The *h*-Polynomial and the Rook Polynomial of some Polynomials

Manoj Kummini*

Dharm Veer

Chennai Mathematical Institute, Siruseri, Tamilnadu 603103. India

Chennai Mathematical Institute, Siruseri, Tamilnadu 603103. India

mkummini@cmi.ac.in

dharm@cmi.ac.in

Submitted: Dec 3, 2021; Accepted: Mar 22, 2023; Published: Apr 7, 2023 (C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let X be a convex polyomino such that its vertex set is a sublattice of \mathbb{N}^2 . Let $\Bbbk[X]$ be the toric ring (over a field \Bbbk) associated to X in the sense of Qureshi, J. Algebra, 2012. Write the Hilbert series of $\Bbbk[X]$ as $(1+h_1t+h_2t^2+\cdots)/(1-t)^{\dim(\Bbbk[X])}$. For $k \in \mathbb{N}$, let r_k be the number of configurations in X with k pairwise nonattacking rooks. We show that $h_2 < r_2$ if X is not a thin polyomino. This partially confirms a conjectured characterization of thin polyominoes by Rinaldo and Romeo, J. Algebraic Combin., 2021.

Mathematics Subject Classifications: 13F65, 05E40, 13D40

1 Introduction

A polyomino is a finite union of unit squares with vertices at lattice points in the plane that is connected and has not finite cut-set [9, 4.7.18]. (Definitions are given in Section 2.) A. A. Qureshi [6] associated a finitely generated graded algebra $\Bbbk[X]$ (over a field \Bbbk) to polyomino X. For $k \in \mathbb{N}$, a k-rook configuration in X is an arrangement of k rooks in pairwise non-attacking positions. The rook polynomial r(t) of X is $\sum_{k \in \mathbb{N}} r_k t^k$ where r_k is the number of k-rook configurations in X. The h-polynomial of $\Bbbk[X]$ is the (unique) polynomial $h(t) \in \mathbb{Z}[t]$ such that the Hilbert series of $\Bbbk[X]$ is $h(t)/(1-t)^d$ where $d = \dim \Bbbk[X]$. A polynomio is thin if it does not contain a 2×2 square of four unit squares (such as the one shown in Figure 2).

 $^{^{*}}$ MK was partly supported by the grant CRG/2018/001592 from Science and Engineering Research Board, India. Both authors were partially supported by an Infosys Foundation fellowship.

G. Rinaldo and F. Romeo [7, Theorem 1.1] showed that if X is a simple thin polyomino, then h(t) = r(t) and conjectured [7, Conjecture 4.5] that this property characterises thin polyominoes. In this paper, we prove this conjecture in the following case:

Theorem 1. Let X be a convex polyomino such that its vertex set V(X) is a sublattice of \mathbb{N}^2 . Let $h(t) = 1 + h_1 t + h_2 t^2 + \cdots$ be the h-polynomial of $\mathbb{K}[X]$ and $r(t) = 1 + r_1 t + r_2 t^2 + \cdots$ be the rook polynomial of X. If X is not thin, then $h_2 < r_2$. In particular $h(t) \neq r(t)$.

Its proof proceeds as follows: we first observe that $\mathbb{k}[X]$ is the Hibi ring of the distributive lattice V(X) and that the Hilbert series of the Hibi ring of a distributive lattice and that of the Stanley-Reisner ring of its order complex are the same. We then use the results of [1] relate the *h*-polynomial to descents in maximal chains of V(X), and find an injective map from the set of maximal chains of V(X) to the rook configurations in X, to conclude that $h_k \leq r_k$ in general. We then show that if X is not thin, this map is not surjective to show that $h_2 < r_2$. In Corollary 11 we extend our result to *L*-convex polynomiales.

Section 2 contains the definitions and preliminaries. Proof of the theorem is given in Section 3.

Acknowledgements

The computer algebra systems Macaulay2 [5] and SageMath [8] provided valuable assistance in studying examples.

