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Abstract

A recent result of Cioabă, Dewar and Gu implies that any k-regular Ramanujan
graph with k > 8 is globally rigid in R2. In this paper, we extend these results
and prove that any k-regular Ramanujan graph of sufficiently large order is globally
rigid in R2 when k ∈ {6, 7}, and when k ∈ {4, 5} if it is also vertex-transitive. These
results imply that the Ramanujan graphs constructed by Morgenstern in 1994 are
globally rigid. We also prove several results on other types of framework rigidity,
including body-bar rigidity, body-hinge rigidity, and rigidity on surfaces of revolu-
tion. In addition, we use computational methods to determine which Ramanujan
graphs of small order are globally rigid in R2.
Mathematics Subject Classifications: 52C25, 05C50, 05C40

1 Introduction and main results

In this paper, by a graph, we always mean a simple graph unless otherwise stated, and
we also reserve the term multigraph for a graph with possible parallel edges but no loops.
A d-dimensional framework is a pair (G, p), where G is a graph and p is a map from
V (G) to Rd. Roughly speaking, it is a straight line realization of G in Rd. Given ‖ · ‖
is the Euclidean norm for Rd, we say two frameworks (G, p) and (G, q) are equivalent
if ‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ holds for every edge uv ∈ E(G), and congruent if
‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ holds for every u, v ∈ V (G). A framework (G, p) is
generic if the coordinates of its points are algebraically independent over the rationals.
The framework (G, p) is rigid if there exists ε > 0 such that if (G, p) is equivalent to
(G, q) and ‖p(u) − q(u)‖ < ε for every u ∈ V (G), then (G, p) is congruent to (G, q).
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As observed in [2], a generic realization of G is rigid in Rd if and only if every generic
realization of G is rigid in Rd. Hence, generic rigidity can be considered as a property of
the underlying graph. Because of this, a graph is defined to be rigid in Rd if every/some
generic realization of G is rigid in Rd.

A d-dimensional framework (G, p) is globally rigid if every framework that is equiv-
alent to (G, p) is congruent to (G, p). It was proved in [21] that if there exists a generic
framework (G, p) in Rd that is globally rigid, then any other generic framework (G, q)
in Rd is also be globally rigid. Following from this, a graph G is defined to be globally
rigid in Rd if there exists a globally rigid generic framework (G, p) in Rd. A closely related
concept to global rigidity is redundant rigidity. A graph G is redundantly rigid in Rd if
G− e is rigid in Rd for every edge e ∈ E(G). It was proved by Hendrickson [26] that any
globally rigid graph in Rd with at least d+2 vertices is (d+1)-connected and redundantly
rigid in Rd. Hendrickson [26] also conjectured the converse. It can be shown easily that
it is true for d = 1, however the conjecture is not true for d > 3 [14]. The final case of the
conjecture, i.e., when d = 2, was confirmed to be true by the combination of a result of
Connelly [15] and a result of Jackson and Jordán [30]. Thus, a graph G is globally rigid
in R2 if and only if G is 3-connected and redundantly rigid, or G is a complete graph on
at most three vertices [15, 30].

Rigidity in R2 has been well studied. For a subset X ⊆ V (G), let G[X] be the
subgraph of G induced by X and E(X) denote the edge set of G[X]. A graph G is
sparse if |E(X)| 6 2|X| − 3 for every X ⊆ V (G) with |X| > 2. By definition, any
sparse graph is simple. If in addition |E(G)| = 2|V (G)| − 3, then G is called (2, 3)-
tight. A graph G is rigid in R2 if and only if G contains a spanning (2, 3)-tight subgraph.
This characterization was first discovered by Pollaczek-Geiringer [50] and rediscovered
by Laman [38], and thus is also called the Geiringer-Laman condition in [41]. A
(2, 3)-tight graph is also called a Laman graph.

Lovász and Yemini [42] gave a new characterization of rigid graphs and showed that
6-connected graphs are rigid in R2. They also constructed infinitely many 5-connected
graphs that are not rigid in R2, showing that the connectivity condition was indeed
tight. In fact, they proved a stronger result that every 6-connected graph is rigid in R2

even with the removal of any three edges. This result, together with the combinatorial
characterization of global rigidity mentioned above, implies that 6-connected graphs are
also globally rigid in R2 [30, Theorem 7.2]. This result was improved by Jackson and
Jordán [31] using an idea of mixed connectivity, in which they showed that a simple
graph G is globally rigid in R2 if G is 6-edge-connected, G − u is 4-edge-connected for
every vertex u and G− {v, w} is 2-edge-connected for any vertices v, w ∈ V (G).

By using a partition result of [23], Cioabă, Dewar and Gu studied spectral conditions
for rigidity and global rigidity in R2 in [8]. The matrix L(G) = D(G)−A(G) is called the
Laplacian matrix of G, where A(G) and D(G) are the adjacency matrix and diagonal
degree matrix of G, respectively. Let G be a graph with n vertices. For 1 6 i 6 n, we
use λi(G) to denote the i-th largest eigenvalue of A(G), and use µi(G) to denote the i-th
smallest eigenvalue of L(G). The second smallest eigenvalue of L(G), µ2(G), is known as
the algebraic connectivity of G. Similarly to connectivity, a graph with a sufficiently
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high algebraic connectivity is also both rigid and globally rigid.

Theorem 1 (Cioabă, Dewar and Gu [8]). Let G be a graph with minimum degree δ > 6.
(i) If µ2(G) > 2 + 1

δ−1 , then G is rigid in R2.

(ii) If µ2(G) > 2 + 2
δ−1 , then G is globally rigid in R2.

In this paper, we investigate the rigidity properties of Ramanujan graphs. For k > 3,
a connected k-regular graph G is called a Ramanujan graph if |λi(G)| 6 2

√
k − 1

whenever λi(G) 6= ±k for every 1 6 i 6 n1. These are sparse and highly connected
graphs that are extremal with respect to their non-trivial adjacency matrix eigenvalues.
They have been studied intensively over the last several decades (see [1, 36, 43, 44, 45, 47]).
As mentioned by Murty [45], the study of Ramanujan graphs involves diverse branches of
mathematics such as combinatorics, number theory, representation theory, and algebra.
For k > 3, a k-regular graph G is Ramanujan only if µ2(G) > k−2

√
k − 1. By Theorem 1,

every Ramanujan graph of valency k > 8, is globally rigid in R2. In this paper, we study
the cases of k 6 7 and prove that all sufficiently large 6- and 7-regular Ramanujan graphs
are globally rigid in R2.

