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Abstract

Let Γ be an antipodal distance-regular graph with diameter 4 and eigenvalues
θ0 > θ1 > θ2 > θ3 > θ4. Then Γ is tight in the sense of Jurǐsić, Koolen, and
Terwilliger (J. Algebraic Combin, 2000) whenever Γ is locally strongly regular with
nontrivial eigenvalues p := θ2 and −q := θ3. Assume that Γ is tight. Then the
intersection numbers of Γ are expressed in terms of p, q, and r, where r is the
size of the antipodal classes of Γ. We denote Γ by AT4(p, q, r) and call this an
antipodal tight graph of diameter 4 with parameters p, q, r. In this paper, we give a
new feasibility condition for the AT4(p, q, r) family. We determine a necessary and
sufficient condition for the second subconstituent of AT4(p, q, 2) to be an antipodal
tight graph. Using this condition, we prove that there does not exist AT4(q3 −
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2q, q, 2) for q ≡ 3 (mod 4). We discuss the AT4(p, q, r) graphs with r = (p+ q3)(p+
q)−1.

Mathematics Subject Classifications: 05E30

1 Introduction

Let Γ denote a distance-regular graph with diameter d > 3. Let k = θ0 > θ1 > · · · > θd
denote the eigenvalues of Γ. Jurǐsić et al. [12, 7] showed that the intersection numbers
a1, b1 of Γ satisfy the following inequality(

θ1 +
k

a1 + 1

)(
θd +

k

a1 + 1

)
> − ka1b1

(a1 + 1)2
, (1)

and defined Γ to be tight whenever Γ is not bipartite, and equality holds in (1). The tight
distance-regular graphs have been studied in many papers; see [5, 6, 7, 8, 9, 10, 12, 15]
and also see [3, Section 6.1]. A number of characterizations of the tightness property
resulted; for instance, Γ is tight if and only if a1 6= 0, ad = 0, and Γ is 1-homogeneous
in the sense of Nomura [14]. In addition, Γ is tight if and only if each local graph of
Γ is connected strongly regular, with nontrivial eigenvalues b+ = −1 − b1/(1 + θd), and
b− = −1− b1/(1 + θ1); cf. [12]. Jurǐsić and Koolen [7] proved that tight distance-regular
graphs with diameter three are precisely Taylor graphs, which are distance-regular graphs
with intersection array {k, c, 1; 1, c, k}; cf [1, Section 1.5]. Moreover, by the results of
[12, Section 7], the Terwilliger algebra of a Taylor graph does not give new feasibility
conditions. For further information on Taylor graphs and their tightness, see [1, Section
7.6.C], [7, Section 3], [12], and [16].

We assume that Γ is tight with diameter four. We further assume that Γ is an antipodal
r-cover. Let p and −q denote the nontrivial eigenvalues of a local graph of Γ, where we
assume p > −q. Then all intersection numbers and eigenvalues of Γ are expressed in
terms of p, q, and r; cf. [8]. We denote the graph Γ by AT4(p, q, r) and call it an antipodal
tight graph of diameter 4. Jurǐsić et al. [8, 7, 12, 10, 9] have investigated the AT4(p, q, r)
graphs and showed various feasibility conditions for p, q, and r. Note that the family of
antipodal tight graphs AT4(sq, q, q) are classified; cf. [10]. Additionally, Koolen et al.
[12] showed that AT4(p, q, 2) is pseudo-vertex-transitive by using its Terwilliger algebra.

In the present paper, we study the AT4(p, q, r) graphs and give a new feasibility condi-
tion for the AT4(p, q, r) family. In Section 2, we review some preliminaries concerning the
AT4(p, q, r) graphs. In Section 3 we show a new feasibility condition for the AT4(p, q, r)
graphs; see Theorem 8. The µ-graph will play an important role in this section. Using
the feasibility condition, we show that for a graph AT4(qs, q, q) we have s 6 q. In Section
4 we discuss AT4(p, q, 2) and its second subconstituent ∆2. We give a necessary and
sufficient condition for the graph ∆2 to be an antipodal tight graph; see Theorem 17.
From this result, we show the nonexistence of AT4(q3 − 2q, q, 2) when q ≡ 3 (mod 4).
In particular, we show that the AT4(21, 3, 2) graph does not exist. The paper ends in
Section 5 with some comments on AT4(p, q, r) with r = (p + q3)(p + q)−1 and an open
problem for AT4(p, q, 3).
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2 Preliminaries

