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Abstract

An inversion sequence of length n is a sequence of integers e = ej - - - e, which
satisfies for each i € [n] = {1,2,...,n} the inequality 0 < e; < i. For a set of
patterns P, we let I,(P) denote the set of inversion sequences of length n that
avoid all the patterns from P. We say that two sets of patterns P and @) are I-
Wilf-equivalent if |I,(P)| = |I,(Q)| for every n. In this paper, we show that the
number of I-Wilf-equivalence classes among triples of length-3 patterns is 137, 138
or 139. In particular, to show that this number is exactly 137, it remains to prove
{101, 102,110} L {021,100, 101} and {100, 110,201} L {100, 120, 210}.
Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

An inversion sequence [7,17] of length n is a sequence of integers e = e; ---¢, which
satisfies for each i € [n] = {1,2,...,n} the inequality 0 < e; < i. The set of inversion
sequences of length n is denoted I,,. Note that |I,| = n!, and there is a simple bijection
between I, and the set of all the permutations of the set [n]: an inversion sequence
e=ey---e, €1, corresponds to the unique permutation m = 7 - - - m,, with the property
that for each i € [n], e; is equal to the number of elements in the set {my,mo, ..., m_1}
which are larger than ;.

Let [k]p denote the set {0,1,2,...,k} = {0} U [k]. For a set S, we let S™ denote
the set of words of length n over the alphabet S, i.e., all the n-tuples w = wywsy - --w,
with w; € S. In all the words we consider in this paper, the alphabet is a subset of
Ny ={0,1,2,...}. The height of a word w = wyws - - - w,, denoted ht(w), is the largest
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number that appears as a symbol in w, or in other words
ht(w) = max{wy, ..., w,}.

We say that a word x = z;---x, is order-isomorphic to a word y = y; - - -y, if for
every pair of indices i, j € [n], we have x; < x; if and only if y; < y;; notice that this also
implies that x; = z; if and only if y; = y;. We say that a word w = w; - - - w,, contains a
word p = py - -+ py, if w contains a (not necessarily consecutive) subsequence of length m
which is order-isomorphic to p. Otherwise, we say that w avoids p. A subsequence of w
order-isomorphic to p is referred to as a copy of p in w.

We say that a word w of height & is reduced, if each number from the set [k]o appears
at least once in w. Note that every word is order-isomorphic to a unique reduced word.
Furthermore, if p and ¢ are order-isomorphic, then a word w contains p if and only if w
contains ¢q. Thus, when dealing with pattern-avoidance in words, we may without loss of
generality restrict our attention to reduced patterns. Throughout this paper, we use the
term pattern as a synonym for reduced word.

For a set B of patterns, we let I,(B) denote the set of inversion sequences of length
n that avoid all the elements from B, and let I(B) denote the set | J;—, L,(B). To avoid
notational clutter, we often omit nested braces and write, e.g, I,(p, ¢) instead of I,({p, ¢}).

We say that two sets of patterns P and ) are I-Wilf-equivalent, denoted P N Q, if
IL.(P)| = |1.(Q)| for every n.

The systematic study of pattern-avoidance for inversion sequences started around 2015
[7,17]. Several aspects of pattern-avoidance for inversion sequences have been considered
(for example, see [1,2,5,6,11,15,16,18-21] and references therein). In particular, the
results of [3,5,20,21] determined all the I-Wilf-equivalence classes of pairs of length-3
patterns. Note that there are 13 patterns of 3 letters, namely,

P; = {000, 001,010,011,012,021, 100, 101, 102, 110, 120, 201, 210}.
The main result of this paper can be formulated as follows.

Theorem 1. The number of I-Wilf-equivalence classes of triples of length-3 patterns is
137, 138 or 139.

To show that there are exactly 137 I-Wilf-equivalence classes, as the computational
data seem to suggest, it remains to solve the following two conjectures.

Conjecture 2. We make the following two conjectures:

1. {101,102,110} A {021,100, 101} (see Class 110 in Table 3). Note that in [4] it is
shown that {021,100, 101} & {021,101, 110}, so the conjecture can be equivalently
stated as {101,102, 110} ~ {021, 101, 110}.

2. {100, 110,201} ~ {100,120, 210} (see Class 129 in Table 3). Note that we can show,

via generating trees, that {100,110,201} ~ {101,110,201} and {100,120,210} ~
{110, 120,210}
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Let L be the set of all triples of patterns in P3, namely,
L={X|XCPh,|X|=3}

A candidate class is a maximal subset C' of L such that for any B, B’ € C, |I,(B)| =
[I.(B')| for all n = 1,2,...,9. Table 7 shows all the 137 candidate classes of L. A
candidate class is called trivial if it contains exactly one triple, otherwise, it is called
nontrivial. Clearly, any I-Wilf equivalence class is contained in a candidate class, and
Conjecture 2 implies that candidate classes coincide with I-Wilf equivalence classes.

To establish the I-Wilf equivalence of two triples from L, we employ several different
approaches. For some triples " € L, we can find a proper subset 77 C T' (i.e., a pair
or even a singleton) such that I,,(7") = I,(T) for every n. We can then directly exploit
previous results on inversion sequences avoiding smaller sets of patterns to obtain the
enumeration of L,(7"). We develop this approach in Section 2.

Another fruitful approach is based on the concept of generating trees, and uses the
recent algorithmic method of Kotsireas, Mansour, and Yildirim [11]. We outline this
method in Section 3. We note that by combining the methods from Sections 3 and 2, we
are able to solve several open problems related to the enumeration of inversion sequences
avoiding pairs of patterns; see Theorems 10 and 11.