Theorem 2. If G is a 7-regular Ramanujan graph with n > 22 vertices, then G is globally
rigid in R2. If G is a 6-regular Ramanujan graph with n > 329 vertices, then G is globally
rigid in R2.

These bounds can be improved if G is vertex-transitive; i.e., the automorphism
group of G acts transitively on the vertex set V (G). In fact, rigidity and global rigidity
of vertex-transitive graphs have been studied by Jackson, Servatius and Servatius [34]. In
particular, they proved that every k-regular vertex-transitive graph with k > 6 is globally
rigid in R2. We therefore focus on k = 4, 5 and prove the following theorem for k-regular
Ramanujan graphs.

Theorem 3. Every vertex-transitive Ramanujan graph with degree at least 5 is globally
rigid in R2, except the graph depicted in Figure 1 which is rigid but not globally rigid in
R2. Every vertex-transitive Ramanujan graph with degree 4 that either has at least 53
vertices or is bipartite, is globally rigid in R2.

A specific class of (p + 1)-regular Ramanujan graphs, denoted by Xp,q for primes
p, q such that p ≡ q ≡ 1 (mod 4), was constructed by Lubotzky, Phillips and Sarnak
[43] by taking Cayley graphs of specific projective linear groups and projective special
linear groups. Generalizing this family of Cayley graphs, Morgenstern [44] constructed
(p+1)-regular Ramanujan graphs for all prime powers p. Servatius [52] asked whether the
Ramanujan graphs X5,q are rigid in R2. Since every graph X5,q is 6-regular and vertex-
transitive, the theorem of Jackson, Servatius and Servatius [34] (see Theorem 5 in this
paper) actually implies an affirmative answer to this open question; that is, the Ramanujan
graphs X5,q are globally rigid in R2. Their theorem also implies the global rigidity of

1In particular, we allow for bipartite Ramanujan graphs.
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Figure 1: The single special case to Theorem 3. The graph is not globally rigid (see
Theorem 5), however it is rigid. To see that the graph is indeed rigid, note that if we
delete a path of length 3 from each copy of K5 contained in the graph, we obtain a
(2, 3)-tight graph.

Morgenstern’s Ramanujan graphs for p > 5, however, not for p = 3, 4. Theorem 3 fills
the gap and implies that the Ramanujan graphs constructed by Morgenstern are globally
rigid in R2 for p = 3, 4.

In Section 2, we present the proofs of the main theorems on global rigidity of Ramanu-
jan graphs in R2. In Section 3, we list useful results on edge connectivity and edge-disjoint
spanning trees, as well as some properties of Ramanujan graphs, which will be used for
other types of framework rigidity in Section 4. These include body-bar (global) rigid-
ity, body-hinge (global) rigidity, and rigidity on surfaces of revolution. In Section 5, we
use computational methods to improve some previous results in the paper. Finally, we
conclude the paper with some open questions in Section 6.

2 Proofs of Theorems 2 and 3

2.1 General case

We use the following theorem in our proofs.

Theorem 4 (Jackson and Jordán [31]). A simple graph G is globally rigid in R2 if G is
6-edge-connected, G− u is 4-edge-connected for every vertex u and G− {v, w} is 2-edge-
connected for any vertices v, w ∈ V (G).

Proof of Theorem 2. For the first part, we prove that if G is a 7-regular Ramanujan graph
with n > 22 vertices, then G is 6-edge-connected, G − {u} is 4-edge-connected for any
vertex u and G − {v, w} is 2-edge-connected for any vertices v and w. Then the result
follows by Theorem 4.

Because 7−λ2 > 7−2
√

6 > 2.1, G is 7-edge-connected (see Theorem 15 or [5, Theorem
1.3] or [36, Theorem 4.3]). We show that for any subset of vertices S with 2 6 |S| 6 n/2,
e(S, V \S) > 11. If 2 6 |S| 6 6, then e(S, V \S) > |S|(7−|S|+1) > 12. If 7 6 |S| 6 n/2,
then we use the spectral bound e(S, V \S) > (7−λ2)|S||V \S|

n
(see [5, Lemma 1.2]) and obtain
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that e(S, V \ S) > (7−2
√

6)7(n−7)
n

> 10 for n > 49(7−2
√

6)
39−14

√
6 ≈ 21.87. Hence, e(S, V \ S) > 11

when n > 22 as claimed. Because G is 7-regular, this implies that for any vertex u of G,
the graph G− {u} is 4-edge-connected.

We now prove that G is 4-connected. This implies that G−{v, w} is 2-connected and,
therefore, 2-edge-connected. From Fiedler [20], we know that the vertex-connectivity of
G is at least 7 − λ2 > 7 − 2

√
6 > 2, implying that G is 3-connected. By contradiction,

assume that G has a subset T of three vertices such that G − T is disconnected. Let
A ∪ B = V (G) \ T be a partition of V (G) \ T such that there are no edges between
A and B. Denote a = |A| and b = |B|. The Expander Mixing Lemma (see [1] or
[36, Theorem 2.11] for the standard version, or [19, Lemma 8] for the bipartite variant)
implies that 7ab/n 6 2

√
6
√
ab(1− a/n)(1− b/n). A straightforward calculation gives

that n > 25ab/72. Because the neighborhood of A (or B) is T , it follows that a, b > 5.
Since a+b = n−3, we get that n > 25 ·5(n−8)/72 which implies that n 6 1000/53 < 20,
contradiction. Hence, the vertex-connectivity of G is at least 4 as claimed. This finishes
our proof of the first part.

We use a similar strategy for the second part and show that if G is a 6-regular Ramanu-
jan graph with n > 329 vertices, then G is 6-edge-connected, G−{u} is 4-edge-connected
and G− {v, w} is 2-edge-connected for any vertices v and w. We first show that for any
subset of vertices S with 2 6 |S| 6 n/2, e(S, V \ S) > 10. If 2 6 |S| 6 5, it is easy to
see that e(S, V \ S) > |S|(6 − |S| + 1) > 10. If 6 6 |S| 6 n/2, then we use again the
spectral bound e(S, V \ S) > (6−λ2)|S|(n−|S|)

n
and get that e(S, V \ S) > (6−2

√
5)6(n−6)
n

> 9
for n > 72−24

√
5

9−4
√

5 ≈ 328.99. Hence, e(S, V \ S) > 10 when n > 329 as claimed. This means
that G is 6-edge-connected and G− {u} is 4-edge-connected for any vertex u of G.

