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Abstract

Let X be a convex polyomino such that its vertex set is a sublattice of N2. Let
k[X] be the toric ring (over a field k) associated to X in the sense of Qureshi, J.
Algebra, 2012. Write the Hilbert series of k[X] as (1+h1t+h2t

2+· · · )/(1−t)dim(k[X]).
For k ∈ N, let rk be the number of configurations in X with k pairwise non-
attacking rooks. We show that h2 < r2 if X is not a thin polyomino. This partially
confirms a conjectured characterization of thin polyominoes by Rinaldo and Romeo,
J. Algebraic Combin., 2021.

Mathematics Subject Classifications: 13F65, 05E40, 13D40

1 Introduction

A polyomino is a finite union of unit squares with vertices at lattice points in the plane
that is connected and has not finite cut-set [9, 4.7.18]. (Definitions are given in Section 2.)
A. A. Qureshi [6] associated a finitely generated graded algebra k[X] (over a field k) to
polyomino X. For k ∈ N, a k-rook configuration in X is an arrangement of k rooks in
pairwise non-attacking positions. The rook polynomial r(t) of X is

∑
k∈N rkt

k where rk
is the number of k-rook configurations in X. The h-polynomial of k[X] is the (unique)
polynomial h(t) ∈ Z[t] such that the Hilbert series of k[X] is h(t)/(1 − t)d where d =
dimk[X]. A polyomino is thin if it does not contain a 2 × 2 square of four unit squares
(such as the one shown in Figure 2).
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G. Rinaldo and F. Romeo [7, Theorem 1.1] showed that if X is a simple thin polyomino,
then h(t) = r(t) and conjectured [7, Conjecture 4.5] that this property characterises thin
polyominoes. In this paper, we prove this conjecture in the following case:

Theorem 1. Let X be a convex polyomino such that its vertex set V (X) is a sublattice of
N2. Let h(t) = 1+h1t+h2t

2+· · · be the h-polynomial of k[X] and r(t) = 1+r1t+r2t
2+· · ·

be the rook polynomial of X. If X is not thin, then h2 < r2. In particular h(t) 6= r(t).

Its proof proceeds as follows: we first observe that k[X] is the Hibi ring of the dis-
tributive lattice V (X) and that the Hilbert series of the Hibi ring of a distributive lattice
and that of the Stanley-Reisner ring of its order complex are the same. We then use the
results of [1] relate the h-polynomial to descents in maximal chains of V (X), and find an
injective map from the set of maximal chains of V (X) to the rook configurations in X,
to conclude that hk 6 rk in general. We then show that if X is not thin, this map is
not surjective to show that h2 < r2. In Corollary 11 we extend our result to L-convex
polyominoes.

Section 2 contains the definitions and preliminaries. Proof of the theorem is given in
Section 3.
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2 Preliminaries

Definition 2. A cell in R2 is a set of the form {(x, y) ∈ R2 | a 6 x 6 a+1, b 6 y 6 b+1}
where (a, b) ∈ Z2. We identify the cells of X by their top-right corners: For v ∈ Z2,
C(v) is the cell whose top-right corner is v. A polyomino X is a finite union of cells
that is connected and has no finite cut-set (i.e., removing finite sets from X leaves X
connected) [9, 4.7.18]. We say that a polyomino X is horizontally convex if for every
line segment ` parallel to the x-axis with end-points in X, ` ⊆ X. Similarly we define
vertically convex polyominoes. We say that a polyomino X is convex if it is horizontally
convex and vertically convex. The set of cells of X is denoted by C(X). The vertex set
V (X) of X is X ∩ Z2. By the left-boundary vertices of X, we mean the elements of
Z2 ∩ ∂X that are top-left vertices of the cells of X; the bottom-boundary vertices of X are
the elements of Z2 ∩ ∂X that are bottom-right vertices of the cells of X;

Qureshi [6] associated a toric ring to a polyomino.

