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Abstract

The lexicographically least square-free infinite word on the alphabet of non-
negative integers with a given prefix p is denoted L(p). When p is the empty word,
this word was shown by Guay-Paquet and Shallit to be the ruler sequence. For
other prefixes, the structure is significantly more complicated. In this paper, we
show that L(p) reflects the structure of the ruler sequence for several words p. We
provide morphisms that generate L(n) for letters n = 1 and n > 3, and L(p) for
most families of two-letter words p.

Mathematics Subject Classifications: 68R15

1 Introduction

A word is square-free if it contains no block of letters that occurs twice consecutively. In
2009, Guay-Paquet and Shallit [4] established the structure of the lexicographically least
square-free infinite word on the alphabet N := {0, 1, 2, . . . }. This word’s letters comprise
the ruler sequence 0102010301020104 · · · [9, A007814], and it is the fixed point ρ∞(0) of
the ruler morphism ρ defined by ρ(n) = 0 (n+ 1).

However, this result is not robust; a minor variation produces words that are quite
different. Given a word w, let L(w) denote the lexicographically least infinite word on N
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beginning with w whose only square factors are contained in the prefix w. In particular,
if w is square-free, then so is L(w). If w is infinite, then L(w) = w. For example,

L(1) = 10120102012021012010201203010201 · · · [9, A356677],

L(2) = 20102012021012010201202102010210 · · · [9, A356678],

and
L(33) = 33010201030102012021012010201202 · · · [9, A356679].

Unlike L(ε) = ρ∞(0), the letters in these words do not alternate between 0s and positive
integers. Moreover, the letters 3, 4, 5, . . . take much longer to appear, and there is no
clear pattern for these words, as in the case for the ruler sequence.

In this paper we determine the structure of L(w) for certain simple words w. Our
main results are that L(1) and L(n) for n > 3 reflect the structure of L(ε) as follows.

Theorem 1. There exists a morphism α and a word Y1 with length 5177 such that L(1) =
Y1 α(L(ε)).

Theorem 2. For each n > 3, there exists a finite word Yn such that L(n) = Yn ρ(α(L(ε))),
where α is the morphism in Theorem 1.

These results imply that the suffix α(L(ε)) and the related suffix ρ(α(L(ε))) are two
attractors for infinite square-free extensions of words on N. We have

α(L(ε)) = 01020301201020120210120102012023 · · · [9, A356676].

The structure of L(2) appears to also reflect the structure of L(ε) but, surprisingly,
appears not to be related to the morphism α. Instead, we give a morphism γ in Section 4.3
for which we conjecture the following.

Conjecture 3. There exists a morphism γ such that L(2) = 2γ(L(ε)).

In Corollary 44, we show that L(012) = 01201 limn→∞ ρ
−1(α(n)) where α is the mor-

phism described above. We also describe L(p) for many two-letter words. For example, we
show that L(nn) = nL(n) for all letters n. On the other hand, we do not have conjectures
for the structures of L(1n) when n > 1 and L(2n) when n 6∈ {0, 2}. For example we have

L(12) = 12010201202101201020120212010201 · · · [9, A356680],

L(13) = 13010201030102012021012010201202 · · · [9, A356681],

L(21) = 21012010201202101201020121012010 · · · [9, A356682].

Section 2 contains the main definitions and some preliminary results we will use to
prove Theorems 1 and 2. Section 3 establishes the structure of finite words T (n) for which
Yn = nT (n)A for a constant word A when n > 3. We see in Section 4.2 that T (n) is the
only component of L(n) that depends on n. In Section 4 we give explicit constructions
of α and the words Yn, and we prove Theorems 1 and 2. Unsurprisingly, the proofs are
fairly technical.
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In Section 5 we give two conditions under which L(uv) = uL(v). For example, we
show that L(n1n2) = n1L(n2) for all n1 > 3 and n2 > 3. We use this to describe the
structure of L(p) for several families of two-letter words p. Finally, in Section 6, we study
the inverse problem of finding a prefix p that induces a given finite square-free word w
under L. We show that this can always be done and present an algorithm that computes
a prefix p such that pw is a prefix of L(p). Section 7 is a glossary of all of the functions,
morphisms, and constants defined in the paper.

This work was motivated by results of several papers [7, 6, 8] studying the lexico-
graphically least word on N that avoids a

b
-powers, for various rational numbers in the

interval 1 < a
b
< 2. These words exhibit a remarkable diversity of behaviors. Some of

these words (for example, when a
b

= 24
17

[6, Figure 4 on page 36]) alternate between two
different modes before settling into their long-term behavior, suggesting that there may
be multiple attractors in the dynamical systems that generate them. The current paper is
the first exploration of the set of attractors for the alphabet N. By varying the prefix, we
show there are multiple attractors for square-free words. In contrast, on a binary alpha-
bet there are patterns with only one attractor; Allouche, Currie, and Shallit [2] showed
that the lexicographically least overlap-free word on {0, 1} with a fixed prefix, if it exists,
always has a suffix that is a suffix of 10010110 · · · (the complement of the Thue–Morse
word).

Frequently in this paper, we use computations to show that a particular finite word
possesses a certain property. Often, this involves verifying that the word is square-free.
As an example, in the proof of Lemma 7, we verify that the word ψ1(010) is square-free.
These words can easily be computed from their definitions. All computations in this
paper that verify that a word is square-free can be done quickly using the Main–Lorentz
algorithm described in their 1985 paper [5].

We sometimes require the computation of finite prefixes of words L(w). For example,
the word Y1 is defined as the 5177-letter prefix of L(1). These computations can be
completed quickly using the following simple greedy algorithm: To find the next letter of
L(w) after the prefix wv, check whether wvn has a square suffix for non-negative integers
n, increasing from zero. Then the least n for which wvn has no square suffix is the next
letter of L(w). If w contains a square, we test all even-length suffixes of wvn. If w is
square-free, then we can use a more efficient variation of the Main–Lorentz algorithm [5]
that only searches for squares that are suffixes. This variation is easiest to implement by
first reversing the string and then using the algorithm described in their paper with “Step
3” altered so that only the first block of length l is examined.

2 Definitions and preliminary results

We assume the reader is familiar with basic definitions and notation regarding words and
morphisms. See the survey by Allouche [1] for a short introduction. All words in the
paper are words on the alphabet N.

We say that v is a factor of w if w = xvy for some words x, y. If v is a factor of w, we
also say that v occurs in w and w contains v. A square is a nonempty word of the form
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yy. A word is square-free if it contains no square factors.
We index letters in a word beginning with 0, and we use Python notation to extract

factors: Suppose a word w has length ` and is written as a sequence of letters w =
w0w1w2 · · ·w`−2w`−1. If 0 6 i 6 j 6 `− 1, then w[i] := wi and w[i : j] := wiwi+1 · · ·wj−1,
with “default values” for i and j being 0 and `, respectively. If i = j, then w[i : j] = ε.
Negative values index letters from the end of the word. For example, if w = hydrant, then

w[3 : 6] = ran = w[3 : −1]

w[4 :] = ant = w[−3 :]

w[: 5] = hydra = w[: −2].

Note also that w[: 0] = ε for any word w.

Definition. A word w is even-grounded if wi = 0 for even i and wi 6= 0 for odd i. A word
w is odd-grounded if wi = 0 for odd i and wi 6= 0 for even i. A word is grounded if it is
even-grounded or odd-grounded.

For example, the words 010 and 0102 are even-grounded, 301 and 3010 are odd-
grounded, and the words 0120 and 0100 are not grounded.

Definition. The ruler morphism ρ : N∗ ∪Nω → N∗ ∪Nω is defined by ρ(n) = 0(n+ 1) for
letters n ∈ N.

Notation. We will denote by Rn the prefix of the ruler sequence up to the first occurrence
of the letter n, i.e. Rn = ρn(0) = L(ε)[: 2n]. For example, R0 = 0, R1 = 01, R2 = 0102,
and so on.

Notation. For a nonempty finite word w, we define w+, the successor of w, to be the
word that is identical to w except for the last letter, which is increased by 1. For example,
if w = 0102 then w+ = 0103. Formally, w+ = w[: −1](w[−1] + 1).

Definition. Let φ be a morphism.

• φ is non-erasing if φ(k) 6= ε for all letters k.

• Let ∆ be a set of words. We say that φ is square-free over ∆ if φ is non-erasing and
φ(w) is square-free for all square-free words w ∈ ∆. We say that φ is square-free if
φ is square-free over N∗ ∪ Nω.

• φ is letter-injective if, given letters k and `, φ(k) = φ(`) implies k = `.

Definition. Given two words u and v, we say that u is lexicographically less than v and
we write u ≺ v if there is an index i such that u[: i] = v[: i] and u[i] < v[i] as letters. It
can be seen that ≺ is a partial ordering on N∗ ∪Nω. The only case when u and v are not
comparable by ≺ is when one word is a prefix of the other. We can also see that if w is a
nonempty word of finite length and v ≺ w+, then either v ≺ w or w is a prefix of v.
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Definition. Given words w and u, we say that u is irreducible in wu if for all words
s ≺ u, s introduces a square in ws. That is, there is a square in ws that ends at a letter
in s.

Notice that if u is irreducible in wu, it can still introduce a square. In this case, u+ is
irreducible in wu+.

Example. Consider w = 0102010, u = 23, and v = 301. Any word y beginning with a
0, 1, or 2 introduces a square in wy, so u is irreducible and also introduces a square in
wu. Thus, u+ = 24 is also irreducible. The word v = 301 does not introduce a square,
but every word lexicographically less than v either begins with 0, 1, or 2, or includes a
square. So v is irreducible, but v+ = 302 is not.

Definition. We say that p generates ps if L(p) = L(ps). In other words, L(p) starts with
ps.

The main results of this paper, that L(1) = Y1α(L(ε)) and L(n) = Ynρ(α(L(ε))) for
n > 3 can be restated as 1 generates Y1α(L(ε)), and n generates Ynρ(α(L(ε))) for n > 3.

Remark 4. To prove that a square-free word p generates another word w = ps, we must
show that w is square-free and that s is irreducible in w = ps.

In particular, we have the useful property that if p generates w = ps and uw is square-
free for another word u, then up generates uw. The square-free condition is known by
assumption, and the fact that s is irreducible in w = ps implies that s is irreducible in
uw = ups.

One common application of this property is when w = L(p). Then if uL(p) is square-
free, we get L(up) = L(uL(p)) = uL(p). Or in other words, up generates uL(p).

Example. The above remark is often used implicitly in this paper. For example in
Lemma 11, we prove that for n > 1, ψ1(n) generates ψ1(n)202101. To do this, we first
show that ψ1(n)202101 is square-free and that 2 is irreducible in ψ1(n)2. This proves that
ψ1(n) generates ψ1(n)2.

We then show that ψ1(n)2 has suffix R2R12, and via computation show that R2R12
generates R2R1202101. Letting p = R2R12, s = 02101, and u be the word for which
up = ψ1(n)2, we have that p generates ps, and ups = ψ1(n)202101 is square-free. So
Remark 4 says that up = ψ1(n)2 generates ups = ψ1(n)202101.

We now have that ψ1(n) generates ψ1(n)2, and ψ1(n)2 generates ψ1(n)202101. By
definition, this means that L(ψ1(n)) = L(ψ1(n)2) = L(ψ1(n)202101), so ψ1(n) generates
ψ1(n)202101.

Notation. For any word w, max(w) denotes the maximum letter value in w if it exists.

The remainder of this section introduces the notion of chunks which will be key in
Section 3 to prove Theorem 24 regarding the structure of a certain prefix of L(n) and
in Section 4 to prove Theorem 28 related to the square-freeness of the morphism α,
determining the structure of L(1).
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Given a morphism φ and a word w = w0w1w2 · · · we can write φ(w) as

φ(w) = [φ(w0)] [φ(w1)] [φ(w2)] · · · ,

where we use square brackets to delineate the contributions of each individual letter of w.
A factor of φ(w) that arises as the image φ(k) of the letter k under φ is a chunk or, more
specifically, a k-chunk. For example, consider the ruler morphism ρ and the word 0121.
We would break ρ(0121) into chunks as

ρ(0121) = [01] [02] [03] [02].

Each factor 02 is a 1-chunk.
Sometimes, when we take a particular occurrence of a factor of φ(w), we find that the

factor starts or ends partway through a chunk. For example ρ(0121)[1 : 6] can be written
as

ρ(0121)[1 : 6] = 1] [02] [03] [0.

We refer to 1] and [0 as partial chunks. 1] is the initial partial chunk and [0 is the final
partial chunk.

In this paper, we frequently consider words of the form φ(w), and then characterize
the possible locations of certain factors of φ(w) with respect to its chunks. For example,
in Lemma 30, we show that for any grounded square-free word w, the constant word E
can only occur in α(w) as a prefix or a suffix of a 0-chunk. This is related to the morphism
property that φ locates words of length ` introduced by Pudwell and Rowland [6], which
restricts the possible starting index for a word of length `, relative to the chunks in φ(w).
It is also related to the synchronization point of a word x introduced by Cassaigne [3]
which describes a point in a word x with respect to a morphism φ that must occur at a
chunk boundary whenever x occurs in φ(w).

Definition. Given a word w and a morphism φ, we say that two (possibly partial) chunks
in φ(w)[i : j] come from the same letter to mean that both chunks arise as images of the
same letter in w. For example, in ρ(0121)[1 : 6] = 1][02][03][0, the first whole chunk, [02],
and the final partial chunk, [0, come from the same letter, 1. If a word v occurs twice
in φ(w), we say that the occurrences have the same chunk decomposition if every whole
chunk in one occurrence corresponds to a whole chunk in the other occurrence and both
chunks come from the same letter.

Example. Consider the morphism φ : N∗ ∪ Nω → N∗ ∪ Nω defined by

φ(n) =


0 if n = 0

01 if n = 1

n− 1 if n > 2.

The single occurrence of v = 103 in φ(2041) = [1] [0] [3] 01 has the same chunk decomposi-
tion as its occurrence in φ(2204) = 1 [1] [0] [3]. On the other hand, w = 01 in φ(01) = 0 [01]
does not have the same chunk decomposition as its occurrence in φ(024) = [0] [1] 3.
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In ρ(01012), we consider the square 1020 1020:

ρ(01012) = [0 (1][02][0) (1][02][0) 3].

The two halves of the square have the same chunk decomposition because in both, 02 is a
whole 1-chunk and there are no other whole chunks. The two initial partial chunks come
from the same letter because they are both part of 0-chunks. The two final partial chunks
do not come from the same letter because the final partial chunk of the first half is part
of a 0-chunk, and the final partial chunk of the second half is part of a 2-chunk.

