The h-Polynomial and the Rook Polynomial of some Polyominoes

Manoj Kummini*
Chennai Mathematical Institute, Siruseri, Tamilnadu 603103. India

mkummini@cmi.ac.in

Dharm Veer
Chennai Mathematical Institute, Siruseri, Tamilnadu 603103. India
dharm@cmi.ac.in

Submitted: Dec 3, 2021; Accepted: Mar 22, 2023; Published: Apr 7, 2023
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let X be a convex polyomino such that its vertex set is a sublattice of \mathbb{N}^{2}. Let $\mathbb{k}[X]$ be the toric ring (over a field \mathbb{k}) associated to X in the sense of Qureshi, J. Algebra, 2012. Write the Hilbert series of $\mathbb{k}[X]$ as $\left(1+h_{1} t+h_{2} t^{2}+\cdots\right) /(1-t)^{\operatorname{dim}(\mathbb{k}[X])}$. For $k \in \mathbb{N}$, let r_{k} be the number of configurations in X with k pairwise nonattacking rooks. We show that $h_{2}<r_{2}$ if X is not a thin polyomino. This partially confirms a conjectured characterization of thin polyominoes by Rinaldo and Romeo, J. Algebraic Combin., 2021.

Mathematics Subject Classifications: 13F65, 05E40, 13D40

1 Introduction

A polyomino is a finite union of unit squares with vertices at lattice points in the plane that is connected and has not finite cut-set [9, 4.7.18]. (Definitions are given in Section 2.) A. A. Qureshi $[6]$ associated a finitely generated graded algebra $\mathbb{k}[X]$ (over a field \mathbb{k}) to polyomino X. For $k \in \mathbb{N}$, a k-rook configuration in X is an arrangement of k rooks in pairwise non-attacking positions. The rook polynomial $r(t)$ of X is $\sum_{k \in \mathbb{N}} r_{k} t^{k}$ where r_{k} is the number of k-rook configurations in X. The h-polynomial of $\mathbb{k}[X]$ is the (unique) polynomial $h(t) \in \mathbb{Z}[t]$ such that the Hilbert series of $\mathbb{k}[X]$ is $h(t) /(1-t)^{d}$ where $d=$ $\operatorname{dim} \mathbb{k}[X]$. A polyomino is thin if it does not contain a 2×2 square of four unit squares (such as the one shown in Figure 2).

[^0]G. Rinaldo and F. Romeo [7, Theorem 1.1] showed that if X is a simple thin polyomino, then $h(t)=r(t)$ and conjectured [7, Conjecture 4.5] that this property characterises thin polyominoes. In this paper, we prove this conjecture in the following case:

Theorem 1. Let X be a convex polyomino such that its vertex set $V(X)$ is a sublattice of \mathbb{N}^{2}. Let $h(t)=1+h_{1} t+h_{2} t^{2}+\cdots$ be the h-polynomial of $\mathbb{k}[X]$ and $r(t)=1+r_{1} t+r_{2} t^{2}+\cdots$ be the rook polynomial of X. If X is not thin, then $h_{2}<r_{2}$. In particular $h(t) \neq r(t)$.

Its proof proceeds as follows: we first observe that $\mathbb{k}[X]$ is the Hibi ring of the distributive lattice $V(X)$ and that the Hilbert series of the Hibi ring of a distributive lattice and that of the Stanley-Reisner ring of its order complex are the same. We then use the results of [1] relate the h-polynomial to descents in maximal chains of $V(X)$, and find an injective map from the set of maximal chains of $V(X)$ to the rook configurations in X, to conclude that $h_{k} \leqslant r_{k}$ in general. We then show that if X is not thin, this map is not surjective to show that $h_{2}<r_{2}$. In Corollary 11 we extend our result to L-convex polyominoes.

Section 2 contains the definitions and preliminaries. Proof of the theorem is given in Section 3.

Acknowledgements

The computer algebra systems Macaulay2 [5] and SageMath [8] provided valuable assistance in studying examples.