In several cases, neither of the previous two approaches is sufficient for our purposes.
We then turn to bijective arguments. Several of our bijections are based on a relationship
between inversion sequences and diagram fillings, which we describe in Section 4, and
which allows us to tie the previously studied concept of shape-Wilf equivalence with I-
Wilf equivalence.

In Section 5, we solve a handful of remaining cases of I-Wilf equivalence by new, direct
bijections. Finally, in Section 6, we enumerate several trivial candidate classes, by again
using the technique of generating trees.

Our main goal is to focus on the equivalence relations and enumeration results that
cannot be deduced by routine applications of known methods. Accordingly, to keep the
length of the paper manageable, we omit detailed presentations of repetitive cases which
are not meaningfully different from previously solved cases and focus on the ‘hard’ cases
that require novel approaches.

2 Equipotence of pattern sets

We will say that two sets A and B of patterns are equipotent, denoted A ~ B, if the set
I(A) is equal to the set I(B). Obviously, equipotent sets are I-Wilf equivalent, and their
corresponding generating trees 7 (A) and T (B) are identical.

We are particularly interested in the cases when a set A of three patterns from P is
equipotent to a set B of two patterns from P3 or even a single pattern from Ps;. Such a
situation will allow us to reduce the enumeration of I,,(A) to previous results. To deduce
all the needed equipotence relations in a uniform way, we now prove several general criteria
of equipotence, which cover all the cases of interest.
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Observation 3. The following holds:
(a) For any three sets of patterns A, B,C, if A~ B then AUC =~ BUC.

(b) For any set of patterns A, and any reduced pattern p, if p contains at least one
pattern from A, then A~ AU {p}.

For a word w = w; ---w, and an integer £ € Ny, let w + k denote the word w; +
k,wy+k,...,w, + k.

Lemma 4. Let p = pips---pr be a reduced pattern with p; > 0. Then every inversion
sequence that contains p also contains at least one of the two patterns Op and 00(p + 1).
Consequently,

{0p,00(p + 1), p} ~ {0p,00(p + 1)}.

Proof. Let e = e; - - - e, be an inversion sequence containing p, and let s = e;1ye;2) - - - €i(x)
be a subsequence of e order-isomorphic to p. Since p is reduced, there is an index j such
that p; = 0. Let v = e;(;), i.e., v is the smallest value appearing in s. Let ¢ be the prefix
of e of length v + 1, i.e., ¢ = e1e5- - - €,11. All the values in ¢ are less than or equal to v,
and therefore, they are strictly smaller than e;). In particular, the whole subsequence s
appears in e to the right of the rightmost entry of q.

We distinguish two possibilities: either ¢ contains an entry equal to v, or it does not.
If there is such an entry (necessarily it must be the rightmost entry e, 1), then this entry
together with s forms a copy of the pattern Op in e. On the other hand, if there is no
such entry, then ¢ only contains the values from the set [v — 1]y, and in particular, there
is a value w € [v — 1]y that appears at least twice in g. It follows that e contains the
subsequence wws, which is order-isomorphic to 00(p + 1).

We conclude that any inversion sequence containing p also contains Op or 00(p + 1),
or equivalently, any inversion sequence avoiding both Op and 00(p+ 1) also avoids p. This
implies that {Op,00(p + 1),p} ~ {0p,00(p + 1)}. O

Example 5. The set {001,010, 120} is equipotent to {001,010}. To see this, note that
{0120,00231} ~ {0120,00231, 120}
by Lemma 4, hence
{0120,00231} U {001,010} ~ {0120, 00231, 120} U {001, 010}
by Observation 3 part (a), and therefore
{001,010} ~ {001,010, 120}
by Observation 3 part (b).

The argument presented in Example 5 shows the typical way to deduce that a set of
three patterns is equipotent to its proper subset. It applies to many analogous situations,
and we will from now on omit the details of the arguments, as long as they are analogous
to Example 5.
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Lemma 6. Let p = pips - - - pi. be a reduced pattern with the following properties:
e py =0 and py > 1,
e apart from p1, no other entry of p is equal to 0.

Then every inversion sequence containing p also contains at least one of the two patterns
p' and p", where p' = Op = 00pyps3 - - - py, and p” = Olpaps - - - pp. Consequently, {p',p", p} ~

', p"}.

Proof. Let e = e; - - - e, be an inversion sequence containing p, and let s = e;q)e;2) - - - €i(x)
be a subsequence of e order-isomorphic to p. Let v be the smallest value appearing in the
suffix e;3)ei4) - - - €jk) of s, i.e., v is the value in s that corresponds to the value 1 in p.
By the assumptions on p, we have e;1) < v < €;2), and in particular v > 0.

Let g be the prefix of e of length v 4+ 1, i.e., ¢ = ejes--- e, 1. All the values in ¢ are
less than or equal to v, and therefore, they are strictly smaller than e;(3), which therefore
appears to the right of q.

The rest of the argument is analogous to the proof of Lemma 4: if ¢ contains an entry
with value v, then e contains the subsequence Ove;2)ei(s) - - - €;(x), Which is order-isomorphic
to p”. If, on the other hand, ¢ does not contain the value v, then it contains a value
w € [v — 1]p repeated at least twice, and e contains the subsequence WWei(2)€4(3) * * * Ci(k)
order-isomorphic to p'. O

Example 7. The set {001,012,021} is equipotent to {001,012}. This follows by an
argument analogous to Example 5, by using Lemma 6 instead of Lemma 4.