Consider a morphism φ where φ(0) = 123, and φ(1) = 13. Then, φ(010) =
[12(3][1)(3][1)23]. In the square 3131, both halves vacuously have the same chunk de-
composition since there are no whole chunks. But neither their initial nor final partial
chunks come from the same letter.

The following theorem is used frequently in this paper to show that a morphism is
square-free.

Theorem 5. Let φ be a letter-injective morphism such that φ(`) is square-free for all
letters `. Suppose w is a word such that φ(w) contains a square yy for which the following
three properties hold.

1. Each half of the square contains at least one whole chunk.

2. The two halves of the square have the same chunk decomposition.

3. If either half has a partial chunk, then either their initial partial chunks or their
final partial chunks come from the same letter in w.

Then w contains a square.

Proof. By the first and second conditions, the corresponding whole chunks in both halves
come from the same letters in w. So there is a nonempty factor u of w that yields all
whole chunks in both halves. That is, we can write the square as

yy = (b] [φ(u)] [c) (b] [φ(u)] [c)

where b] and [c are possibly empty partial chunks.
If there are no partial chunks (b = c = ε), then yy = [φ(u)][φ(u)] and uu is a square

factor of w.
Now, suppose there is a partial chunk in either half. Then since the halves have the

same chunk decomposition, there must be an initial and final partial chunk in both halves
(neither b nor c is empty). Let a and d be the smallest words that complete the partial
chunks of yy. That is, φ(w) has the factor [a(b] [φ(u)] [c)(b] [φ(u)] [c)d] = ayyd. Since
φ is letter-injective, φ−1 is well defined on chunks. The third condition says that either
φ−1(ab) = φ−1(cb) or φ−1(cb) = φ−1(cd). In the first case, φ−1(ab)uφ−1(cb)u is a square
factor of w. In the second case, uφ−1(cb)uφ−1(cd) is a square factor of w.
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As a corollary to this theorem, suppose Γ is a family of square-free words, and φ is a
letter-injective morphism with φ(`) square-free for all letters `. For any word w ∈ Γ, φ(w)
cannot contain a square that possesses all three properties in Theorem 5, or else w would
contain a square. So we can prove that φ is square-free over Γ by showing that for all
w ∈ Γ, if φ(w) contains a square, then it contains a square with these three properties. In
this paper, we use this technique to show that the morphisms ψ1, ψ2, and α are square-free
over grounded words.

3 A certain prefix of L(n)

For all n > 1, it is clear that L(n) always starts with the letter n followed by a prefix of
the ruler sequence L(ε). In this section, we show that for n > 3, L(n) has prefix nT (n)
which has length exponential in n. In Section 4.2 we will show that this is the only part
of L(n) that depends on n.

3.1 The morphism ψ1

We begin by showing that L(n) has a shorter prefix, nP0(n)P1(n), which is proved in
Theorem 14. Next we define the words P0(n), P1(n) and the morphism ψ1.

Definition. For n > 0, let P0(n) be the maximum prefix of the ruler sequence such that
nP0(n) is a prefix of L(n). Define the morphism ψ1 : N∗ → N∗ by

ψ1(n) =

{
202101 if n = 0,

(n+ 1)P0(n+ 1) otherwise,

and for n > 3 define
P1(n) = ψ1(P0(n− 1)).

For n > 3, after the word L(n) deviates from the ruler sequence prefix, we will show
that it continues with the word P1(n). These definitions can be referenced in the glossary,
Section 7.

Remark 6. Note that P0(0) = ε. Also, it is not hard to see that the length of P0(n) is
2n+1 − 2, hence for all n we have

P0(n) = Rn+1[: −2] = RnRn[: −2] = RnRn−1 · · ·R3R2R1.

And for n > 1,
P0(n) = RnP0(n− 1).

By repeated application of this argument, for 1 6 k 6 n, we have that P0(n) has suffix
P0(k).

We would like to show that ψ1 is square-free over grounded words, since that will
imply that P1(n) is square-free. The next three lemmas describe some of the important
behavior of ψ1 over grounded square-free words.
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Lemma 7. Let n > 1. Then ψ1(0n0) is square-free.

Proof. We can verify computationally that ψ1(010) is square-free. So let n > 2 and
suppose there is a square yy in

ψ1(0n0) =
[
202101

][
(n+ 1)P0(n+ 1)

][
202101

]
.

Since (n + 1)P0(n + 1) is a prefix of L(n + 1), ψ1(n) is square-free for all n. So yy lies
over at least one of the chunk boundaries.

In the first chunk boundary we find the word 1(n + 1), and in the second the word
12. Since n+ 1 > 3 and ψ1(n) is grounded, these words appear nowhere else in ψ1(0n0).
Therefore, neither chunk boundary can be completely contained in y. This means that
yy must be a factor of ψ1(0n) or ψ1(n0) and each occurrence of y must be completely
contained in a different chunk. Every prefix of ψ1(n) begins with n+ 1 > 3 but no suffix
of ψ1(0) does, and every suffix of ψ1(n) is grounded and ends with a 1 which is not true
for any prefix of ψ1(0). Therefore, such a square cannot exist.

Lemma 8. Let n > k > 0. Then neither of ψ1(n) and ψ1(k) is a factor of the other.

Proof. From the definition, it is clear that since n > k, |ψ1(n)| > |ψ1(k)|, so ψ1(n) cannot
be a factor of ψ1(k). If k = 0, then ψ1(k) is not grounded but ψ1(n) is. Thus, assume
n > k > 0. Then since ψ1(n) = (n + 1)P0(n + 1) = (n + 1)Rn+2[: −2], it is sufficient to
show that ψ1(k) = (k + 1)Rk+2[: −2] cannot occur in Rn+2.

Since Rn+1 = RnR
+
n for all n, we have that

Rn+2 = Rk+2R
+
k+2Rk+2R

++
k+2Rk+2R

+
k+2 · · ·Rk+2R

++···+
k+2

= R∗k+2R
∗
k+2 · · ·R∗k+2,

where ∗ represents the application of zero or more +’s according to the ruler sequence
pattern.

The largest letter in Rk+2[: −2] is k + 1 and the last letter of each R∗k+2 is at least
k + 2. So every occurrence of Rk+2[: −2] in R∗k+2R

∗
k+2 · · ·R∗k+2 must be as a prefix of an

R∗k+2. This means that any occurrence of Rk+2[: −2] in Rn+2 is either a prefix of Rn+2 or
is preceded by a letter that is at least k+ 2. Therefore, (k+ 1)Rk+2[: −2] can never occur
in Rn+2, and ψ1(k) cannot occur in ψ1(n) which proves the result.

Lemma 9. Let w be a grounded square-free word. Then for ` > 0, every occurrence of
ψ1(`) in ψ1(w) is a `-chunk.

Proof. It is not hard to see that the word 21 can only occur in ψ1(w) in the middle of
0-chunks. Thus, 202101 occurs in ψ1(w) only as a 0-chunk.

Suppose ` > 1. Then ψ1(`) = (` + 1)P0(` + 1) = (` + 1)R`+1R`+1[: −2] which is
odd-grounded. For n > 0, ψ1(n) begins and ends with a non-zero letter, so any word
lying over a chunk boundary in ψ1(w) cannot be grounded. Therefore, every occurrence
of ψ1(`) in ψ1(w) must be totally contained in some k-chunk where k > `. By Lemma 8
ψ1(`) cannot be a factor of ψ1(k) when k > `, so ψ1(`) can only occur as an `-chunk.

the electronic journal of combinatorics 30(3) (2023), #P3.11 9



Proposition 10. ψ1 is square-free over grounded words.

Proof. Suppose w is a grounded square-free word and that ψ1(w) contains a square yy.
From its definition, ψ1 is letter injective and ψ1(n) is square-free for all n. Also, Lemma 9
implies that both halves of yy have the same chunk decomposition. We will show that
each half of the square contains a whole chunk, and that if either half contains a partial
chunk, then the final partial chunk of both halves comes from the same letter. Then
Theorem 5 will imply that w contains a square, which is a contradiction.

Suppose neither half of the square contains a whole chunk. Then the whole square
contains no more than one whole chunk. By Lemma 7, ψ1(0n0) is square-free, so yy must
be a proper factor of ψ1(n0k) for n, k > 0, n 6= k. The factor 21 only occurs in the middle
of 0-chunks, so the square in ψ1(n0k) has its center at the 21 in the 0-chunk. The square
cannot be totally contained in the 0-chunk, so the second half of the square begins with
101 which cannot occur in the first half because ψ1(n) = (n + 1)Rn+2[: −2]. This is a
contradiction so at least one half of the square contains a whole chunk. Since both halves
have the same chunk decomposition, both halves contain a whole chunk.

Suppose either half contains a partial chunk. Then since the halves have the same
chunk decomposition, they must both end with a partial chunk. The final partial chunks
begin with the same letter, so they must be equal chunks or one of them must be a 0-chunk.
But since the halves have the same chunk decomposition and contain whole chunks, their
last whole chunk is equal. So the final partial chunks are either both 0-chunks or both
equal nonzero chunks.

The next three lemmas are used to prove the irreducibility condition in Theorem 14.

Lemma 11. Let n > 1. Then ψ1(n) generates ψ1(n0).

Proof. Since n0 is square-free and grounded, ψ1(n0) is square-free by Proposition 10, so
we only need to show that ψ1(0) is irreducible in ψ1(n0) = ψ1(n)202101. We will first
show that 2 is an irreducible suffix of ψ1(n)2, and then that 02101 is an irreducible suffix
of ψ1(n)202101.

Recall that ψ1(n) = (n + 1)P0(n + 1) = (n + 1)Rn+1[: −1](n + 1)Rn+1[: −2]. From
the structure of Rn, we know that Rn+1 has suffix 010(n + 1) when n > 1. So ψ1(n)0 =
(n + 1)Rn+1[: −1](n + 1)Rn+1[: −1] which is a square. The last letter of ψ1(n) is a 1,
so ψ1(n)1 has square suffix 11. Therefore, 2 is irreducible at the end of ψ1(n)2. Since
ψ1(n) ends with R2R1, then ψ1(n)2 ends with R2R12. We can computationally verify that
R2R12 generates R2R1ψ1(0), which implies the result by using Remark 4.

Lemma 12. For 0 6 k 6 n, k + 1 is irreducible at the end of ψ1(nRk[: −1])(k + 1).

Proof. Let 0 6 m 6 k, we will show that wm := ψ1(nRk[: −1])m has a square suffix. If
k = 0, then m = 0 and ψ1(nRk[: −1]) = ψ1(n). Then ψ1(nRk[: −1])m = ψ1(n)0 which
has a square suffix by Lemma 11.

Now note that for k > 1, the last letter of Rk[: −1] is 0 and ψ1(0) = 202101, so wm

has a square suffix for m < 2.
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Now assume 2 6 m 6 k. By definition ψ1(n) = (n + 1)P0(n + 1), and by Remark 6,
P0(n+ 1) has suffix P0(m). Hence, if m = k, wm has suffix P0(m)ψ1(Rm−1[: −1])m.

On the other hand, if m < k it is easy to see that nRk[: −1] has suffix mRm[: −1]. By
definition ψ1(m) = (m+ 1)P0(m+ 1), and since m > 2, Remark 6 implies that P0(m+ 1)
has suffix P0(m). So wm has suffix P0(m)ψ1(Rm[: −1])m for any 2 6 m 6 k. Finally note
that

P0(m)ψ1(Rm[: −1])m = P0(m)ψ1(Rm−1[: −1])ψ1(m− 1)ψ1(Rm−1[: −1])m

= P0(m)ψ1(Rm−1[: −1])mP0(m)ψ1(Rm−1[: −1])m,

which is a square.

Lemma 13. For n > 1 and 0 6 k 6 n, ψ1(n) generates ψ1(nRk).

Proof. Since k 6 n we know that nRk is square-free and grounded, so Proposition 10
implies that ψ1(nRk) is square-free. It is now sufficient to show that ψ1(Rk) is irreducible
in ψ1(nRk).

We prove this inductively over n. The base case n = 1 implies that k = 0 or k = 1.
We can computationally verify that ψ1(1) generates ψ1(1R0) = ψ1(10) and that ψ1(1)
generates ψ1(1R1) = ψ1(101).

Fix n > 1 and suppose the result holds for all 1 6 n0 < n. That is,

ψ1(Rk) is irreducible in ψ1(n0Rk) for all 0 6 k 6 n0 and 1 6 n0 < n. (i)

We will show that the result holds for n0 = n. That is, ψ1(Rk) is irreducible in ψ1(nRk)
for all 0 6 k 6 n.

We can prove this intermediate step by a second induction, now over k. The base case
is k = 0, which holds by Lemma 11 since R0 = 0. Now fix k > 0 and suppose

ψ1(Rk0) is irreducible in ψ1(nRk0) for all 0 6 k0 < k (ii)

We will show that the result holds for k0 = k. That is, ψ1(Rk) is irreducible in ψ1(nRk).
We have that ψ1(nRk) = ψ1(nRk−1Rk−2 · · ·R2R1R0k). By the second inductive hy-

pothesis (ii), ψ1(Rk−1) is irreducible in ψ1(nRk−1). The last letter of Rk−1 is k − 1, so
the first inductive hypothesis (i) says that ψ1(Rk−2) is irreducible in ψ1((k− 1)Rk−2) and
so ψ1(Rk−1Rk−2) is irreducible in ψ1(nRk−1Rk−2). Repeating this argument shows that
ψ1(Rk−1Rk−2 · · ·R2R1R0) = ψ1(Rk[: −1]) is irreducible in ψ1(nRk[: −1]). Lemma 12 im-
plies that k + 1 is irreducible in ψ1(nRk[: −1])(k + 1). And ψ1(k) = (k + 1)P0(k + 1) is a
prefix of L(k+ 1) by the definition of P0, so k+ 1 generates ψ1(k), meaning that ψ1(k) is
irreducible in ψ1(nRk[: −1])ψ1(k) = ψ1(nRk), which proves the result.

In particular, this lemma implies that for all n > 1, ψ1(n) generates ψ1(nRn).

Theorem 14. For all n > 3, let P1(n) = ψ1(P0(n− 1)). Then for n > 3, L(n) has prefix
nP0(n)P1(n).

the electronic journal of combinatorics 30(3) (2023), #P3.11 11



Proof. Note that nP0(n)P1(n) = ψ1((n − 1)P0(n − 1)). Then, since (n− 1)P0(n− 1)
is square-free and grounded, Proposition 10 implies that nP0(n)P1(n) is square-free. It
remains to show that P1(n) = ψ1(P0(n − 1)) = ψ1(Rn−1Rn−1[: −2]) is irreducible in
nP0(n)P1(n). Indeed, note that

nP0(n)P1(n) = ψ1((n− 1)P0(n− 1)) = ψ1((n− 1)Rn−1Rn−1[: −2]).