2 Preliminaries

Definition 2. A cell in \mathbb{R}^{2} is a set of the form $\left\{(x, y) \in \mathbb{R}^{2} \mid a \leqslant x \leqslant a+1, b \leqslant y \leqslant b+1\right\}$ where $(a, b) \in \mathbb{Z}^{2}$. We identify the cells of X by their top-right corners: For $v \in \mathbb{Z}^{2}$, $C(v)$ is the cell whose top-right corner is v. A polyomino X is a finite union of cells that is connected and has no finite cut-set (i.e., removing finite sets from X leaves X connected) [9, 4.7.18]. We say that a polyomino X is horizontally convex if for every line segment ℓ parallel to the x-axis with end-points in $X, \ell \subseteq X$. Similarly we define vertically convex polyominoes. We say that a polyomino X is convex if it is horizontally convex and vertically convex. The set of cells of X is denoted by $C(X)$. The vertex set $V(X)$ of X is $X \cap \mathbb{Z}^{2}$. By the left-boundary vertices of X, we mean the elements of $\mathbb{Z}^{2} \cap \partial X$ that are top-left vertices of the cells of X ; the bottom-boundary vertices of X are the elements of $\mathbb{Z}^{2} \cap \partial X$ that are bottom-right vertices of the cells of X;

Qureshi [6] associated a toric ring to a polyomino.
Definition 3. Let X be a convex polyomino. Let $R=\mathbb{k}\left[\left\{x_{v} \mid v \in V(X)\right\}\right]$ be a polynomial ring. An interval in X is a subset of X of the form $[a, b]:=\{c \in V(X) \mid a \leqslant c \leqslant b\}$ where $a \leqslant b \in V(X)$ and \leqslant is the partial order on \mathbb{R}^{2} given by componentwise comparison: $a=\left(a_{1}, a_{2}\right) \leqslant b=\left(b_{1}, b_{2}\right)$ if $a_{1} \leqslant b_{1}$ and $a_{2} \leqslant b_{2}$. Let I_{X} be the R-ideal generated by the
binomials of the form $x_{a} x_{b}-x_{c} x_{d}$ where $a \leqslant b \in V(X)$ and $c, d \in V(X)$ are the other two corners of the interval $[a, b]$. Let $\mathbb{k}[X]=R / I_{X}$.

Setup 2.1. Let X be a convex polyomino such that $V(X)$ is a sublattice of \mathbb{N}^{2}. Let $\mathrm{JI}(X)$ be the poset of join-irreducible elements of $V(X)$. After a suitable translation, if necessary, we assume that $(0,0)$ and (m, n) are the elements $\hat{0}$ and $\hat{1}$ of $V(X)$. Hence $|\mathrm{JI}(X)|=m+n$.

Definition 4. Let L be a finite distributive lattice. Let $R=\mathbb{k}\left[\left\{x_{a} \mid a \in L\right\}\right]$. The Hibi ideal [4] I_{L} of L is the R-ideal generated by the binomials of the form $x_{a} x_{b}-x_{c} x_{d}$ where $a, b \in L$ and c and d are the join and the meet of a and b. The Hibi ring of L is $\mathbb{k}[L]:=R / I_{L}$.

Definition 5. Let R be a standard graded \mathbb{k}-algebra. The h-polynomial of R is the polynomial $h(t)$ such that the Hilbert series of R is $h(t) /(1-t)^{d}$ where $d=\operatorname{dim} R$.

Remark 6. When X is as in Setup 2.1, the polyomino ring $\mathbb{k}[X]$ is the Hibi ring $\mathbb{k}[V(X)]$. Hence we are interested in the h-polynomial of the Hibi ring of a distributive lattice. Let L be a distributive lattice. The order complex $\Delta(L)$ is the simplicial complex whose faces are the chains of L. The Stanley-Reisner ring $\mathbb{k}[\Delta(L)]$ of $\Delta(L)$ is the quotient of $\mathbb{k}\left[\left\{x_{a} \mid a \in L\right\}\right]$ by the ideal generated by $\left\{x_{a} x_{b} \mid a, b\right.$ incomparable $\}$. There is a flat deformation from $\mathbb{k}[L]$ to $\mathbb{k}[\Delta(L)]$; see, e.g., [2, Section 7.1], after noting that Hibi rings are ASLs. Hence the h-polynomials of $\mathbb{k}[X]$ and of $\mathbb{k}[\Delta(V(X))]$ are the same. We use the results of [1] to relate the h-polynomial of $\Delta(L)$ to the descents in the maximal chains of L.