2 Preliminaries

Definition 2. A cell in \mathbb{R}^2 is a set of the form $\{(x, y) \in \mathbb{R}^2 \mid a \leq x \leq a+1, b \leq y \leq b+1\}$ where $(a, b) \in \mathbb{Z}^2$. We identify the cells of X by their top-right corners: For $v \in \mathbb{Z}^2$, C(v) is the cell whose top-right corner is v. A polyomino X is a finite union of cells that is connected and has no finite cut-set (i.e., removing finite sets from X leaves X connected) [9, 4.7.18]. We say that a polyomino X is horizontally convex if for every line segment ℓ parallel to the x-axis with end-points in X, $\ell \subseteq X$. Similarly we define vertically convex polyominoes. We say that a polyomino X is convex if it is horizontally convex and vertically convex. The set of cells of X is denoted by C(X). The vertex set V(X) of X is $X \cap \mathbb{Z}^2$. By the left-boundary vertices of X, we mean the elements of $\mathbb{Z}^2 \cap \partial X$ that are top-left vertices of the cells of X; the bottom-boundary vertices of X are the elements of $\mathbb{Z}^2 \cap \partial X$ that are bottom-right vertices of the cells of X;

Qureshi [6] associated a toric ring to a polyomino.

Definition 3. Let X be a convex polyomino. Let $R = \mathbb{k}[\{x_v \mid v \in V(X)\}]$ be a polynomial ring. An *interval* in X is a subset of X of the form $[a, b] := \{c \in V(X) \mid a \leq c \leq b\}$ where $a \leq b \in V(X)$ and \leq is the partial order on \mathbb{R}^2 given by componentwise comparison: $a = (a_1, a_2) \leq b = (b_1, b_2)$ if $a_1 \leq b_1$ and $a_2 \leq b_2$. Let I_X be the R-ideal generated by the

binomials of the form $x_a x_b - x_c x_d$ where $a \leq b \in V(X)$ and $c, d \in V(X)$ are the other two corners of the interval [a, b]. Let $\Bbbk[X] = R/I_X$.

Setup 2.1. Let X be a convex polyomino such that V(X) is a sublattice of \mathbb{N}^2 . Let JI(X) be the poset of join-irreducible elements of V(X). After a suitable translation, if necessary, we assume that (0,0) and (m,n) are the elements $\hat{0}$ and $\hat{1}$ of V(X). Hence |JI(X)| = m + n.

Definition 4. Let *L* be a finite distributive lattice. Let $R = \mathbb{k}[\{x_a \mid a \in L\}]$. The *Hibi ideal* [4] I_L of *L* is the *R*-ideal generated by the binomials of the form $x_a x_b - x_c x_d$ where $a, b \in L$ and *c* and *d* are the join and the meet of *a* and *b*. The *Hibi ring* of *L* is $\mathbb{k}[L] := R/I_L$.

Definition 5. Let R be a standard graded k-algebra. The *h*-polynomial of R is the polynomial h(t) such that the Hilbert series of R is $h(t)/(1-t)^d$ where $d = \dim R$.

Remark 6. When X is as in Setup 2.1, the polynomino ring $\Bbbk[X]$ is the Hibi ring $\Bbbk[V(X)]$. Hence we are interested in the *h*-polynomial of the Hibi ring of a distributive lattice. Let L be a distributive lattice. The order complex $\Delta(L)$ is the simplicial complex whose faces are the chains of L. The Stanley-Reisner ring $\Bbbk[\Delta(L)]$ of $\Delta(L)$ is the quotient of $\Bbbk[\{x_a \mid a \in L\}]$ by the ideal generated by $\{x_a x_b \mid a, b \text{ incomparable}\}$. There is a flat deformation from $\Bbbk[L]$ to $\Bbbk[\Delta(L)]$; see, e.g., [2, Section 7.1], after noting that Hibi rings are ASLs. Hence the *h*-polynomials of $\Bbbk[X]$ and of $\Bbbk[\Delta(V(X))]$ are the same. We use the results of [1] to relate the *h*-polynomial of $\Delta(L)$ to the descents in the maximal chains of L.

Discussion 2.2. We follow the discussion of [1, Section 1]. Let $\omega : JI(X) \longrightarrow \{1, \ldots, m+n\}$ be a (fixed) order-preserving map. Let $\mathcal{M}(X)$ be the set of maximal chains of V(X). Let $\mu \in \mathcal{M}(X)$. We first write μ as a chain of order ideals of JI(X): $\hat{0} = I_0 \subsetneq I_1 \subsetneq \cdots \subsetneq I_{m+n} = \hat{1}$. Then $|I_i \smallsetminus I_{i-1}| = \{p_i\}$ for some $p_i \in JI(X)$. Define $\omega(\mu) = (\omega(p_1), \ldots, \omega(p_{m+n}))$. For $1 \le i \le m+n-1$, we say that i is a descent of μ if $\omega(p_i) > \omega(p_{i+1})$. The descent set $Des(\mu)$ of μ is $\{i \mid 1 \le i \le m+n-1, i \text{ is a descent of } \mu\}$. For $k \in \mathbb{N}$, define $\mathcal{M}_k(X) = \{\mu \in \mathcal{M}(X) : |Des(\mu)| = k\}$.