In this section, we recall some definitions and results concerning the AT4(p, q, r) graphs
that we need later in the paper. For more background information we refer the reader to
[1, 3]. Throughout this section, let Γ denote a simple connected graph with vertex set V (Γ)
and diameter d. For 0 6 i 6 d and for x ∈ V (Γ) we set Γi(x) = {y ∈ V (Γ) : ∂(x, y) =
i}, where ∂ = ∂Γ denotes the shortest path-length distance function. For notational
convenience, we define Γ−1(x) = ∅ and Γd+1(x) = ∅. We abbreviate Γ(x) = Γ1(x). The
i-th subconstituent ∆i(x) of Γ with respect to x ∈ V (Γ) is the subgraph of Γ induced
by Γi(x). We abbreviate ∆(x) := ∆1(x) and call this the local graph of Γ at x. We say
that Γ is locally ∆ whenever all local graphs of Γ are isomorphic to ∆. We say that Γ is
regular with valency k (or k-regular) whenever |Γ(x)| = k for all x ∈ V (Γ). We say that
Γ is distance-regular whenever for all integers 0 6 i 6 d and for all vertices x, y ∈ V (Γ)
with ∂(x, y) = i, the numbers

ai = |Γi(x) ∩ Γ(y)|, bi = |Γi+1(x) ∩ Γ(y)|, ci = |Γi−1(x) ∩ Γ(y)|

are independent of x, y, where we define bd := 0 and c0 := 0. Observe that Γ is regular with
valency k = b0 and ai + bi + ci = k for 0 6 i 6 d. The array {b0, b1, . . . , bd−1; c1, c2, . . . , cd}
is called the intersection array of Γ.

Suppose that Γ is k-regular with n vertices. We say that Γ is strongly regular with
parameters (n, k, a, c) whenever each pair of adjacent vertices has the same number a of
common neighbors, and each pair of distinct non-adjacent vertices has the same number
c of common neighbors. Note that a connected strongly regular graph is distance-regular
with diameter two and parameters (n, b0, a1, c2). For x, y ∈ V (Γ) with ∂(x, y) = 2, the
subgraph of Γ induced by Γ(x)∩Γ(y) is called the µ(x, y)-graph of Γ. If the µ(x, y)-graph
of Γ does not depend on the choice of x and y, then we simply call it the µ-graph of Γ.

Lemma 1 (cf. [7, Theorem 3.1]). Let Γ be a distance-regular graph. Suppose that all local
graphs of Γ are strongly regular with parameters (n′, k′, a′, c′). Then the following (i), (ii)
hold:

(i) µ-graphs of Γ are c′-regular.

(ii) c2c
′ is even.

The graph Γ is said to be antipodal whenever for any vertices x, y, z such that ∂(x, y) =
∂(x, z) = d, it follows that ∂(y, z) = d or y = z. The property of being at distance d
or zero induces an equivalence relation on V (Γ), and the equivalence classes are called
antipodal classes. We say that Γ is an antipodal r-cover if the equivalence classes have
size r.

Lemma 2 (cf. [8, Section 4]). Let Γ be an antipodal distance-regular graph with diameter
four, n vertices, valency k, and antipodal class size r. Then the intersection array of Γ is
determined by parameters (k, a1, c2, r), and has the following form:

{b0, b1, b2, b3; c1, c2, c3, c4} = {k, k − a1 − 1, (r − 1)c2, 1; 1, c2, k − a1 − 1, k}. (2)
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Let k = θ0 > θ1 > θ2 > θ3 > θ4 denote the eigenvalues of Γ. Then the parameters a1, c2

are expressed in terms of the eigenvalues and r:

a1 = θ1 + θ3, c2 =
θ0 + θ2θ4

r
. (3)

Let Ω denote the set of triples of vertices (x, y, z) of Γ such that ∂(x, y) = 1 and
∂(x, z) = ∂(y, z) = 2. For (x, y, z) ∈ Ω, we define the number α(x, y, z) := |Γ(x) ∩ Γ(y) ∩
Γ(z)|, called the (triple) intersection number of Γ. We say that the intersection number
α of Γ exists whenever α = α(x, y, z) is independent of all (x, y, z) ∈ Ω. If Γ is a 1-
homogeneous graph with diameter d > 2 and a2 6= 0, then the intersection number α of Γ
exists. This is because, according to the definition of 1-homogeneity, for any two adjacent
vertices x and y and for any vertex z ∈ Γ2(x)∩ Γ2(y), the scalar α = |Γ(z)∩ Γ(x)∩ Γ(y)|
is constant; see [12, Lemma 11.5]. A strongly regular graph with a2 6= 0, that is locally
strongly regular is 1-homogeneous if and only if α exists; cf. [12].