Lemma 8. Let p = py---pr be a reduced pattern with py > 2, and let e be an inversion
sequence containing p. Then e contains the pattern 000 or it contains both the patterns
011 and 012. Consequently, {000,011, p} ~ {000,011} and {000,012, p} ~ {000,012}.

Proof. Let e = e; - - - e, be an inversion sequence containing p, and let s = e;1ye;(2) - - - €i(x)
be a subsequence of e order-isomorphic to p. Assume that e avoids the pattern 000; our
goal is then to show that e contains both 012 and 011.

Let us first show that e contains the pattern 012. Set v = e;;). By assumption, we
have v > p; > 2. Consider the prefix of e of length v. If this prefix contains a nonzero
value w, then e has the subsequence Owwv order-isomorphic to 012. Suppose then that
the first v values of e are all zeros. Since e avoids 000, this means that v = 2. However,
this means that e;;) = 2, which implies that all the entries equal to 0, 1, or 2 in p must
correspond to entries with the same value in s, and in particular, s contains at least one
entry e;;y equal to 0. This entry, together with the first two entries of e forms a copy of
000, contradicting our assumptions. We conclude that e contains 012.

We now show that e contains 011. Let vg < v; < vy be the three smallest values
appearing in s, i.e., the values corresponding, respectively, to the values 0, 1, and 2 in p.
Let g be the prefix of e of length v; + 1. Necessarily, all the values in ¢ are smaller than
V9, and so ¢ is completely to the left of s. If any nonzero value w appears in ¢ more than
once, then ¢ contains the subsequence Oww, and we are done. Also, if ¢ contains the value
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vy, then e contains the subsequence Oviv;, and we are again done. Finally, if ¢ contains
more than two entries equal to 0, then e contains 000 contradicting our assumptions. This
leaves us with the case when ¢ contains exactly two entries equal to 0, and v; — 1 nonzero
entries, each equal to a distinct value from the set [v; — 1]. But now we consider that s
contains an entry e;(;) equal to vy. If vg = 0, then e;(;) forms a copy of 000 together with
the two zero entries of ¢, and if vy > 0, we obtain a subsequence Ouvgvg in e, which gives
the claimed copy of 011. O

Table 1: Classes involving triples equipotent with their proper subsets. Where no reference
for the enumeration result is given, the result follows from the classification of pairs of
triples by Yan and Lin [21] or from a reference given therein. For each triple of patterns, we
either list an equipotent pair or singleton pattern, or we list the rules of the corresponding
generation tree.

Beginning of Table 1
Class Triple Equipotent subset (or gen. tree specification) G.f. formula or reference
7 001,010,021 001,010
001,010,100
001,010,101
001,010,102
001,010,110
001,010,120
001,010,201
001,010,210
[ oof,oT1,02T [ -~~~ ~~—~~—~~——=—=—7 oo1011 ~ T T T T T T T T T T 71
001,011,101
001,011,102
001,011,110
001,011,201
001,011,210
[ dof,o12,02T [ — -~~~ -~~~ -~~~ =77 ¢goi1012 ~ T T T T T T T T T T T
001,012,101
001,012,102
001,012,120
001,012,201
001,012,210

000,001,110 am ~ (00)Fla, "5 am =01 m ﬁf
—x

9 000,001,100 000,001
000,001,101
000,001,102
000,001,201

010,011,012 | am ~ b1 - bmami1s  bm ~ by ---b z(ldz)

l—z—x

21 000,012,102 000,012
000,012,120
000,012,201
000,012,210 @ 4 222 + 423 4 52 4 225 4 26
23 001,021,101 001,021
001,021,102
001,021,201
001,021,210

001,101,120 001,120

001,102,120
001,120,201
001,120,210
[ oof,102,710 [ — -~~~ -~~~ -~~~ 77 ¢oijito ~ ~ T T T T T T T T T T T
001,101,110
001,110,201
001,110,210

000,011,021 0 = 00,0, 00 -5 G0,00%, _ 003 = 002

[ 001,100,210 [ aimiwi((]il[ﬁ"rbnja;l£lf T b~ (010) by am = 01 - m, by = amm |
[ 010,012,027 [ — — =~ =~ = 7 Am ~> (Oil)maimjrli, T 01~ 015 am =0 T T T T T 7]
011,012,021 2(1—a+a?)

(—2)3

21 001,100,101 001,100
001,100,102
001,100,201

[ 000,011,720 [ — — = 7 T T 0~70,01,” ~ 01~ 0,012, = 012~ o012~ ~ ~ T~ T T 7 —

(A—z)(Q—xz—a=)
26 001,102,210 001,210
001,201,210

001,101,210

2
— z(1—2x+42x
011,012,210 | am ~ by« bmami1,  bm ~ (002D)™ Loy am = 0™, by = amm (1—2e+227)

(A—m)

29 000,011,100 000,011
000,011,101
000,011,110
000,011,201
000,011,210
[ ooiji01,102 [ — - - - - T T T T T T T T oor- T T T T T T T T T T T T
001,101,201
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Continuation of Table 1
Class Triple Equipotent subset (or gen. tree specification) G.f. formula or reference
001,102,201
[ 010,012,707 [ — -~~~ -~~~ -~~~ 77 610012 ~ ~ T T T T T T T T T T 71
010,012,102
010,012,120
010,012,201
[ Oifo12, 70T [ — -~~~ -~~~ -~~~ 77 0115012 ~ T T T T T T T T T T T 7T
011,012,102
011,012,110
L o11,012,120 | _ _ _ _ _ _ _ _ _ _ _ oo
010,011,021 am ~> b1 bmam 41, b ~> b1 by am =07, bm = am1 o
34 010,011,100 010,011
010,011,101
J
010,011,110 iz 15
42 012,100,102 012,100
012,100,120 Enumeration open
44 012,021,102 012,021
012,021,120
012,021,201
012,021,210
[ 012,102,710 [ — - -~~~ -~~~ 77 0127110 ~ ~ T T T T T T T T T T 7
012,110,120

