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Abstract

We study multigraphs whose edge-sets are the union of three perfect matchings,
M1, M2, and M3. Given such a graph G and any a1, a2, a3 ∈ N with a1 + a2 + a3 6
n − 2, we show there exists a matching M of G with |M ∩ Mi| = ai for each
i ∈ {1, 2, 3}. The bound n − 2 in the theorem is best possible in general. We
conjecture however that if G is bipartite, the same result holds with n− 2 replaced
by n − 1. We give a construction that shows such a result would be tight. We
also make a conjecture generalising the Ryser-Brualdi-Stein conjecture with colour
multiplicities.

Mathematics Subject Classifications: 05C35, 05B15

1 Introduction

Let G be a graph on 2n vertices whose edge-set is the union of k edge-disjoint per-
fect matchings. Alternatively, one can also imagine a properly k-edge-coloured k-regular
graph, where the matchings are the colour classes. For which sequences a1, . . . , ak with∑

i∈[k] ai 6 n does there exist a “colourful” matching M of G with the property that

|M ∩ Mi| > ai for each i ∈ [k]? This question was introduced by Arman, Rödl, and
Sales [3, Question 1.1]. In their main result they obtained a couple of sufficient conditions
for a relaxed version of the problem, where the base graph is `-regular and `-edge-coloured
with a slightly larger ` ∼ (1 + ε)k.

In our paper we are mostly concerned with the original problem for three colours.
Arguably, the first natural question is whether there exists a “fairly split” perfect matching
M , i.e. one with |M ∩Mi| = n/3 for every i = 1, 2, 3. Of course n has to be divisible
by 3 for this to have a chance of happening. It turns out that even if 3 divides n, a
fairly split perfect matching is only guaranteed to exist if n = 3. Even more generally,
for any k 6 n − 1 or k = n even, the only colour-multiplicity tuples (a1, . . . , ak) with
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n = a1 + · · · + ak which can be realised by a colorful perfect matching in any properly
k-edge-coloured k-regular graph on 2n vertices are the trivial ones, namely those having
a coordinate n.

Proposition 1. Let a1, . . . ak ∈ {0, 1, . . . , n− 1} and n = a1 + · · ·+ ak. For every n > k
or n = k even, there exists a bipartite graph G = (V,E) with n vertices in each side whose
edge set is the disjoint union of k perfect matchings M1, . . . ,Mk, and there is no perfect
matching M of G with |M ∩Mi| = ai for each i ∈ [k].

The existence of a fairly split perfect matching for odd k = n in bipartite graphs is
known as Ryser’s Conjecture, a famous and tantalising open problem.

As to the question of Arman, Rödl, and Sales for three colours, we show that a colourful
matching of size as large as n− 2 can always be found for any colour-multiplicity vector
(a1, a2, a3). In fact, this can be guaranteed even when the matchings we start with are
not necessarily disjoint.

Theorem 2. Let G be a (multi-)graph on 2n vertices whose edge set is the disjoint union
of three perfect matchings M1,M2,M3. Then for any a1, a2, a3 ∈ N with a1 + a2 + a3 6
n − 2 there exists a matching M in G such that |M ∩M1| = a1, |M ∩M2| = a2, and
|M ∩M3| = a3.

The proofs of the above theorem and Proposition 1 are given in Section 2.
Remark 1. In light of Proposition 1, it is natural to ask how close to a fairly split

perfect matching we can get for k > 3. Arman et al. [3] note that their results imply that
one can always choose a matching M with |M∩Mi| > n/k−εn for every i ∈ {1, . . . , k}. In
their concluding remarks they also mention that their proof could be modified to establish
the existence of a (smallest) constant Ck, depending only on k, such that a matching M
with |M ∩Mi| > n/k − Ck for each i ∈ {1, . . . , k} can always be found. Proposition 1
shows that Ck > 1 for every k and Theorem 2 shows that C3 = 1. Using Alon’s Necklace
Theorem, as in [3], in combination with some extra combinatorial ideas, one can obtain
a linear bound Ck 6 4k − 6 for all k. Since we believe that Ck = 1 (cf Conjecture 4), we
chose not to include the proof of that bound.