We now recall an antipodal tight graph AT4(p, q, r). In the following three lemmas,
we review some properties concerning AT4(p, q, r) from [8], which will be used later.

Lemma 3 (cf. [8]). Let Γ denote an antipodal tight graph AT4(p, q, r). Then the following
(i)–(iv) hold.

(i) The graph Γ has nontrivial eigenvalues θ1 > θ2 > θ3 > θ4, where

θ1 = pq + p+ q, θ2 = p, θ3 = −q, θ4 = −q2, (4)

and its intersection array is{
q(pq + p+ q), (q2 − 1)(p+ 1),

(r − 1)q(p+ q)

r
, 1;

1,
q(p+ q)

r
, (q2 − 1)(p+ 1), q(pq + p+ q)

}
.

(ii) The local graph of Γ at each vertex is strongly regular with parameters (n′, k′, a′, c′) =
(q(pq + p+ q), p(q + 1), 2p− q, p), and its spectrum is given by(

p(q + 1) p −q
1 `1 `2

)
, (5)

where

`1 :=
(q2 − 1)(pq + p+ q)

p+ q
and `2 :=

pq(p+ 1)(q + 1)

p+ q
. (6)

(iii) The graph Γ is 1-homogeneous. In particular, α = (p+ q)/r.

(iv) The parameters p, q, r are integers such that p > 1, q > 2, r > 2 and

(1) pq(p+ q)/r is even, r(p+ 1) 6 q(p+ q), and r|p+ q,
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(2) p > q − 2, with equality if and only if the Krein parameter q4
4,4 = 0,

(3) (p+ q)|q2(q2 − 1) and (p+ q2)|q2(q2 − 1)(q2 + q − 1)(q + 2).

We remark that by Lemma 3(i) one readily finds the intersection numbers {ai}4
i=0 of Γ:

a0 = a4 = 0, a1 = a3 = p(q + 1), a2 = pq2. (7)

Lemma 4 (cf. [9, Theorem 4.3]). Let Γ be an antipodal tight graph AT4(p, q, r) with
p > 1. Then its µ-graphs are complete multipartite if and only if there exists an integer s
such that (p, q, r) = (qs, q, q).

Lemma 5 (cf. [9, Corollary 4.5]). Let Γ denote an antipodal tight graph AT4(p, q, r).
Then exactly one of the following statements holds.

(i) Γ is the unique AT4(1, 2, 3) graph (and α = 1), i.e., the Conway-Smith graph.

(ii) Γ is an AT4(q − 2, q, q − 1) graph (and α = 1).

(iii) Γ is an AT4(qs, q, q) graph, where s is an integer (and α = s+ 1).

(iv) (p+ q)(2q + 1) > 3r(p+ 2) and α > 3, in particular, r 6 q − 1.

Lastly, we recall the spectral excess theorem [2]. Recall the graph Γ with vertex set
V (Γ) and diameter d. Denote the spectrum of Γ by Spec(Γ) = {λ0

m0 , λ1
m1 , . . . , λd

md}.
Let P denote the vector space of polynomials of degree at most d. With reference to
Spec(Γ) define an inner product on P by

〈p, q〉 =
1

n

d∑
i=0

mip(λi)q(λi). (8)

With respect to (8), there exists a unique system of orthogonal polynomials {pi}di=0 such
that pi has degree i and 〈pi, pi〉 = pi(λ0) for 0 6 i 6 d.