011,021,702 am = Gy 1bm b1’ By~ €bm - - b1,
z(1—2z+222)

e e; am = 0", by, =0"1, e =010 T e S
- m m (1—2)2(1—22)

16 012,101,102 012,101
z(1—z+x2)

012,101,120
L 1-3zt2z2 o3

49 012,102,201 012,201
012,120,201
[ 012,102,210 [ — -~~~ -~~~ -~ -~ 77 012210~~~ T T T T T T T T T 71
z(1—4z+7x2 =523 +22%)
(1—z)3(1—2x)

012,120,210

53 011,101,102 011,102
011,102,110

012,102,120 012 _w(-z)

1-—3ctz2

58 000,021,100 000,021
000,021,201
000,021,210 Theorem 10
63 010,021,100 010,021
010,021,101
010,021,102
010,021,110
010,021,120
010,021,201
010,021,210
[ oif021,701 [ -~~~ - -~ - - - T T 77 oi1021 ~ T~ T T T T T T T T T T T
011,021,110
011,021,201
011,021,210 C(z) — 1, [4]
64 011,101,120 011,120
011,110,120
68 011,100,101 011,100 ]
2

011,100,110 1 —2) T3 T
80 011,101,201 011,201
011,110,201 Enumeration open
[ o1i,a01,220 [ -~~~ -~~~ -~~~ 77 011210~ ~ T~ T T T T T T T T 71 I-Wilf equivalence: [21]
011,110,210 See also Example 21

103 021,102,201 021,102
021,102,210 Theorem 11
115 021,120,201 021,120

1—4dax4y/—16z3 42022 —8x+1
021,120,210 =+ @ +20x" — 8z

2(z—1)(dz—1)

117 021,100,201 021,100
021,100,210
[ 021,110,201 [ -~~~ -~~~ 77 021,110 ~ ~ ~ T~ T~ T T T T T T 71
021,110,210 Theorem 12
[ Tof202210 [ -~ -~ -~ -~ -~ -~ -~ -~ - -~ - - -~ =" °-"—~" -~ —-" =" —"—~"—"—"~—"=—"~=—"=—"71 Theorem 40
120 021,101,201 021,101
021,101,210 A106228 in OEIS

End of Table 1

3 Inversion sequences and generating trees

To establish a useful connection between generating trees and the avoidance problem
in inversion sequences, we recall the generating trees for pattern avoidance in inversion
sequences as described in [11]. For a given set of patterns B, let I(B) = U I,,(B). We
will construct a pattern-avoidance tree 7T (B) for the class of pattern-avoiding inversion
sequences I(B). The tree T (B) is understood to be empty if there is no inversion sequence
of any length avoiding the set B. Otherwise, the root can always be taken as 0 (inversion
sequence with one letter), that is, 0 € T(B). Starting with this root which stays at level
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1, the nodes at level n+1 of the tree 7 (B) can be constructed from the nodes at level n in
such a way that the children of e = ¢y ---¢, € I,(B) aree’ =e;---e,j with 7 =0,1,...,n
such that ¢’ € I,,41(B).

Now, we relabel the vertices of the tree 7(B) as follows. Define T(B;e) to be the
subtree consisting of the inversion sequence e as the root and its descendants in 7 (B). We
say that e is equivalent to €', denoted by e ~ €| if and only if T(B;e) = T(B;¢) (in the
sense of plane trees). Let V[B] denote the set of all equivalence classes in the quotient set
T(B)/ ~. We will represent each equivalence class [v] by the label of the unique node v
which appears on the tree 7 (B) as the first node (from top to bottom from left to right).
Let T[B] be the same tree T (B) where we replace each node v by its equivalence class
label.

The basic outline of the generating tree method is the following.

(1) We use the main algorithm of [11] for finding the generating tree 7 [B] up to a level
4 —17, for all B € L. Those sets B of patterns for which the generating tree is finite
(V[B] is a finite set) are called regular, while all other sets of patterns are called
non-regular. In Table 7, we denote each regular class by (r). Thus, in L there are
exactly 64 regular classes.

(2) We try to guess the rules of the generating tree 7[B] for any B € L such that B
belongs to a nontrivial candidate class, as described in [11]. Tables 1 and 3 present
all the nontrivial candidate classes C, all the triples B € C, and the generating
tree T[B] for any B € C. In the case we fail to guess and prove the generating
tree T[B], we leave the cell in the column of 7[B] empty. Moreover, sometimes we
succeed to find the generating tree 7[B] while we fail to find an explicit formula for
the generating function Fp(r) = > -, [I,(B)[2". In this case, we leave the cell in
the column of Fg(z) empty.

(3) For a triple B, we translate the rules of T[B] (if we succeed to find them) into a
system of recurrence relations. Then we solve the system, either by induction or by
the kernel method (see [9] and references therein).

