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Abstract

A generating pair x,y for a group G is said to be symmetric if there exists an
automorphism ¢ , of G inverting both x and y, that is, x¥=v = z~land yPev =y~
Similarly, a group G is said to be strongly symmetric if G can be generated with
two elements and if all generating pairs of G are symmetric.

In this paper we classify the finite strongly symmetric non-abelian simple groups.
Combinatorially, these are the finite non-abelian simple groups G such that every
orientably regular hypermap with monodromy group G is reflexible.

Mathematics Subject Classifications: 05C10, 05C25, 20B25

1 Introduction

The aim of this note is to classify the finite strongly symmetric non-abelian simple groups.

Theorem 1. Let S be a finite non-abelian simple group. Then S is strongly symmetric if
and only if S = PSL(2, ¢) for some prime power g.

Interest on strongly symmetric groups stems from maps and hypermaps, which (roughly
speaking) are embeddings of graphs on surfaces, see [6]. We give a brief account on this
connection, for more details see [4, 10].

A map on a surface is a decomposition of a closed connected surface into vertices,
edges and faces. The vertices and edges of this decomposition form the underlying graph
of the map. An automorphism of a map is an automorphism of the underlying graph
which can be extended to a homeomorphism of the whole surface. For the definition of
hypermaps, which bring us closer to strongly symmetric groups, we need to take a more
combinatorial point of view.

Each map on a orientable surface can be described by two permutations, usually
denoted by R and L, acting on the set of directed edges (that is, ordered pairs of adjacent
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vertices) of the underlying graph. The permutation R permutes cyclically the directed
edges starting from a given vertex and preserving a chosen orientation of the surface. The
permutation L interchanges the end vertices of a given directed edge. The monodromy
group of the surface is the group generated by R and L and the map is said to be regular
if the monodromy group acts regularly, that is, the identity is the only permutation fixing
some element.

Observe that in a map, we have L? = 1. A hypermap is simply given by the combina-
torial data R and L, where L is not necessarily an involution. Inspired by the topological
and geometrical counterpart for maps, a hypermap is said to be reflexible if the assig-
ment R+ R~! and L — L~! extends to a group automorphism of (R, L); otherwise the
hypermap is said to be chiral.

It was shown in [4, Lemma 7], that a finite group G is strongly symmetric if and only if
every orientably regular hypermap with monodromy group G is reflexible. In particular,
Theorem 1 classify the finite non-abelian simple groups G with the property that every
orientably regular hypermap with monodromy group G is reflexible.

In our opinion, Theorem 1 suggests a natural problem, which in principle should give
a measure of how chirality is abundant among regular hypermaps. Let S be a non-abelian
simple group and let §(S) be the proportion of strongly symmetric generating sets of .S,
that is,

_ H(z,y) € S x S | x,y symmetric generating set} |
{(z,y) € Sx S5 = (2,9}

The closer 0(5) is to 1, the more abundant reflexible hypermaps are among orientably
regular hypermaps with monodromy group S. Indeed, Theorem 1 classifies the groups S
attaining 1. We do not have any “running conjecture”, but we wonder whether statistically
it is frequent the case that §(S) < 1/2. Moreover, we wonder whether it is statistically
significant the case that §(S) — 0 as |S| — oo, as S runs through a certain family of
non-abelian simple groups.!

3(S) :

2 Proof of Theorem 1

We start with a preliminary lemma.

Lemma 1. Let n be an integer with n > 3, let q be a prime power with (n,q) # (3,4),
let g € GL(n,q) be a Singer cycle of order ¢" — 1, let x := g&4™9=Y) and let a € TL(n, q)
such that z® = za®, for some z € Z(GL(n,q)) and e € {—1,1}. Then z =1, =1 and
a € (g).

Proof. Let ey, ..., e, be the canonical basis of the n-dimensional vector space Fy of row
vectors over the finite field of cardinality ¢q. Set v := e; and let P, be the stabilizer in
GL(n, q) of the vector v. As (g) acts transitively on the set of non-zero vectors of F; and
as P is the stabilizer of the non-zero vector v, we deduce from the Frattini argument

!During the refereeing process of this paper, Theorem 1 has proved to be useful in [7, page 2 and 3] for
the proof of Cherlin’s conjecture on finite primitive binary permutation groups.
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that GL(n,q) = (¢)P,. In particular, as a € I'L(n,q), we have a = g¢'bc, where i € Z,
b € P, and c lies in the Galois group Gal(F,) of the field F,. Set o’ := bec. Observe
that ¢ = 2% because g’ centralizes z € (g). Moreover, a € (g) if and only if o’ € (g).
Therefore, replacing a with @’ if necessary, in the rest of the argument we may suppose
that a = o’ = be.