We now prove that G is 4-connected, which will in turn imply that G − {v, w} is
2-connected and, therefore, 2-edge-connected. From Fiedler [20], the vertex-connectivity
of G is at least 6− λ2 > 6− 2

√
5 > 1.52, i.e. G is 2-connected. By contradiction, assume

that G has a subset T of two or three vertices such that G − T is disconnected. Let
A ∪ B = V (G) \ T be a partition of V (G) \ T such that there are no edges between A
and B. Denote a = |A| and b = |B|. Using again the Expander Mixing Lemma, we
obtain that 6ab/n 6 λ

√
ab(1− a/n)(1− b/n) 6 2

√
5
√
ab(1− a/n)(1− b/n). It follows

that n > 4ab/15. Because the neighborhood of A (or B) is T , we get that a, b > 4, and
hence the minimum possible value of ab is 4(n−7). Therefore, n > 4ab/15 > 4·4(n−7)/15
which implies that n 6 112, contradiction. This finishes the proof of the second part.

2.2 Vertex-transitive case

The global rigidity of vertex-transitive graphs was previously characterized by Jackson,
Servatius and Servatius [34] in the following theorem.

Theorem 5 (Jackson, Servatius and Servatius [34]). Let G = (V,E) be a connected
vertex-transitive graph of degree k > 2. Then G is globally rigid in R2 if and only if one
of the following holds.
(i) k = 2 and |V | 6 3.
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(ii) k = 3 and |V | 6 4.
(iii) k = 4, and either the maximal clique size is at most 3 or |V | 6 11.
(iv) k = 5, and either the maximal clique size is at most 4 or |V | 6 28.
(v) k > 6.

It follows from Theorem 5 that any vertex-transitive bipartite graph of degree k > 4
is globally rigid in R2. It is also easy to construct connected k-regular vertex-transitive
non-bipartite graphs for k ∈ {4, 5}, that are not globally rigid in R2. To do so, take
any k-regular graph, replace every vertex with a copy of Kk and then share the edges
out evenly amongst the new cliques. Any such graph will, however, have a relatively low
algebraic connectivity.

Lemma 6. Let k > 3 and G be a connected k-regular graph where every vertex is contained
in a clique of size k. If H is the multigraph formed from contracting every clique of size
k to a point, then H is a well-defined k-regular multigraph with µ2(G) 6 µ2(H)/k.

Proof. Let C1, . . . , Cn be the cliques of size k of G (and hence also the vertices of H).
We note that no two cliques of size k share a vertex by our degree bound, hence H is
well-defined. Let x ∈ RV (H) be a unit eigenvector of µ2(H), and define x̃V (G) to be the
vector where for each v ∈ Ci, we set x̃(v) = x(Ci). We immediately compute that x̃T x̃ = k
and

x̃TL(G)x̃ = xTL(H)x = µ2(H).

The result now follows as

µ2(G) = min
u∈[1 ... 1]⊥

uTL(G)u
uTu

6
x̃TL(G)x̃
x̃T x̃

= µ2(H)
k

.

To prove Theorem 3, we also require the following three technical results.

Theorem 7 (Nilli [47]). Let G be a k-regular (multi)graph with diameter m > 1. Then

µ2(G) 6 k − 2
√
k − 1 + 2

√
k − 1− 1
bm/2c .

Lemma 8. Let k ∈ {4, 5} and G be a connected vertex-transitive graph with degree k and
diameter m > 1. If

µ2(G) > 1− 2
√
k − 1
k

+ 2
√
k − 1− 1
k bm/2c ,

then either G is globally rigid in R2, or G is one of the graphs depicted in Figures 1 and
2.
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Proof. Suppose G is not globally rigid in R2 and is not one of the graphs depicted in
Figures 1 and 2. It is immediate that G is not a complete graph. By Theorem 5, G
contains a clique of size k and has at least n vertices, where n = 12 if k = 4 and n = 30
if k = 5. As G is vertex-transitive, every vertex of G lies in a clique of size k. Define H
to be the k-regular vertex-transitive multigraph formed from contracting each clique of
size k to a point. If H has a diameter of at least 2, then µ2(G) 6 1− 2

√
k−1
k

+ 2
√
k−1−1

kbm/2c by
Lemma 6 and Theorem 7.

Suppose that H has diameter one. If k = 5 then H must have at least 6 vertices so
that G has at least 30 vertices. This implies that H = K6 and G is the graph depicted
in Figure 1, which contradicts our original assumption. If k = 4 then H is either K5 or
2K3 (the multigraph formed from K3 by doubling each edge). This implies that G is one
of the graphs depicted in Figure 2, which contradicts our original assumption.

Figure 2: Two 4-regular vertex-transitive graphs that are not globally rigid in R2. The
graph on the left is rigid in R2, but the graph on the right is not.

Theorem 9 ([3, 18, 27]). If G = (V,E) is a k-regular graph with diameter m, then

|V | 6 1 + k
m−1∑
i=0

(k − 1)i.

Furthermore, this bound is strict if k /∈ {2, 3, 7, 57}.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Let G be a k-regular vertex-transitive graph. If G is complete, then
we are done. Hence, we may assume the diameter of G is at least 2. If k > 6 then G is
globally rigid in R2 by Theorem 5. Thus, we may suppose k ∈ {4, 5}. If G is bipartite then
G is globally rigid in R2 by Theorem 5, and so we may also suppose G is not bipartite. If
k = 5 then

µ2(G) > 1 > 1− 2
√

4
5 + 2

√
4− 1
5 > 1− 2

√
4

5 + 2
√

4− 1
5 bm/2c ,

and so either G is globally rigid in R2 by Lemma 8, or G is the graph in Figure 1. If k = 4
and |V | > 53, then G has diameter at least 4 by Theorem 9. Since |V | > 20, G is neither
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of the graphs in Figure 2. It now follows that

µ2(G) > 4− 2
√

3 > 1− 2
√

3
4 + 2

√
3− 1
8 > 1− 2

√
3

4 + 2
√

3− 1
4 bm/2c ,

and thus G is globally rigid in R2 by Lemma 8.