Remark 9. For a given triple B, assume that we have guessed the rules R of the generating
tree T[B] (the root is assumed to be the inversion sequence 0). To prove that R are the
rules of the generating tree 7[B], we proceed by induction on the length of the labels.
For example, let B = {001, 100,210} and our algorithm guessed the following rules

Ay ~> C "y and by ~> " Wbt

where a,, = 01---mm, b,, = 01---m and ¢ = 010. Note that, for the inversion sequence
010, there are no children (because the children of 010 are 0100, 0101, 0102 and 0103,
where each contains either 100 or 001). To show that the rules hold, we have to show
that the children of a,, and children of b,, satisfy the same set of rules. The inversion
sequence b,, has the children 01---mj ~ 010 for all j = 0,1,...,m — 1, and a,,, b;,41,
which creates the rule b,, ~» ¢™a,,b,, 1. Similarly, the inversion sequence a,, has the
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children 01---mmyj ~ 010 for all j = 0,1,...,m — 1, and 012---mmm ~ a,,, which
creates the rule a,, ~ ¢"a,,, as required.

We used this method after we guessed the generating tree T [B] for any possible
triple B. From now on, we omit the proofs for the generating trees 7[B].

Table 3: Nontrivial candidate classes not listed in Table 1, generating trees 7 [B], and
generating functions Fp(z)

Begin of Table 3

Class B T[B] Fp(x)
2 000,001,010 0 ~ 0,00
ooo,001,01t -\ - _ _ _ _ _ _ _ _ _ _ _ _ _ ___ __o_____
001,010,011 0 ~ 00, 00, 00 ~> 00
001,010,012
001,011,012 %
5 001,011,100(r) 0 ~ 00, 01, 00 ~ 00, 01 ~ 01,010
001,012,100(r) | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _______
001,011,120(r) 0 ~ 00, 01, 00 ~> 00, 01 ~ 00, 00
2 ; 2
001,012,110(r) %
6 000,001,021 (r) 0 ~ 00, 01, 01 ~ 00, 011, 01, 011 ~ 00
2,3
000,001,120(r) a(tadeta”)
22 000,011,102(r) 0 — 0,01, 01 ~ 010, 01
001,021,100(r) 0 ~ 00, 01, 00 ~> 00, 01 ~> 010,011, 01, 011 ~ 010, 011
001,100,120(r) | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____
001,021,110(r) 0 ~ 00, 01, 00 ~ 00, 01 ~ 00, 00, 01
001,110,120(r)
001,021,120(r) 0 ~ 00, 01, 00 ~> 00, 01 ~> 00,011,011, 011 ~ 00, 011
77777777777777 m f777777777777777777777< z(1+m2)
001,100,110 @m ~> Gy g10e™, b~ b; am = 01---m, b =00, c=010 Gz
27 010,012,100 am ~ by bmapmq, bm ~ co -+ embm,
T by = amm, |
1 3
l—x+4x?)
011,012,201 am, ~> by - -bma bm, ~> b1 b am = 0™, b xz(
m 1 mam+1 m 1 ms am m (1—z)2(1l—xz—x2)
33 010,011,201 @m ~ Gmt10m,10m,10m,3 < bm,m»
b, 1~ bm 1bm 10m 3 bm,m,
bm,j ™ bm42—5,10m4+3—5,10m44—35,3 " bm j—1bm, j - bm,m with
=3, ,m;am =0", by, ;= amj
010,011,210
35 012,021,100 am ~ am+1(01)m, 01 ~» 010, 01, 010 ~» 010; ayy = 0™
012,021,101
************************************* _ 2 .3
012,021,110 am ~ a1 (01)™, 01 ~ 011, 01, 011 ~» 0115 @y = 0™ %&
— X
40 012,100,210 am ~ G101 bms by ~ cme™  Tho,, cm ~ e Le;
am = 0", by = m, ¢m = 0™mO0, e = 0021
************************************* _ 2 5.3, 4
012,110,210 Am ~> G101 b bm ~ bme™, e~ e; am = 0™, MLEM
b = 0"m, e = 011 (1—2)
41 012,100,201 am ~> G101 bms b ~> C1 - -
am = 0™, by = amm, cm = bm (
********************* . 2_.3 4
z(1—3z44z2—a3 —22%)
012,110,201 by bm, by, ~ b S emd,
am ~> a2m+1 1 m m ~> 01c2 cm (1—z—z2)(1—x)%
cm ~ dcg o1 am = 0", by = amm, cm = by (m — 1), e = 011
50 011,021,100 am ~ Gpt1b1 - bm,  bm ~ cmbl - bm,  em ~ ¢l cm,
0103 ~» 0103; ayy = 0™, by = aml, cm = by 0
011,021,120 am ~> Aypt1b1 b, bm ~ byyp1c1 - Cm, Cm ~* C1Cm;
am = 0", by = aml, em = b2 R
011,102,210 2(1=8x4322)
(1—2)(1—22)
62 011,120,201 am ~ G t1bm 1 bm,ms
b,j ™ bm42—5,10m,j—1 " bm42—5,1m+1—5,2 " Sm41l—j,m+2—j>
. o
Cm,j ~ €m,j—1" " Cm+43—3,2m+2—j,m+3—j  Sm42—j52i am =0,
,,,,,,, | bmyg = amd emyj=emli_ _ _ _ _ _ _ _ _ _ _ _ _ _ ____]
011,120,210 am ~ G 1bm, 1 bmom, Theorem 25
bmoj > bmg1,jCm g CmA2—5,20m Al —jm 42— T CmAl—j,20
€m,j 7 Cm,j—1"" Cm43—§,26m42—j,m43—j " Cm+42-j,2; am = 0™,
bim.j =ami, ¢m j = amlj
65 011,100,201 am ~ G t1bm 1 bm,ms
Um,j > bt 1—j,10m42—5,1 " bm—1,—10m,j bm,m; am = o,
bm,j = i
011,100,210 Example 21
82 010,101,120
010,110,120 Theorem 31
88 000,100,101
000,100,110 Theorem 30
93 000,101,201
000,110,210 Theorem 38
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Continuation of Table 3

