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Abstract

We study multigraphs whose edge-sets are the union of three perfect matchings,
My, M, and Mj3. Given such a graph G and any ay, as,a3 € N with a1 + as + a3 <
n — 2, we show there exists a matching M of G with |[M N M;| = a; for each
i € {1,2,3}. The bound n — 2 in the theorem is best possible in general. We
conjecture however that if G is bipartite, the same result holds with n — 2 replaced
by n — 1. We give a construction that shows such a result would be tight. We
also make a conjecture generalising the Ryser-Brualdi-Stein conjecture with colour
multiplicities.

Mathematics Subject Classifications: 05C35, 05B15

1 Introduction

Let G be a graph on 2n vertices whose edge-set is the union of k edge-disjoint per-
fect matchings. Alternatively, one can also imagine a properly k-edge-coloured k-regular
graph, where the matchings are the colour classes. For which sequences aq, ..., a; with
Zie[k] a; < n does there exist a “colourful” matching M of G with the property that
|M N M;| > a; for each i € [k]? This question was introduced by Arman, Rodl, and
Sales [3, Question 1.1]. In their main result they obtained a couple of sufficient conditions
for a relaxed version of the problem, where the base graph is ¢-regular and ¢-edge-coloured
with a slightly larger ¢ ~ (1 4 ¢)k.

In our paper we are mostly concerned with the original problem for three colours.
Arguably, the first natural question is whether there exists a “fairly split” perfect matching
M, i.e. one with |M N M;| = n/3 for every i = 1,2,3. Of course n has to be divisible
by 3 for this to have a chance of happening. It turns out that even if 3 divides n, a
fairly split perfect matching is only guaranteed to exist if n = 3. Even more generally,
for any £ < n— 1 or k = n even, the only colour-multiplicity tuples (a,...,a;) with

%Institute of Science and Technology Austria, Klosterneuburg, Austria
bFreie Universitit Berlin, Department of Mathematics and Computer Science, Berlin, Germany
¢University College London, London, U.K.

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(3) (2023), #P3.10 https://doi.org/10.37236/11714


https://doi.org/10.37236/11714

n = ay + - -+ + ax which can be realised by a colorful perfect matching in any properly
k-edge-coloured k-regular graph on 2n vertices are the trivial ones, namely those having
a coordinate n.

Proposition 1. Let ay,...a; € {0,1,...,n—1} andn =ay; + --- + a. For everyn >k
orn =k even, there exists a bipartite graph G = (V, E) with n vertices in each side whose

edge set is the disjoint union of k perfect matchings My, ..., My, and there is no perfect
matching M of G with |M N M;| = a; for each i € [k].

The existence of a fairly split perfect matching for odd £ = n in bipartite graphs is
known as Ryser’s Conjecture, a famous and tantalising open problem.

As to the question of Arman, Rodl, and Sales for three colours, we show that a colourful
matching of size as large as n — 2 can always be found for any colour-multiplicity vector
(a1, as,a3). In fact, this can be guaranteed even when the matchings we start with are
not necessarily disjoint.

Theorem 2. Let G be a (multi-)graph on 2n vertices whose edge set is the disjoint union
of three perfect matchings My, My, Ms. Then for any ai,as,a3 € N with a; + as + az <
n — 2 there exists a matching M in G such that |M N M| = a1, |M N M| = ay, and
|M N Ms| = as.

The proofs of the above theorem and Proposition 1 are given in Section 2.

Remark 1. In light of Proposition 1, it is natural to ask how close to a fairly split
perfect matching we can get for k& > 3. Arman et al. [3] note that their results imply that
one can always choose a matching M with |[MNM;| > n/k—en for everyi € {1,...,k}. In
their concluding remarks they also mention that their proof could be modified to establish
the existence of a (smallest) constant C}, depending only on k, such that a matching M
with |[M N M;| > n/k — Cy for each i € {1,...,k} can always be found. Proposition 1
shows that Cy > 1 for every k and Theorem 2 shows that C3 = 1. Using Alon’s Necklace
Theorem, as in [3], in combination with some extra combinatorial ideas, one can obtain
a linear bound Cj < 4k — 6 for all k. Since we believe that Cj, = 1 (cf Conjecture 4), we
chose not to include the proof of that bound.