Lemma 6 (cf. [2, Theorem 1]). Let Γ be a connected k-regular graph on n vertices with
diameter d. Let {pi}di=0 be the orthogonal polynomials corresponding to Γ. If kd(x) is the
number of vertices at distance d from a vertex x in Γ, then

n− pd(k) 6 n

 ∑
x∈V (Γ)

1

n− kd(x)

−1

, (9)

with equality if and only if Γ is distance-regular.
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3 A new feasibility condition

In this section, we introduce a new feasibility condition for the AT4(p, q, r) family. We use
the following notation. Let Γ denote an antipodal tight graph AT4(p, q, r). Fix a vertex
x in Γ. Choose a vertex y in Γ with ∂(x, y) = 2. Consider the antipodal class containing
y, denoted by {y = y1, y2, . . . , yr}. We define the subgraph H of Γ as the union of the
µ-graphs Γ(x) ∩ Γ(yi) of Γ for all 1 6 i 6 r:

H :=
r⋃
i=1

Γ(x) ∩ Γ(yi). (10)

Observe that H is p-regular and |V (H)| = q(p+ q).

Lemma 7. Let H be the graph as in (10). Then the following (i)–(iii) hold.

(i) H has p as an eigenvalue of multiplicity r.

(ii) H has −q as an eigenvalue of multiplicity at least pq(1 + p+ q − q2)/(p+ q).

(iii) H has at least three distinct eigenvalues.

Proof. (i) Since H has r connected components and each component is p-regular, the
result follows.
(ii) Consider the local graph ∆ = ∆(x) of Γ. By Lemma 3(ii), ∆ is strongly regular
with parameters (n′, k′, a′, c′) and the spectrum (5). Denote the eigenvalues of ∆ by
δ1 > δ2 > · · · > δn′ , where n′ = q(pq + p + q). By (5), we find that δi = −q for all
2 + `1 6 i 6 n′, where `1 is from (6). Denote the eigenvalues of H by ε1 > ε2 > · · · > εm,
where m = |V (H)| = q(p + q). Since H is a subgraph of ∆, by interlacing we have
δi > εi > δn′−m+i for 1 6 i 6 m. Evaluate these inequalities at i = 2 + `1 and i = m,
respectively, and combine the two results to get

−q = δ2+`1 > ε2+`1 > εm > δn′ = −q.

From this, it follows that εj = −q for all 2 + `1 6 j 6 m. Thus, the multiplicity of −q is
at least q(p+ q)− 1− `1. Simplify this quantity to get the desired result.
(iii) Since the µ-graph is a subgraph of H, it suffices to show that the µ-graph has diameter
at least 2. If the µ-graph has diameter 1, then it must be the complete graph Kp+1. Since
|V (H)| = q(p+q) = r(p+1) and by Lemma 4, we have q = 1, a contradiction. Therefore,
the µ-graph has diameter at least 2, as desired.

Theorem 8. Let Γ be an antipodal tight graph AT4(p, q, r). Then

r 6
p+ q3

p+ q
. (11)

If the equality holds, then the µ-graph of Γ is strongly regular with parameters(
q(p+ q)

r
, p, (q − 1)(q − 2) +

2(p− 1)

q + 1
,
p+ q3

q + 1

)
. (12)
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Proof. Let H be the subgraph of Γ as in (10). By Lemma 7(i), (ii), H has eigenvalues p
with multiplicity r and −q with multiplicity at least pq(1 + p + q − q2)/(p + q), denoted
by σ. By Lemma 7(iii), H has (possibly repeated) eigenvalues distinct from p and −q,
denoted by λ1, λ2, . . . , λτ for some τ . Since |V (H)| = q(p+ q), we have

τ = q(p+ q)− r − σ. (13)

Let B denote the adjacency matrix of H. Then one readily checks that tr(B) = 0 and
tr(B2) = pq(p+ q). Using these equations and linear algebra, we have

τ∑
i=1

λi = σq − rp,
τ∑
i=1

λ2
i = pq(p+ q)− rp2 − σq2. (14)

By the Cauchy-Schwartz inequality, we have(
τ∑
i=1

λi
τ

)2

6
τ∑
i=1

λ2
i

τ
. (15)

Evaluate (15) using (13) and (14) and simplify the result to get

q2 − 1

p+ q
+
q(p+ q)− r(p+ 1)

pq − r(p+ q) + q3
> 1. (16)

Verify pq− r(p+ q) + q3 > 0 by considering each case of Lemma 5. Using this inequality,
solve (16) for r and simplify the result to obtain (11).

For the second assertion, the equality in (11) holds if and only if the equality in (15)
holds if and only if there exists ν ∈ R such that λi = ντ−1 for all i (1 6 i 6 τ). Thus, if
the equality holds in (11), then we find that the µ-graph has three distinct eigenvalues:
p, −q, and ντ−1. Therefore, the µ-graph is strongly regular. The parameters (12) follow
routinely.