Class B T[B] Fp(x)
94 010,100,201 am ~> Gmy1ambm 2 bm,m,
bm,j ™ @m42—bm43—52  bmi41,jbm i bm,mi am = om,
bm,j = ami
010,100,210
010,101,201
[ 010,101,210 ~ [ -~~~ -~ ~~"~"~"~"~"="7=77~~"7==~"7~=~=7~7>"=77=7777/1 Corollary 36
98 000,100,201
000,100,210 Example 21
105 021,100,120 am ~ G101 bms bm ~ bmt1c1 - Cme,
em ~ el Cmyte, e~ cie; am = 0", by, = aml, ey = am 10,
e =012
021,101,120
021,110,120 am ~ amp1b1 - bm, b~ eb1 - by i1, e~ bre; am = 0™, 1*4z+212;i’5?1’fi;21)‘/1’41,
bm = aml Theorem 11
110 021,100,101 am ~ G101 bms b ~ Cm b1 bt
,,,,,,,, em = €1 Cm41i 0m =07 bm = aml, em =aml0
021,101,110 am ~> am+1b1 b, b, ~> am+1c7nb1 b, [4]
Cm o~ el Cpg1es €~ e1€ am = 0™, by = am 1, cm = amll,
e =0113
RN O e OPEN ~ ~ ~ — = 7 7 T T 7T 7 7
114 102,110,210
102,120,210 Theorem 39
126 101,120,201
101,120,210 Theorem 27
128 100,120,201
110,120,201 Theorem 29
129 100,110,201
101,110,201 Theorem 22
[ 706,120210 ~ [ am ~ @miibma— bmm, T T T T T T T TS TS oo T T oo T T
bm,j ™ AGm42—3bm41,5 P42 10m41—5,1 " bm41—j m+1—j5
= 0™, ma = 0
110,120,210 OPEN
135 100,201,210 am ~ Gt 1bm,1 bm,ms
bm,g ~ (@m2— )T bmg 1,5 g1, m415 @m = 0", by, = 0"
101,201,210
[ 116,201,210 ~ [T am = amyibm 1 bmm, T T T T T T T T T T Remark 24
b, ~ (a2 j 1) ami2 jbmi1, 41 Pmdtl,mt1; am =0,
by ;=0T

End of Table 3

As we have said, to find the generating function Fp(z) for a given triple B € L,
we translate the rules of T[B] (if we succeed to find them) into a system of recurrence
relations. Then, we solve the system, mostly either by induction or by the kernel method
(see [9] and references therein). Since our main focus is on the cases that cannot be
handled by routine methods, we do not give the details of finding Fig(x) when Fg(x) is a
polynomial or rational generating function.

The enumeration of I,,(000,021) has been left as an open problem by Yan and Lin [21].
Our next result settles the problem.

Theorem 10. Let B € {{000,021, 100}, {000, 021,201}, {000, 021,210}, {000, 021}}. We

have
33+ 22 —3x+1 3rt —4x3 — 222 + 4 —1

= +
222,/(1+ z)(1 — 3x) 222(1 + x)(1 — 3x)
Proof. Note that the sets {000,021, 100}, {000, 021,201}, {000, 021,210} and {000,021}

are all equipotent, so the choice of B makes no difference for the purposes of the calcula-
tion. The generating tree 7T [B] is given by a root ag and rules

FB(JI)

A ~ b1 - dy,  dpy ~> Cpdy, -+ - dyy Cpy ~> DGy - - - 1€,

by ~ Cy1 - 1€, €~ bge,

where a,, = d,,m, b,, = 0d,,m, ¢,, = 0d,,, d;, = 011--- (m — 1)(m — 1)m, and e = 002.
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Define A,,(z) (respectively, B,,(z), Ci (), Dy (x), E(x)) to be the generating function
for the number of nodes at level n > 1 for the subtree of T (L;a,,) (respectively, T (L; b,,),
T(L;em), T(L;dy,), T(L;e)), where its root has level 1. Thus,

Ap(z) =2+ 2By (x) + 2(Dpya(x) + - -+ Di(x)), m >0,

)

1
z) =2+ 2Cp(x) + xAn(x) + 2(Dp(x) + -+ -+ Di(x)), m=>1

Y

(x)
(z)
() =z + 2By (z) + (Cp(z) + - + Ci(x)) + zE(x), m >
(x)
(z)

Define G(z,v) = > . Gn(z)v™ for G € {A,C} and s = 1, and for G € {B, D} and

s = 0. Then this system of recurrence relations can be written as

Az, v) = 133_”0 + 2C(x,v) + z(D(x,v) — D(x,0)) + &A(:ﬁ,v),
B(z,v) = T 1_UE(x)+mC’(x,v),

O(x,0) = f_”v + 2(B(z,v) — B(z,0)) + %UC(J;,U) + %E(m),
D(z,v) = T + xB(z,v) + ﬁfl(w,v),

E(z) =z 4 xB(z,0) + zE(x).

By using the kernel method for a linear system of equations [9], we obtain, in particular,
an explicit formula for the generating function A(z,0), as required. O]

Our next result addresses the enumeration of I,,(021,102), solving another open case
of Yan and Lin [21].