Discussion 2.2. We follow the discussion of [1, Section 1]. Let $\omega: \operatorname{JI}(X) \longrightarrow\{1, \ldots, m+$ $n\}$ be a (fixed) order-preserving map. Let $\mathcal{M}(X)$ be the set of maximal chains of $V(X)$. Let $\mu \in \mathcal{M}(X)$. We first write μ as a chain of order ideals of $\mathrm{JI}(X): \hat{0}=$ $I_{0} \subsetneq I_{1} \subsetneq \cdots \subsetneq I_{m+n}=\hat{1}$. Then $\left|I_{i} \backslash I_{i-1}\right|=\left\{p_{i}\right\}$ for some $p_{i} \in \mathrm{JI}(X)$. Define $\omega(\mu)=\left(\omega\left(p_{1}\right), \ldots, \omega\left(p_{m+n}\right)\right)$. For $1 \leqslant i \leqslant m+n-1$, we say that i is a descent of μ if $\omega\left(p_{i}\right)>\omega\left(p_{i+1}\right)$. The descent set $\operatorname{Des}(\mu)$ of μ is $\{i \mid 1 \leqslant i \leqslant m+n-1, i$ is a descent of $\mu\}$. For $k \in \mathbb{N}$, define $\mathcal{M}_{k}(X)=\{\mu \in \mathcal{M}(X):|\operatorname{Des}(\mu)|=k\}$.

We now think of μ as a lattice path from $(0,0)$ to (m, n) consisting of horizontal and vertical edges. Label the vertices of μ as $(0,0)=\mu_{0}, \mu_{1}, \ldots, \mu_{m+n}=(m, n)$, with $\mu_{i}-\mu_{i-1}$ a unit vector (when we think of these as elements of \mathbb{R}^{2}) pointing to the right or upwards. Then, if $i \in \operatorname{Des}(\mu)$, then the direction of μ changes at μ_{i}, i.e, the vectors $\mu_{i}-\mu_{i-1}$ and $\mu_{i+1}-\mu_{i}$ are perpendicular to each other. Hence μ_{i-1} and μ_{i+1} are the bottom-left and top-right vertices of a cell (the cell $C\left(\mu_{i+1}\right)$ in our notation) of X. Thus we get a function

$$
\begin{equation*}
\psi: \mathcal{M}(X) \longrightarrow \operatorname{Pow}(C(X)), \quad \mu \mapsto\left\{C\left(\mu_{i+1}\right) \in C(X) \mid i \in \operatorname{Des}(\mu)\right\} \tag{2.3}
\end{equation*}
$$

Proposition 7. When X is as in Setup 2.1. Write $h(t)=1+h_{1} t+h_{2} t^{2}+\cdots$ for the h-polynomial of $\mathbb{k}[X]$. Then $h_{i}=\left|\mathcal{M}_{i}(X)\right|$.

Proof. Use [1, Theorems 4.1 and 1.1] with standard grading (i.e. setting $t_{i}=t$ for all i) to see that the h-polynomial of the Stanley Reisner ring of $\Delta(V(X)))$ is

$$
\sum_{i \in \mathbb{N}}\left|\mathcal{M}_{i}(X)\right| t^{i}
$$

The proposition now follows from Remark 6.
Discussion 2.4. Let X be as in Setup 2.1. Left-boundary vertices and bottom-boundary vertices are join-irreducible. Let $p \in V(X)$; assume that p is not a left-boundary vertex or a bottom-boundary vertex. If $p \notin \partial X$ then it is the top-right vertex of a cell in X, and hence is not join-irreducible. If $p \in \partial X$ then p is the bottom-left vertex of the unique cell containing it (i.e., the bottom element $\hat{0}$ of $V(X)$) or the top-right vertex of the unique cell containing it (i.e., the top element $\hat{1}$ of $V(X)$); hence $p \notin \mathrm{JI}(X)$. Thus we have established that $\mathrm{JI}(X)$ is the union of the set of the left-boundary vertices and of the set of the bottom-boundary vertices. The sets of the left-boundary vertices and of the bottom-boundary vertices are totally ordered in $V(X)$. Therefore if $\left(p, p^{\prime}\right)$ is a pair of incomparable elements of $\mathrm{JI}(X)$, then one of them is a left-boundary vertex and the other is a bottom-boundary vertex.