We now think of μ as a lattice path from (0,0) to (m,n) consisting of horizontal and vertical edges. Label the vertices of μ as $(0,0) = \mu_0, \mu_1, \ldots, \mu_{m+n} = (m,n)$, with $\mu_i - \mu_{i-1}$ a unit vector (when we think of these as elements of \mathbb{R}^2) pointing to the right or upwards. Then, if $i \in \text{Des}(\mu)$, then the direction of μ changes at μ_i , i.e, the vectors $\mu_i - \mu_{i-1}$ and $\mu_{i+1} - \mu_i$ are perpendicular to each other. Hence μ_{i-1} and μ_{i+1} are the bottom-left and top-right vertices of a cell (the cell $C(\mu_{i+1})$ in our notation) of X. Thus we get a function

$$\psi : \mathcal{M}(X) \longrightarrow \operatorname{Pow}(C(X)), \qquad \mu \mapsto \{C(\mu_{i+1}) \in C(X) \mid i \in \operatorname{Des}(\mu)\}.$$
 (2.3)

Proposition 7. When X is as in Setup 2.1. Write $h(t) = 1 + h_1 t + h_2 t^2 + \cdots$ for the *h*-polynomial of $\mathbb{K}[X]$. Then $h_i = |\mathcal{M}_i(X)|$.

The electronic journal of combinatorics $\mathbf{30(2)}$ (2023), #P2.6

Proof. Use [1, Theorems 4.1 and 1.1] with standard grading (i.e. setting $t_i = t$ for all i) to see that the *h*-polynomial of the Stanley Reisner ring of $\Delta(V(X))$) is

$$\sum_{i\in\mathbb{N}} |\mathcal{M}_i(X)| t^i$$

The proposition now follows from Remark 6.

Discussion 2.4. Let X be as in Setup 2.1. Left-boundary vertices and bottom-boundary vertices are join-irreducible. Let $p \in V(X)$; assume that p is not a left-boundary vertex or a bottom-boundary vertex. If $p \notin \partial X$ then it is the top-right vertex of a cell in X, and hence is not join-irreducible. If $p \notin \partial X$ then p is the bottom-left vertex of the unique cell containing it (i.e., the bottom element $\hat{0}$ of V(X)) or the top-right vertex of the unique cell containing it (i.e., the top element $\hat{1}$ of V(X)); hence $p \notin JI(X)$. Thus we have established that JI(X) is the union of the set of the left-boundary vertices and of the bottom-boundary vertices are totally ordered in V(X). Therefore if (p, p') is a pair of incomparable elements of JI(X), then one of them is a left-boundary vertex and the other is a bottom-boundary vertex.

3 Proof of the theorem

Proposition 8. Let $\mu \in \mathcal{M}(X)$ and $i \in \text{Des}(\mu)$. Write μ as a chain of order ideals $\hat{0} = I_0 \subsetneq I_1 \subsetneq \cdots \subsetneq I_{m+n} = \hat{1}$ and $|I_i \smallsetminus I_{i-1}| = \{p_i\}$ with $p_i \in \text{JI}(X)$. Then

a. p_i and p_{i+1} are incomparable;

b.
$$i + 1 \notin \text{Des}(\mu)$$
.

Proof. (a): Assume, by way of contradiction, that they are comparable. Then $p_i < p_{i+1}$. Hence $\omega(p_i) < \omega(p_{i+1})$, contradicting the hypothesis that $i \in \text{Des}(\mu)$.

(b): By way of contradiction, assume that $i + 1 \in \text{Des}(\mu)$. Then, by (a), p_{i+1} and p_{i+2} are incomparable. We see from Discussion 2.4 and the definition of the p_i that $p_i < p_{i+2}$. Therefore $\omega(p_i) < \omega(p_{i+2})$ contradicting the hypothesis that $\omega(p_i) > \omega(p_{i+1}) > \omega(p_{i+2})$.

Proposition 9. The function ψ of (2.3) is injective.