Example 9. Consider the AT4(351, 9, 3) graph. One checks that r = (p + q3)(p + q)−1

with p = 351, q = 9, r = 3. By Theorem 8, the µ-graph of AT4(351, 9, 3) is strongly
regular with parameters (1080, 351, 126, 108); see Table 1.

Remark 10. The converse of the second statement in Theorem 8 does not hold in gen-
eral. For example, the µ-graph of AT4(2, 2, 2) is K2,2, which is a strongly regular graph.
However, equality in (11) does not hold since r = 2 6= 5/2 = (p+ q3)(p+ q)−1.

Remark 11. In the proof of Theorem 8, we saw that the µ-graph has the eigenvalue
λ := ντ−1 when equality holds in (11). By the equation on the left in (14) it follows that
λ = (σq− rp)τ−1. Evaluate this equation using (13) to get λ = (p− q2)(1 + q)−1. Observe
that p > λ > −q. The spectrum of the µ-graph is(

p p−q2
1+q

−q

1 p(q−1)(q+1)2

p+q3
pq(1+p+q−q2)

p+q3

)
.
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Corollary 12. For an antipodal tight graph AT4(qs, q, q), we have s 6 q.

Proof. The result follows from (11).

We have a comment on a bound for p. By the first expression in Lemma 3(iv)(3), we
find an upper bound for p, namely, p 6 q4 − q2 − q. In the following, by using Theorem
8 we obtain a better bound for p.

Corollary 13. For an antipodal tight graph AT4(p, q, r), we have p 6 q3 − 2q.

Proof. By Theorem 8 and since r > 2, we have 2 6 (p+q3)(p+q)−1. The result follows.

4 The graph AT4(q3 − 2q, q, 2)

In this section we discuss the antipodal tight graphs AT4(p, q, 2) and their second sub-
constituent graphs. We find the spectrum of this second subconstituent of AT4(p, q, 2).
We then give a necessary and sufficient condition for this second subconstituent to be
an antipodal tight graph with diameter four. Let Γ denote an antipodal tight graph
AT4(p, q, 2). For 0 6 i 6 4, consider the i-th subconstituent ∆i = ∆i(x) of Γ with respect
to a vertex x in Γ. Note that ∆1 is isomorphic to ∆3. For 0 6 i 6 4 let ki denote the
cardinality of the vertex set of ∆i. One readily finds that

k0 = k4 = 1, k1 = k3 = q(pq + p+ q), (17)

k2 =
2(pq + p+ q)(q2 − 1)(p+ 1)

p+ q
. (18)

By Lemma 3(ii), we see that ∆i (i = 1, 3) is strongly regular and its spectrum is given
by (5). We now discuss the spectrum of ∆2 in detail. To this end, we begin with the
following lemma that will be used shortly.

Lemma 14. For a given vertex x of Γ, let B denote the adjacency matrix of the second
subconstituent ∆2(x) of Γ. Then

(i) tr(B) = 0,

(ii) tr(B2) =
2pq2(pq + p+ q)(q2 − 1)(p+ 1)

p+ q
,

(iii) tr(B3) =
2pq3(pq + p+ q)(q2 − 1)(p2 − 1)

p+ q
.

Proof. (i) Clear.
(ii) Observe that tr(B2) is the total number of closed 2-walks in ∆2. This number is equal
to a2k2. Evaluate this using (7) and (18).
(iii) Observe that tr(B3) is the total number of directed 3-cycles in ∆2. This number is
equal to a2k2h, where h is the number of triangles containing one given edge in ∆2. By
construction, we find h = a1 − αr, where r = 2 and α = (p + q)/2 by Lemma 3(iii).
Evaluate a2k2(a1 − 2α) using (7) and (18).
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Lemma 15. Let Γ denote an antipodal tight graph AT4(p, q, 2). For each vertex x ∈ V (Γ),
the spectrum of the second subconstituent ∆2(x) ispq2 pq p+ q − q2 p −q −q2

1
(q2 − 1)(pq + p+ q)

p+ q

pq(p+ 1)(q + 1)

p+ q
m1 m2 m3

 , (19)

where

m1 =
−q(p+ 1)(p− q3 + 2q)(pq + p+ q)

(p+ q)(p+ q2)
, (20)

m2 =
p(q2 − 1)(pq + p+ q)

p+ q
, (21)

m3 =
p(p− q + 2)(q2 − 1)(pq + p+ q)

(p+ q)(p+ q2)
. (22)

Proof. By the proof of [13, Lemma 8.5], ∆2 = ∆2(x) has at most seven distinct eigenval-
ues, denoted by

pq2, pq, p+ q − q2, pq + p+ q, p, −q, −q2.