Remark 2. We note that the bound n−2 in Theorem 2 cannot be improved for general
graphs without extra assumptions. To see this, for any even n > 2 one can consider
the (unique) decomposition of n/2 disjoint copies of K4 into three perfect matchings
M1,M2,M3. Then the intersection of any matching M of G with any K4 is a subset of
some Mi, consequently the size of M is at most n minus the number of indices i ∈ {1, 2, 3}
for which |M ∩Mi| is odd. Hence a matching M of size n− 1 = a1 + a2 + a3 with colour-
multiplicity triple (a1, a2, a3) does not exist if a1, a2, a3 are all odd.

We conjecture that the construction from the previous remark is the only exception,
i.e., a split with a1 + a2 + a3 = n− 1 should always possible if at least one component of
G is not a K4.

Conjecture 3. Let G be a graph on 2n vertices whose edge set is decomposed into
perfect matchings M1,M2 and M3 and let a1, a2, a3 be non-negative integers such that
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a1 + a2 + a3 = n − 1. If G has a component that is not isomorphic to a K4, then there
exists a matching M in G such that |M ∩Mi| = ai for each i ∈ {1, 2, 3}.

A positive answer to this conjecture would in particular complete the resolution of
the question of Arman et al. for three colours, as it implies that for a colour-multiplicity
triple (a1, a2, a3) with a1 + a2 + a3 = n − 1 a colourful matching is guaranteed to exist
if and only if at least one of the ai is even. This would also imply that such a matching
always exists if n is odd.

The construction in Proposition 1 is bipartite. We conjecture that the n− 2 in The-
orem 2 can be replaced with n − 1 if G is assumed to be bipartite. (This is actually a
special case of Conjecture 3.) Even more generally, we suspect that for bipartite graphs
the condition of Proposition 1 on the colour-multiplicities is best possible. More precisely,
we conjecture that the following multiplicity version of the Ryser-Brualdi-Stein conjecture
is true1.

Conjecture 4. Let G be a complete bipartite graph on 2n vertices whose edge set is
decomposed into perfect matchings Mi, i = 1, . . . , n. Let ai, i ∈ {1, . . . , n} be a sequence
of non-negative integers such that

∑
i ai = n− 1. Then, there exists a matching M in G

such that |M ∩Mi| = ai for each i ∈ {1, . . . , n}.

Note that by König’s Theorem any collection of k pairwise disjoint perfect matchings
of Kn,n can be extended to a collection of n pairwise disjoint perfect matchings. Therefore,
if G is bipartite the question of Arman et al for the colour multiplicity-tuple (a1, . . . , ak)
is equivalent to the same question for the n-tuple (a1, . . . , ak, 0, . . . , 0). Conjecture 4 is
easy to show when there are at most two non-zero colour-multiplicities. The case of three
non-zero colour-multiplicities, that is the strengthening of Theorem 2 for bipartite graphs,
is already open. As in Theorem 2, Conjecture 4 could also be true for multigraphs, but
for simplicity we restrict ourselves to simple graphs.

Conjecture 4 is quite optimistic, as it implies the Ryser-Brualdi-Stein conjecture (see
[6] and the citations therein) by setting ai = 1 for all i ∈ {1, . . . , n−1} and an = 0. In fact,
Conjecture 4 is also related to the stronger Aharoni-Berger conjecture (see [7]). Several
other related generalisations of the Ryser-Brualdi-Stein conjecture have been previously
proposed. See for example Conjecture 1.9 in [1], see also [4].

Remark 3. An old result of Hall [5] which was independently discovered by Salzborn
and Szekeres [8] (see also [9] for a modern exposition) shows that there can be no coun-
terexample to Conjecture 4 coming from addition tables of abelian groups (as in the proof
of Proposition 1). It seems to be a problem of independent interest to generalise such
results to non-abelian groups, which would give further evidence for Conjecture 4.

2 Proofs

Proof of Proposition 1. First we show that if k < n or k = n is even then there exist
pairwise distinct x1, x2, . . . or xk ∈ Zn such that a1x1 + · · · + akxk 6≡ 0 (mod n). If

1Noga Alon independently also asked this as a question [2].
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∑k
i=1 iaπ(i) 6≡ 0 (mod n) for some π ∈ Sk, then the choice xπ(i) = i for every i ∈ [k] works.

This is certainly the case unless a1 = · · · = ak = n/k. In that case, if n = k is even,
then

∑n
i=1 i · 1 ≡ n/2 6≡ 0 (mod n). If n > k then, since none of the colour-multiplicities

is n, we can assume without loss of generality that ak 6≡ 0 (mod n). Then the choice
xk = k + 1 and xi = i for every i < k works, as then

∑k
i=1 xiai ≡ 0 + ak 6≡ 0 (mod n).