As Z(GL(n,q)) consists of scalar matrices, we may identify the matrix z with an
element in the field F,. We show that, for every ¢ € N, we have (vz*)* = z‘vz**. When
¢ =0, v* =v* = v, because b and c fix the vector v = e;. When ¢ > 0, we have

(v29)* = v (2 = v(2")* = v(z)" = v(22°)" = v(22%) = Fva.

"=l is a basis of F, and hence there exists ag, aq,...,an—1 €

Observe that v, vz, ..., vx
F, with

v = agu + T + - - + ap_qvz L (2.1)

Now, by applying a on both sides of this equality and using the previous paragraph, we
obtain

20 = afu + a$zvrt + -+ ab_ 2" oY, (2.2)

Welet f(T) :=T"—a, \T" ' —a, oT"?—---—ayT —ag € F,[T] be the characteristic
polynomial of the matrix x. Observe that f(7") is irreducible in F,[T] because z =
¢&dma=1) aets irreducibly on Fy. Let A € Fgn be a root of f(T) and observe that A
generates the field extension F,»/F,. Observe that A has order (¢" — 1)/ gcd(n,q — 1)
in the multiplicative group F;, because so does z. Now, let f¢(T') = T" — al_ T —
al_,T" 2 — .- —a{T — a§ € F,[T] be the image of the polynomial f(T) € F,[T] under
the Galois automorphism ¢ € Gal(F,). Clearly, the roots of f(7) are

n—1

ML

and the roots of f¢(T') are

PP C D A
Moreover, let x € N with ¢ = p*, for some prime number p, and let j € {0,...,x — 1}
with w® = w?, Yw € F,.

We now distinguish the cases, depending on whether e =1 or ¢ = —1. Assume ¢ = 1.
Using (2.1) and (2.2) and using the fact that f(\) =0, we get f¢(2A) = 0. Therefore, we
deduce z\ is aroot of f¢(T') and hence, there exists i € {0,...,n—1}, with A" = zA. This
gives A’ 71 = z € F; and hence A=D1 = 1. Since A has order (¢" — 1)/ ged(n, ¢—1),
this implies

_ -t
ged(n,q — 1)
If p/¢" —1 = 0, then j = 0 and @ = 0. This implies ¢ = 1 and z = 1 and the lemma
follows in this case. Suppose p’q" — 1 # 0. Assume further that (kn,p) # (6,2). Then
Zsigmondy’s theorem guarantees the existence of a primitive prime divisor r of p** — 1.
Clearly r does not divide p’¢* — 1 = p/™* — 1 and hence we contradict (2.3). Finally,

divides (p’q" — 1)(q — 1). (2.3)
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assume (nk,p) = (6,2). Since we are excluding the case (n,q) = (3,4) in the statement
of this lemma, we have (n,q) = (6,2). In particular, have x = 1 and hence z = 1 and the
proof follows again.

Assume ¢ = —1. Using (2.1) and (2.2) and using the fact that f(A) = 0, we obtain that
227! is aroot of f¢(T') and hence, there exists ¢ € {0,...,n — 1}, with A" = zA~!. This
gives A’ = z € F; and hence A@W ¢V~ — 1 Since A has order (¢"—1)/ ged(n, ¢—1),
this implies

_er=l
ged(n, ¢ — 1)

An argument similar to the one above shows that (2.4) is never possible. O]

divides (p’q" + 1)(q — 1). (2.4)

Proof of Theorem 1. Macbeath has proved in [11] that, for every prime power ¢, PSL(2, q)
is strongly symmetric; see also [4, Proposition 8|. In particular, for the rest of the proof,
we let S be a finite strongly symmetric non-abelian simple group and our task is to show
that S = PSL(2, q), for some prime power g.

Observe that, if S = (s1,s2) and a € Aut(S) inverts both s; and sy, then

a® € Caur(s)(51) N Cauts)(52) = Caur(s)({s1, 52)) = Cauys)(S) = 1.

If «v is the identity automorphism, then s, sy are involutions and hence S = (s1, s9) is a
dihedral group, contradicting the fact that S is a non-abelian simple group. Therefore «
has order 2, that is, « is an involution of Aut(S).

In [10, Theorem 1.1], Leemans and Liebeck have proved that, if T is a finite non-
abelian simple group that is not isomorphic to Alt(7), to PSL(2,¢q), to PSL(3,¢q) or to
PSU(3, q), then there exist x, s € S such that the following hold:

(i) T'=(z,s);

(ii) s is an involution;

1 a

(ili) there is no involution o € Aut(T") such that z* = 27!, s* = s.