Also, by the proof of [13, Lemma 8.5] the multiplicity of pq (resp. p+ q − q2) is equal to
the multiplicity of the eigenvalue p (resp. −q) of ∆(x). By these comments and Lemma
3(ii), we may denote the spectrum of ∆2 by(

pq2 pq p+ q − q2 θ1 θ2 θ3 θ4

1 `1 `2 m0 m1 m2 m3

)
,

where {θi}4
i=1 are from (4) and `1, `2 are from (6).

We find the multiplicities mi (0 6 i 6 3). Let B denote the adjacency matrix of ∆2.
By linear algebra, we have

tr(Bj) = (pq2)j + (pq)j`1 + (p+ q − q2)j`2 +
3∑
i=0

miθ
j
i+1, (23)

for a nonnegative integer j. For each j = 0, 1, 2, 3, evaluate (23) using (18) and Lemma
14 to get a system of four linear equations in four variables m0,m1,m2,m3. Solve this
system of equations to get

m0 = 0,

m1 =
−q(p+ 1)(p− q3 + 2q)(pq + p+ q)

(p+ q)(p+ q2)
,

m2 =
p(q2 − 1)(pq + p+ q)

p+ q
,

m3 =
p(p− q + 2)(q2 − 1)(pq + p+ q)

(p+ q)(p+ q2)
.

The result follows.
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Remark 16. We verify that the expressions of {mi}3
i=1 in (20)–(22) are integers. Recall

the integers `1, `2 from (6). Observe that the expression on the right in (21) is equal
to p`1, which is a positive integer. Note that the expression on the right in (22) can be
expressed as

(q2 − 1)(pq + p− q3 − 3q2 + q + 2)− 2q2(q2 − 1)

p+ q
+
q2(q2 − 1)(q2 + q − 1)(q + 2)

p+ q2
. (24)

By Lemma 3(iv)(3), the expression (24) is an integer. By these comments, it follows that
the expression on the right in (20) becomes an integer.

We now give a necessary and sufficient condition for the second subconstituent of Γ
to be antipodal tight.

Theorem 17. Let Γ denote an antipodal tight graph AT4(p, q, 2). For each vertex x ∈
V (Γ), the second subconstituent ∆2(x) of Γ is an antipodal distance-regular graph with
diameter four if and only if p = q3 − 2q. Moreover, ∆2(x) is an AT4(q3 − q2 − q, q, 2)
graph when p = q3 − 2q.

Proof. Abbreviate ∆2 = ∆2(x). Suppose that ∆2 is an antipodal distance-regular graph
with diameter four. Then ∆2 has precisely five distinct eigenvalues, which implies that
one of mi (i = 1, 2, 3) in (19) must be zero. We claim m1 = 0. As we saw in Remark
16, m2 > 0. If m3 = 0, by (22) and since p > 1 and q > 2 we have p = q − 2; this is a
contradiction to [4, Theorem 2]. Therefore, we need to have m1 = 0, as claimed. Then,
by (20) we have p = q3 − 2q.

Conversely, suppose that p = q3 − 2q. Then, from (20)–(22) we find that m1 = 0
and each mi (i = 2, 3) is nonzero. By this and Lemma 15, ∆2 has precisely five distinct
eigenvalues. It follows that ∆2 has diameter at most 4. Next, recall the vertex set
Γ2 = Γ2(x) of ∆2 and pick a vertex v ∈ Γ2. Let k4(v) denote the number of vertices in
Γ2 at distance 4 from v. We claim that k4(v) > 1. Consider the antipodal vertex u ∈ Γ2

of v. Then ∂(u, v) = 4 in Γ, which implies that the distance between u and v in ∆2 is at
least 4. However, since the diameter of ∆2 is at most 4, the distance between u and v in
∆2 must be 4. From this, we find that ∆2 has diameter 4 and k4(v) > 1, as claimed.