Lemma 13 implies that ψ1(n− 1) generates ψ1((n− 1)Rn−1), which has suffix ψ1(n− 1).
Hence, by applying Lemma 13 a second time we obtain in particular that ψ1(Rn−1[: −2])
is irreducible in ψ1((n− 1)Rn−1[: −2]), and so it is also irreducible in

nP0(n)P1(n) = ψ1((n− 1)Rn−1Rn−1[: −2]).

Therefore, the whole factor P1(n) is an irreducible suffix of nP0(n)P1(n).

Remark 15. Using Remark 6, for all n > 4 we have

P1(n) = ψ1(P0(n− 1))

= ψ1(Rn−1[: −1](n− 1)Rn−1[: −2])

= ψ1(Rn−1[: −1])ψ1(n− 1)ψ1(P0(n− 2))

= ψ1(Rn−1[: −1])nP0(n) P1(n− 1)

= ψ1(Rn−1[: −1])nRnP0(n− 1)P1(n− 1),

so P1(n) has nP0(n− 1)P1(n− 1) as suffix.
Repeated application of this argument implies that for all 2 6 k < n, the word P1(n)

has the suffix (k + 1)P0(k)P1(k).

3.2 The morphism ψ2

For all n > 3 after the prefix given by the previous result, L(n) continues with another
sequence, P2(n) defined as follows.

Definition. Define the morphism ψ2 : N∗ → N∗ by

ψ2(0) = 2021020102101201020120210120102013010201030102012021012010201

2021013010201030102012021012010201202301020103010201202101201

0201203010201030102030103020102030102010301020301030201202101

2010201202101202,

ψ2(n) = (n+ 2)P0(n+ 2)P1(n+ 2), if n > 0

and let
P2(n) = ψ2(P0(n− 2))

which can be referenced in Section 7.
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In particular, we note that for n > 1, ψ2(n) = ψ1((n + 1)P0(n + 1)) = ψ2
1(n), but

ψ2(0) 6= ψ2
1(0). Similarly to ψ1, we would like to show that ψ2 is square-free over grounded

words because that will imply that nT (n) = ψ2((n−2)P0(n−2)) is square-free. The next
four lemmas prove some properties of ψ2 that are used to prove this condition.

Lemma 16. Let n > 1. Then ψ2(n0) is square-free.

Proof. We can verify computationally that ψ2(10) is square-free. So let n > 2 and suppose
there is a square yy in ψ2(n0). Since ψ2(n) = ψ1((n + 1)P0(n + 1)), ψ2(n) is square-free
by Proposition 10. This implies that yy overlaps both chunks. We have that ψ2(n) ends
with

P1(n+ 2) = ψ1(P0(n+ 1)) = ψ1(Rn+2[: −2]) = ψ1(Rn+1Rn · · ·R3R2R1).

Since n > 2, this ends with ψ1(3R2R1). One verifies computationally that ψ1(3R2R1)ψ2(0)
is square-free, which means that any square in ψ2(n0) must contain all of ψ1(3R2R1)][2
at the chunk boundary. Since ψ1(3) contains 4’s, the square must contain 4’s.

Let k be the largest letter in the square yy. We know that 4 6 k 6 n + 2 since
max(ψ2(n0)) = n + 2. Since max(ψ2(0)) = 3, all occurrences of k in ψ2(n0) are in the
n-chunk. From above, ψ2(n) ends with ψ1(Rm[: −2]) for m 6 n + 2. We consider two
cases:

Case 1: k < n+ 2. Since k + 1 6 n+ 2, ψ2(n) ends with

ψ1(Rk+1[: −2]) = ψ1(Rk[: −1]) ψ1(k) ψ1(Rk[: −2])

= ψ1(Rk[: −1]) (k + 1)Rk+1[: −1](k + 1)Rk+1[: −2] ψ1(Rk[: −2])

which contains the last two occurrences of k + 1 in ψ2(n). Since k is the largest letter in
the square, yy must be contained in the suffix of ψ2(n0) after the last occurrence of k+ 1
which is

Rk+1[: −2] ψ1(Rk[: −2]) ψ2(0)

= RkRk[: −2] ψ1(Rk−1Rk−1[: −2]) ψ2(0)

= Rk[: −1] k Rk[: −2] ψ1(Rk−1[: −1])ψ1(k − 1) ψ1(Rk−1[: −2]) ψ2(0)

= Rk[: −1] k Rk[: −2] ψ1(Rk−1[: −1]) k Rk[: −1] k Rk[: −2] ψ1(Rk−1[: −2]) ψ2(0)

These are the only three occurrences of k that can occur in yy. The square must contain
an even number of k occurrences, so since yy overlaps part of ψ2(0), it cannot include the
first occurrence of k. Therefore, the square contains only the last two occurrences of k.
Since the last letter of Rm[: −1] is 0 for all m, the second last occurrence of k is preceded
by ψ1(0) which ends in 1, and the last occurrence of k is preceded by a 0. This means
that k must be the first letter of y in the square. It can be seen from the above equation
that this square would not reach ψ2(0) which is a contradiction.
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Case 2: k = n+ 2. We have that

ψ2(n) = ψ1(n+ 1) · ψ1(P0(n+ 1))

= ψ1(n+ 1) · ψ1(Rn+1Rn+1[: −2])

= ψ1(n+ 1) · ψ1(Rn+1[: −1]) · ψ1(n+ 1) · ψ1(Rn+1[: −2])

= (n+ 2)P0(n+ 2) · ψ1(Rn+1[: −1]) · (n+ 2)P0(n+ 2) · ψ1(Rn+1[: −2]).

And so ψ2(n) is the “almost square”

ψ2(n) = (n+ 2) Rn+2 Rn+2[: −2]ψ1(Rn+1[: −1])

(n+ 2) Rn+2 Rn+2[: −2]ψ1(Rn+1[: −2]). (1)

and these are all four of the occurrences of n+ 2 in ψ2(n0). The square must contain
an even number of occurrences of n+ 2.

The square cannot contain all four occurrences of n + 2 since then ψ2(0) would need
to begin with ψ1(Rn+1[−2]) = ψ1(0) which it does not.

So the square only contains the last two occurrences of n+ 2. The second last occur-
rence is preceded by ψ1(0) which ends in a 1, and the last occurrence is preceded by a 0.
This means that n+ 2 must be the first letter of y in the square. It can be seen from the
equation for ψ2(n) that this square would not reach ψ2(0) which is a contradiction.

Lemma 17. Let n > 1. Then ψ2(0n0) is square-free.

Proof. We can verify computationally that ψ2(010) is square-free. So let n > 2 and
suppose there is a square yy in ψ2(0n0). We have

ψ2(0n0) = [ψ2(0)][(n+ 2)P0(n+ 2)P1(n+ 2)][ψ2(0)]

Since ψ2(n) is square-free, yy lies over at least one of the chunk boundaries.
The largest letter of ψ2(0) is 3, so the largest letter of ψ2(0n0) is n + 2 which occurs

exactly four times:

ψ2(n) = (n+ 2) Rn+2 Rn+2[: −2]ψ1(Rn+1[: −1])(n+ 2) Rn+2 Rn+2[: −2]ψ1(Rn+1[: −2])

The second and fourth occurrences of n + 2 are the last letter of an Rn+2, so they are
preceded by a 0. The third occurrence is after ψ1(Rn+1[: −1]) which ends with ψ1(0) =
202101.

The first chunk boundary in ψ2(0n0) has the letters 2(n+ 2). The second, third, and
fourth occurrences of n+2 all immediately follow a 0 or a 1, so this is the only occurrence
of 2(n+2) in ψ2(0n0). This means that it cannot be contained in either half of the square.
Since max(ψ2(0)) = 3 and n+ 2 > 4, 2(n+ 2) cannot be the middle of the square either.
So the square is contained in ψ2(n0) which contradicts Lemma 16.

Lemma 18. For n > k > 0, neither ψ2(n) nor ψ2(k) is a suffix of the other.

the electronic journal of combinatorics 30(3) (2023), #P3.11 14



Proof. Since n > k, |ψ2(n)| > |ψ2(k)|, so ψ2(n) cannot be a suffix of ψ2(k).
From the definition of ψ2, ψ2(k) = (k + 2)P0(k + 2)P1(k + 2) and ψ2(n) ends with

P1(n+2). By Remark 15, P1(n+2) has suffix (k+3)P0(k+2)P1(k+2). Therefore, ψ2(k)
cannot be a suffix of ψ2(n).

Lemma 19. Let w be a grounded square-free word. Then in ψ2(w), every occurrence
of ψ2(0)[: 6] is a prefix of a 0-chunk, and every occurrence of ψ2(0)[6 :] is a suffix of a
0-chunk.

Proof. Let p := ψ2(0)[: 6] = 202102 and s := ψ2(0)[−9 :] = 202101202. Since s is a suffix
of ψ2(0)[6 :], proving the result for p and s is sufficient.

For n > 1, ψ2(n) ends with 1 and ψ2(0) begins with 2 and 12 does not occur in
p = 202102, so p cannot lie over a ψ2(n0) chunk boundary. The first letter of ψ2(n)
is n + 2 > 3 which is larger than any letter in p, so p cannot lie over a ψ2(0n) chunk
boundary. Therefore, any occurrence of p in ψ2(w) must be contained in a single chunk.

Since ψ1(n) = (n+ 1)Rn+2[: −2] does not contain 202, p does not occur in any ψ1(n).
Also, ψ1(n) ends with 201, ψ2(n) = ψ1((n+1)P0(n+1)) and (n+1)P0(n+1) is grounded,
202 only occurs in ψ2(n) at the beginning of instances of ψ1(0) = 202101. This means
that p = 202102 can never occur in ψ2(n). We can verify computationally that 202102
only occurs in ψ2(0) as a prefix. Therefore, p only occurs in ψ2(w) as a prefix of 0-chunks.

If s = 202101202 lies over a ψ2(n0) chunk boundary, the then the 12 would need to
be at the boundary. But this cannot happen since no ψ2(n) ends with 202101. It also
cannot lie over a ψ2(0n) boundary since the first letter of ψ2(n) is n + 2 > 3 which does
not occur in s.

By Lemma 9, ψ1(0) = 202101 only occurs in ψ2(n) = ψ1((n + 1)P0(n + 1)) as an
0-chunk. So since no ψ1(n) begins with 202, s = 202101202 does not occur in ψ2(n).
We can verify computationally that s only occurs in ψ2(0) as a suffix. Therefore, s only
occurs in ψ2(w) as a suffix of 0-chunks.

We can easily see that this lemma implies that any occurrence of ψ2(0) in ψ2(w) is a
0-chunk when w is square-free and grounded.

Proposition 20. ψ2 is square-free over grounded words.

Proof. Suppose w is a grounded square-free word and that ψ2(w) contains a square yy.
We will first show that there is a whole 0-chunk in both halves of the square, and then
use that to show that both halves have the same chunk decomposition. We then show
that if the square contains any partial chunks, then the final partial chunks of the two
halves of the square come from the same letter in w. We know that ψ2 is letter injective
and ψ2(n) is square-free for all n. Hence, Theorem 5 will imply that w must contain a
square, which is a contradiction.

Suppose that there are no whole 0-chunks in either half. The square must contain a
whole 0-chunk, or else it would be a factor of ψ2(0n0), contradicting Lemma 17. Then
the whole 0-chunk in the square must be split between the two halves and the square
yy is a proper factor of ψ2(0n0k0) for some n, k > 1 with the center of the square lying
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in the middle 0-chunk. Consider the prefix p := ψ2(0)[: 6] and suffix s := ψ2(0)[6 :] of
ψ2(0) = ps. Then either p is totally contained in the first half of the square, or s is totally
contained in the second half.

If s is contained in the second half, then it must also occur in the first half and by
Lemma 19, the only place for this is as a suffix of the first 0-chunk in ψ2(0n0k0). The
two occurrences of s in the square are followed by the first letters of ψ2(n) and ψ2(k) in
each half respectively, so the first letter of ψ2(n), n+ 2 and of ψ2(k), k+ 2 must be equal.
This means that n = k which is a contradiction since w is square-free and cannot contain
0n0n0.

If p is contained in the first half, then it must also occur in the second half and by
Lemma 19, the only place for this is as a prefix of the third 0-chunk in ψ2(0n0k0) =
[ps][ψ2(n)][ps][ψ2(k)][ps]. The center of the square lies in the suffix s of the middle 0-
chunk, so the boundary is formed by words s1, s2 such that s = s1s2. We then get from
the first half of the square that y is a proper suffix of psψ2(n)ps1 and from the second
half that y is a prefix of s2ψ2(k)ps. Since p occurs exactly once in each half, we can see
that the second half is y = s2ψ2(k)ps1. Then s2ψ2(k) is a suffix of psψ2(n) implying that
one of ψ2(n) or ψ2(k) must be a suffix of the other, so by Lemma 18, n = k which is a
contradiction since w is square-free and cannot contain 0n0n0. Therefore, there must be
a whole 0-chunk in one of the halves of the square. Then ψ2(0) occurs in both halves and
by Lemma 19, both halves contain a whole 0-chunk.

We now show that both halves of the square have the same chunk decomposition.
Let [ψ2(`)], 0 6 ` be any whole chunk in either half of the square. If l = 0, then by
Lemma 19, this is a whole 0-chunk in both halves. If ` > 0, then since there is a whole
0-chunk in each half and w is grounded, there must be a whole 0-chunk adjacent to this
chunk. Thus, either [ps]ψ2(`) or ψ2(`)[ps] is a factor of y. If [ps]ψ2(`) is a factor of y, then
ψ2(`) must be a whole `-chunk in both halves since any other chunk would start with a
different letter. If ψ2(`)[ps] is a factor, then ψ2(`) must be a whole `-chunk in both halves
since no other chunk can be a suffix of ψ2(`) or have ψ2(`) as a suffix by Lemma 18. Thus,
ψ2(`) is a whole chunk in both halves of the square, so both halves have the same chunk
decomposition.

Suppose either half contains a partial chunk. Then since the halves have the same
chunk decomposition, they must both end with a partial chunk and share the first letter
of their final partial chunk, say `. From the definition of ψ2, this means that both final
partial chunks are partial (`− 2)-chunks.

This verifies the conditions of Theorem 5 which implies that w contains a square, a
contradiction.