In particular, if S is not isomorphic to Alt(7), to PSL(2, q), to PSL(3, q) or to PSU(3, q),
then S is not strongly symmetric. In the rest of this proof, we deal with each of these
cases separately.

Assume S = Alt(7); in particular, Aut(S) = Sym(7). Let s; := (1,2,3,4,5,6,7) and
sy = (1,2,3,4,6,7,5) and, for i € {1,2}, let A; := {a € Sym(7) | s& = s;'}. It can be
easily checked that S = (s1, s2) and

A1 = {(27 7)(37 6)(27 4)7 (17 7)(
(1,4)(2,3)(5,7), (1,3)(

Ao ={(2,9)(3,7)(4,6), (1,5)(2,7)(3,6), (1,7)(2,6)(3,4), (1,6)(2,4)(5,7),
(1,4)(2,3)(5,6), (1,3)(4,5)(6,7), (1,2)(3,5)(4,7)}.

,6)(3,5), (1,6)(2,5)(3,4), (1,5)(2,4)(6,7),
5,6), (1,2

=
J
S~—
—~
—
S~—
—~
o
\]
S~—
—~
N
S~—
—

|
D
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Since AjNAy = &, the generating pair sy, s of Alt(7) witnesses that Alt(7) is not strongly
symmetric.

Assume S = PSL(3, ¢). Since PSL(3,2) = PSL(2,7), we may assume g > 2. Moreover,
we have verified with a computer that PSL(3,4) is not strongly symmetric.

Let A := Aut(S), let d := ged(3,q — 1) and let ¢ be the graph automorphism of
PSL(3,q) defined via the inverse-transpose mapping z +— z* = (z7!)T, for every x €
PSL(3,q), where 2 denotes the transpose of the element x of PSL(3,q). Since z €
PSL(3,¢) is not a single matrix, but a coset of the center Z(SL(3,¢q)) in SL(3, q), there
is a slight abuse of notation when we talk about the transpose of the coset . However,
since Z(SL(3, q)) consists of diagonal matrices, this should cause no confusion.

Next, let 1 be the set of cyclic subgroups of S generated by a Singer cycle of order
(¢*> + q+1)/d and, for any K € Qy, let

A ={acA|la*=1,k"=k'Vkec K}.

Observe that the set €2y consists of a single S-conjugacy class.

Let K € Qy, let k € K be a generator of K and let a, 3 € Ag. Then k% = k! = £k
and hence 7 o € Cuyy(s)(k). This shows that Ag C Cauys)(k)a and that Ag consists
of the involutions in Cauys)(k)cv.

From [2, Theorem 8], we see that there exists a symmetric matrix g € GL(3, ¢) having
order ¢* — 1. Let g be the projection of g in PGL(3,q). The element h := §? generates a
subgroup H € Q. Since g is symmetric, g = ¢* and hence h* = h~!, that is, : € Ay and
Ap consists of the involutions contained in Cayg(s)(h)t. From Lemma 1, we deduce that,
if a € PTL(3,q) and h* = h® with e € {1,—1}, thene =1 and a € (g). As g* =g !, we
deduce Cauy(sy(h) = (g) and that (g, ¢) is a dihedral group of order 2(¢*> 4+ ¢ + 1). Thus

Aul=¢"+q+1 (2.5)

Let Q9 be the set of the conjugates of ¢ in A. Given y € {2, we want to determine the
number ¢, of subgroups K € €); with the property that y € Ag. Consider the bipartite
graph having vertex set €; U Qs and having edge set consisting of the pairs { K, y} with
K € Qy,y €y and y € Ag. Since €2; and 25 both consist of a single A-conjugacy class,
the group A acts as a group of automorphisms on our bipartite graph with orbits 2; and
2. Thus, the number of edges of the bipartite graph is [ ||Ay| = |Q]d,. Therefore, for
every y € )1, we have

4 [|Amu|
0y = ———. 2.6
Yy ’QZ| ( )
Let wy be the number of K € Q; with Ay N Ag # &. Clearly

We claim that there exists K €  with Ay N Ag = @. From (2.5), (2.6) and (2.7),

it suffices to show that )
192 [|Ag]

0] > 3,|Aul = T >

ot
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or, equivalently, that
|A:CA()| = Q0] > |A* = (¢* +q+ 1)

Let G = InnDiag(S) = PGL(3, ¢). From [8, Chapter 4] or [5, Proposition 3.2.11], we have
Ca(t) = Sp(2,¢q) when ¢ is even and Cg (1) = PGO(2,q) when ¢ is odd. Thus, in both
cases, we have

¢ —1)(¢* = 1)¢?
(> —1)q

As ¢ > 2, it follows |A : C4(¢)| > (¢* + ¢ + 1)* and our claim is now proved.