We apply Lemma 6 to ∆2, and then apply the above claim to the right-hand side of
(9) to get

n− p4(κ) 6 n

[∑
v∈Γ2

1

n− k4(v)

]−1

6 n− 1, (25)

where n = |Γ2| and κ is the valency of ∆2. Calculate p4(κ) using [2, Section 6] with (19).
Then we find p4(κ) = 1. By this, the equality in (25) holds. Therefore, by Lemma 6 we
have that ∆2 is distance-regular. Moreover, k4(v) = 1 for all v ∈ Γ2, and hence ∆2 is an
antipodal 2-cover with diameter 4.

Next, we show that ∆2 is an antipodal tight graph AT4(q3 − q2 − q, q, 2) when p =
q3 − 2q. Recall the spectrum of ∆2 from (19). Since m1 = 0, for notational convenience
we denote the eigenvalues of ∆2 by

θ0 := pq2 > θ1 := pq > θ2 := p+ q − q2 > θ3 := −q > θ4 := −q2. (26)
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Since ∆2 is antipodal distance-regular with diameter 4, express a1 and c2 in (3) in terms
of q using (26) and p = q3− 2q. Using (2) together with parameters k = θ0, a1, c2, r = 2,
we find the intersection array of ∆2:{

q3(q2 − 2), (q − 1)3(q + 1)2,
q3(q − 1)

2
, 1;

1,
q3(q − 1)

2
, (q − 1)3(q + 1)2, q3(q2 − 2)

}
.

(27)

Compare (27) with the intersection array in [8, Theorem 5.4(ii)]. The result follows.

Corollary 18. If AT4(q3 − q2 − q, q, 2) does not exist, neither does AT4(q3 − 2q, q, 2).

Proof. It directly follows from Theorem 17.

Corollary 19. Neither AT4(q3 − q2 − q, q, 2) nor AT4(q3 − 2q, q, 2) exists when q ≡
3 (mod 4).

Proof. By Corollary 18, it suffices to show that AT4(q3 − q2 − q, q, 2) does not exist for
q ≡ 3 (mod 4). Suppose that there exists Γ = AT4(q3− q2− q, q, 2), where q ≡ 3 (mod 4).
By Lemma 5(ii), a local graph of Γ is strongly regular with parameters (n′, k′, a′, c′), where
we notice that c′ = q3 − q2 − q. By (27), the intersection number c2 of Γ is q3(q − 1)/2.
Thus, c2c

′ = q3(q − 1)(q3 − q2 − q)/2. This quantity is odd since q ≡ 3 (mod 4), which
contradicts Lemma 1(ii). Therefore, such a graph Γ does not exist.

We have some comments. Jurǐsić presented a table that lists some known examples
and open cases of the AT4 family; see [6, Table 2]. We improve this table by using the
results of the present paper and the result in [4] as follows. By [4, Theorem 2] B2, B6,
and B11 in [6, Table 2] are ruled out. Since A10 and B8 in [6, Table 2] satisfy the equality
in Theorem 8, their µ-graphs are strongly regular; however, B8 should be ruled out by
Corollary 19. Note that the smallest eigenvalue of the µ-graph of AT4(p, q, r) is −q by
Lemma 7. By this note, we find that the µ-graph of B4 in [6, Table 2] cannot be K9,9,
and the µ-graph of B5 in [6, Table 2] cannot be 2 ·K8,8. Based on these comments above,
[6, Table 2] has been updated; see the new version, Table 1.

We finish this section with a comment.

Theorem 20. Let Γ denote an antipodal tight graph AT4(p, 3, r). Then Γ must be one of
the following (i) – (iii):

(i) AT4(3, 3, 3), that is Γ is the 3.O−6 (3) graph; cf. [1, Section 13.2C].

(ii) AT4(9, 3, 3), that is Γ is the 3.O7(3) graph; cf. [1, Section 13.2D].

(iii) AT4(9, 3, 2).

Proof. By Lemma 5, we have r = 2 or r = 3. If r = 3, Γ is either AT4(3, 3, 3) or
AT4(9, 3, 3) by [10, Theorem 5.1]. The uniqueness of 3.O7(3) refers to [11]. If r = 2, then
p 6 21 by Corollary 13. All possible parameters are listed in Table 1, in which AT4(9, 3, 2)
is the unique open case.
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Table 1: The AT4 family, α = (p+ q)/r, c2 = qα.

(a) Known examples, where “!” indicates the uniqueness of the corresponding graph.