Remark 2. We note that the bound n—2 in Theorem 2 cannot be improved for general
graphs without extra assumptions. To see this, for any even n > 2 one can consider
the (unique) decomposition of n/2 disjoint copies of Ky into three perfect matchings
My, My, M3. Then the intersection of any matching M of G with any K, is a subset of
some M;, consequently the size of M is at most n minus the number of indices i € {1,2,3}
for which |M N M;| is odd. Hence a matching M of size n — 1 = a; + as + a3 with colour-
multiplicity triple (aq, az, as) does not exist if a1, as, az are all odd.

We conjecture that the construction from the previous remark is the only exception,
i.e., a split with a; + as + a3 = n — 1 should always possible if at least one component of
G is not a K4.

Conjecture 3. Let G be a graph on 2n vertices whose edge set is decomposed into
perfect matchings M, My and M3 and let aq, as, a3 be non-negative integers such that
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a1+ as + a3 =n — 1. If G has a component that is not isomorphic to a Ky, then there
exists a matching M in G such that |M N M;| = a; for each i € {1,2,3}.

A positive answer to this conjecture would in particular complete the resolution of
the question of Arman et al. for three colours, as it implies that for a colour-multiplicity
triple (a1, as,az) with a; + as + a3 = n — 1 a colourful matching is guaranteed to exist
if and only if at least one of the a; is even. This would also imply that such a matching
always exists if n is odd.

The construction in Proposition 1 is bipartite. We conjecture that the n — 2 in The-
orem 2 can be replaced with n — 1 if G is assumed to be bipartite. (This is actually a
special case of Conjecture 3.) Even more generally, we suspect that for bipartite graphs
the condition of Proposition 1 on the colour-multiplicities is best possible. More precisely,
we conjecture that the following multiplicity version of the Ryser-Brualdi-Stein conjecture
is true!.

Conjecture 4. Let G be a complete bipartite graph on 2n vertices whose edge set is
decomposed into perfect matchings M;, i =1,...,n. Let a;, i € {1,...,n} be a sequence
of non-negative integers such that >, a; = n — 1. Then, there exists a matching M in G
such that |M N M;| = a; for each i € {1,... ,n}.

Note that by Konig’s Theorem any collection of k pairwise disjoint perfect matchings
of K, , can be extended to a collection of n pairwise disjoint perfect matchings. Therefore,
if G is bipartite the question of Arman et al for the colour multiplicity-tuple (aq, ..., ax)
is equivalent to the same question for the n-tuple (as,...,a,0,...,0). Conjecture 4 is
easy to show when there are at most two non-zero colour-multiplicities. The case of three
non-zero colour-multiplicities, that is the strengthening of Theorem 2 for bipartite graphs,
is already open. As in Theorem 2, Conjecture 4 could also be true for multigraphs, but
for simplicity we restrict ourselves to simple graphs.

Conjecture 4 is quite optimistic, as it implies the Ryser-Brualdi-Stein conjecture (see
[6] and the citations therein) by setting a; = 1 for alli € {1,...,n—1} and a,, = 0. In fact,
Conjecture 4 is also related to the stronger Aharoni-Berger conjecture (see [7]). Several
other related generalisations of the Ryser-Brualdi-Stein conjecture have been previously
proposed. See for example Conjecture 1.9 in [1], see also [4].

Remark 3. An old result of Hall [5] which was independently discovered by Salzborn
and Szekeres [8] (see also [9] for a modern exposition) shows that there can be no coun-
terexample to Conjecture 4 coming from addition tables of abelian groups (as in the proof
of Proposition 1). It seems to be a problem of independent interest to generalise such
results to non-abelian groups, which would give further evidence for Conjecture 4.

2 Proofs

Proof of Proposition 1. First we show that if £k < n or £ = n is even then there exist
pairwise distinct z,x9,... or zx € Z, such that a;x; + -+ + apxgx # 0 (mod n). If

Noga Alon independently also asked this as a question [2].
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S it Z 0 (mod n) for some m € Sy, then the choice z.(;) = i for every i € [k] works.
This is certainly the case unless a; = -+ = ax = n/k. In that case, if n = k is even,
then Y » i-1=n/2%# 0 (mod n). If n > k then, since none of the colour-multiplicities
is n, we can assume without loss of generality that a; Z 0 (mod n). Then the choice
2y = k+ 1 and x; = i for every i < k works, as then Zle zia; =0+ ax Z 0 (mod n).
Here note that since k divides n and k < n we have k < n/2,s0 k+1 < n.

