal chains of
L.

Discussion 2.2. We follow the discussion of [1, Section 1]. Let w : JI(X) — {1,...,m+
n} be a (fixed) order-preserving map. Let M(X) be the set of maximal chains of
V(X). Let p € M(X). We first write p as a chain of order ideals of JI(X): 0 =
Iy CL € C Iy = 1. Then |I; ~ Ii_1| = {p;} for some p; € JI(X). Define
w(p) = (wp1), ..., w(Dmen)). For 1 <i < m+n—1, we say that ¢ is a descent of p if
w(pi) > w(pir1). The descent set Des(p) of pis{i |1 <i<m+n—1, iis a descent of u}.
For k € N, define M (X) = { € M(X) : | Des(p)| = k}.

We now think of 4 as a lattice path from (0,0) to (m,n) consisting of horizontal and
vertical edges. Label the vertices of p as (0,0) = po, pi1, - - s flnan = (m,n), with p; — p; 1
a unit vector (when we think of these as elements of R?) pointing to the right or upwards.
Then, if i € Des(u), then the direction of p changes at p;, i.e, the vectors p; — p;—; and
1iv1 — p; are perpendicular to each other. Hence u; ;1 and pu;,q are the bottom-left and
top-right vertices of a cell (the cell C'(p;41) in our notation) of X. Thus we get a function

¥ M(X) — Pow(C(X)),  p = {C(pira) € C(X) [ € Des(u)}. (2.3)

Proposition 7. When X is as in Setup 2.1. Write h(t) = 1 + hyt + hot® + -+ for the
h-polynomial of k[ X|. Then h; = | M;(X)].
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Proof. Use [1, Theorems 4.1 and 1.1] with standard grading (i.e. setting t; = ¢ for all 7)
to see that the h-polynomial of the Stanley Reisner ring of A(V(X))) is

S IMUX)E

ieN
The proposition now follows from Remark 6. m

Discussion 2.4. Let X be as in Setup 2.1. Left-boundary vertices and bottom-boundary
vertices are join-irreducible. Let p € V(X); assume that p is not a left-boundary vertex
or a bottom-boundary vertex. If p € 0X then it is the top-right vertex of a cell in X, and
hence is not join-irreducible. If p € X then p is the bottom-left vertex of the unique cell
containing it (i.e., the bottom element 0 of V(X)) or the top-right vertex of the unique
cell containing it (i.e., the top element 1 of V(X)); hence p ¢ JI(X). Thus we have
established that JI(X) is the union of the set of the left-boundary vertices and of the
set of the bottom-boundary vertices. The sets of the left-boundary vertices and of the
bottom-boundary vertices are totally ordered in V(X). Therefore if (p,p’) is a pair of
incomparable elements of JI(X), then one of them is a left-boundary vertex and the other
is a bottom-boundary vertex.

3 Proof of the theorem

Proposition 8. Let p € M(X) and i € Des(u). Write pu as a chain of order ideals

=

a. p; and p;11 are incomparable;

b. i+ 1 ¢& Des(u).

Proof. (a): Assume, by way of contradiction, that they are comparable. Then p; < p;y1.
Hence w(p;) < w(pi+1), contradicting the hypothesis that ¢ € Des(u).

(b): By way of contradiction, assume that ¢ + 1 € Des(u). Then, by (a), p;+1 and
piro are incomparable. We see from Discussion 2.4 and the definition of the p; that
pi < Piya. Therefore w(p;) < w(pir2) contradicting the hypothesis that w(p;) > w(piy1) >
w(pi+2)- L

Proposition 9. The function ¢ of (2.3) is injective.

Proof. Let p,v € M(X) be such that ¢¥(u) = 1(v). As earlier, write p and v as chains
of order ideals of JI(X):

p:0=ICLC-Clyn=1;
vi0=ICIlC---CI,, =1

For 1 <i<m+mn, write [; \ [;_y = {p;} and I/ N I!_, = {p}} with p;,p; € JI(X). We
will prove by induction on i that I; = I] for all 0 < i < m + n. Since [y = [}, we may
assume that i > 0 and that I; = I} for all j <.
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Figure 1: C, C4, Cy, p (blue) and v (red) from the proof of Proposition 9.

Assume, by way of contradiction, that I; # I/. Then I;,_; (which equals I!_;) is the
bottom-left vertex of a cell C'. Without loss of generality, we may assume that [I; is the
top-left vertex of C' and that I] is the bottom-right vertex of C'. (In other words, p goes
up and v goes to the right from I;_;, or equivalently, p; is a left-boundary vertex and p/
is a bottom-boundary vertex.)