3 Proof of the theorem

Proposition 8. Let $\mu \in \mathcal{M}(X)$ and $i \in \operatorname{Des}(\mu)$. Write μ as a chain of order ideals $\hat{0}=I_{0} \subsetneq I_{1} \subsetneq \cdots \subsetneq I_{m+n}=\hat{1}$ and $\left|I_{i} \backslash I_{i-1}\right|=\left\{p_{i}\right\}$ with $p_{i} \in \operatorname{JI}(X)$. Then
a. p_{i} and p_{i+1} are incomparable;
b. $i+1 \notin \operatorname{Des}(\mu)$.

Proof. (a): Assume, by way of contradiction, that they are comparable. Then $p_{i}<p_{i+1}$. Hence $\omega\left(p_{i}\right)<\omega\left(p_{i+1}\right)$, contradicting the hypothesis that $i \in \operatorname{Des}(\mu)$.
(b): By way of contradiction, assume that $i+1 \in \operatorname{Des}(\mu)$. Then, by (a), p_{i+1} and p_{i+2} are incomparable. We see from Discussion 2.4 and the definition of the p_{i} that $p_{i}<p_{i+2}$. Therefore $\omega\left(p_{i}\right)<\omega\left(p_{i+2}\right)$ contradicting the hypothesis that $\omega\left(p_{i}\right)>\omega\left(p_{i+1}\right)>$ $\omega\left(p_{i+2}\right)$.
Proposition 9. The function ψ of (2.3) is injective.
Proof. Let $\mu, \nu \in \mathcal{M}(X)$ be such that $\psi(\mu)=\psi(\nu)$. As earlier, write μ and ν as chains of order ideals of $\mathrm{JI}(X)$:

$$
\begin{aligned}
& \mu: \hat{0}=I_{0} \subsetneq I_{1} \subsetneq \cdots \subsetneq I_{m+n}=\hat{1} ; \\
& \nu: \hat{0}=I_{0}^{\prime} \subsetneq I_{1}^{\prime} \subsetneq \cdots \subsetneq I_{m+n}^{\prime}=\hat{1} .
\end{aligned}
$$

For $1 \leqslant i \leqslant m+n$, write $I_{i} \backslash I_{i-1}=\left\{p_{i}\right\}$ and $I_{i}^{\prime} \backslash I_{i-1}^{\prime}=\left\{p_{i}^{\prime}\right\}$ with $p_{i}, p_{i}^{\prime} \in \mathrm{JI}(X)$. We will prove by induction on i that $I_{i}=I_{i}^{\prime}$ for all $0 \leqslant i \leqslant m+n$. Since $I_{0}=I_{0}^{\prime}$, we may assume that $i>0$ and that $I_{j}=I_{j}^{\prime}$ for all $j<i$.

Figure 1: C, C_{1}, C_{2}, μ (blue) and ν (red) from the proof of Proposition 9.

Assume, by way of contradiction, that $I_{i} \neq I_{i}^{\prime}$. Then I_{i-1} (which equals I_{i-1}^{\prime}) is the bottom-left vertex of a cell C. Without loss of generality, we may assume that I_{i} is the top-left vertex of C and that I_{i}^{\prime} is the bottom-right vertex of C. (In other words, μ goes up and ν goes to the right from I_{i-1}, or equivalently, p_{i} is a left-boundary vertex and p_{i}^{\prime} is a bottom-boundary vertex.)