3 Edge connectivity and edge-disjoint spanning trees

Edge connectivity and edge-disjoint spanning trees are closely related to various types
of graph rigidity that we shall explore in later sections. In this section, we list several
useful results. Throughout the section we always assume k, `, s, t are positive integers.
The following result is the well-known spanning tree packing theorem.

Theorem 10 (Nash-Williams [46] and Tutte [55]). A connected (multi)graph G has k
edge-disjoint spanning trees if and only if for any X ⊆ E(G), |X| > k(c(G − X) − 1),
where c(G−X) denotes the number of connected components of G−X.

The above spanning tree packing theorem implies that if G is 2k-edge-connected, then
G− e has k edge-disjoint spanning trees for every edge e of G. This can be improved by
using the following parameter. Define the strength η(G) for a connected (multi)graph
G by

η(G) = min |X|
c(G−X)− 1 ,

where the minimum is taken over all edge subsets X such that G−X is disconnected. This
parameter was first introduced for graphs by Gusfield [25], was then extended to matroids
by Cunningham [17], and has been intensively studied in [4]. The above spanning tree
packing theorem by Nash-Williams [46] and Tutte [55] indicates that a connected graph G
has k edge-disjoint spanning trees if and only if η(G) > k. In other words, the maximum
number of edge-disjoint spanning trees in G is bη(G)c. Thus, η(G) is also referred to
as the fractional spanning tree packing number of G. The spanning tree packing
theorem implies the following result.

Corollary 11. Let G be a connected (multi)graph. Then G−e has k edge-disjoint spanning
trees for every e ∈ E(G) if and only if η(G) > k.

Cioabă and Wong [13] initiated the investigation of the number of edge-disjoint span-
ning trees from eigenvalues and posed a conjecture that if G is a d-regular graph with
λ2(G) < d − 2k−1

d+1 , then G contains k edge-disjoint spanning trees, where d > 2k > 4.
The conjecture was completely settled in [39], and actually it was proved that if G is a
graph with minimum degree δ > 2k and µ2(G) > 2k−1

δ+1 , then G contains k edge-disjoint
spanning trees. This result was extended from simple graphs to multigraphs in [22] and
from spanning tree packing to a fractional version in [29]. We outline these results below.
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Theorem 12 (Liu et al. [39]). Let G be a graph with minimum degree δ > 2k. If
µ2(G) > 2k−1

δ+1 (in particular, if λ2(G) < δ − 2k−1
δ+1 ), then G has at least k edge-disjoint

spanning trees.

Theorem 13 (Gu [22]). Let G be a multigraph with multiplicity m and minimum degree
δ > 2k, and define ` := max {d(δ + 1)/me , 2}. If µ2(G) > 2k−1

`
, then G contains k

edge-disjoint spanning trees.

Theorem 14 (Hong et al. [29]). Let G be a graph with δ > 2s/t. If µ2(G) > 2s−1
t(δ+1) , then

η(G) > s/t.

The following spectral conditions for edge connectivity were provided in [5] for regular
graphs, and similar results were proved for general graphs by [24, 40].

Theorem 15 (Cioabă [5]). Let G be a k-regular graph with n vertices and k > ` > 2. If
λ2(G) 6 k− (`−1)n

(k+1)(n−k−1) , then G is `-edge-connected. In particular, if λ2(G) < k− 2(`−1)
k+1 ,

then G is `-edge-connected.

Remark 16. Note that for n < 2k + 2, every k-regular graph G is k-edge-connected. To
see this, suppose that there is a nonempty proper vertex subset A ⊂ V (G) such that there
are less than k edges between A and its complement A. By counting the degree sum in
A, we obtain that k|A| < |A|(|A|− 1) +k, which implies that |A| > k, and so |A| > k+ 1.
Similarly, |A| > k + 1, hence n = |A| + |A| > 2k + 2, contrary to n < 2k + 2. Thus, in
Theorem 15, we can always assume n > 2k + 2.

Theorem 17 (Cioabă and Gu [11]). For any connected k-regular graph G with k > 3, if

λ2(G) <
{

k−2+
√
k2+12

2 , if k is even,
k−2+

√
k2+8

2 , if k is odd,

then G is 2-connected.

From the above results, we can obtain the following connectivity properties for Ra-
manujan graphs.

Proposition 18. Let G be a k-regular Ramanujan graphs with n vertices.
(i) If k > 6, then G is k-edge-connected.
(ii) If k = 5, then G is 4-edge-connected.
(iii) If k = 4 and n > 20 (or n 6 9), then G is 4-edge-connected.
(iv) If k > 4, then G is 2-connected.

Proof. (i) It is not hard to check 2
√
k − 1 < k− 2(k−1)

k+1 when k > 6. Now it follows easily
from Theorem 15 with ` = k.

(ii) It is not hard to check λ2(G) 6 2
√
k − 1 6 k − (`−1)n

(k+1)(n−k−1) for k = 5, ` = 4 and
n > 12. By Theorem 15 (for n > 12) and its remark (for n < 12), G is 4-edge-connected.
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(iii) For 4-regular Ramanujan graphs with n > 20 vertices, it is easy to check λ2 6
2
√

3 < 4− (3−1)n
5(n−5) , and thus is 3-edge-connected by Theorem 15. However, we know that

for k-regular graphs, if k is even, then the edge connectivity is also even (see [5, Lemma
3.1] for a proof). Thus G is 4-edge-connected. If n 6 9 then, by the remark of Theorem 15,
G is 4-edge-connected.

(iv) This follows directly from Theorem 17.

We finish the section by briefly discussing some properties of the following graph
operation. Denote by tG the multigraph obtained from G by replacing every edge with
t parallel edges. Conveniently, the fractional spanning tree packing number respects this
“scalar multiplication” operation.

Lemma 19 ([37, Lemma 1]). η(tG) = tη(G).

By combining Lemma 19 with the results of this section, we obtain the following result.

Lemma 20. Let G be a graph with minimum degree δ > 2s/t. If µ2(G) > 2s
t(δ+1) , then

tG− e has at least s edge-disjoint spanning trees for every e ∈ E(tG).