The next three lemmas are used to prove the irreducibility condition in Theorem 24.
They are analogous to Lemmas 11, 12, and 13 about ψ1.

Lemma 21. Let n > 1. Then ψ2(n) generates ψ2(n0).

Proof. Since n0 is square-free and grounded, ψ2(n0) is square-free by Proposition 20, so
we only need to show that ψ2(0) is irreducible in ψ2(n0). We can computationally verify
that ψ2(1) generates ψ2(10) and assume that n > 2.
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Since ψ2(n) has suffix P1(n+2) and n+2 > 4, Remark 15 implies that ψ2(n) has suffix
P0(3)P1(3). We can computationally verify that P0(3)P1(3) generates P0(3)P1(3)20210.
The next letter of ψ2(0) is a 2. Hence, we need to show that 2 is irreducible at the end
of ψ2(n)202102. Clearly, it cannot be a 0, so we will show that ψ2(n)202101 contains a
square. Using Equation (1) we have

ψ2(n) 202101

= ψ2(n) ψ1(0)

= (n+ 2)Rn+2Rn+2[: −2]ψ1(Rn+1[: −1])(n+ 2)Rn+2Rn+2[: −2]ψ1(Rn+1[: −2]) ψ1(0)

= (n+ 2)Rn+2Rn+2[: −2]ψ1(Rn+1[: −1])(n+ 2)Rn+2Rn+2[: −2]ψ1(Rn+1[: −1]),

which is a square, so 202102 is irreducible in ψ2(n)202102. We can then computationally
verify that P0(3)P1(3)202102 generates P0(3)P1(3)ψ2(0), which implies the desired result.

Lemma 22. For 0 6 k 6 n, k + 2 is irreducible at the end of ψ2(nRk[: −1])(k + 2).

Proof. Let 0 6 m 6 k + 1, we will show that wm = ψ2(nRk[: −1])m has a square suffix.
If k = 0, then m 6 1. For m = 0 we can use Remark 6 as in Lemma 12 to show that
ψ2(nRk[: −1])0 = ψ2(n)0 is a square, and for m = 1, ψ2(n)1 has the square suffix 11.
Hence, k + 2 = 2 is irreducible.

Note that for k > 1 the last letter of Rk[: −1] is 0 and ψ2(0) ends with 01202101202,
so wm has a square suffix for m < 3. Assume m > 3, by definition ψ2(n) = (n+ 2)P0(n+
2)P1(n+ 2), and according to Remark 15 P1(n+ 2) has suffix P0(m)P1(m).

If m − 1 = k, then wm has suffix P0(m)P1(m)ψ2(Rm−1[: −1])m. Also, if m − 1 < k
it is easy to see that nRk[: −1] has suffix (m− 1)Rm−1[: −1]. By definition ψ2(m− 1) =
(m + 1)P0(m + 1)P1(m + 1), and again Remark 15 implies that P1(m + 1) has suffix
P0(m)P1(m). Hence, wm has suffix P0(m)P1(m)ψ2(Rm−1[: −1])m for all 3 6 m 6 k + 1.
Finally, we have that

P0(m)P1(m)ψ2(Rm−1[: −1])m

= P0(m)P1(m)ψ2(Rm−2[: −1])ψ2(m− 2)ψ2(Rm−2[: −1])m

= P0(m)P1(m)ψ2(Rm−2[: −1])m P0(m)P1(m)ψ2(Rm−2[: −1])m,

which is a square.

Lemma 23. If n > 1 and 0 6 k 6 n, then ψ2(n) generates ψ2(nRk).

Proof. Since nRk is square-free and grounded, Proposition 20 implies that ψ2(nRk) is
square-free. It is now sufficient to show that ψ2(Rk) is irreducible in ψ2(nRk).

We prove this inductively over n. The base case n = 1 implies that k = 0 or k = 1.
We can computationally verify that ψ2(1) generates ψ2(1R0) = ψ2(10) and that ψ2(1)
generates ψ2(1R1) = ψ2(101).

Fix n > 1 and suppose the result holds for all 1 6 n0 < n. That is,

ψ2(Rk) is irreducible in ψ2(n0Rk) for all 0 6 k 6 n0 and 1 6 n0 < n. (i)
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We will show that the result holds for n0 = n. That is, ψ2(Rk) is irreducible in ψ2(nRk)
for all 0 6 k 6 n.

We can prove this intermediate step by a second induction, now over k. The base case
is k = 0, which holds by Lemma 21 since R0 = 0. Now fix k and suppose

ψ2(Rk0) is irreducible in ψ2(nRk0) for all 0 6 k0 < k. (ii)

We will show that the result holds for k0 = k. That is, ψ2(Rk) is irreducible in ψ2(nRk).
We have that ψ2(nRk) = ψ2(nRk−1Rk−2 · · ·R2R1R0k). By the second inductive hy-

pothesis (ii), ψ2(Rk−1) is irreducible in ψ2(nRk−1). The last letter of Rk−1 is k − 1, so
the first inductive hypothesis (i) says that ψ2(Rk−2) is irreducible in ψ2((k− 1)Rk−2) and
so ψ2(Rk−1Rk−2) is irreducible in ψ2(nRk−1Rk−2). Repeating this argument shows that
ψ2(Rk−1Rk−2 · · ·R2R1R0) = ψ2(Rk[: −1]) is irreducible in ψ2(nRk[: −1]). Lemma 22 im-
plies that k+2 is irreducible in ψ2(nRk[: −1])(k+2). And ψ2(k) = (k+2)P0(k+2)P1(k+2)
is a prefix of L(k + 2) by Theorem 14, so k + 2 generates ψ2(k), meaning that ψ2(k) is
irreducible in ψ2(nRk[: −1])ψ2(k) = ψ2(nRk), which proves the result.

We now prove the main theorem of this section. For n > 3, define

T (n) = P0(n)P1(n)P2(n).

Theorem 24. For n > 3, L(n) has prefix nT (n).

Proof. Note that nT (n) = nP0(n)P1(n)P2(n) = ψ2((n − 2)P0(n − 2)). Hence, since
(n−2)P0(n−2) is square-free and grounded, Proposition 20 implies that nT (n) is square-
free. It remains to show that P2(n) = ψ2(P0(n− 2)) = ψ2(Rn−2Rn−2[: −2]) is irreducible
in nP0(n)P1(n)P2(n).

We know from Theorem 14 that n generates nP0(n)P1(n). The fact that P2(n) =
ψ2(Rn−2Rn−2[: −2]) is irreducible in nP0(n)P1(n)P2(n) follows from Lemma 23 by the
same argument used in the proof of Theorem 14.

Remark 25. Again, using Remark 6 we have that for n > 4

P2(n) = ψ2(P0(n− 2))

= ψ2(Rn−2[: −1](n− 1)Rn−2[: −2])

= ψ2(Rn−2[: −1]) ψ2(n− 2) ψ2(P0(n− 3))

= ψ2(Rn−2[: −1]) nP0(n)P1(n) P2(n− 1),

Hence, by Remark 15 we see that P2(n) has T (n − 1) = P0(n − 1)P1(n − 1)P2(n − 1)
as a suffix. This means that T (n) has suffix T (n − 1), and applying the same argument
repeatedly we have that T (n) has T (3) as a suffix.
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4 The structure of L(n)

In this section we prove that the word L(n) reflects the structure of the ruler sequence
for n = 1 and n > 3. Namely, L(n) = Yn φ(L(ε)) for a finite prefix Yn and a morphism φ.

Definition. We say a morphism φ is L-commuting over a set of words ∆ ⊂ N∗ ∪ Nω if
L(φ(w)) = φ(L(w)) for all w ∈ ∆.

Let Σ be the set of all nonempty even-grounded square-free words. If φ is L-commuting
over Σ, we get in particular

L(φ(0)) = φ(L(0)) = φ(L(ε)),

which lets us determine the lexicographically least square-free word with prefix φ(0), as
the result of applying the morphism φ to the ruler sequence.

In Section 4.1 we introduce a morphism α and prove that it is L-commuting over
the set Σ of even-grounded square-free words. In Section 4.2 we use Remark 4 and the
L-commuting property of α to find the general structure of L(1) and L(n) for n > 3. In
Section 4.3 we state a conjecture about the structure of L(2) being given by a morphism
γ.

We start by showing that the ruler morphism ρ is L-commuting over the set of square-
free words, and then use this fact to prove a result that establishes properties that are
sufficient for a morphism to satisfy the L-commuting property over the set Σ.

Theorem 26. The ruler morphism ρ is L-commuting over the set of all nonempty square-
free words.

Proof. Let x be any nonempty square-free word. If |x| = ∞, then ρ(L(x)) = ρ(x) =
L(ρ(x)).

On the other hand, if |x| = n < ∞, let w = ρ(L(x)) and v = L(ρ(x)). We proceed
to prove that w = v by induction, proving that if w and v agree on the first 2k letters,
then they will also agree on the next two letters. For the Base case, it is easy to see that
w[: 2n] = v[: 2n] = ρ(x).

For the inductive step, assume that w and v agree on the first 2k letters, k > n. It is
clear from the definition of these words that w and v are both square-free, and if v 6= w,
then v ≺ w.

This implies that v[2k] 6 w[2k] = ρ(L(x))[2k] = 0, so w and v agree at position 2k.
Now suppose toward a contradiction that v[2k + 1] < w[2k + 1] and let l = v[2k + 1] and
y = L(x)[: k](l − 1). We have

ρ(y) = ρ(L(x)[: k](l − 1)) = ρ(L(x)[: k]) 0 l = L(ρ(x))[: 2k + 2] = v[: 2k + 2],

so y is square-free. However

y[k] = l − 1 = v[2k + 1]− 1 < w[2k + 1]− 1 = ρ(L(x))[2k + 1]− 1 = L(x)[k].

Since y[: k] = L(x)[: k], this implies that y is a square-free word beginning with x that is
smaller than L(x). This is a contradiction and so w[2k+ 1] = v[2k+ 1]. Therefore w and
v agree at position 2k + 1, which proves the inductive step.
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For example, Theorem 26 implies that for n > 1, ρ(L(n− 1)) = L(ρ(n− 1)) = L(0n).
So if we determine the structure of the word L(n−1), this Theorem gives us the structure
of the word L(0n) as the ruler morphism applied to L(n− 1). In particular for n = 1 we
have

ρ(L(0)) = ρ(ρ∞(0)) = ρ∞(0) = L(01) = L(ρ(0)).

The ruler morphism is not L-commuting over the set of all words on N. For example,

L(ρ(00)) = L(0101) = 01012010 · · · 6= 01010201 · · · = ρ(0010 · · · ) = ρ(L(00)).

Theorem 27. Let Σ be the set of all nonempty even-grounded square-free words. Let φ
be a non-erasing morphism satisfying the following conditions.

1. For all w ∈ Σ, φ(w) is square-free.

2. φ(0) generates φ(01).

3. φ(0n) generates φ(0n0) for all n > 0.

4. φ(0n)+ generates φ(0 (n+ 1)) for all n > 0.

Then φ is L-commuting over Σ.

Proof. Let w ∈ Σ. We first show that L(w) ∈ Σ. If w = 0, then L(w) is the ruler
sequence which is even-grounded and square-free. If w 6= 0, |w| > 2 and any even-length
prefix of w is the image of a nonempty square-free word under ρ. So there is a nonempty
square-free word w0 such that if |w| is even, w = ρ(w0), and if |w| is odd, w[: −1] = ρ(w0).
If |w| is odd, its last letter is 0 which is irreducible, so L(w) = L(w[: −1]). Thus in either
case, L(w) = L(ρ(w0)) = ρ(L(w0)) which is even-grounded and square-free. Here, the
second equality is because ρ is L-commuting over square-free words by Theorem 26. Since
L(w) ∈ Σ, it follows from Condition 1 that φ(L(w)) is square-free.

Now we need to show that φ(L(w)) is irreducible. We proceed by induction, assume
that for some number k > |w|, φ(L(w)[: k+ 1]) is a prefix of L(φ(w)). We break this next
bit down into cases, letting m = L(w)[k].

Case 1: If m 6= 0 then L(w)[k − 1] = 0 and so L(w)[: k + 1] ends in 0m. In this case
we have from Condition 3 that φ(L(w)[: k+ 1]) generates φ(L(w)[: k+ 1] 0) by Remark 4.
As L(w)[: k + 2] = L(w)[: k + 1] 0 this would mean that φ(L(w)[: k + 2]) is a prefix of
L(φ(w)), demonstrating the inductive step.

Case 2: In the case that m = 0 it must follow that l := w[k + 1] 6= 0. We have
that φ(L(w)[: k + 1]) ends with φ(0) which by Condition 2 we get that φ(1) at the end
of φ(L(w)[: k + 1] 1) is irreducible. If l = 1 then we’re done. If not then we enter the
following argument.

Let n be such that φ(n) at the end of φ(L(w)[: k + 1]n) is irreducible and 0 < n < l.
L(w)[: k+1]n has w as prefix and is lexicographically less than L(w) so L(w)[: k+1]n con-
tains a square and therefore φ(L(w)[: k+1]n) contains a square. We have that φ(0n) at the
end of φ(L(w)[: k + 1]n) is irreducible meaning that all words lexicographically less than
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φ(0n) would introduce a square. But φ(0n) also introduces a square. This means that all
words less than φ(0n)+ introduce a square, so φ(0n)+ is irreducible in φ(L(w)[: k+ 1]n)+.
Then from Condition 4 we get that φ(0(n + 1)) at the end of φ(L(w)[: k + 1] (n + 1)) is
irreducible. Then by induction on n, φ(L(w)[: k + 1]l) is irreducible.

This argument allows us to show that L(φ(w)) and φ(L(w)) agree on their (k + 1)th
chunk and so provides the inductive step. The base case is simply when k = |w| which is
trivial since φ(w) is a prefix of both words.

4.1 The morphism α

The morphism α is defined as follows.

Definition. For all n > 0, let

α(n) =


EFE if n = 0

B1 R4 C B1 R4 if n = 1

α(n− 1)+ Rn+3 C α(n− 1)+ Rn+3 if n > 2,

where

C = 0102030102,

B0 = 0301 ψ1(1010)[: −3] ψ2(1010)[: −6] ψ2(10)[: −12] 301020,

B1 = ρ(B0[7 : −5]),

E = 0102B01B0[: −9],

F = B0[−9 :]3010302C0103C+02, and

G = 010203012.