Let

ip=min{j >i:p; € [;} — 1;
ip =min{j >i:p; € I;} —1.

Then the edge (I;,_1, I;,) is vertical while (I;,, I;; 1) is horizontal; this is the first time p
turns horizontal after I; ;. Let C; be the cell with I;, 1, I;, and I; 41 as the bottom-left,
the top-left and the top-right vertices respectively. Similarly the edge (I;,_;, I},) is vertical

while (I, I;,,,) is horizontal; this is the first time v turns vertical after Ij_;. Let Cy be

the cell with I, _,, Ij, and Ij ,, as the bottom-left, the bottom-right and the top-right
vertices respectively. (The possibility that C; = C or Cy = C has not been ruled out.)
See Figure 1 for a schematic showing the cells C, C; and C5 and the chains p and v.
We now prove a sequence of statements from which the proposition follows.
a. If Oy € (p), then Cy € 9(v). Proof: Note that p; 41 = pj and pj, ., = p;. Since

Cy & (), we see that

w(pi) = wpi+1) > wpy) = w(pi),

where the last inequality follows from noting that p;, < --- < p;, since they are left-
boundary vertices. Therefore, in the chain v, we have

w(p;,) = w(p;) > w(pi) = w(Pi,41);

i.e., iy € Des(v). Hence Cy € ¥(v).

ot
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Figure 2: 2-rook (denoted by R) configuration in a non-thin polyomino.

b. If Cy & ¥(v), then C; € ¥(p). Immediate from (a).

c. If C1 # C then C ¢ ¢(p) and Cy € ¥(v). Proof: Note that u does not pass through
the top-right vertex of C' and that v does not pass through the bottom-left vertex of Cf.

d. If Cy # C then C & ¢(v) and Cy & (). Proof: Note that v does not pass through
the top-right vertex of C' and that p does not pass through the bottom-left vertex of Cf.

e. If C1 # C, then ¢¥(u) # ¥ (v). Proof: If Cy € ¥(u), use (c¢) to see that

Cr € Y(p) N Y(v).

Now assume that C} € ¥(p). Then Cy € (v) by (a). If Cy = C, then Cy & (1) by (c);
otherwise, Cy & (1) by (d).
f. If Cy # C, then ¥(u) # ¥ (v). Proof: If Cy € ¢(v), use (d) to see that

Cy € Y(v) N Y ().

Now assume that Cy & 1(v). Then C) € ¢(u) by (b). If C; = C, then C; & 1(v) by (d);
otherwise, Cy & ¥ (v) by (c).

g. C belongs to at most one of ¢(u) and ¥(v). Proof: Suppose C' € ¥(u). Then
iy =1+ 1, p;, =} and w(p;) > w(p}). For C to belong to ¢ (v), we need that I}, = I;11
(i.e., p and v are the same up to i + 1, except at 7); for this to hold, it is necessary that
Pii1 = Di, but then i & Des(v). The other case is proved similarly.

h. If Cy = Cy = C then ¢(u) # ¢ (v). Proof: By (g), it suffices to show that C' € ¥ ()
or C' € ¢(v). This follows from (a) and (b).

The proposition is proved by (e), (f), and (h). O

Proposition 10. Let k € N and pp € My(X). Then 1(u) is a k-rook configuration in X.

Proof. Since [1(u)| = k, it suffices to note that the cells of ¥(u) are in distinct rows and
columns. This follows from Proposition 8(b). O

Proof of Theorem 1. For each i € N, h; = | M;(X)| by Proposition 7. By Propositions 9
and 10 we see that h; < r; for all 7. Since X is not thin, X contains a 2-rook configuration
as in Figure 2. Such a rook configuration cannot be in the image of ¢). Hence hy < 1r9. [

Using results of [3], we can extend our result to L-convex polyominoes as follows. Let
X be an L-convex polyomino. Then there exists a polyomino X* (the Ferrer diagram
projected by X, in the sense of [3]) such that
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a. X* is a convex polyomino such that V' (X*) is a sublattice of N? (since X* is a Ferrer
diagram);

b. If X is not thin, then X* is not thin;
c. X and X* have the same rook polynomial [3, Lemma 2.4];

d. k[X] and k[X*]| are isomorphic to each other [3, Theorem 3.1], so they have the
same h-polynomial.

Thus we get:

Corollary 11. Let X be an L-convez polyomino that is not thin. Let h(t) = 1+ hit +
hot?>+- - be the h-polynomial of K[ X] and r(t) = 1+rit+rot>+- -+ be the rook polynomial
of X. Then hy < 1ry.
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