Proof. By Corollary 11, we need to show that η(tG) > s. Since µ2(G) > 2s
t(δ+1) , we can

choose a sufficient small rational number ε > 0 such that µ2(G) > 2(s+ε)
t(δ+1) . Let s′, t′ be

positive integers such that s′

t′
= s+ε

t
. Then µ2(G) > 2(s+ε)

t(δ+1) = 2s′

t′(δ+1) and by Theorem 14,
we have η(G) > s′

t′
= s+ε

t
. By Lemma 19, η(tG) = tη(G) > s+ ε > s.

4 Sufficient conditions for other types of framework rigidity

In this section, we study different types of framework rigidity, including body-bar rigidity,
body-hinge rigidity, and rigidity on surfaces of revolution.

4.1 Body-and-bar rigidity

We begin by studying body-and-bar frameworks in Rd, i.e., frameworks of d-dimension
rigid bodies that are connected by fixed-length bars attached at points of their surfaces;
see [53] for more details. Informally, we say a multigraph G is body-bar rigid in Rd

if there exists a generic rigid body-bar framework in Rd, and body-bar globally rigid
in Rd if there exists a generic globally rigid body-bar framework in Rd. Since any two
vertices connected by d(d+1)

2 edges can be considered to be the same rigid body, we make
the assumption that the multiplicity of our graphs is less than d(d+1)

2 . Instead of rigorous
definitions, we may instead characterize these two combinatorial properties exactly by the
following results.

Theorem 21 ([53]). A multigraph G is body-bar rigid in Rd if and only if it contains
d(d+1)

2 edge-disjoint spanning trees.
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Theorem 22 ([16]). A multigraph G is body-bar globally rigid in Rd if and only if it is
redundantly rigid in Rd, i.e., G− e is body-bar rigid in Rd for all e ∈ E.

For the following, we set ` := max {d(δ + 1)/me , 2}, where δ is the minimum degree
and m is the multiplicity of the graph in question. We notice that if δ > d(d + 1) and
m <

(
d+1

2

)
= d(d+1)

2 , then ` > 3.

Corollary 23. Let G be a k-regular Ramanujan multigraph with k > d(d + 1) for d > 2
and multiplicity m < d(d+1)

2 . Then G is body-bar rigid in Rd.

Proof. First suppose d > 3 and fix D = d(d + 1). As mentioned previously, ` > 3. By
Theorem 13, it suffices to show that

D − 2
√
D − 1 >

2
(
d(d+1)

2

)
− 1

3 = D − 1
3 ,

as then G will contain d(d+1)
2 edge-disjoint spanning trees. By rearranging we obtain the

quadratic inequality 4D2−32D+ 37 > 0 which holds for all D > 12, hence G is body-bar
rigid in Rd.

Now suppose d = 2. Since m 6 2 we have ` > 4. As

µ2(G) > 6− 2
√

5 > 5
4 = 2.3− 1

`
,

the graph G is body-bar rigid in R2 by Theorem 13.

This result can be seen to be the best possible result, since any k-regular graph for
k < d(d+ 1) with n > d(d+ 1) vertices has at most

(
d(d+1)−1

2

)
n <

(
d(d+1)

2

)
(n− 1) edges,

and thus cannot contain d(d+1)
2 edge-disjoint spanning trees.

We finish the section by characterizing the body-bar globally rigid Ramanujan graphs.

Corollary 24. Let G be a k-regular Ramanujan multigraph with k > d(d + 1) + 2 for
d > 2 and multiplicity m < d(d+1)

2 . Then G is body-bar globally rigid in Rd.

Proof. As mentioned previously, max {d(k + 1)/me , 2} > 3. By Theorem 13, it suffices
to show that

D + 2− 2
√
D + 1 >

2
(
d(d+1)

2 + 1
)
− 1

3 = D + 1
3 ,

as then G will contain d(d+1)
2 + 1 edge-disjoint spanning trees. By rearranging we obtain

the quadratic inequality 4D2− 16D− 11 > 0 which holds for D > 6, hence G is body-bar
globally rigid in Rd.

This result can likewise be seen to be the best possible result, since any k-regular
graph for k < d(d + 1) + 2 with n > d(d + 1) + 2 vertices has at most

(
d(d+1)+1

2

)
n <(

d(d+1)
2 + 1

)
(n − 1) edges, and hence cannot contain d(d+1)

2 + 1 edge-disjoint spanning
trees.
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4.2 Body-and-hinge rigidity

In this subsection, we study body-and-hinge frameworks in Rd, i.e., frameworks of
d-dimension rigid bodies that are connected by (d − 1)-dimensional hinges that on their
surfaces; see [32] for more details. Unlike body-and-bar frameworks, we restrict ourselves
to simple graphs, as two bodies connected by two hinges are essentially the same body.
Informally, we say a graph G is body-hinge rigid in Rd if there exists a generic rigid
body-hinge framework in Rd, and body-hinge globally rigid in Rd if there exists a
generic globally rigid body-hinge framework in Rd. Instead of rigorous definitions, we may
instead characterize these two combinatorial properties exactly by the following results.
We recall that for any graph G and any k ∈ N, the multigraph kG is formed from G by
replacing every edge with k parallel copies.

Theorem 25 ([54]). A graph G is body-hinge rigid in Rd if and only if (
(
d+1

2

)
− 1)G

contains
(
d+1

2

)
edge-disjoint spanning trees.

Theorem 26 ([35]). A graph G is body-hinge globally rigid in Rd if and only if either
(i) d = 2 and G is 3-edge-connected, or (ii) d > 3 and (

(
d+1

2

)
− 1)G − e contains

(
d+1

2

)
edge-disjoint spanning trees for all e ∈ E.

We observe an interesting quirk of body-hinge frameworks that follows immediately
from Theorems 25 and 26.

Corollary 27. If G is a graph that is body-hinge (globally) rigid in Rd, then, for all
D > d, G is body-hinge (globally) rigid in RD.

The following result gifts us sufficient spectral conditions for body-hinge rigidity and
global rigidity.

Theorem 28. Let G be a graph with minimal degree δ > 3.
(i) If

µ2(G) > 1
δ + 1

2 + 1(
d+1

2

)
− 1

 ,
then G is body-hinge rigid in Rd for d > 2.