# graph k p q r α c2 µ-graph

A1 ! Conway-Smith 10 1 2 3 1 2 K2

A2 ! J(8,4) 16 2 2 2 2 4 K2,2

A3 ! halved 8-cube 28 4 2 2 3 6 K3×2

A4 ! 3.O−6 (3) 45 3 3 3 2 6 K3,3

A5 ! Soicher1 56 2 4 3 2 8 2 ·K2,2

A6 ! 3.O7(3) 117 9 3 3 4 12 K4×3

A7 Meixner1 176 8 4 2 6 24 2 ·K3×4

A8 ! Meixner2 176 8 4 4 3 12 K3×4

A9 Soicher2 416 20 4 3 8 32 K2-ext. of 1
2
Q5

A10 3.F i−24 31671 351 9 3 120 1080 SRG(1080, 351, 126, 108)

(b) Remaining open cases of small members of the AT4 family on at most 4096 vertices
(with valency k 6 416) and some ideas for their µ-graphs (whose valency is p).

# graph k p q r α c2 µ-graph

B1 96 4 4 2 4 16 2 ·K4,4

B2 does not exist 115 3 5 2 4 20 2 · Petersen
B3 115 3 5 4 2 10 Petersen
B4 117 9 3 2 6 18 unknown; not K9,9

B5 176 8 4 3 4 16 unknown; not 2 ·K8,8

B6 does not exist 204 4 6 2 5 30 5 ·K3×2

B7 204 4 6 5 2 12 2 ·K3×2

B8 does not exist 261 21 3 2 12 36 SRG(36, 21, 12, 12)
B9 288 6 6 2 6 36 3 ·K6,6

B10 288 6 6 3 4 24 2 ·K6,6

B11 does not exist 329 5 7 2 6 42 7 ·K6

B12 336 16 4 2 10 40 2 ·K5×4

B13 416 20 4 2 12 48 2 ·K6×4

5 Case r = (p + q3)(p + q)−1

In Section 3, we gave a new feasibility condition (11) for the AT4(p, q, r) family. In this
section, we give some comments on the graphs AT4(p, q, r) when equality holds in (11),
that is, r = (p + q3)(p + q)−1. Let Γ denote an antipodal tight graph AT4(p, q, r) with
r = (p+ q3)(p+ q)−1. Recall r > 2. If r = 2, then we have p = q3 − 2q. It turns out that
Γ is AT4(q3− 2q, q, 2), which has been treated in Section 4. Assume that r > 2. Then we
have the following feasibility condition for Γ.
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Lemma 21. With the above notation, we have (q + r)|r(r − 2)(r − 1)2(r2 − r − 1).

Proof. Solve the equation r = (p + q3)(p + q)−1 for p to get p = (q3 − rq)(r − 1)−1. By
Lemma 3(iv)(3), we know that

(p+ q2)|q2(q2 − 1)(q2 + q − 1)(q + 2). (28)

Substitute p = (q3 − rq)(r − 1)−1 in (28) and simplify the result to get

(q + r)|(r − 1)q(q + 1)(q + 2)(q2 + q − 1).

Set h(q) := (r − 1)q(q + 1)(q + 2)(q2 + q − 1). Then there exist polynomials f(q) and
g(r) such that h(q) = f(q)(q + r) + g(r). By this comment, we find that (q + r)|h(q) if
and only if (q + r)|g(r). Put q = −r in h(q) = f(q)(q + r) + g(r) to get g(r). The result
follows.

Corollary 22. For r > 2, the set of feasible parameters {(p, q) : r = (p+ q3)(p+ q)−1} is
finite.

Proof. By Lemma 21, q+ r divides r(r− 2)(r− 1)2(r2− r− 1). Since the set of such q is
finite, the result follows.

Example 23. Consider an antipodal tight graph AT4(p, q, 3). If (p + q3)(p + q)−1 = 3,
by Lemma 21 we have (q + 3)|60. The possible values for q are

2, 3, 7, 9, 12, 17, 27, 57.

Table 1 shows that the AT4(p, q, 3) exists for q = 2, 3, and 9, which are AT4(1, 2, 3),
AT4(9, 3, 3), and AT4(351, 9, 3), respectively. Note that the existence for other values of
q is unknown.

We finish the paper with the open problem.

Problem 24. Classify all AT4(p, q, 3) graphs with (p+ q3)(p+ q)−1 = 3.
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