Let

$$
\begin{aligned}
& i_{1}=\min \left\{j>i: p_{i}^{\prime} \in I_{j}\right\}-1 ; \\
& i_{2}=\min \left\{j>i: p_{i} \in I_{j}^{\prime}\right\}-1 .
\end{aligned}
$$

Then the edge $\left(I_{i_{1}-1}, I_{i_{1}}\right)$ is vertical while $\left(I_{i_{1}}, I_{i_{1}+1}\right)$ is horizontal; this is the first time μ turns horizontal after I_{i-1}. Let C_{1} be the cell with $I_{i_{1}-1}, I_{i_{1}}$ and $I_{i_{1}+1}$ as the bottom-left, the top-left and the top-right vertices respectively. Similarly the edge ($I_{i_{2}-1}^{\prime}, I_{i_{2}}^{\prime}$) is vertical while $\left(I_{i_{2}}^{\prime}, I_{i_{2}+1}^{\prime}\right)$ is horizontal; this is the first time ν turns vertical after I_{i-1}^{\prime}. Let C_{2} be the cell with $I_{i_{2}-1}^{\prime}, I_{i_{2}}^{\prime}$ and $I_{i_{2}+1}^{\prime}$ as the bottom-left, the bottom-right and the top-right vertices respectively. (The possibility that $C_{1}=C$ or $C_{2}=C$ has not been ruled out.) See Figure 1 for a schematic showing the cells C, C_{1} and C_{2} and the chains μ and ν.

We now prove a sequence of statements from which the proposition follows.
a. If $C_{1} \notin \psi(\mu)$, then $C_{2} \in \psi(\nu)$. Proof: Note that $p_{i_{1}+1}=p_{i}^{\prime}$ and $p_{i_{2}+1}^{\prime}=p_{i}$. Since $C_{1} \notin \psi(\mu)$, we see that

$$
\omega\left(p_{i}^{\prime}\right)=\omega\left(p_{i_{1}+1}\right)>\omega\left(p_{i_{1}}\right) \geqslant \omega\left(p_{i}\right)
$$

where the last inequality follows from noting that $p_{i}<\cdots<p_{i_{1}}$ since they are leftboundary vertices. Therefore, in the chain ν, we have

$$
\omega\left(p_{i_{2}}^{\prime}\right) \geqslant \omega\left(p_{i}^{\prime}\right)>\omega\left(p_{i}\right)=\omega\left(p_{i_{2}+1}^{\prime}\right)
$$

i.e., $i_{2} \in \operatorname{Des}(\nu)$. Hence $C_{2} \in \psi(\nu)$.

Figure 2: 2-rook (denoted by R) configuration in a non-thin polyomino.
b. If $C_{2} \notin \psi(\nu)$, then $C_{1} \in \psi(\mu)$. Immediate from (a).
c. If $C_{1} \neq C$ then $C \notin \psi(\mu)$ and $C_{1} \notin \psi(\nu)$. Proof: Note that μ does not pass through the top-right vertex of C and that ν does not pass through the bottom-left vertex of C_{1}.
d. If $C_{2} \neq C$ then $C \notin \psi(\nu)$ and $C_{2} \notin \psi(\mu)$. Proof: Note that ν does not pass through the top-right vertex of C and that μ does not pass through the bottom-left vertex of C_{1}.
e. If $C_{1} \neq C$, then $\psi(\mu) \neq \psi(\nu)$. Proof: If $C_{1} \in \psi(\mu)$, use (c) to see that

$$
C_{1} \in \psi(\mu) \backslash \psi(\nu) .
$$

Now assume that $C_{1} \notin \psi(\mu)$. Then $C_{2} \in \psi(\nu)$ by (a). If $C_{2}=C$, then $C_{2} \notin \psi(\mu)$ by (c); otherwise, $C_{2} \notin \psi(\mu)$ by (d).
f. If $C_{2} \neq C$, then $\psi(\mu) \neq \psi(\nu)$. Proof: If $C_{2} \in \psi(\nu)$, use (d) to see that