These definitions can be referenced in Section 7. The lengths of the auxiliary words
are |C| = 10, |B0| = 798, |B1| = 1572, |E| = 1592, |F | = 42 and |G| = 9. We can
computationally verify that E is the largest word that is both a prefix and a suffix of
α(0). It is of interest to note that for n > 0, α(n) has prefix B1 and that B1 has prefix
F++, so F cannot be a prefix of any α(n). Also, the word G is useful since it is the
shortest word that generates α(0).

Over the next two subsections, we prove that α satisfies the conditions of Theorem 27,
which will imply that it is L-commuting over nonempty even-grounded square-free words.

4.1.1 Condition 1: α is square-free over grounded words

Condition 1 of Theorem 27 says that α is square-free over even-grounded words. In this
section, we prove the following stronger property.

Theorem 28. α is square-free over grounded words.
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Theorem 28 will be shown to follow from Theorem 5. This requires the results about
α shown in the following lemmas.

Lemma 29. Let n > k > 0. Then α(n) and α(k) end with different letters and neither
is a prefix of the other.

Proof. By definition, α(n) ends with Rn+3 which has n+ 3 as its last letter, so α(n) and
α(k) end with different letters. Consider that since n > k, |α(n)| > |α(k)| so α(n) cannot
be a prefix of α(k). Also, α(n) begins with α(k)+ so α(k) cannot be a prefix of α(n).

The next three results show how E can be used to restrict the placement of chunks
throughout a word α(w) where w is square-free and grounded.

Lemma 30. If w is a grounded square-free word, then every occurrence of E in α(w) is
a prefix or suffix of a 0-chunk.

Proof. We can verify computationally that E only occurs in α(0) as a prefix and a suffix.
For n > 0, α(n) is even-grounded, but E is not grounded so it cannot be a factor of α(n).
So any other occurrence of E in α(w) must lie over the chunk boundary in α(0n) or α(n0)
for some n > 0.

If E lies over the chunk boundary in α(0n), then there must be a nonempty suffix of
E that is also a prefix of α(n). But every prefix of α(n) is even-grounded and E has no
nonempty even-grounded suffix since it ends with 1 2.

If E lies over the chunk boundary in α(n0), then there must be a nonempty prefix of
E that is also a suffix of α(n). But max(E) = 3 and the last letter of α(n) is n+ 3 which
is greater than 3.

Corollary 31. If w is a grounded square-free word, then every occurrence of α(0) in α(w)
is a 0-chunk.

Proof. Any occurrence of α(0) = EFE in α(w) begins and ends with E. There are only
two occurrences of E in α(0) so by Lemma 30, one E must be a prefix of a 0-chunk and
the other must be a suffix of a 0-chunk. F is shorter than every chunk, so no other chunk
can be contained in it. Therefore, this must be a whole 0-chunk.

Corollary 32. Let w be a grounded square-free word and l > 0. If Eα(l) or α(l)E is a
factor of α(w), then that occurrence of α(l) is an l-chunk.

Proof. If Eα(l) occurs in α(w), E is followed by the prefix F++ of α(l), so E cannot be
followed by F and this cannot be the prefix of a 0-chunk. Thus, E must be a suffix of a
0-chunk by Lemma 30. So a nonzero chunk begins at the start of α(l). By Lemma 29,
this must be an l-chunk.

An analogous argument uses the fact that F cannot be the suffix of any α(l) to show
the result for α(l)E.

The following is the final result that we need for proving Theorem 28, that α is square-
free over grounded words.
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Proposition 33. α(0n0) is square-free for all n > 0.

The proof requires Lemmas 34 to 40. Lemmas 34 to 36 show some results about the
structure of α(n). Lemmas 37 and 38 show that α(n) is square-free for all n. Finally,
Lemmas 39 and 40 show that α(0n) and α(n0) are square-free, which is then used to
prove Proposition 33.

Lemma 34. For all n > 1, 0203R+
3 R

+
4 · · ·R+

n+2Rn+3 is a suffix of α(n).

Proof. We proceed by induction. For n = 1 we can check directly that 0203R+
3 R4 is

a suffix of α(1). For the inductive step, assume that for some k > 1, we have that
0203R+

3 · · ·R+
k+2Rk+3 is a suffix of α(k) and recall that

α(k + 1) = α(k)+ Rk+4 C α(k)+ Rk+4.

Since α(k) ends with 0203R+
3 · · ·R+

k+2Rk+3, we have that α(k + 1) must end with
0203R+

3 · · ·R+
k+2R

+
k+3Rk+4, which concludes the proof.

Lemma 35. For all n > 1, Rn+4[i :] is a suffix of α(n)+ if and only if i > 6.

Proof. We can write Rn+4 as

Rn+4 = R3R
+
3 R

+
4 · · ·R+

n+2R
+
n+3

= 01020103R+
3 R

+
4 · · ·R+

n+2R
+
n+3.

Also, it follows from Lemma 34 that α(n)+ ends with 0203R+
3 · · ·R+

n+2R
+
n+3. These two

words are identical starting with the 03R+
3 , but not including any letters before. Therefore,

Rn+4[i :] is a suffix of α(n)+ if and only if i > 6.

Lemma 36. For all n > 1, α(n) ends in n + 3, and does not contain any letter greater
than n+ 3. For n > 2, α(n) contains exactly four occurrences of n+ 3.

Proof. This can be proved using induction. For the base case, it can be checked by direct
computation that α(1) and α(2) satisfy the lemma.

For the inductive step, assume that for some k > 2, α(k) satisfies the lemma. Since
C does not contain any occurrence of k + 4 or higher letters and

α(k + 1) = α(k)+Rk+4Cα(k)+Rk+4,

it is clear that our assumption implies that α(k + 1) contains exactly four occurrences of
k + 4, no higher letters, and ends with k + 4.

Lemma 37. For all n > 1, Cα(n)+ is square-free.

Proof. We proceed by induction. We can check computationally that the claim holds for
n = 1.
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For the inductive step assume that for some k > 1, Cα(k)+ is square-free and suppose
that the word w = Cα(k+1)+ contains a square. We can think of w as the concatenation
of 6 factors:

w = w1w2w3w4w5w6 := [C][α(k)+][Rk+4][C][α(k)+][R+
k+4].

By the inductive hypothesis we have that w1w2 = w4w5 is square-free. We divide the rest
of the proof in four steps.

Step 1: Proving that w1w2w3 is square-free. Suppose that w1w2w3 contains a square.
We know that the square must cross the boundary between w2 and w3, and hence it
includes the last letter of w2 = α(k)+, which by Lemma 36 is k + 3 + 1 = k + 4. The
only other occurrence of k + 4 in w1w2w3 is the last letter of w3 = Rk+4, so the square
ends in k + 4. Hence, the second half of the square is the entire Rk+4, and so Rk+4 is
a suffix of α(k)+, which contradicts Lemma 35. This completes the proof of our first claim.

Step 2: Proving that w1w2w3w4 is square-free. Suppose that w1w2w3w4 contains a
square. By the previous step, the square must cross the boundary between w3 and w4,
and hence it includes the letter w3[−1] = k + 4. Since k + 4 does not occur in w4 = C,
and the only other occurrence of k + 4 in this word is as the last letter of w2 = α(k)+,
each half of the square must have length equal to |w3| = 2k+4. The largest common prefix
between the ruler sequence and C is C[: 5]. So at most these five letters can appear in
each half of the square after the occurrences of k + 4. On the other hand, Lemma 35
implies that at most a suffix of w3 = Rk+4 with length 2k+4 − 6 can appear as a suffix of
w2 = α(k)+, and so at most this many letters can appear in each half of the square up to
the occurrences of k + 4.

Therefore, each half of the square contains at most 2k+4 − 6 + 5 = 2k+4 − 1 letters,
which just falls short of the number required. Therefore no square can exist in w1w2w3w4.

Step 3: Proving that w1w2w3w4w5 is square-free. Suppose that it contains a square.
By the previous step the square can not be contained in w1w2w3w4. Also, by the inductive
hypothesis the square can not be contained in w4w5. So the square must contain a
nonempty suffix of w3 = Rk+4, all of w4 = C, and a nonempty prefix of w5 = α(k)+. In
particular it includes k + 4, the last letter of w3. Also, note that this word includes only
three occurrences of k + 4 (w2[−1], w3[−1] and w5[−1]), hence the square must contain
only two of them.

If the square contains w2[−1] and w3[−1], then the second half of the square contains
the whole factor w4 = C right after w3[−1]. This implies that C must also appear right
after w2[−1], and so C must be a prefix of w3 = Rk+4, which is a contradiction. On the
other hand, if the square contains w3[−1] and w5[−1], then the second half of the square
must be w4w5 = Cα(n)+ and the first half must be contained in w3 = Rk+4. This is
impossible since C is not contained in Rk+4.

Step 4: Proving that w1w2w3w4w5w6 is square-free. Suppose that it contains a square.
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The square must contain w5[−1] = k + 4 and since w6 = R+
k+4 does not contain k + 4,

the occurrence of k + 4 in the first half of the square must be at w3[−1]. Note that the
first half of the square cannot contain the whole w4 = C, because this is not a prefix of
w6 = Rn+4. This implies that w5 = α(n)+ is totally contained in the second half of the
square. Hence, since |Rk+4| < |α(n)+| we have that w3 = Rn+4 is a suffix of w5 = α(n)+,
which contradicts Lemma 35.

Therefore we conclude that w1w2w3w4w5w6 is square-free, which completes the proof
of the lemma.

Lemma 38. α(n) is square-free for all n > 0.

Proof. We proceed by induction. We can check computationally that α(0) and α(1) are
square-free.

For the inductive step assume that α(k) is square-free for some k > 1. We can think
of w = α(k + 1) as the concatenation of 5 factors:

w = w1w2w3w4w5 := [α(k)+][Rk+4][C][α(k)+][Rk+4].

Suppose w contains a square. By Lemma 37, w+ = α(k + 1)+ is square-free. So w[: −1]
is square-free and the square in w is a suffix, containing w5[−1] = k+ 4. Also, the square
must contain w4[−1] = k + 4, since w5 = Rk+4 is square-free. Now, since w contains
exactly four occurrences of k + 4 we have the following cases:

Case 1: the square contains only w4[−1] and w5[−1]. In this case the second half of
the square would have to be the whole factor w5 = Rk+4. Hence the first half of the square
would have Rk+4 as a suffix of w4 = α(n)+ which contradicts Lemma 36.

Case 2: the square contains all four occurrences of k + 4 which are w1[−1], w2[−1],
w4[−1], and w5[−1]. In this case k + 4 must be the final letter in each half of the square,
and so the first half of the square would be a suffix of w1w2. This is not possible since
the second half of the square would be w3w4w5 which is longer than w1w2.

Therefore we conclude that w = α(k+1) is square-free, which completes the inductive
step.

Lemma 39. α(0n) is square-free for all n > 1.

Proof. From Lemma 38 we have that any square in α(0n) must cross into both chunks.
We consider two cases based on the length of the square.

Suppose there is a square yy in α(0n) such that |y| 6 |α(0)|. Then the square’s total
length would be at most |α(0)|× 2 = 6452 letters. Computationally, we can see that α(3)
and α(4) share their first 13029 letters. Since α(n) is a prefix of α(n+1), all α(n) for n > 3
have the same first 13029 letters. Thus, α(0n) has the same first |α(0)|+ 13029 = 16255
letters for all n > 3. Checking with a computer, we find that α(01), α(02), and α(03)
are square-free, so the first 16255 letters of α(0n) are square-free for all n. Since the
square must intersect the 0-chunk and has length at most |α(0)| × 2, the square must be
contained in the first |α(0)| × 3 = 9678 letters. This is a contradiction so no square |yy|
with length |y| 6 |α(0)| can occur in α(0n).
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Now suppose |y| > |α(0)|. Then the second half of the square is entirely contained in
α(n). However, α(n) is grounded and α(0) ends with 12. This means the first half of the
square can’t contain more than the last letter of α(0) so it remains to show that 2α(n) is
square-free.

Since
C[−1]α(n)+ = 2α(n)+

is a factor of α(n + 1), it must be square-free. So we can show that decreasing the last
letter by one does not introduce a square. We know that 2α(n)[1 :] and 2α(n)[: −1] are
square-free, so a square would need to be the entire word. However,

|2α(n)| = 1 + 2|α(n− 1)|+ 2|Rn+3|+ 10,

which is odd so it is impossible for the entire word to be a square.

Lemma 40. α(n0) is square-free for all n > 1.

Proof. We can check by computer that α(10) is square-free. Assume n > 2 from now on.
Since α(0) and α(n) are square-free, any square in α(n0) must cross into both chunks

and include the n + 3 at the end of α(n). Since max(α(0)) = 3, the n + 3 in each half
must come from α(n). As a result, we know the entire first half of the square is in α(n).
Additionally, α(0) becomes ungrounded at the ninth letter and α(n) is grounded, so the
square can’t extend past the eighth letter of α(0). Thus this proof simplifies to proving

α(n)01020301

is square-free. From Lemma 36, α(n) contains 4 occurrences of n + 3, so the full square
must either contain the last two or all four.

Case 1: The square contains only the third and fourth occurrences of n + 3, so the
square is contained in

Cα(n− 1)+Rn+301020301 = Cα(n− 1)+Rn+3C[: 8],

which is a prefix of Cα(n)+, which is square-free by Lemma 37.
Case 2: The square contains all occurrences of n+ 3, so it appears in

α(n− 1)+Rn+3Cα(n− 1)+Rn+3C[: 8].

The second and fourth occurrences of n+ 3 are separated by a distance of

|C|+ |α(n− 1)+|+ |Rn+3| = 10 + |α(n− 1)+|+ |Rn+3|,

so the entire square would need to have twice this length. However, the whole word has
length

|α(n− 1)+|+ |Rn+3|+ |C|+ |α(n− 1)+|+ |Rn+3|+ |C[: 8]| = 18 + 2|α(n− 1)+|+ 2|Rn+3|,

which is less than the required length of square.
Since both cases are ruled out, no square can exist in α(n0).
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We can now prove that α(0n0) is square-free:

Proof of Proposition 33. We can prove that α(010) and α(020) are square-free via com-
putation. Assume n > 3 from here.

Using Lemmas 39 and 40, it follows that if a square exists in α(0n0), then it includes
the entire n-chunk as well as a part of each 0-chunk. We can check using a computer
that |α(0)| = 3226 and |α(3)| = 13030. For any p > q > 1, |α(p)| > |α(q)|. Therefore,
|α(n)| > |α(3)| > |α(0)|.

Case 1: Suppose the boundary between the halves of the square appears either in a
0-chunk or between chunks. Then the half of the square entirely in a 0-chunk would have
a length at most 3226. The other half would also have the same length, but we know this
half needs to contain the entire n-chunk, which has length greater than 3226. Thus this
case is impossible.