Now choose K = (y) € Q; such that Ay N Ax = &. We use the list of the maximal
subgroups of S = PSL(3, q), see [3, Table 8.3]. When g # 4, Ng(H) is a maximal subgroup
of S isomorphic to H : 3 and hence (h,y) = S. In particular, h,y is a generating pair of
S witnessing that S is not strongly symmetric. When g = 4, we have used the computer
algebra system magma [1] to show that PSL(3,4) is not strongly symmetric.

Let S = PSU(3,q) and A = Aut(S). Since PSU(3,2) is solvable, ¢ > 2. Let A :=
Aut(S), let d := ged(3,q+ 1) and let ©; be the set of cyclic subgroups of S generated by
a Singer cycle of order (¢> — g+ 1)/d and, for any K € Q, let

A:Calt)] > |6 Cole)] = ¢ — (¢~ 1)

Ag:={a€A|a*=1k"=k"'Vke K}.

Observe that the set €}y consists of a single S-conjugacy class.

Let ¢ be the automorphism of S induced by the Frobenius automorphism z — x? of
the underlying finite field F2 of order ¢*. We recall now some main facts about Singer
cycles. Let Fo be the field with ¢° elements and let a € F with a # 0. Consider
the multiplication 7, : Fio — Fu o defined by m,(z) = ax, for all + € Fe. For every
divisor d of 6, the set V = Fj can be interpreted as a vector space of dimension 6/d
over the field F,« and the map 7, is a F«-linear transformation of V. Thus, once a base
is fixed, 7, induces a matrix belonging to GL(6/d,¢%). Now, let a be a generator of the
multiplicative field of F. Then, by [9, Theorem 5.2], the multiplication 7 ;s_; seen as a
F,2-linear transformation of F 6 induces a Singer cycle g for GU(3, ¢) having order ¢* + 1.
Moreover,

1

¢ _ ¢ _ _ _ _ — -
g = 7Ta3_1 — 71—a(q?’*l)q:" — 7Taq6fq3 — 7Ta1*q3 - 71—a*(t13*1> =g -

Let g be the projection of g in PGU(3,q) and let h := g¢. Thus H := (h) € ©Q; and
¢ € Ag. Since Cpgus,g)((g)) = (9) and since no field automorphism centralizes H, we
deduce that Ay is the set of the ¢> — ¢+ 1 involutions in the dihedral group (g, ¢) of order
2(¢> — ¢+ 1) (we are omitting some details here, but these are similar to the arguments
in the case of PSL(3,q)). In particular, |[Ag| = ¢* — ¢+ 1.

Let 5 be the set of the conjugates of ¢ in A. Given y € €y, we want to determine the
number 6, of subgroups K € €; with y € Ax. Arguing as in the previous paragraph, we

deduce that
5 — Q4[| Ay
Yy — .

€2, |
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Let wy be the number of K € Q; with Ay N Ag # @. Clearly
wWH < 5y|AH|
We claim that there exists K € €y with Ay N Ag = @. It suffices to show that

Qi l|A |2
> o,lam) = ldal
€2

or, equivalently, that
[A: Ca(9)] = | > [An* = (¢ — g+ 1)

Let G = InnDiag(S) = PGU(3, ¢). From [8, Chapter 4] or [5, Proposition 3.3.15], we have
Ca(9) = Sp(2,q) when g is even and Cg(¢) = PGO(2,¢q) when ¢ is odd. In both cases,

it follows

(@ + (¢ — 1)’
(¢> = 1)g
It follows |A : Ca(4)] > (¢* — g+ 1)? and our claim is now proved.

Now choose K = (y) € € such that Ay N Ax = &. We use the list of the maximal
subgroups of S = PSU(3,¢), see [3, Table 8.3]. When ¢ ¢ {3,5}, Ng(H) is a maximal
subgroup of S isomorphic to H : 3 and hence (h,y) = S. In particular, h,y is a generating
pair of S witnessing that S is not strongly symmetric. When ¢ € {3,4}, we have used the
computer algebra system magma [1] to show that PSU(3,3) and PSU(3,5) are not strongly
symmetric. O

|A: Ca(@)] = |G : Ca(9)| = = (¢’ +1)¢".
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