Theorem 11. We have that

F{021,102,201}(5U) = F{021,102,210}(l’) = F{021,102}(1') = f,
F{021,100,120} (ﬁ) = F{021,101,120}(9U) = F{021,110,120} ($) =9,

where

1Tz + 1922 — 2723 4+ 242* — 122° + 425 /1 — 4z

/ 2¢(1 — z)4(1 — 22) C2z(1 —2)’
1 —4r + 222 + 223 — (1 — 22)/1 — 4z
9= D) .
22%(1 — x)

Proof. Due to the similarity of Classes 103(1-2) and 105(1-3), we present only the proof for
the Class 105(1-2). Let A,,(z) (respectively, By, (z), Cp,(z), and D(x)) be the generating
function for the number of nodes at level n > 1 for the subtree of 7(L;a,,) (respectively,
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T(L;by), T(L;c) and T(L;e)), see Class 105(1-2) in Table 3. By translating the rules
of the generating trees, we obtain
Ap(z) =2+ 2An(x) + 2(By(z) + -+ - + B(2)),
Bu(i) = 2+ 2Byuir(2) + 2(Co(a) + -+ Coula) + 2D(a)
Cor) = 2+ 2(Cr(a) + -+ Ca(0) + D),
D(z) =z + zCy(z) + xD(x).
Define G(z,v) =3, -1 Gm(z)v™ !, for all G € {A, B,C'}. Then

Afw,v) = =+ (A, v) = A, 0)) + T—B(x,v),
B(r,v) = 77— + ~(B(x,v) = B(&,0)) + T——C(x,v) + ——D(x),
Cfa,v) = 5 - — 4 - ~C(a,0) + %(0@:,@) — C(2,0) + 7 - ~D(a),
By solving this system by [9], we complete the proof. O

Theorem 12. For a set of patterns B € {{021, 100,201}, {021, 100,210}, {021, 110, 201},
{021,110, 210}, {021,100}, {021,110} }, we have

Fp(r) = f,

where
(1-32)?  (1-2)(1— Sx)'

U N 27
Proof. We know that {021,100,201} ~ {021,100,210} ~ {021,100} and
{021,110,201} ~ {021,110,210} ~ {021,110}. Moreover, Yan and Lin [21, Theorem
8.1] show that {021,100} and {021,110} are I-Wilf equivalent. It follows that the value

of Fg(x) does not depend on the choice of B. By translating the rules of the generating
trees (see Class 117(1-4) in Table 1), we obtain

() = &+ TAnir (1) + 2(By(a) + -+ Bu(a)),
B (1) = 2 4+ xCp(2) + x(Bi(2) +--- + Bm+1(l“)),
Cm(2) = + 2(Ci(z) + '+Cm+1( ) +xD(x),
D(z) =z + 2Cy(z) + xD(x).
Define G(z,v) =3, -1 Gm(z)v™ !, for all G € {A, B,C}. Then

x T
Al,v) = =+ LAl 0) — A, 0) + - Bla,v),
B(x,v) = — (2,0) + B, v) + = (B(x,v) = B(x,0)),
T T T 2*(1+ C(z,0))
C([L’,’U) - 1— v + mc(l‘,v) + ;(C(l‘av) - O(l’,O)) + (1 — .Z‘)(l — 1)) :
By solving this system by [9], we complete the proof. ]
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4 Inversion sequences and diagram fillings

Some known results on pattern-avoiding fillings of Ferrers diagrams can directly be trans-
lated into results on pattern-avoiding inversion sequences.

Recall that for a word w = w; - - - w,, and an integer £ € Ny, we let w + k denote the
word wy + k,ws + k, ..., w, + k. Let x and y be two words with ht(z) = k and ht(y) = ¢.
Their direct sum, denoted x @y, is the word obtained by concatenating x with y+ (k+1),
while their skew sum, denoted x Sy, is the concatenation of x 4+ (£+1) and y. Notice that
if z and y are reduced, then sois @y and x © y. If x and y are words and X and Y are
sets of words, we use the shorthand z @Y for {z®y;, ye Y}, X py for {xdy; x € X},
XaY for{x@y; € X ANy € Y}, and similarly for &.

A diagram (or polyomino) is a finite collection of unit boxes in the Cartesian plane
whose vertices have integer coordinates. Box (i, j) refers to the box in the i-th column
and j-th row of the diagram. We assume that columns are numbered left to right and
rows are numbered bottom to top. We adopt the convention that the leftmost nonempty
column of D is column number 1, while the bottommost nonempty row is row 0.

A diagram D is conver if, whenever D contains two boxes b and b’ in the same row
or column, it also contains all the boxes lying between b and o'. A diagram is bottom-
Justified if the bottommost boxes in all the nonempty columns lie in the same row (by
convention, this is row 0); right-justified, top-justified, and left-justified diagrams are
defined analogously. A diagram is bottom-right justified if it is both bottom-justified and
right-justified. A Ferrers diagram is a convex, bottom-right justified diagram®.

For the purposes of this paper, a filling of a diagram D is a mapping that assigns to
every box of D the value of 0 or 1, in such a way that every column of D contains exactly
one box with value 1.

A word w = wyws - - - w, of height k and length n can be naturally represented as a
filling of a rectangular diagram with k£ + 1 rows and n columns: the filling has value 1 in
each box (i,w;) for i = 1,...,n, and value 0 elsewhere. We let F'(w) denote this filling.