Case 2: Now suppose the boundary lies within the n-chunk. Let x be the nonempty
suffix of the first 0-chunk contained in the square, and z be the nonempty prefix of the
last 0-chunk contained in the square. The occurrence of x in the second half of the square
begins in α(n). If it extends into the last 0-chunk, then the whole square has length less
than

|xzxz| 6 4× |α(0)| = 12904 < 13030 = |α(3)| 6 |α(n)|.

This is not possible since the square contains all of α(n). Thus, there are nonempty words
y such that the square can be written as

x][yzxy][z,

where yzxy = α(n). Since all of α(n) is grounded, x and z are both grounded. We can
check by computer that the longest grounded prefix of α(0) is 01020301, and its longest
grounded suffix is 2. It follows that x = 2 and z is a prefix of 01020301. This means
that |zx| 6 9 and zx must appear in the exact center of α(n). The middle 10 letters
of α(n) are C = 0102030102, so zx is located at the center of C, meaning that it must
be grounded. Thus, the only possible values for zx are 02, 0102, 010202, and 01020302.
Clearly none of these appear at the center of C, so this square cannot exist.

We can now use the above results to prove that α is square-free over grounded words.

Proof of Theorem 28. Suppose w is a square-free grounded word and α(w) contains a
square yy. We will first show that E must be a factor of y, and then use that to show
that both halves of the square have the same chunk decomposition. We then show that
each half of the square contains a whole chunk, and that if the square contains any partial
chunks, then the initial partial chunks of the two halves of the square come from the same
letter. It is clear from its definition that α is letter-injective, and we know from Lemma 38
that α(n) is square-free for all letters n. Hence, Theorem 5 will imply that w contains a
square, which is a contradiction.

The square yy contains a whole 0-chunk, since otherwise it would be a factor of α(0n0),
contradicting Proposition 33. Since α(0) = EFE, there are at least two whole occurrences
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of E in yy. At least one of these occurrences must be completely contained in one half of
the square. Thus, E is a factor of y.

Let [α(l)], 0 6 l be any whole chunk in either half of the square. We will show that
the corresponding occurrence of α(l) in the other half is also a whole l-chunk. If l = 0,
then by Corollary 31, α(l) must be a whole 0-chunk in both halves. If l > 0, then since w
is grounded and E is a factor of y, there must be a whole occurrence of E adjacent to this
chunk and entirely contained in this half of the square. Thus, either Eα(l) or α(l)E is a
factor of y. Then by Corollary 32, α(l) is a whole l-chunk in both halves of the square,
so both halves have the same chunk decomposition.

Suppose neither half of the square contains a whole chunk. Then yy cannot span over
more than three chunks. Since α(0n0) is square-free by Proposition 33, yy must be a
proper factor of α(n0k). Then yy overlaps all three chunks because α(n0) and α(0k) are
square-free. By Lemma 30, there are exactly two occurrences of E in α(n0k) and each
must be in a different half of the square since E is a factor of y. But the letter before the
E in the first half is the last letter of α(n), which is n + 3, and the letter before the E
in the second half is the last letter of F , which is 2. We cannot have E as a prefix of y,
or else the square would not overlap the first of the three chunks. This is a contradiction
so one half of the square must contain a whole chunk. Since both halves have the same
chunk decomposition, both halves contain a whole chunk.

Suppose either half of the square contains a partial chunk. Then since the halves
have the same chunk decomposition, they must both begin with a partial chunk. We will
show that the halves share their initial partial chunk. The initial partial chunks end with
the same letter, so by Lemma 29, they must be equal chunks or one of them must be
a 0-chunk. But since the halves of the square have the same chunk decomposition and
contain a whole chunk, their first whole chunks are equal. So the final partial chunks are
either both 0-chunks or equal nonzero chunks.

This verifies the conditions of Theorem 5 which implies that w contains a square, a
contradiction.

4.1.2 Conditions 2, 3, and 4

In this section we prove that α satisfies the remaining conditions of Theorem 27. Con-
dition 2 (α(0) generates α(01)) can be verified via direct computation. In the following
result we prove that α satisfies Condition 3.

Theorem 41. For all n > 0, α(0n) generates α(0n0).

Proof. The case n = 1 can be verified via direct computation, so we assume n > 2. By
Theorem 33 α(0n0) is square-free, hence since the word G generates α(0), it is enough to
show that G is irreducible in α(0n)G. Indeed, consider

α(0n)G = α(0n) 010203012.

It is clear that the only letters in G that could potentially be reduced are the underlined
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ones. The 3 could only be reduced to 1, in which case note that

α(0n) 010201 = · · ·α(n) 010201

= · · ·α(n− 1)+Rn+3Cα(n− 1)+Rn+3 010201

= · · ·α(n− 1)+Rn+3010201

= · · ·Rn+3[6 :]Rn+3010201 (by Lemma 35)

= · · ·Rn+3[6 :]010201Rn+3[6 :]010201,

which contains a square, so the 3 in G is irreducible.
Now, the last 2 in G could only be reduced to 0, and in this case note that

α(0n) 010203010 = · · · 2α(n) 010203010

= · · · 2α(n− 1)+Rn+3Cα(n− 1)+Rn+3 010203010

= · · · 2α(n− 1)+Rn+30102030102α(n− 1)+Rn+3 010203010,

which contains a square, so the last letter of G is irreducible.

Before proving that α satisfies Condition 4 of Theorem 27 we need to establish the
following lemmas.

Lemma 42. C is irreducible in α(n)+Rn+4C for all n > 0.

Proof. Recall that C = 0102030102. Clearly, the only letter that is reducible within C
is the 3, which could only be made a 1. In this case we would have α(n)+Rn+4010201.
Since n > 1, Lemma 35 says that Rn+4[6 :] is a suffix of α(n)+. Also, Rn+4[: 6] = 010201
for all n. Therefore

α(n)+Rn+4010201 = · · ·Rn+4[6 :]010201Rn+4[6 :]010201

which contains a square. Hence C is irreducible.

Lemma 43. C generates Cα(n)+ for all n > 0.

Proof. We proceed by induction. We can check in the case n = 1, that Cα(1)+ is a prefix
of L(C) by direct computation.

For the inductive step, assume that C generates Cα(k)+ for some k > 1. First note
that

Cα(k + 1)+ = Cα(k)+Rk+4Cα(k)+R+
k+4

is square-free, since it is a factor of α(k + 2). Then we just need to show that α(k + 1)+

is irreducible.
From the inductive hypothesis α(k)+ is irreducible after C and since Rk+4 is a prefix

of the ruler sequence, it is also irreducible. Now, Lemma 42 implies that C is irreducible
after Cα(k)+Rk+4 and from the inductive hypothesis again we conclude that that α(k)+

is irreducible after Cα(k)+Rk+4C. Finally, the last letter in R+
k+4 cannot be reduced by 1

because it would create the square (Cα(k)+Rk+4)
2, and cannot be reduced by more than 1

because Rk+4 is irreducible. Therefore α(k)+Rk+4Cα(k)+R+
k+4 = α(k + 1)+ is irreducible

in Cα(k + 1)+, which concludes the proof.
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We note that Lemma 43 immediately describes the structure of L(012).

Corollary 44. L(012) = 01201 limn→∞ ρ
−1(α(n)).

Proof. First note that ρ−1 is well defined on α(n) since it is even-grounded. Since 010203
generates C, Lemma 43 implies that L(ρ(012)) = L(010203) = L(C) = C limn→∞ α(n).
Since ρ is L-commuting over square-free words by Theorem 26, L(ρ(012)) = ρ(L(012)).
Thus, L(012) = ρ−1(C)ρ−1(limn→∞ α(n)) = 01201 limn→∞ ρ

−1(α(n)).

Finally, we prove that α satisfies Condition 4.

Theorem 45. α(0n)+ generates α(0(n+ 1)) for all n > 0.

Proof. From Lemma 39 we know that α(0(n+ 1)) is square-free, so it is enough to show
that α(n)+ generates α(n+ 1). To show this, recall that

α(n+ 1) = α(n)+Rn+4Cα(n)+Rn+4.

Consider that α(n)+ generates α(n)+Rn+4C, becauseRn+4 is a prefix of the ruler sequence
and C is irreducible by Lemma 42. Similarly, Lemma 43 implies that α(n)+Rn+4 is
irreducible after C. Therefore α(n)+ generates α(n+ 1).

4.1.3 Conclusion

We have proved that the morphism α satisfies all the requirements of Theorem 27, hence
we have the following result.

Theorem 46. α is L-commuting over Σ, the set of all nonempty even-grounded square-
free words.

Corollary 47. L(G) = L(α(0)) = α(L(ε)).

Proof. Recall that G generates α(0), so L(G) = L(α(0)). The other equality follows
directly from Theorem 46, since 0 ∈ Σ.

4.2 Structure of L(1) and L(n) for n > 3

The following result will reduce the task of proving the square-freeness of a word formed
by a finite prefix followed by α(L(ε)) to a finite computation.

Lemma 48. Let w be a finite square-free word. If wα(L(ε)) contains a square, then that
square contains no letter greater than max(wα(0)).

Proof. Suppose toward a contradiction that there is a square yy with a letter greater than
max(wα(0)). Since w and α(L(ε)) are square-free, yy must cross the boundary between
these two factors. Choose n to be some letter such that max(α(n)) is greater than any
letter in y. Then yy must be contained in wα(Rn[: −1]n) = wα(Rn).

Let ` := max(y) > max(wα(0)) and choose some occurrence of ` in the first half of
the square. Since ` is neither contained in w nor α(0), and since Rn is even-grounded,
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this occurrence of ` is from an i-chunk which is after a 0-chunk. Also, this 0-chunk must
be totally contained within the first half of the square, since the square involves w.

Let s be the suffix of the first half of the square starting right after w. By our previous
reasoning, s contains the whole first 0-chunk. We claim that the occurrences of s at the
end of each half of the square yy have the same chunk decomposition. Indeed, let s1 and
s2 be the occurrences of s in the first and second half of the square respectively. Consider
the first whole occurrence of α(0) in s1 and s2, Lemma 31 implies that these occurrences
of α(0) are indeed 0-chunks.

Now recall that by Lemma 29, for n > k > 0, we have that α(n) and α(k) end with
different letters and neither is a prefix of the other. Hence, it is not hard to see that if for
some n > 0, there is a whole n-chunk in s1 either right before or immediately after this
0-chunk, then s2 must also have this n-chunk in the same position. Inductively we have
that s1 and s2 have the same chunk decomposition.

We claim that ` occurs in a full chunk in both halves of the square. Indeed, ` cannot
occur in an initial partial chunk of the first half of the square, since it occurs after wα(0).
Suppose now that ` occurs in an i-chunk, i > 0, which splits over the two halves. By
Lemma 36, the last letter of the chunk is its largest letter, which must be at least `, and
so cannot be in w or in a 0-chunk. So this i-chunk ends after the suffix of w and the
α(0) at the beginning of the second half. This is a contradiction since an i-chunk cannot
contain a 0-chunk by Corollary 31. Hence ` must occur in a whole i-chunk, and then the
claim follows from the fact that s1 and s2 have the same chunk decomposition.

From our knowledge of the ruler sequence, for any two occurrences of i within Rn

there exists an i + 1 between them, and so α(i + 1)[−1] is contained within yy. Finally,
from Lemma 36 we have that α(i + 1)[−1] > α(i)[−1] > `, which contradicts our choice
of `.

Remark 49. We can see from the properties of the ruler sequence that Lemmas 31, 36,
and 29 apply analogously to the morphism ρ ◦ α. Then the proof of Lemma 48 can be
easily adapted to show that if w is square-free, then any square in wρ(α(L(ε))) contains
no letter greater than max(wρ(α(0))). This will be used in Lemma 51 to prove that
Aρ(α(L(ε))) is square-free.

Now we can prove Theorem 1.

Theorem 1. Let Y1 be the 5177-letter prefix of L(1). Then L(1) = Y1 α(L(ε)).

Proof. We first show that Y1α(L(ε)) is square-free. Indeed, suppose that Y1α(L(ε)) con-
tains a square. Since Y1 and α(L(ε)) are square-free, the square must start in Y1. We can
verify by computation that Y1α(R2) is square-free, so the square must end after α(R2).
Hence it contains α(2)[−1] = 5. But by Lemma 48, the square cannot contain any letter
larger than max(Y1α(0)) = 4. This is a contradiction so Y1α(L(ε)) is square-free.

We can check by direct computation that L(1) = L(Y1G). Then using Remark 4 with
p = G, w = L(G), and u = Y1, and Corollary 47, we obtain that

L(1) = L(Y1G) = Y1 L(G) = Y1α(L(ε)).
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The structure of L(n) for n > 3 is similar to that of L(1), although the prefix is
different and the morphism α is replaced with the composition ρ ◦ α. From Theorem 24,
we know that L(n) has prefix nT (n) which has length exponential in n. This is followed
by A, a constant word of length 13747 which can be easily found computationally. It is
noteworthy that A has prefix ψ2(0)+.

Theorem 2. For all n > 3, L(n) = Yn ρ(α(L(ε))), where Yn = nT (n)A.

In order to prove that n generates nT (n)Aρ(α(ε)), we need first to show that it is
square-free and then show that Aρ(α(ε)) is irreducible. We begin with some lemmas used
to prove the square-free condition.

Lemma 50. For n > 3, nT (n)A is square-free.

Proof. From Theorem 24 we know that nT (n) is square-free and we can verify that A
is square-free computationally, so any square would have to overlap both factors. We
can also computationally check the cases n = 3, 4, 5, so assume n > 6 and suppose that
nT (n)A contains a square yy.

From Remark 25 we have that T (n) has suffix T (6). We can computationally verify
that T (6)A is square-free, so the square contains T (6). Since max(T (6)A) = 6, then let
k be the largest letter in the square, we have that k > 6. Also, max(A) = 5, so all
occurrences of k are in nT (n). Since both halves contain at least one letter k, then the
center of the square lies in nT (n).

Recall that A begins with ψ2(0)+ which never occurs in nT (n) = ψ2((n− 2)P0(n− 2))
by Lemma 19. Since the first half is contained in nT (n), y cannot contain ψ2(0)+. The
second half of the square starts in nT (n), but it cannot contain all of ψ2(0)+ at the
beginning of A. Therefore, the square is a factor of

nT (n)ψ2(0)[: −1] = ψ2((n− 2)Rn−2[: −1](n− 2)Rn−2[: −1])[: −1].