Definition 3. LetX be a convex polyomino. LetR = k[{xv | v ∈ V (X)}] be a polynomial
ring. An interval in X is a subset of X of the form [a, b] := {c ∈ V (X) | a 6 c 6 b} where
a 6 b ∈ V (X) and 6 is the partial order on R2 given by componentwise comparison:
a = (a1, a2) 6 b = (b1, b2) if a1 6 b1 and a2 6 b2. Let IX be the R-ideal generated by the
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binomials of the form xaxb−xcxd where a 6 b ∈ V (X) and c, d ∈ V (X) are the other two
corners of the interval [a, b]. Let k[X] = R/IX .

Setup 2.1. Let X be a convex polyomino such that V (X) is a sublattice of N2. Let
JI(X) be the poset of join-irreducible elements of V (X). After a suitable translation, if
necessary, we assume that (0, 0) and (m,n) are the elements 0̂ and 1̂ of V (X). Hence
| JI(X)| = m+ n.

Definition 4. Let L be a finite distributive lattice. Let R = k[{xa | a ∈ L}]. The
Hibi ideal [4] IL of L is the R-ideal generated by the binomials of the form xaxb − xcxd
where a, b ∈ L and c and d are the join and the meet of a and b. The Hibi ring of L is
k[L] := R/IL.

Definition 5. Let R be a standard graded k-algebra. The h-polynomial of R is the
polynomial h(t) such that the Hilbert series of R is h(t)/(1− t)d where d = dimR.

Remark 6. When X is as in Setup 2.1, the polyomino ring k[X] is the Hibi ring k[V (X)].
Hence we are interested in the h-polynomial of the Hibi ring of a distributive lattice.
Let L be a distributive lattice. The order complex ∆(L) is the simplicial complex whose
faces are the chains of L. The Stanley-Reisner ring k[∆(L)] of ∆(L) is the quotient of
k[{xa | a ∈ L}] by the ideal generated by {xaxb | a, b incomparable}. There is a flat
deformation from k[L] to k[∆(L)]; see, e.g., [2, Section 7.1], after noting that Hibi rings
are ASLs. Hence the h-polynomials of k[X] and of k[∆(V (X))] are the same. We use the
results of [1] to relate the h-polynomial of ∆(L) to the descents in the maximal chains of
L.

Discussion 2.2. We follow the discussion of [1, Section 1]. Let ω : JI(X) −→ {1, . . . ,m+
n} be a (fixed) order-preserving map. Let M(X) be the set of maximal chains of
V (X). Let µ ∈ M(X). We first write µ as a chain of order ideals of JI(X): 0̂ =
I0 ( I1 ( · · · ( Im+n = 1̂. Then |Ii r Ii−1| = {pi} for some pi ∈ JI(X). Define
ω(µ) = (ω(p1), . . . , ω(pm+n)). For 1 6 i 6 m + n − 1, we say that i is a descent of µ if
ω(pi) > ω(pi+1). The descent set Des(µ) of µ is {i | 1 6 i 6 m+n−1, i is a descent of µ}.
For k ∈ N, define Mk(X) = {µ ∈M(X) : |Des(µ)| = k}.

We now think of µ as a lattice path from (0, 0) to (m,n) consisting of horizontal and
vertical edges. Label the vertices of µ as (0, 0) = µ0, µ1, . . . , µm+n = (m,n), with µi−µi−1
a unit vector (when we think of these as elements of R2) pointing to the right or upwards.
Then, if i ∈ Des(µ), then the direction of µ changes at µi, i.e, the vectors µi − µi−1 and
µi+1 − µi are perpendicular to each other. Hence µi−1 and µi+1 are the bottom-left and
top-right vertices of a cell (the cell C(µi+1) in our notation) of X. Thus we get a function

ψ :M(X) −→ Pow(C(X)), µ 7→ {C(µi+1) ∈ C(X) | i ∈ Des(µ)}. (2.3)

Proposition 7. When X is as in Setup 2.1. Write h(t) = 1 + h1t + h2t
2 + · · · for the

h-polynomial of k[X]. Then hi = |Mi(X)|.
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Proof. Use [1, Theorems 4.1 and 1.1] with standard grading (i.e. setting ti = t for all i)
to see that the h-polynomial of the Stanley Reisner ring of ∆(V (X))) is∑

i∈N

|Mi(X)|ti.

The proposition now follows from Remark 6.