(ii) If

µ2(G) > 1
δ + 1

2 + 2(
d+1

2

)
− 1

 ,
then G is body-hinge globally rigid in Rd for d > 3.
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Proof. (i) Set D :=
(
d+1

2

)
. Since D > 3,

δ((D − 1)G) = (D − 1)δ > 3(D − 1) > 2D.

As m = D − 1, we see that

` = max
{
δ((D − 1)G) + 1

m
, 2
}

= max
{
δ + 1

D − 1 , 2
}

= δ + 1.

Finally, as µ2((D − 1)G) = (D − 1)µ2(G), we have that

µ2((D − 1)G) > (D − 1) 1
δ + 1

(
2 + 1

D − 1

)
= 2D − 1

δ + 1 = 2D − 1
`

.

By Theorem 13, (D − 1)G has at least D edge-disjoint spanning trees, and thus G is
body-hinge rigid in Rd by Theorem 25.

(ii) We have

µ2(G) > 1
δ + 1

2 + 2(
d+1

2

)
− 1

 = 1
δ + 1

(
2 + 2

D − 1

)
= 2D

(D − 1)(δ + 1) .

By Lemma 20, (D− 1)G− e has at least D edge-disjoint spanning trees for every edge e.
Thus G is body-hinge globally rigid in Rd by Theorem 26.

By combining Proposition 18 and the above theorems, we obtain the following results.

Corollary 29. Let G be a k-regular Ramanujan graph with n vertices.
(i) If k > 4, then G is body-hinge rigid in R2.
(ii) If k > 5, or if k = 4 and n > 20 (or n 6 9), then G is body-hinge globally rigid in

R2.
(iii) If k > 4, then G is body-hinge globally rigid in Rd for d > 3.

Note that Corollary 29 cannot be extended to cubic Ramanujan graphs in general, as
there exist cubic Ramanujan graphs that are not body-hinge rigid in Rd for any d > 2.
The cubic Ramanujan graph on the left in Figure 3 was originally constructed in [5],
and its largest absolute eigenvalue smaller than 3 equals the largest root of the equation
x3 − 7x − 2 = 0 (roughly about 2.7786), which is less than 2

√
2. However, since G has

edge-connectivity 1, tG will have edge-connectivity t for each positive integer t and so
will contain at most t edge-disjoint spanning trees. By Theorems 25 and 26, G is not
body-hinge rigid.

We also notice that there exist 4-regular Ramanujan graphs with 10 6 n < 20 vertices
that are not body-hinge globally rigid in R2. The 4-regular Ramanujan graph on the right
in Figure 3 was also constructed in [5], and its largest absolute eigenvalue smaller than 4
is 1+

√
33

2 < 2
√

3. Since it has edge-connectivity 2, it is not body-hinge globally rigid in R2

by Theorem 26.
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Figure 3: (Left) A cubic Ramanujan graph with edge-connectivity one. (Right) A 4-
regular Ramanujan graph with edge-connectivity two

4.3 Frameworks on surfaces of revolution

To simplify the problem of dealing with frameworks in three-dimensional space, we can
assume that the joints of our framework are restricted to lie on a smooth surfaceM⊂ R3.
We assume here thatM is an irreducible surface; i.e.,M is the zero set of an irreducible
rational polynomial h(x, y, z) ∈ Q[X, Y, Z]. The framework (G, p) with p(v) ∈ M for
every v ∈ V (G) is rigid on M if there exists ε > 0 such that if (G, p) is equivalent to
(G, q) and ‖p(v)− q(v)‖ < ε and q(v) ∈ M for every v ∈ V (G), then (G, p) is congruent
to (G, q). It was shown in [48] that the set of rigid frameworks on an irreducible surface
M either contains an open dense set (in which case we say the graph is rigid on M),
or it is a nowhere dense set.

An irreducible surface is called an irreducible surface of revolution if it can be
generated by rotating a continuous curve about a fixed axis. In this special case, we can
say the following.
Theorem 30 (Nixon, Owen and Power [48, 49]). Let M be an irreducible surface of
revolution. Then a graph G is rigid onM if and only if either:
(i) G is a complete graph,
(ii) M is a sphere and G contains a spanning Laman graph,
(iii) M is a cylinder and G contains two edge-disjoint spanning trees, or
(iv) M is not a cylinder or a sphere and G contains two edge-disjoint spanning subgraphs

G1, G2, where G1 is a tree and every connected component of G2 contains exactly one
cycle.

For a surfaceM in R3, we define the following. A framework (G, p) with p(v) ∈ M
for every v ∈ V (G) is globally rigid on M if every framework (G, q) that is equivalent
to (G, p) with q(v) ∈ M for every v ∈ V (G) is also congruent to (G, p). For a specific
case ofM being the cylinder, it was proven that the set of globally rigid frameworks on
the cylinder either contains an open dense set (in which case we say the graph is globally
rigid on the cylinder), or it is a nowhere dense set (in which case we say the graph is
not globally rigid on the cylinder). They also characterized exactly which graphs are
globally rigid on the cylinder.
Theorem 31 (Jackson and Nixon [33]). A graph G = (V,E) is globally rigid on the
cylinder if and only if either G is a complete graph, or G is 2-connected and G is redun-
dantly rigid on the cylinder (i.e., for every edge e ∈ E, the graph G − e is rigid on
the cylinder).

the electronic journal of combinatorics 30(3) (2023), #P3.12 14



We now obtain the following sufficient spectral condition for rigidity on certain types
of irreducible surfaces of revolution by utilizing the results of Section 3.

Theorem 32. Let G be a graph with minimum degree δ.
(i) If δ > 4 and µ2(G) > 3

δ+1 , then G is rigid on any irreducible surface of revolution
that is not a sphere.

(ii) If δ > 5 and µ2(G) > 4
δ+1 , then G is redundantly rigid on the cylinder.

Proof. (i) By Theorem 12, G contains 2 edge-disjoint spanning trees. Since |E| >
δ|V |/2 > 2|V | − 2, G must also contain an extra edge which is not in either of the
edge-disjoint spanning trees. The result now follows from Theorem 30.

(ii) The result follows immediately from Lemma 20 and Theorem 30.