Proof. Let $\mu, \nu \in \mathcal{M}(X)$ be such that $\psi(\mu) = \psi(\nu)$. As earlier, write μ and ν as chains of order ideals of JI(X):

$$\mu: \hat{0} = I_0 \subsetneq I_1 \subsetneq \cdots \subsetneq I_{m+n} = \hat{1};$$

$$\nu: \hat{0} = I'_0 \subsetneq I'_1 \subsetneq \cdots \subsetneq I'_{m+n} = \hat{1}.$$

For $1 \leq i \leq m+n$, write $I_i \setminus I_{i-1} = \{p_i\}$ and $I'_i \setminus I'_{i-1} = \{p'_i\}$ with $p_i, p'_i \in \mathrm{JI}(X)$. We will prove by induction on i that $I_i = I'_i$ for all $0 \leq i \leq m+n$. Since $I_0 = I'_0$, we may assume that i > 0 and that $I_j = I'_j$ for all j < i.

The electronic journal of combinatorics $\mathbf{30(2)}$ (2023), #P2.6

Figure 1: C, C_1, C_2, μ (blue) and ν (red) from the proof of Proposition 9.

Assume, by way of contradiction, that $I_i \neq I'_i$. Then I_{i-1} (which equals I'_{i-1}) is the bottom-left vertex of a cell C. Without loss of generality, we may assume that I_i is the top-left vertex of C and that I'_i is the bottom-right vertex of C. (In other words, μ goes up and ν goes to the right from I_{i-1} , or equivalently, p_i is a left-boundary vertex and p'_i is a bottom-boundary vertex.)

Let

$$i_1 = \min\{j > i : p'_i \in I_j\} - 1; i_2 = \min\{j > i : p_i \in I'_i\} - 1.$$

Then the edge (I_{i_1-1}, I_{i_1}) is vertical while (I_{i_1}, I_{i_1+1}) is horizontal; this is the first time μ turns horizontal after I_{i-1} . Let C_1 be the cell with I_{i_1-1} , I_{i_1} and I_{i_1+1} as the bottom-left, the top-left and the top-right vertices respectively. Similarly the edge (I'_{i_2-1}, I'_{i_2}) is vertical while (I'_{i_2}, I'_{i_2+1}) is horizontal; this is the first time ν turns vertical after I'_{i-1} . Let C_2 be the cell with I'_{i_2-1} , I'_{i_2} and I'_{i_2+1} as the bottom-left, the bottom-right and the top-right vertices respectively. (The possibility that $C_1 = C$ or $C_2 = C$ has not been ruled out.) See Figure 1 for a schematic showing the cells C, C_1 and C_2 and the chains μ and ν .

We now prove a sequence of statements from which the proposition follows.

a. If $C_1 \notin \psi(\mu)$, then $C_2 \in \psi(\nu)$. Proof: Note that $p_{i_1+1} = p'_i$ and $p'_{i_2+1} = p_i$. Since $C_1 \notin \psi(\mu)$, we see that

$$\omega(p_i') = \omega(p_{i_1+1}) > \omega(p_{i_1}) \ge \omega(p_i),$$

where the last inequality follows from noting that $p_i < \cdots < p_{i_1}$ since they are leftboundary vertices. Therefore, in the chain ν , we have

$$\omega(p'_{i_2}) \geqslant \omega(p'_i) > \omega(p_i) = \omega(p'_{i_2+1}),$$

i.e., $i_2 \in \text{Des}(\nu)$. Hence $C_2 \in \psi(\nu)$.

The electronic journal of combinatorics $\mathbf{30(2)}$ (2023), #P2.6

R	
	R

Figure 2: 2-rook (denoted by R) configuration in a non-thin polyomino.

b. If $C_2 \notin \psi(\nu)$, then $C_1 \in \psi(\mu)$. Immediate from (a).

c. If $C_1 \neq C$ then $C \notin \psi(\mu)$ and $C_1 \notin \psi(\nu)$. Proof: Note that μ does not pass through the top-right vertex of C and that ν does not pass through the bottom-left vertex of C_1 .

d. If $C_2 \neq C$ then $C \notin \psi(\nu)$ and $C_2 \notin \psi(\mu)$. Proof: Note that ν does not pass through the top-right vertex of C and that μ does not pass through the bottom-left vertex of C_1 .

e. If $C_1 \neq C$, then $\psi(\mu) \neq \psi(\nu)$. Proof: If $C_1 \in \psi(\mu)$, use (c) to see that

 $C_1 \in \psi(\mu) \smallsetminus \psi(\nu).$

Now assume that $C_1 \notin \psi(\mu)$. Then $C_2 \in \psi(\nu)$ by (a). If $C_2 = C$, then $C_2 \notin \psi(\mu)$ by (c); otherwise, $C_2 \notin \psi(\mu)$ by (d).