Discussion 2.4. Let X be as in Setup 2.1. Left-boundary vertices and bottom-boundary
vertices are join-irreducible. Let p ∈ V (X); assume that p is not a left-boundary vertex
or a bottom-boundary vertex. If p 6∈ ∂X then it is the top-right vertex of a cell in X, and
hence is not join-irreducible. If p ∈ ∂X then p is the bottom-left vertex of the unique cell
containing it (i.e., the bottom element 0̂ of V (X)) or the top-right vertex of the unique
cell containing it (i.e., the top element 1̂ of V (X)); hence p 6∈ JI(X). Thus we have
established that JI(X) is the union of the set of the left-boundary vertices and of the
set of the bottom-boundary vertices. The sets of the left-boundary vertices and of the
bottom-boundary vertices are totally ordered in V (X). Therefore if (p, p′) is a pair of
incomparable elements of JI(X), then one of them is a left-boundary vertex and the other
is a bottom-boundary vertex.

3 Proof of the theorem

Proposition 8. Let µ ∈ M(X) and i ∈ Des(µ). Write µ as a chain of order ideals
0̂ = I0 ( I1 ( · · · ( Im+n = 1̂ and |Ii r Ii−1| = {pi} with pi ∈ JI(X). Then

a. pi and pi+1 are incomparable;

b. i+ 1 6∈ Des(µ).

Proof. (a): Assume, by way of contradiction, that they are comparable. Then pi < pi+1.
Hence ω(pi) < ω(pi+1), contradicting the hypothesis that i ∈ Des(µ).

(b): By way of contradiction, assume that i + 1 ∈ Des(µ). Then, by (a), pi+1 and
pi+2 are incomparable. We see from Discussion 2.4 and the definition of the pi that
pi < pi+2. Therefore ω(pi) < ω(pi+2) contradicting the hypothesis that ω(pi) > ω(pi+1) >
ω(pi+2).

Proposition 9. The function ψ of (2.3) is injective.

Proof. Let µ, ν ∈ M(X) be such that ψ(µ) = ψ(ν). As earlier, write µ and ν as chains
of order ideals of JI(X):

µ : 0̂ = I0 ( I1 ( · · · ( Im+n = 1̂;

ν : 0̂ = I ′0 ( I ′1 ( · · · ( I ′m+n = 1̂.

For 1 6 i 6 m + n, write Ii r Ii−1 = {pi} and I ′i r I ′i−1 = {p′i} with pi, p
′
i ∈ JI(X). We

will prove by induction on i that Ii = I ′i for all 0 6 i 6 m + n. Since I0 = I ′0, we may
assume that i > 0 and that Ij = I ′j for all j < i.
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Figure 1: C, C1, C2, µ (blue) and ν (red) from the proof of Proposition 9.

Assume, by way of contradiction, that Ii 6= I ′i. Then Ii−1 (which equals I ′i−1) is the
bottom-left vertex of a cell C. Without loss of generality, we may assume that Ii is the
top-left vertex of C and that I ′i is the bottom-right vertex of C. (In other words, µ goes
up and ν goes to the right from Ii−1, or equivalently, pi is a left-boundary vertex and p′i
is a bottom-boundary vertex.)

Let

i1 = min{j > i : p′i ∈ Ij} − 1;

i2 = min{j > i : pi ∈ I ′j} − 1.

Then the edge (Ii1−1, Ii1) is vertical while (Ii1 , Ii1+1) is horizontal; this is the first time µ
turns horizontal after Ii−1. Let C1 be the cell with Ii1−1, Ii1 and Ii1+1 as the bottom-left,
the top-left and the top-right vertices respectively. Similarly the edge (I ′i2−1, I

′
i2

) is vertical
while (I ′i2 , I

′
i2+1) is horizontal; this is the first time ν turns vertical after I ′i−1. Let C2 be

the cell with I ′i2−1, I
′
i2

and I ′i2+1 as the bottom-left, the bottom-right and the top-right
vertices respectively. (The possibility that C1 = C or C2 = C has not been ruled out.)
See Figure 1 for a schematic showing the cells C, C1 and C2 and the chains µ and ν.