Remark 33. In [12], for each each m > 1 and each k > 2m + 2, there was constructed a
k-regular graph Gm,k with 2m+1

k+3 6 µ2(Gm,k) 6 2m+1
k+1 and at most m edge-disjoint spanning

trees. By setting m = 1, we see that Theorem 32(i) is actually best possible for graphs on
the cylinder. Each graph Gm,k is, however, rigid on any irreducible surface of revolution
that is not a sphere or a cylinder. This is as each graph Gm,k can be decomposed into edge-
disjoint spanning subgraphs G1, G2 where G1 is a tree and every connected component of
G2 contains at least one cycle.

We now have an immediate corollary for Ramanujan graphs.

Corollary 34. Let G be a k-regular Ramanujan graph with n vertices where either k > 5,
or k = 4 and n > 20 (or n 6 9). Then the following holds.
(i) G is rigid on any irreducible surface of revolution that is not a sphere.
(ii) G is globally rigid on the cylinder.

Proof. (i) By Proposition 18, G is 4-edge-connected. Thus, G− e contains 2 edge-disjoint
spanning trees for every edge e. By Theorem 30, G is rigid on any irreducible surface of
revolution that is not a sphere.

(ii) When k > 5, we have µ2(G) = k − λ2(G) > k − 2
√
k − 1 > 4

k+1 and thus G is
redundantly rigid on the cylinder by Theorem 32. When k = 4 and n > 20 (or n 6 9), by
Proposition 18, G is 4-edge-connected, and thus G− e contains 2 edge-disjoint spanning
trees for every edge e by Theorem 10. By Theorem 30, G is redundantly rigid on the
cylinder. By Proposition 18, any k-regular Ramanujan graph for k > 4 is 2-connected.
Thus G is globally rigid on the cylinder by Theorem 31.

Notice that there exist 4-regular Ramanujan graphs that are not redundantly rigid
(and thus not globally rigid) on the cylinder. In Figure 3, the graph on the right has
edge-connectivity 2. Thus, for some edge e, G − e has edge-connectivity 1 and so does
not have 2 edge-disjoint spanning trees. By Theorem 30, it is not redundantly rigid on
the cylinder.
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5 Computational results

The number of regular graphs increases drastically with the number of vertices, and
so does the number of Ramanujan graphs. Nevertheless, we were able to obtain some
computational results for Ramanujan graphs being rigid or globally rigid in R2. In this
section we summarize those results split up into three subsections, where Section 5.1
deals with the general case, Section 5.2 considers bipartite graphs only and Section 5.3
specifies for vertex-transitive graphs. In the latter two special cases we can compute until
a much higher number of vertices. For the computations we used Geng, which is a part
of Nauty, for generating sets of graphs, and our own Mathematica code for checking
rigidity properties.

5.1 Ramanujan Graphs

For small orders, it is possible to determine all k-regular Ramanujan graphs by computer
(see Table 1 and [6] for a data set). Using simple implementations of the rigidity properties

|V |\k 4 5 6 7
7 2 - - -
8 6 3 - -
9 15 - 4 -
10 57 59 21 5
11 247 - 263 -
12 1476 7756 7818 1544
13 10439 - 367121 -
14 85386 3429389 21566449 21603716
15 781675 - ? -
16 7777226 ? ? ?

Table 1: Number of k-regular Ramanujan graphs with given number of vertices.

we were able to check all Ramanujan graphs in the table. For k > 5, we found that all
k-regular Ramanujan graphs with at most 14 vertices were global rigid in R2. We do
know, however, that there exist 5-regular Ramanujan graphs that are not globally rigid
with more than 14 vertices; see Figure 1.

As 4-regular graphs are easier to generate than 5-, 6- and 7-regular graphs, it was
possible for us to compute up to 16 vertex graphs. We found that there are exactly four
4-regular Ramanujan graphs that are not rigid in R2 with 16 vertices or less (see Figure 4).
There are, however, plenty of rigid 4-regular Ramanujan graphs with at most 16 vertices
that are not globally rigid in R2 as shown in Table 2 (see also [7] for a data set).
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Figure 4: The only 4-regular Ramanujan graphs with at most 16 vertices that are not
rigid in R2.

|V | 10 11 12 13 14 15 16
graphs 1 3 17 70 340 1573 7425

Table 2: The number of 4-regular Ramanujan graphs with n 6 16 vertices that are rigid
but not globally rigid in R2.

5.2 Bipartite Ramanujan Graphs

For bipartite Ramanujan graphs we can go slightly further, as Geng allows us to compute
regular bipartite graphs directly. Using this, we were able to compute all the k-regular
Ramanujan graphs for k ∈ {4, 5, 6, 7} up to 20 vertices (see Table 3 and [6] for a data
set); for 4-regularity we even managed to compute until 22 vertices. We computed that

|V |\k 4 5 6 7
8 1 - - -
10 1 1 - -
12 4 1 1 -
14 14 4 1 1
16 128 41 7 1
18 1973 1981 157 8
20 62447 304470 62616 725
22 2801916 ? ? ?

Table 3: Number of k-regular bipartite Ramanujan graphs with given number of vertices.

if k > 5, every k-regular bipartite Ramanujan graph with at most 20 vertices is globally
rigid in R2. We can combine this computational result with Theorem 2 to obtain the
following result.

Corollary 35. Every 7-regular bipartite Ramanujan graph is globally rigid in R2.
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For 4-regular bipartite Ramanujan graphs, the situation is slightly more complicated.
We discovered that every 4-regular bipartite Ramanujan graph with up to 22 vertices is
rigid in R2, and every 4-regular bipartite Ramanujan graph with up to 22 vertices that is
not one of the two graphs pictured in Figure 5 is globally rigid in R2.

Figure 5: 4-regular bipartite Ramanujan graphs that are rigid but not globally rigid in
R2.

However, there do exist 4-regular bipartite Ramanujan graphs that are not rigid in
R2 with more than 22 vertices. A similar construction as in Figure 5 yielded one such
bipartite graph (see Figure 6).

Figure 6: A 4-regular bipartite Ramanujan graph that is not rigid in R2.