f. If $C_2 \neq C$, then $\psi(\mu) \neq \psi(\nu)$. Proof: If $C_2 \in \psi(\nu)$, use (d) to see that

$$C_2 \in \psi(\nu) \smallsetminus \psi(\mu).$$

Now assume that $C_2 \notin \psi(\nu)$. Then $C_1 \in \psi(\mu)$ by (b). If $C_1 = C$, then $C_1 \notin \psi(\nu)$ by (d); otherwise, $C_1 \notin \psi(\nu)$ by (c).

g. C belongs to at most one of $\psi(\mu)$ and $\psi(\nu)$. Proof: Suppose $C \in \psi(\mu)$. Then $i_1 = i + 1$, $p_{i_1} = p'_i$ and $\omega(p_i) > \omega(p'_i)$. For C to belong to $\psi(\nu)$, we need that $I'_{i+1} = I_{i+1}$ (i.e., μ and ν are the same up to i + 1, except at i); for this to hold, it is necessary that $p'_{i+1} = p_i$, but then $i \notin \text{Des}(\nu)$. The other case is proved similarly.

h. If $C_1 = C_2 = C$ then $\psi(\mu) \neq \psi(\nu)$. Proof: By (g), it suffices to show that $C \in \psi(\mu)$ or $C \in \psi(\nu)$. This follows from (a) and (b).

The proposition is proved by (e), (f), and (h).

Proposition 10. Let $k \in \mathbb{N}$ and $\mu \in \mathcal{M}_k(X)$. Then $\psi(\mu)$ is a k-rook configuration in X.

Proof. Since $|\psi(\mu)| = k$, it suffices to note that the cells of $\psi(\mu)$ are in distinct rows and columns. This follows from Proposition 8(b).

Proof of Theorem 1. For each $i \in \mathbb{N}$, $h_i = |\mathcal{M}_i(X)|$ by Proposition 7. By Propositions 9 and 10 we see that $h_i \leq r_i$ for all *i*. Since X is not thin, X contains a 2-rook configuration as in Figure 2. Such a rook configuration cannot be in the image of ψ . Hence $h_2 < r_2$. \Box

Using results of [3], we can extend our result to L-convex polyominoes as follows. Let X be an L-convex polyomino. Then there exists a polyomino X^* (the Ferrer diagram projected by X, in the sense of [3]) such that

- a. X^* is a convex polyomino such that $V(X^*)$ is a sublattice of \mathbb{N}^2 (since X^* is a Ferrer diagram);
- b. If X is not thin, then X^* is not thin;
- c. X and X^* have the same rook polynomial [3, Lemma 2.4];
- d. $\mathbb{k}[X]$ and $\mathbb{k}[X^*]$ are isomorphic to each other [3, Theorem 3.1], so they have the same *h*-polynomial.

Thus we get:

Corollary 11. Let X be an L-convex polyomino that is not thin. Let $h(t) = 1 + h_1t + h_2t^2 + \cdots$ be the h-polynomial of $\mathbb{k}[X]$ and $r(t) = 1 + r_1t + r_2t^2 + \cdots$ be the rook polynomial of X. Then $h_2 < r_2$.

References

- A. Björner, A. M. Garsia, and R. P. Stanley. An introduction to Cohen-Macaulay partially ordered sets. In Ordered sets (Banff, Alta., 1981), volume 83 of NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., pages 583–615. Reidel, Dordrecht-Boston, Mass., 1982.
- [2] W. Bruns and J. Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.
- [3] V. Ene, J. Herzog, A. A. Qureshi, and F. Romeo. Regularity and the Gorenstein property of *L*-convex polyominoes. *Electron. J. Combin.*, 28(1):#P1.50, 23, 2021.
- [4] T. Hibi. Distributive lattices, affine semigroup rings and algebras with straightening laws. In *Commutative algebra and combinatorics (Kyoto, 1985)*, volume 11 of *Adv. Stud. Pure Math.*, pages 93–109. North-Holland, Amsterdam, 1987.
- [5] D. R. Grayson and M. E. Stillman. Macaulay 2, a software system for research in algebraic geometry, 2006. Available at http://www.math.uiuc.edu/Macaulay2/.
- [6] A. A. Qureshi. Ideals generated by 2-minors, collections of cells and stack polyominoes. J. Algebra, 357:279–303, 2012.
- [7] G. Rinaldo and F. Romeo. Hilbert series of simple thin polyominoes. J. Algebraic Combin., 54:607 – 624, 2021.
- [8] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.6), 2019. https://www.sagemath.org.
- [9] R. P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.