We first consider that Rn−2[: −1](n − 2)Rn−2[: −1] = Rn−1[: −1] is square-free, so by
Proposition 20, ψ2(Rn−2Rn−2[: −1]) is square-free meaning that the square intersects the
first chunk, ψ2(n− 2).

This means that the square contains all of the middle occurrence of ψ2(n− 2) which
contains four occurrences of n. Since yy contains n and max(nT (n)) = n we have n = k.
Also, there are exactly 8 occurrences of n in nT (n)A, 4 in each occurrence of ψ2(n− 2).
The square yy must include the last 4 occurrences of n and either none of the earlier ones,
just the last 6 n’s, or all 8 n’s. Recall that

nT (n)ψ2(0)[: −1] =

ψ2(n− 2) ψ2(Rn−2[: −2]) ψ2(0) ψ2(n− 2) ψ2(Rn−2[: −2]) ψ2(0)[: −1]

and from Equation (1) in Section 3,

ψ2(n− 2) = n Rn Rn[: −2] ψ1(Rn−1[: −1]) n Rn Rn[: −2] ψ1(Rn−1[: −2]),
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which shows the locations of the 4 occurrences of n in ψ2(n− 2).
If yy contains only the last 4 occurrences of n, then |y| = |nRnRn[: −2]ψ1(Rn−1[:

−1])|. But yy contains ψ2(0)ψ2(n − 2) which has length more that twice the length of
nRnRn[: −2]ψ1(Rn−1[: −1]). This is a contradiction.

If yy contains only the last 6 occurrences of n, we consider the first and second n in
each half. The first two n’s in the first half occur together as nRn. But the first two n’s
in the second half occur in Rn Rn[: −2] ψ1(Rn−1[: −1]) n. Clearly, nRn[: −2]ψ1(Rn−1[:
−1])n 6= nRn, so this is a contradiction.

If yy contains all 8 occurrences of n, then it starts at the first letter of nT (n). Then y =
ψ2(n− 2)ψ2(Rn−2[: −2])ψ2(0), but then yy = nT (n)ψ2(0) is not a factor of nT (n)ψ2(0)[:
−1]. So this is also a contradiction.

Lemma 51. Aρ(α(L(ε))) is square-free.

Proof. Suppose Aρ(α(L(ε))) contains a square. Since A is square-free, we can use Re-
mark 49 to see that the square contains no letter greater than max(Aρ(α(0))) = 5. Since
ρ(α(L(ε))) is square-free, the square overlaps A. For all letters n > 0, max(ρ(α(n))) =
n + 4, so the square would need to be contained in Aρ(α(R2)) which is a prefix of
Aρ(α(L(ε))) that contains 6. We can computationally verify that Aρ(α(R2)) is square-free
which is a contradiction.

Theorem 52. For all n > 3, nT (n)Aρ(α(L(ε))) is square-free.

Proof. Suppose that there is a square yy in nT (n)Aρ(α(L(ε))). We have from Lemmas 50
and 51 that nT (n)A and Aρ(α(L(ε))) are both square-free. So the square yy must con-
tain all of A and overlap some nonempty suffix of nT (n) and some nonempty prefix of
ρ(α(L(ε))).

Consider the prefix p := A[: 254] and the suffix s := A[−88 :], and define w such that
A = pws. Since A is totally contained in yy, then at least one of p or s must be totally
contained in y. We will show that p and s each occur exactly once in nT (n)Aρ(α(L(ε))) =
nT (n)pwsρ(α(L(ε))), which leads to a contradiction, since at least one of p or s must
appear in both halves of the square.

First we show that p appears exactly once in nT (n)Aρ(α(L(ε))). We can verify com-
putationally that p occurs exactly once in A. Also, since p begins with ψ2(0)+ which by
Lemma 19 never occurs in nT (n), then p cannot occur in nT (n). Moreover, if p occurred
over the boundary between nT (n) and A, then since p is a prefix of A, there would be a
square in nT (n)A which is not true according to Lemma 50. Finally, since p ends with
12 and ρ(α(L(ε))) is even-grounded we conclude that p occurs neither in ρ(α(L(ε))) nor
on the boundary between A and ρ(α(L(ε))).

Secondly, we show that s appears exactly once in nT (n)Aρ(α(L(ε))). It can be checked
that s occurs exactly once in A. To show that s is not contained in nT (n) = ψ2((n −
2)P0(n− 2)) we use the following properties of s, which can be verified computationally:
s is even-grounded, ψ2(0) does not contain s, max(s) = 4 and s contains 7 occurrences of
4. Since s is even-grounded and for all n > 0, ψ2(n) begins and ends with nonzero letters,
s cannot lie over a ψ2 chunk boundary. So if s occurs in nT (n), it is within ψ2(k) for
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some k > 0. We can computationally verify that s does not occur in ψ2(1) or ψ2(2), so
assume k > 2. Consider that ψ2(k) = ψ1((k + 1)P0(k + 1)) = ψ1((k + 1)Rk+2[: −2]) and
that ψ1(`) contains no 4’s when ` < 3, two 4’s and no 5’s when ` = 3, and contains 5’s
when ` > 3. So if s is contained in ψ2(k), it must contain at least two whole occurrences
of ψ1(3), and no whole occurrence of ψ1(4). But since k > 2, any two occurrences of 3
in (k + 1)Rk+2[: −2] have an occurrence of 4 between them. So s cannot be contained in
nT (n).

Note that A begins with 2 and recall from Remark 25 that T (n) has suffix T (3) which
ends with a 1. Hence, since s is grounded, s cannot lie over the boundary between nT (n)
and A. Also, if s occurred over the boundary between A and ρ(α(L(ε))), then since s
is a suffix of A, there would be a square in Aρ(α(L(ε))), which is not true according to
Lemma 51.

Finally we show that s cannot occur in ρ(α(L(ε))). Since s is even-grounded and has
even length, ρ−1(s) is well-defined. Hence, it is enough to show that ρ−1(s) does not occur
in α(L(ε)). The first two letters of ρ−1(s) are 13. For n > 0, α(n) begins with zero, so 13
cannot occur over a chunk boundary in α(L(ε)). Also, for n > 1, α(n) is grounded so it
does not contain 13. We can verify directly that ρ−1(s) does not occur in α(0), so s does
not occur in ρ(α(L(ε))).

Proposition 53. For n > 3, L(n) has prefix nT (n)Aρ(G).

Proof. We know from Theorem 24 that L(n) has prefix nT (n). First we show that L(n)
has prefix nT (n)ψ2(0)+. Indeed, using Remark 25, T (n) has suffix T (3) which has suffix
ψ2(1), which according to Lemma 21 generates ψ2(10). This means that ψ2(0) at the end
of nT (n)ψ2(0) is irreducible. However, ψ2(0) also introduces a square:

nT (n)ψ2(0) = nP0(n)P1(n) ψ2(Rn−2Rn−2[: −2])ψ2(0)

= ψ2(n− 2) ψ2(Rn−2[: −1]) ψ2(n− 2)ψ2(Rn−2[: −2])ψ2(0)

= ψ2(n− 2) ψ2(Rn−2[: −1]) ψ2(n− 2)ψ2(Rn−2[: −1])

= ψ2((n− 2)Rn−2[: −1])2.

Therefore nT (n)ψ2(0)+ is irreducible. It is also square-free by Proposition 52, since A
has prefix ψ2(0)+.

Now, from Remark 25 we know that nT (n)ψ2(0)+ has suffix T (3)ψ2(0)+. A computer
can then verify that this generates T (3)Aρ(G). Since G is a prefix of α(0) we obtain from
Proposition 52 that nT (n)Aρ(G) is square-free, which concludes the proof.

We can now prove that L(n) = Ynρ(α(L(ε))).

Proof of Theorem 2. From Proposition 53 we get L(n) = L(nT (n)Aρ(G)) = L(Ynρ(G)).
Also, Theorem 26 implies that L(ρ(G)) = ρ(L(G)), so by Corollary 47 we have that

YnL(ρ(G)) = Ynρ(L(G)) = Ynρ(α(L(ε))),

which is square-free by Proposition 52. Hence, Theorem 2 follows from Remark 4 with
p = ρ(G), u = Yn and w = L(ρ(G)).
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4.3 The structure of L(2)

In this section, we briefly describe a conjectured structure for L(2) that is similar to the
structures of L(n) in the previous sections.

First note that Rn can be written recursively as

R1 = 01,

Rn = Rn−1R
+
n−1.

Define

b2 = 0102012021012,

bn = bn−1b
+
n−1Rn−1R

+
n−1 = bn−1b

+
n−1Rn.

Also, let c3 be the 261-letter word:

c3 = 0102012021012010201202102010210120102012021012010201301020103

0102012021012010201202101301020103010201202101201020120230102

0103010201202101201020120301020103010203010302010203010201030

1020301030201202101201020120210120230102010301020120210120102

01202101301020103,

cn = cn−1c
+
n−1Rn−1R

+
n−1bn−1b

+
n−1Rn−1R

+
n−1

= cn−1c
+
n−1Rnbn.

Notice that for all n, cn has cn−1 as a prefix. Thus, cn has all previous ck (3 6 k < n) as
prefixes and we have

lim
n→∞

cn = c3 c
+
3 R4b4 c

+
4 R5b5 c

+
5 R6b6 · · ·

= c3c
+
3 R4b4 c3c

+
3 R4b

+
4 R5b5 c4c

+
4 R5b

+
5 R6b6 · · ·

= c3c
+
3 R4b4 c3c

+
3 R4b

+
4 R5b5 c3c

+
3 R4b4 c3c

+
3 R4b

+
4 R5b

+
5 R6b6 · · · ,

which gives rise to the following morphism:

Definition. For all n > 0, γ(n) is the morphism defined by

γ(0) = c3c
+
3

γ(n) = R4b
+
4 R5b

+
5 · · ·Rn+2b

+
n+2 Rn+3bn+3.

From the structure of cn and γ, we can see that

lim
n→∞

cn = γ(L(ε)).

Conjecture 3. L(2) = 2 lim
n→∞

cn = 2γ(L(ε)).
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5 Extending from known words

In this section we give two results establishing conditions for when L(uv) = uL(v) for
words u and v. If uv is square-free, then so is L(uv). Thus, by Remark 4, uL(v) being
square-free is a necessary and sufficient condition for L(uv) = uL(v) when uv is square-
free. The following result lets us use our knowledge of L(n) to show that we can omit the
square-free condition when u and v are letters > 3, and Theorem 59 demonstrates a test
for the case when uv is not square-free and has a particular structure. The proof of the
latter theorem does not use Theorem 2.

Lemma 54. For all n1, n2 > 0, if the word n1n2 is not a factor of L(n2), then L(n1n2) =
n1L(n2).

Proof. Since n1n2 never occurs in L(n2) and L(n2) is square-free, n1L(n2) is square-free
unless n1 = n2 in which case its only square factor is the prefix n1n1. Thus, L(n1n2)
and n1L(n2) are both infinite words beginning with n1n2 whose only square factors are
contained in the prefix n1n2. So by the definition of L, L(n1n2) 4 n1L(n2). If L(n1n2) ≺
n1L(n2), then L(n1n2)[1 :] ≺ L(n2), which is a contradiction since these are both infinite
square-free words beginning with n2. Therefore, L(n1n2) = n1L(n2).

This immediately describes all words of the form L(nn):

Theorem 55. For all n > 0, L(nn) = nL(n).

Proof. Since L(n) is square-free, it does not contain nn. The result then follows from
Lemma 54.

Theorem 56. For all n1 > 3 and n2 > 3, we have L(n1n2) = n1L(n2).

Proof. By Lemma 54, it is sufficient to show that the word n1n2 never appears in L(n2).
By Theorem 2, L(n2) = Yn2ρ(α(L(ε))). Since ρ(α(L(ε))) is grounded, it cannot contain

n1n2. Also, the first letter of ρ(α(L(ε))) is 0, so n1n2 cannot lie over the boundary. For
the prefix we have

Yn2 = n2T (n2) = ψ2((n2 − 2)P0(n2 − 2)),

hence it is enough to show that n1n2 does not occur in any `-chunk ψ2(`), nor over any
chunk boundary.

Since max(ψ2(0)) = 3, n1n2 could only occur in a 0-chunk if n1n2 = 33, which is not a
factor of ψ2(0). For the case ` > 1, ψ2(`) = ψ1((`+ 1)P0(`+ 1)). Hence, it is sufficient to
show that n1n2 cannot occur in any ψ1(`) nor over the chunk boundary of any ψ1(0`) or
ψ1(`0). Indeed, since ψ1(0) = 202101, and all other ψ1(`) are grounded, then n1n2 cannot
occur in any ψ1(`). Also, ψ1(`) ends with a 1 for all ` > 0, so n1n2 cannot occur in ψ1(0`)
or in ψ1(`0).

Finally, to show that n1n2 does not occur over any chunk boundary of ψ2 recall that
for ` > 1, ψ2(`) has suffix

P1(`+ 2) = ψ1(P0(`+ 1)) = ψ1(R`+2[: −2]),
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which has suffix ψ1(1), which ends with a 1, so n1n2 cannot lie over a ψ2(`0) chunk
boundary. Also, ψ2(0) ends with 2 so n1n2 cannot lie over a ψ2(0`) chunk boundary.

Therefore, n1n2 cannot occur anywhere in n1L(n2), except as a prefix. And so
L(n1n2) = n1L(n2).

Experiments suggest the following related result.

Conjecture 57. For all n > 3, we have L(n1) = nL(1) and L(n2) = nL(2).

For example, it appears that L(31) = 3L(1) and L(32) = 3L(2). Since Theorem 26
implies that L(0n) = ρ(L(n−1)) for all n > 0, we have a proven or conjectural description
of L(w) for all 2-letter words w except for L(1n) when n > 1 and L(2n) when n 6∈ {0, 2}.
However, it does appear that these words also have structures related to the ruler sequence
and to the other words discussed in this paper.

The rest of this section deals with the case when w = uv is not square-free and is a
particular decomposition of w. The next lemma describes this decomposition.

Lemma 58. Let w be any nonempty finite word containing a square. Then there is a
unique decomposition w = psq such that sq is the maximal square-free suffix of w, and
p[−1]s is the maximal square prefix of p[−1]sq.

Proof. Any single letter is square-free, so w is guaranteed to have some square-free suffix.
Each suffix of w has a different length, so the maximal square-free suffix, sq is unique.
Since w contains a square, sq is a proper suffix of w, so p is nonempty and unique.

If p[−1]sq is square-free, then it would be a square-free suffix larger than sq which is
a contradiction. Any square in p[−1]sq cannot be contained in sq which is square-free,
so p[−1]sq has a square prefix. No two distinct prefixes of have the same length, so the
maximal square prefix of p[−1]sq is unique.