5.3 Vertex-Transitive Ramanujan Graphs

Since there are comparably few vertex-transitive regular graphs, we were able to use the
precompiled lists from [51] to obtain all the vertex-transitive Ramanujan graphs up to 47
vertices (see [28] for more details on how the list was compiled). Because of Theorem 3,
we are only interested in the 4-regular vertex-transitive Ramanujan graphs. Table 4 shows
how many 4-regular vertex-transitive Ramanujan graphs there exist with n vertices for
7 6 n 6 47 (see [6] for a data set). Out of these graphs, there are six that are not rigid
in R2 (see Figure 7), and only one that is rigid but not globally rigid in R2 (the graph
on the left in Figure 2). We can also deduce from Theorem 5 that any 4-regular vertex-
transitive Ramanujan graph with 49, 50 or 51 vertices must be globally rigid in R2, since
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|V | 10 11 12 13 14 15 16 17 18 19 20 21 22
graphs 4 2 11 3 6 8 16 4 16 4 28 11 11

|V | 23 24 25 26 27 28 29 30 31 32 33 34 35
graphs 5 74 9 16 16 34 7 52 7 80 14 23 15

|V | 36 37 38 39 40 41 42 43 44 45 46 47
graphs 116 9 27 19 133 10 81 10 65 33 36 11

Table 4: Number of 4-regular vertex-transitive Ramanujan graphs with given number of
vertices.

the number of vertices of any 4-regular vertex-transitive graph with every vertex in exactly
one 4-clique must be divisible by 4. The only cases left to check are those with 48 or 52
vertices. It is possible that there are no non-rigid 4-regular vertex-transitive Ramanujan
graphs with 52, or even 48, vertices, in which case the bound given by Theorem 3 could
potentially be reduced from 53.

Figure 7: Vertex-transitive Ramanujan graphs that are not rigid in R2.

6 Open problems and final remarks

It is currently unknown for exactly which values of k the following three statements hold.
(i) There exist only finitely many k-regular Ramanujan graphs that are not

(globally) rigid in R2. With Theorem 2, we know that the statement is true for k > 6.
We can also easily see that it is false for k 6 3, as there are only three rigid cubic graphs
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(the complete graph K4, the complete bipartite graph K3,3 and the Cartesian product
K2�K3). However, the cases of k ∈ {4, 5} still remain open.

(ii) All k-regular Ramanujan graphs are (globally) rigid in R2. As stated
previously, we know that the statement is false for k 6 3. The statement is also false for
k ∈ {4, 5}, as shown by Figures 1 and 4. The statement is true for k > 8 by Theorem 1, so
the remaining open cases are k ∈ {6, 7}. We do know from our computational results (see
Section 5) that any 6- or 7-regular Ramanujan graph that is not (globally) rigid must have
more than 14 vertices. This implies that the case of k = 7 can be verified by computing
all the 7-regular Ramanujan graphs with 16, 18 or 20 vertices. This is, however, currently
beyond the computing power we have access to.

(iii) There exist only finitely many k-regular Ramanujan graphs that are
not 3-edge-connected. By Theorem 26. this is equivalent to checking whether there
are only finitely many k-regular Ramanujan graphs that are not body-hinge globally rigid
in R2. The statement is obviously false for k 6 2, and is true for k > 4 by Proposition 18.
Hence, the only open case is k = 3. Using the computational methods laid out in Section 5,
we constructed a list of all the cubic Ramanujan graphs with 20 vertices or less. Within
this list, we found only 4 cubic Ramanujan graphs with edge-connectivity 1; one with 10
vertices (see the graph on the left in Figure 3) and three with 12 vertices (see Figure 8). As

Figure 8: All the cubic Ramanujan graphs with edge-connectivity one and 12 vertices.

can be seen by the following result, these 4 graphs are in fact the only cubic Ramanujan
graphs with edge-connectivity 1.

Proposition 36. A connected cubic graph with at least 22 vertices and edge-connectivity
1 cannot be Ramanujan.

Proof. Let G = (V,E) be a cubic graph with edge-connectivity one and n > 22 vertices.
Denote by a1a2 a cut-edge of it. Define G1 as the subgraph induced by all those vertices
x such that the shortest path between x and a2 goes through a1. The subgraph G2 can
be defined similarly. Denote by nj the number of vertices in Gj for j = 1, 2 and assume
that n1 > n2. We also have that n1 + n2 = n, n1 > 11, n2 > 5, and both n1 and n2 are
odd.

Denote by H1 the subgraph of G obtained from G1 by removing a1. Take the disjoint
union H of H1 and G2. This is an induced subgraph of G and by Cauchy eigenvalue
interlacing, we have that

λ2(G) > λ2(H) > λ1(H) = min{λ1(H1), λ1(G2)}. (1)

We recall that the largest eigenvalue of a graph is always at least its average degree (with
equality if the graph is regular). The subgraph H1 has average degree 3(n1−3)+4

n1−1 = 3− 2
n1−1 .
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If n1 > 13, this is at least 3 − 1/6 > 2
√

2. Therefore, λ1(H1) > 2
√

2 in this case.
If n1 = 11, then the average degree of H1 is 2.8. Using [9, Lemma 5], we get that
λ1(H1) − 2.8 > 1

100 ·
2(n1−3)2

3n1−5 > 0.45, leading to λ1(H1) > 2.845 > 2
√

2 in this case as
well. If n2 = 5, then (since G2 is the graph formed from K4 by subdividing one edge)
λ1(G2) equals the largest root of the cubic equation x3 − x2 − 6x + 2 = 0 and is larger
than 2.85 > 2

√
2 (see [10, Lemma 6] for example). If n2 > 7, then the average degree of

G2 is 3− 1
n2
> 3− 1

7 > 2
√

2. Hence, by inequality (1), the graph G cannot be Ramanujan
when n > 22.

Unlike with the edge-connectivity 1 case, we found a lot of cubic Ramanujan graphs
with edge-connectivity 2 and at most 20 vertices; for example, there are exactly 85046
cubic Ramanujan graphs with 20 vertices and edge-connectivity 2, (see Figure 9 for two
such graphs). We believe, however, that there exist only finitely many cubic Ramanujan
graphs with edge-connectivity 2, which we leave as an open question.

Figure 9: Some examples for cubic Ramanujan graphs with edge-connectivity two and 20
vertices.

We end the paper with the observation that all of the spectral results proven through-
out the paper rely solely on a regular graph having the correct degree, small non-trivial
adjacency matrix eigenvalues, and sufficiently many vertices. It follows that, given a fam-
ily (Gn)n∈N of “sufficiently good” spectral expander graphs with growing vertex size, our
results should hold for all but finitely many Gn.
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