Here note that since k divides n and k < n we have k 6 n/2, so k + 1 < n.
Let G be a bipartite graph between two copies of the cyclic group Zn consisting of

the edges whose endpoints sum to x1, x2, . . . , or xk. The edges whose endpoints sum to
xi form a perfect matching Mi, and these matchings are pairwise disjoint. Suppose there
exists a perfect matching M of G with |M ∩Mi| = ai for each i ∈ [k]. Summing up the
endpoints of M in two different ways, we obtain

a1 · x1 + a2 · x2 + · · ·+ ak · xk =
∑
i∈Zn

i+
∑
i∈Zn

i.

Observe that the right hand side of the above equality is 0 (for example, by pairing
up inverses), which contradicts the choice of x1, x2, . . . , xk.

Proof of Theorem 2. We say that a matching M ⊂ E(G) is distributed as (a1, a2, a3) if
it satisfies |M ∩M1| = a1, |M ∩M2| = a2, and |M ∩M3| = a3. It suffices to prove the
claim for triples (a1, a2, a3) with a1 = max{a1, a2, a3} as the roles of the matchings are
interchangeable. We will show that given an M that is distributed as (a1, a2, a3) with
a1 + a2 + a3 = n− 2 we can find a matching M ′ that is distributed as (a1 − 1, a2 + 1, a3).
This also implies the existence of matching distributed as (a1 − 1, a2, a3 + 1). Starting
from M1 minus two arbitrary edges we can then find a matching distributed as (a1, a2, a3)
for any such triple satisfying a1 + a2 + a3 = n− 2.

For any matching M ⊂ E(G) of size n− 2 and any vertex x that is unmatched by M ,
let P23(M,x) be the maximum (M2 \M)-(M3 ∩M)-alternating path starting at x, and
let `23(M,x) be its length. Let

`23(M) := min
x unmatched by M

`23(M,x).

For a matching M of G and v ∈ V (G) denote by M(v) the vertex u that is matched
by M to v i.e. M(v) = u if and only if {v, u} ∈ M . Choose M such that `23(M)
is minimised over all matchings that are distributed as (a1, a2, a3). Pick an unmatched
vertex x with `23(M,x) = `23(M) and an unmatched vertex z that is distinct from the
endpoints of P23(M,x) and from M3(x). We can choose such vertices because there are
four unmatched vertices in total. If M2(x) is incident to an edge of M ∩M1 or unmatched
we are done since in the former case the matching

M \ {M2(x)M1(M2(x))} ∪ {xM2(x)}

is distributed as (a1 − 1, a2 + 1, a3) while in the latter we can pick

M \ {e} ∪ {xM2(x)}

the electronic journal of combinatorics 30(3) (2023), #P3.10 4



for any e ∈M ∩M1. Hence we assume that M2(x) is incident to an edge of M ∩M3. Now
M3(z) cannot be incident to an edge of M ∩M2 because

M ′ := M \ {M2(x)M3(M2(x)),M3(z)M2(M3(z))} ∪ {xM2(x), zM3(z)}

would be a matching that is distributed as (a1, a2, a3) and in which P23(M
′,M3(M2(x)))

would be a path of length `23(M,x)− 2, which contradicts our choice of M . Here it was
important that z is different from the endpoints of P23(M,x) so P23(M

′,M3(M2(x))) is
a subpath of P23(M,x) not containing x and therefore P23(M

′,M3(M2(x))) has smaller
length than P23(M,x). Therefore M3(z) is unmatched or incident to an edge of M ∩M1.
If M3(z) is incident to M ∩M1 then

M ′′ := M \ {M2(x)M3(M2(x)),M3(z)M1(M3(z))} ∪ {xM2(x), zM3(z)}

is the desired matching. Should M3(z) be unmatched then for any e ∈M ∩M1,

M ′′′ := M \ {M2(x)M3(M2(x)), e} ∪ {xM2(x), zM3(z)}

is distributed as (a1 − 1, a2 + 1, a3). Here we used that M3(x) 6= z, or equivalently that
M3(z) 6= x. So under the previous that assumption M2(x) is incident to an edge in
M ∩M3, we have that the edges xM2(x), zM3(z) are disjoint. Hence M ′′ and M ′′′ are
indeed matchings of G.
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