Remark. In the w = psq decomposition in Lemma 58, p and s are always nonempty,
while q can be empty. The last letter of w is always square-free, so sq is always nonempty.
Since w contains a square, we cannot have sq = w so p is nonempty. Since p[−1] is a
single letter, it cannot be a square, so s must be nonempty.

Example. For w = 012323045, we have that p = 012, s = 323, q = 045.
For w = 1121123210, we have that p = 1121, s = 1, and q = 23210.
For w = 11011, we have that p = 1101, s = 1, and q = ε.

Theorem 59. Let w be any nonempty finite word containing a square. Write w = psq
such that sq is the maximal square-free suffix of w, and p[−1]s is the maximal square
prefix of p[−1]sq. Then L(psq) = pL(sq) if and only if L(psq)[: 2|ps|] = (pL(sq))[: 2|ps|].

In other words, to verify that L(psq) = pL(sq), it is sufficient to verify that they
match for their first 2|ps| letters. Note that this is potentially useful because L(sq) is
the maximal square-free tail of pL(sq). Before proving Theorem 59, we look at a few
examples.
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Example. For w = 012323045, since ps = 012323 the theorem implies that L(w) =
012L(323045) if and only if their first 2|ps| = 12 letters match. Since |w| = 9, and both
words have w as a prefix, it is sufficient to compute the next three letters of each. In
this case, both have 010 as their next letters and so we conclude that L(012323045) =
012L(323045).

For w = 1121123210, since ps = 11211 we obtain that L(w) = 1121L(123210) are
equal if and only if they match for the first 2|ps| = 10 letters. Since |w| = 10, no further
computations are necessary.

For w = 11011, since ps = 11011 we have that L(w) = 1101L(1) if and only if they
match for the first 2|ps| = 10 letters. However, in this case L(11011)[: 10] = 1101120102 6=
1101101201 = 1101L(1)[: 10].

Proof of Theorem 59. The forward direction is trivial. We prove the other direction by
induction. The base case is our supposition that L(w)[: 2|ps|] = (pL(sq))[: 2|ps|]. Now
suppose L(w)[: n] = (pL(sq))[: n] for some n > 2|ps|. We will prove that L(w)[: n+ 1] =
(pL(sq))[: n+ 1]. We let a = L(w)[n] and b = (pL(sq))[n] = L(sq)[n− |p|], then we need
to show that a = b.

Suppose that a < b, which implies that (pL(sq))[: n]a has a square suffix. By the
inductive hypothesis, (pL(sq))[: n]a = L(w)[: n]a = L(w)[: n + 1]. By definition of L,
squares in L(w) are contained in the prefix w = L(w)[: |w|]. Thus, n < |w|. But then
a = L(w)[n] = w[n] = (pL(sq))[n] = b. Therefore we cannot have a < b.

Now suppose that a > b, which analogously to the previous case implies that L(w)[: n]b
has a square suffix, say yy. By the inductive hypothesis, L(w)[: n]b = (pL(sq))[: n]b =
(pL(sq))[: n + 1]. Since sq is square-free, L(sq) is square-free, so the square must start
in the prefix p. Let k be the length of the suffix of p contained in the square. Then
1 6 k 6 |p| and we have (

pL(sq)
)
[: n]b = p

(
L(sq)[: n− |p|]

)
b

so the square has length

|yy| = k + n− |p|+ 1 > k + 2|ps| − |p|+ 1 = k + |p|+ 2|s|+ 1.

Note that the first half of the square cannot contain all of s, otherwise it would contain
p[−1]s which is a square. This in turn would imply that the second half contains p[−1]s
and is a factor of L(sq) which is square-free. Therefore, the first half of the square ends
within ps[: −1], and so |y| < k + |s|.

This implies that |yy| = 2|y| < 2k+ 2|s| 6 k+ |p|+ 2|s| which is a contradiction since
|yy| = k + |p|+ 2|s|+ 1. Therefore, a > b is not possible either.

This proves the inductive step, hence L(w)[: n] = (pL(sq))[: n] for all n, as wanted.

6 Inducing factors

In this section we consider the following problem. Given a finite square-free word w, find
a word p (not necessarily square-free) such that p generates pw, i.e. L(p) = L(pw).
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Definition. Let w be a finite square-free word. For 0 6 j < |w| and 0 6 k < w[j], we
call a nonempty word of the form

rj,k(w) = w[: j]k

a restriction of w. That is, rj,k(w) is obtained by starting with w[: j+1] and decreasing the
last letter by some amount. Let m(w) be the total number of square-free restrictions of w,
and relabel the square-free restrictions in the lexicographic order as r0(w), . . . , rm−1(w),
this is called the restriction sequence of w.

Example. For the word w = 2021, we have

r0,0 = 0, r0,1 = 1, r2,0 = 200, r2,1 = 201, and r3,0 = 2020.

Taking only the square-free rj,k and sorting them lexicographically, we obtain that the
restriction sequence of w is r0 = 0, r1 = 1, r2 = 201.

From the definition of lexicographic order, the set of restrictions is always totally
ordered by ≺. For the rest of this section, we will just write rj,k, ri, and m where the
dependence on w is inferred by context.

Intuitively, the restriction sequence of w does the following: Whenever we extend a
word with L, we follow the ruler sequence until we can’t anymore due to a square. So,
to generate w with L, we need to have exactly the right squares coming up at the right
positions to deviate from the ruler sequence and spell out w instead. The restriction
sequence for w is composed of all the words that will provide those necessary squares.

In other words, the restriction sequence is the collection of all square-free words that
are not longer than w, and are lexicographically less than w. We then design p so that
pri contains a square for all i. Thus, p will generate the lexicographically least word that
is greater than all ri, which is w.

Definition. Let w be a finite square-free word, and let vi(w) = max(w) + i + 1 and
Vi(w) = vi · · · v1v0. For i 6 m = m(w), we define words xi(w) by

x0 = v0,

xi = vixi−1ri−1xi−1,

where vi = vi(w), Vi = Vi(w), and xi = xi(w). This dependence on w will be inferred by
context.

Note that for all j 6 i, xi has suffix xj and so xm has all xj’s as suffixes. Also, for all
i, max(ri) 6 max(w) < v0 < v1 < v2 < · · · and max(xi) = vi.

Example. Continuing with the example w = 2021, since max(w) = 2, we have vi = i+ 3
for 0 6 i 6 m = 3. Then

x0 = v0 = 3,

x1 = v1x0r0x0 = 4303,

x2 = v2x1r1x1 = 5 4303 1 4303,

x3 = v3x2r2x2 = 6 5430314303 201 5 4303 1 4303.
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We can write x3 with spacing suggestive of the next lemma:

x3 = 6543 · 03 · 143 · 03 · 201543 · 03 · 143 · 03

= V3 · r0V0 · r1V1 · r0V0 · r2V2 · r0V0 · r1V1 · r0V0.

Lemma 60. Let w be a finite square-free word, and let φw be the morphism defined
on the alphabet {0, 1, . . . ,m} by φw(k) = rkVk for letters k. Then for 0 6 i 6 m,
xi = Viφw(Ri[: −1]).

Proof. We proceed by induction. For the base case,

x0 = v0 = V0 = V0φw(ε) = V0φw(R0[: −1]).

For the inductive step, suppose xi = Viφw(Ri[: −1]) for some i < m. Then

xi+1 = vi+1xirixi

= vi+1Viφw(Ri[: −1]) ri Viφw(Ri[: −1])

= Vi+1φw(Ri[: −1]) φw(i) φw(Ri[: −1])

= Vi+1φw(Ri[: −1]iRi[: −1])

= Vi+1φw(Ri+1[: −1]).

Finally we present the main result of this section, which implies that for every finite
square-free word w, there exists a prefix p that generates pw. Indeed, it states that such
prefix is given by p = xm.

Theorem 61. Let w be a finite square-free word. Then xm generates xmw.

Proof. We will show that for all 0 6 j < |w|, xmw[: j] generates xmw[: j+ 1]. This means
that L(xmw[: j]) = L(xmw[: j + 1]), which proves the desired result:

L(xm) = L(xmw[: 0]) = L(xmw[: 1]) = · · · = L(xmw[: |w|]) = L(xmw).

To show that L(xmw[: j]) = L(xmw[: j + 1]) we need to prove the last letter of
xmw[: j + 1], which is w[j], is irreducible and does not introduce a square.

First we prove the irreducibility condition. Let 0 6 j < |w| and ` < w[j], we need
to show that xmw[: j]` has a square suffix. Indeed, since 0 6 j < |w| and 0 6 ` < w[j],
we have that w[: j]` = rj,`(w). If w[: j]` contains a square, since w is square-free, this
must be a square suffix, and we are done. Otherwise, if w[: j]` is square-free, then w has
a restriction ri = w[: j]` for some i < m. Hence xm has suffix xi+1, which means that
xmw[: j]` has suffix

xi+1 w[: j]` = vi+1xirixi ri,

which also has a square suffix. Therefore w[j] is irreducible in xmw[: j + 1].
Now we prove that w[j] does not introduce a square in xmw[: j]. Suppose toward a

contradiction that xmw[: j + 1] has square suffix yy. Since w is square-free, the square
must start in the prefix xm, and so y contains the last letter of xm which is x0 = v0.
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Hence, since v0 > max(w), y cannot be completely contained in w. Therefore, the second
half of the square starts in xm and contains all of w[: j+ 1]. This implies that y has suffix
v0w[: j + 1].

By Lemma 60,

xm = Vmφw(Rm[: −1]) = Vm · r0V0 · r1V1 · r0V0 · r2V2 · · · r0V0,

where φw(k) = rkVk for letters k < |w|. Since y[−1] = w[j] 6 max(w) and all letters in
any Vk are greater than max(w), we have that the last letter of the first half of the square
is in a factor ri for some i. Therefore, there are no partial Vk’s in the second half.

Since max(φw(k)) = vk > max(w), the largest letter in y is some letter Vk[0] = vk
occurring k-chunk. Let v` = max(y), then every occurrence of v` in the second half of the
square is as the first letter of V` in an `-chunk. In order to contain v`, the first half of the
square must overlap a k-chunk with k > `. From the structure of the ruler sequence, we
know that the latest k-chunk with k > ` before the first `-chunk in the second half is an
(` + 1)-chunk. The first half cannot contain the letter v`+1 in this (` + 1)-chunk, but it
must include the letter v`. Therefore, v` is the first letter of the first half and since there
are no partial Vk’s in the second half, then y has prefix V`. The second half then begins in
the middle of an `-chunk at the beginning of the factor V` and so the first half has suffix
r` from the same `-chunk. Before this factor r` there is another chunk, which always ends
with v0 and so y has suffix v0r`.

We have proved that the words v0w[: j + 1] and v0r` are both suffixes of y. Since
v0 > max(w[: j + 1]) and v0 > max(r`), we have that r` = w[: j + 1]. But this is a
contradiction since the restriction r` cannot be a prefix of w. This proves that no such
square exists and the result follows.

Example. Again using w = 2021, we can verify that

x3 = 654303143032015430314303 generates x3w,

for example the suffix 303 prevents a 0, the suffix 430314303 prevents a 1, so since 2 does
not introduce a square, it can be located after this suffix. Similarly, we can continue
checking that the whole word w is the lexicographically least extension of x3.

7 Glossary

A list of all the important mathematical objects in the paper, along with their definitions.

7.1 Sequences of Words

Rn is defined for all letters n > 0, and is the ruler sequence up to the first appearance of
n. We can also define Rn by Rn = ρn(0), or inductively by R0 = 0 and Rn = Rn−1R

+
n−1.

Rn is always even-grounded, the length of Rn is 2n, and max(Rn) = n.
bn is defined for letters n > 2, and is defined inductively by b2 = 0102012021012 and

bn = bn−1b
+
n−1Rn. bn is never grounded, the length of bn is 2n−2(4n+5), and max(bn) = n.
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cn is defined for letters n > 3, and is defined inductively by cn = cn−1c
+
n−1Rnbn with a

base case c3 of length 261. cn is never grounded, the length of cn is 2n−3(4n2 +22n+159),
and max(cn) = n.

7.2 Functions on Letters

P0(n) is defined for all letters n > 0, and is the largest prefix of the ruler sequence such
that nP0(n) is a prefix of L(n). The length of P0(n) is 2n+1 − 2, so P0(n) = Rn+1[: −2].

P1(n) is defined for letters n > 3, and is equal to ψ1(P0(n− 1)). The length of P1(n)
is (4n+ 1)2n−1 − 5.

P2(n) is defined for letters n > 3, and is equal to ψ2(P0(n− 2)). The length of P2(n)
is (4n2 + 14n+ 149)2n−2 − 193.

T (n) is defined for letters n > 3, and is equal to P0(n)P1(n)P2(n). The length of T (n)
is (4n2 + 22n+ 159)2n−2 − 200.

7.3 Morphisms

The ruler morphism ρ is defined by ρ(n) = 0(n+ 1).
ψ1 is defined by ψ1(0) = 202101 and ψ1(n) = (n + 1)P0(n + 1) for n > 0. The length

of ψ1(n) is 2n+2 − 1 for n > 0.
ψ2 is defined by ψ2(n) = (n + 2)P0(n + 2)P1(n + 2) for n > 0, with ψ2(0) a specific

word of length 199. For n > 0, the length of ψ2(n) is (4n+ 13)2n+1 − 6.
α is defined by

α(n) =


EFE if n = 0

B1 R4 C B1 R4 if n = 1

α(n− 1)+ Rn+3 C α(n− 1)+ Rn+3 if n > 2

for constants C, B0, B1, E, and F .

7.4 Constants

ε is the empty word.
C = 0102030102 is a grounded word of length 10 which is used in the inductive

definition of α. While not mathematically relevant, we would be remiss not to note
that coding C into letters yields the word abacadabac, which is amusingly similar to
abracadabra.

B0 = 0301 ψ1(1010)[: −3] ψ2(1010)[: −6] ψ2(10)[: −12] 301020 is a non-grounded word
of length 798 which is used in the definition of α(0).

B1 = ρ(B0[7 : −5]) is a grounded word of length 1572 which is used in the definition
of α(1), which is the base case for the inductive definition of α.

E = 0102B01B0[: −9] and F = B0[−9 :]3010302C0103C+02. These are useful in the
structure of α because EFE = α(0).

G = 010203012 is a word of length 9, which is the shortest prefix that generates α(0)
and appears in various proofs.
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A is a word of length 13747 with the property that nT (n)A is a prefix of L(n) for all
n > 3.
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