$$
C_{2} \in \psi(\nu) \backslash \psi(\mu) .
$$

Now assume that $C_{2} \notin \psi(\nu)$. Then $C_{1} \in \psi(\mu)$ by (b). If $C_{1}=C$, then $C_{1} \notin \psi(\nu)$ by (d); otherwise, $C_{1} \notin \psi(\nu)$ by (c).
g. C belongs to at most one of $\psi(\mu)$ and $\psi(\nu)$. Proof: Suppose $C \in \psi(\mu)$. Then $i_{1}=i+1, p_{i_{1}}=p_{i}^{\prime}$ and $\omega\left(p_{i}\right)>\omega\left(p_{i}^{\prime}\right)$. For C to belong to $\psi(\nu)$, we need that $I_{i+1}^{\prime}=I_{i+1}$ (i.e., μ and ν are the same up to $i+1$, except at i); for this to hold, it is necessary that $p_{i+1}^{\prime}=p_{i}$, but then $i \notin \operatorname{Des}(\nu)$. The other case is proved similarly.
h. If $C_{1}=C_{2}=C$ then $\psi(\mu) \neq \psi(\nu)$. Proof: By (g), it suffices to show that $C \in \psi(\mu)$ or $C \in \psi(\nu)$. This follows from (a) and (b).

The proposition is proved by (e), (f), and (h).
Proposition 10. Let $k \in \mathbb{N}$ and $\mu \in \mathcal{M}_{k}(X)$. Then $\psi(\mu)$ is a k-rook configuration in X.
Proof. Since $|\psi(\mu)|=k$, it suffices to note that the cells of $\psi(\mu)$ are in distinct rows and columns. This follows from Proposition 8(b).

Proof of Theorem 1. For each $i \in \mathbb{N}, h_{i}=\left|\mathcal{M}_{i}(X)\right|$ by Proposition 7. By Propositions 9 and 10 we see that $h_{i} \leqslant r_{i}$ for all i. Since X is not thin, X contains a 2-rook configuration as in Figure 2. Such a rook configuration cannot be in the image of ψ. Hence $h_{2}<r_{2}$.

Using results of [3], we can extend our result to L-convex polyominoes as follows. Let X be an L-convex polyomino. Then there exists a polyomino X^{*} (the Ferrer diagram projected by X, in the sense of [3]) such that
a. X^{*} is a convex polyomino such that $V\left(X^{*}\right)$ is a sublattice of \mathbb{N}^{2} (since X^{*} is a Ferrer diagram);
b. If X is not thin, then X^{*} is not thin;
c. X and X^{*} have the same rook polynomial [3, Lemma 2.4];
d. $\mathbb{k}[X]$ and $\mathbb{k}\left[X^{*}\right]$ are isomorphic to each other [3, Theorem 3.1], so they have the same h-polynomial.

Thus we get:
Corollary 11. Let X be an L-convex polyomino that is not thin. Let $h(t)=1+h_{1} t+$ $h_{2} t^{2}+\cdots$ be the h-polynomial of $\mathbb{k}[X]$ and $r(t)=1+r_{1} t+r_{2} t^{2}+\cdots$ be the rook polynomial of X. Then $h_{2}<r_{2}$.

References

[1] A. Björner, A. M. Garsia, and R. P. Stanley. An introduction to Cohen-Macaulay partially ordered sets. In Ordered sets (Banff, Alta., 1981), volume 83 of NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., pages 583-615. Reidel, Dordrecht-Boston, Mass., 1982.
[2] W. Bruns and J. Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.
[3] V. Ene, J. Herzog, A. A. Qureshi, and F. Romeo. Regularity and the Gorenstein property of L-convex polyominoes. Electron. J. Combin., 28(1):\#P1.50, 23, 2021.
[4] T. Hibi. Distributive lattices, affine semigroup rings and algebras with straightening laws. In Commutative algebra and combinatorics (Kyoto, 1985), volume 11 of Adv. Stud. Pure Math., pages 93-109. North-Holland, Amsterdam, 1987.
[5] D. R. Grayson and M. E. Stillman. Macaulay 2, a software system for research in algebraic geometry, 2006. Available at http://www.math.uiuc.edu/Macaulay2/.
[6] A. A. Qureshi. Ideals generated by 2-minors, collections of cells and stack polyominoes. J. Algebra, 357:279-303, 2012.
[7] G. Rinaldo and F. Romeo. Hilbert series of simple thin polyominoes. J. Algebraic Combin., 54:607-624, 2021.
[8] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.6), 2019. https://www.sagemath.org.
[9] R. P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.

[^0]: *MK was partly supported by the grant CRG/2018/001592 from Science and Engineering Research Board, India. Both authors were partially supported by an Infosys Foundation fellowship.