Let G be a bipartite graph between two copies of the cyclic group Z, consisting of
the edges whose endpoints sum to xy,xs,..., or zx. The edges whose endpoints sum to
x; form a perfect matching M;, and these matchings are pairwise disjoint. Suppose there
exists a perfect matching M of G with |M N M;| = a; for each i € [k]. Summing up the
endpoints of M in two different ways, we obtain

&1'$1+a2'$2+"'+ak'$k:Zi-l—Zi.

1€ 7n 1E€Ln

Observe that the right hand side of the above equality is 0 (for example, by pairing
up inverses), which contradicts the choice of zy,xa, ..., . O

Proof of Theorem 2. We say that a matching M C E(G) is distributed as (a1, as,as) if
it satisfies |M N M| = ay, |M N Ms| = ag, and |M N M;s| = az. It suffices to prove the
claim for triples (as, as,as) with a; = max{ay, as,as} as the roles of the matchings are
interchangeable. We will show that given an M that is distributed as (aq, as, az) with
aj; + as + az = n — 2 we can find a matching M’ that is distributed as (a1 — 1, a2 + 1, a3).
This also implies the existence of matching distributed as (a; — 1, a9, a3 + 1). Starting
from M; minus two arbitrary edges we can then find a matching distributed as (a1, as, as)
for any such triple satisfying a1 + as + a3 = n — 2.

For any matching M C E(G) of size n — 2 and any vertex x that is unmatched by M,
let Pos(M, x) be the maximum (My \ M)-(Ms N M)-alternating path starting at x, and
let lo3(M, x) be its length. Let

gQg(M) = min ggg(M, x)

x unmatched by M

For a matching M of G and v € V(G) denote by M (v) the vertex u that is matched
by M to v ie. M(v) = u if and only if {v,u} € M. Choose M such that l53(M)
is minimised over all matchings that are distributed as (ay,as,a3). Pick an unmatched
vertex & with lo3(M, x) = ly3(M) and an unmatched vertex z that is distinct from the
endpoints of Py3(M, ) and from M;(z). We can choose such vertices because there are
four unmatched vertices in total. If My(x) is incident to an edge of M N M; or unmatched
we are done since in the former case the matching

M\ {Ms(x) My (Ma(x)) } U {aM(x)}
is distributed as (a; — 1, a2 + 1, ag) while in the latter we can pick
M\ {e} U{xM,(x)}
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for any e € M N M;. Hence we assume that Ms(x) is incident to an edge of M N M;. Now
M;(z) cannot be incident to an edge of M N My because

M= M\ {My(x) Ms(My(x)), Ms(2) Ma(Ms(2)) } U{xMa(x), 2Ms(2) }

would be a matching that is distributed as (a1, as, a3) and in which Pag(M’, M3(Ms(x)))
would be a path of length fo3(M, z) — 2, which contradicts our choice of M. Here it was
important that z is different from the endpoints of Py3(M, ) so Pag(M', M3(Ms(z))) is
a subpath of Py3(M,x) not containing x and therefore Py3(M’', M3(My(x))) has smaller
length than Py3(M, x). Therefore M3(z) is unmatched or incident to an edge of M N M;.
If M;(2) is incident to M N M then

M" = M\ A{My(2) Ms(Ms(x)), Ms(2) My (Ms(2))} U{xMa(x), 2Ms(z)}
is the desired matching. Should M;5(z) be unmatched then for any e € M N M,
M" := M\ {My(z) Ms(My(x)), e} U{xMy(x), 2M3(z)}

is distributed as (a; — 1,as + 1,a3). Here we used that Ms(x) # z, or equivalently that
M;(z) # x. So under the previous that assumption Msy(x) is incident to an edge in
M N Ms, we have that the edges xMs(z), zM3(2) are disjoint. Hence M” and M" are
indeed matchings of G. O
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