We now prove a sequence of statements from which the proposition follows.
a. If C1 6∈ ψ(µ), then C2 ∈ ψ(ν). Proof: Note that pi1+1 = p′i and p′i2+1 = pi. Since

C1 6∈ ψ(µ), we see that

ω(p′i) = ω(pi1+1) > ω(pi1) > ω(pi),

where the last inequality follows from noting that pi < · · · < pi1 since they are left-
boundary vertices. Therefore, in the chain ν, we have

ω(p′i2) > ω(p′i) > ω(pi) = ω(p′i2+1),

i.e., i2 ∈ Des(ν). Hence C2 ∈ ψ(ν).
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R

R

Figure 2: 2-rook (denoted by R) configuration in a non-thin polyomino.

b. If C2 6∈ ψ(ν), then C1 ∈ ψ(µ). Immediate from (a).
c. If C1 6= C then C 6∈ ψ(µ) and C1 6∈ ψ(ν). Proof: Note that µ does not pass through

the top-right vertex of C and that ν does not pass through the bottom-left vertex of C1.
d. If C2 6= C then C 6∈ ψ(ν) and C2 6∈ ψ(µ). Proof: Note that ν does not pass through

the top-right vertex of C and that µ does not pass through the bottom-left vertex of C1.
e. If C1 6= C, then ψ(µ) 6= ψ(ν). Proof: If C1 ∈ ψ(µ), use (c) to see that

C1 ∈ ψ(µ) r ψ(ν).

Now assume that C1 6∈ ψ(µ). Then C2 ∈ ψ(ν) by (a). If C2 = C, then C2 6∈ ψ(µ) by (c);
otherwise, C2 6∈ ψ(µ) by (d).

f. If C2 6= C, then ψ(µ) 6= ψ(ν). Proof: If C2 ∈ ψ(ν), use (d) to see that

C2 ∈ ψ(ν) r ψ(µ).

Now assume that C2 6∈ ψ(ν). Then C1 ∈ ψ(µ) by (b). If C1 = C, then C1 6∈ ψ(ν) by (d);
otherwise, C1 6∈ ψ(ν) by (c).

g. C belongs to at most one of ψ(µ) and ψ(ν). Proof: Suppose C ∈ ψ(µ). Then
i1 = i+ 1, pi1 = p′i and ω(pi) > ω(p′i). For C to belong to ψ(ν), we need that I ′i+1 = Ii+1

(i.e., µ and ν are the same up to i + 1, except at i); for this to hold, it is necessary that
p′i+1 = pi, but then i 6∈ Des(ν). The other case is proved similarly.

h. If C1 = C2 = C then ψ(µ) 6= ψ(ν). Proof: By (g), it suffices to show that C ∈ ψ(µ)
or C ∈ ψ(ν). This follows from (a) and (b).

The proposition is proved by (e), (f), and (h).

Proposition 10. Let k ∈ N and µ ∈Mk(X). Then ψ(µ) is a k-rook configuration in X.

Proof. Since |ψ(µ)| = k, it suffices to note that the cells of ψ(µ) are in distinct rows and
columns. This follows from Proposition 8(b).

Proof of Theorem 1. For each i ∈ N, hi = |Mi(X)| by Proposition 7. By Propositions 9
and 10 we see that hi 6 ri for all i. Since X is not thin, X contains a 2-rook configuration
as in Figure 2. Such a rook configuration cannot be in the image of ψ. Hence h2 < r2.

Using results of [3], we can extend our result to L-convex polyominoes as follows. Let
X be an L-convex polyomino. Then there exists a polyomino X∗ (the Ferrer diagram
projected by X, in the sense of [3]) such that
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a. X∗ is a convex polyomino such that V (X∗) is a sublattice of N2 (since X∗ is a Ferrer
diagram);

b. If X is not thin, then X∗ is not thin;

c. X and X∗ have the same rook polynomial [3, Lemma 2.4];

d. k[X] and k[X∗] are isomorphic to each other [3, Theorem 3.1], so they have the
same h-polynomial.

Thus we get:

Corollary 11. Let X be an L-convex polyomino that is not thin. Let h(t) = 1 + h1t +
h2t

2+ · · · be the h-polynomial of k[X] and r(t) = 1+r1t+r2t
2+ · · · be the rook polynomial

of X. Then h2 < r2.
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