Let P be a filling of a rectangular diagram with n columns and k + 1 rows. Let F
be any filling of a diagram. We say that F' contains P, if F' has n distinct columns
1 < cp < -+ < ¢, and k + 1 distinct rows rg < r; < --- < rp with the following two
properties:

e For every i € [n] and j € [k]o, the column ¢; intersects the row r; inside F, i.e., the
diagram of F' actually contains the box (¢;, ;).

e For every i € [n] and j € [k]o, if the box (i, j) is a 1-entry of P, then the box (¢;, 1)
is a 1-entry of F'.

Note that since we only consider fillings that have exactly one l-entry in each column,
the properties above actually imply that for every O-entry (7,7) in P, the entry (¢;,7;) in

'In the literature, it is usual to define Ferrers diagrams as either top-left or bottom-left justified shapes,
but our convention will be more practical for our applications.
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F'is a 0-entry as well. In particular, the two properties informally state that the rows
ro,...,7r and columns cq,..., ¢, induce in I’ a rectangular subdiagram equal to P.

Observe that a word z contains a reduced word y if and only if the filling F'(x) contains
the filling F(y).

Let T}, denote the Ferrers diagram with n columns whose i-th column contains exactly
1 boxes. Observe that to an inversion sequence e = ejey---¢€, € I, we may associate a
filling of 7T}, whose 1-entries are precisely the boxes (i,¢;) for i = 1,...,n. This filling will
be denoted T, (e). Note that the mapping e — T,,(e) is a bijection between I,, and the set
of fillings of T,.

Let p be a reduced word and let e € I,, be an inversion sequence. Note that if the
filling T},(e) contains the rectangular filling F'(p), then e contains p; however, the converse
does not necessarily hold: for example, the inversion sequence 011 contains the pattern
01, but the triangular filling 75(011) does not contain the 2 x 2 filling F'(01).

To get an equivalence between the containment of words and the containment of
inversion sequences, we need to put a restriction on the pattern p. We say that a word
P =p1---Pm is a top-first pattern if p is reduced and the first symbol of p is its maximum,;
that is, p; = ht(p).

Lemma 13. Let p be a top-first pattern. Then an inversion sequence e € 1,, contains p
if and only if the filling T,,(e) contains F(p).

Proof. = : Let k be the height of p and m its length. Suppose e contains p. Let
11 < 19 < --- < 1, be the indices inducing a copy of p in e, that is, the subsequence
€;,€i, -+ - €;, 18 order-isomorphic to p. Let jo < j1 < --- < ji be the k£ + 1 values that
appear in the subsequence e;e;, ---€; . Since p is a top-first pattern, we know that
ei, = ji- To show that T, (e) contains F(p), we consider the columns i; < --- < 4,, and
rows jo < -+ < jg. Note that e; = ji, so the box (i, ji) is a l-entry, and in particular
the box lies inside T,,. It follows that each of the columns iy, ..., 1, intersects any of the
TOWS jo, - . ., Ji inside 7T,,, and by construction, these columns and rows induce in 7),(¢e) a
copy of F(p). Hence T, (e) contains F(p).

<: If T, (e) contains a copy of F(p) in columns i; < iy < -+ < 4y, then the
subsequence e;, - - - e; of e is order-isomorphic to p, hence e contains p. O]

Lemma 13 allows us to exploit known results on fillings of diagrams to obtain results
on pattern-avoiding inversion sequences.

We say that two fillings P and Q are shape- Wilf-equivalent, denoted P ~ @Q, if for
every Ferrers diagram D, the number of P-avoiding fillings of D is the same as the
number of ()-avoiding fillings of D. We extend the notion of shape-Wilf equivalence to
sets of patterns in an obvious way. To avoid clutter in our notation, we will identify a
word w with its corresponding filling F'(w), and we will say, e.g., that two words = and y
are shape-Wilf-equivalent when F(z) and F(y) are shape-Wilf-equivalent.

Lemma 14. If X and Y are shape- Wilf-equivalent sets of top-first patterns, then X and
Y are also I-Wilf-equivalent.
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Proof. 1If X and Y are shape-Wilf-equivalent, then for every n, the number of X-avoiding
fillings of T, is the same as the number of its Y-avoiding fillings. By Lemma 13, this

means that |I,(X)| = |L,(Y)|, and hence X LY. O

In a word w = wy - - - wy, an element w; is a weak LR mazimum if w; < w; for each
Jj <t,and it is a strict LR mazimum if w; < w; for each j < i. Similarly, in a filling F', we

say that a 1-entry (c,r) is a weak LR maximum if all the 1-entries in columns 1,...,¢—1
only appear in rows 0,...,r, and (¢,r) is a strict LR maximum if all the l-entries in
columns 1,...,c— 1 only appear in rows 0,...,r — 1.

Shape-Wilf equivalence has a long history, and the paper by Guo et al. [8] gives a
summary of known results to date. We now summarize here the known facts that are
relevant to us.

Fact 15.

e For any k > 0, we have 012---(k — 1)k & k(k —1)---210. This equivalence is
witnessed by a bijection that preserves the number of 1-entries in each row. See
Krattenthaler [12].

e {021,011} X {102,101}. See Guo et al. [8, Theorem 12].
e {021,010} X {102,001}. See Guo et al. [8, Theorem 13].

o [f the reduced words x and y are shape- Wilf-equivalent, and z is any nonempty
reduced word, then z&x and 26y are also shape- Wilf-equivalent. More generally, if
X andY are shape- Wilf-equivalent sets of reduced words and z is a nonempty reduced
word, then z&X and z0Y are also shape- Wilf-equivalent. Additionally, the bijection
witnessing 20X ~ z0Y preserves the positions and values of weak LR mazima, and
if the bijection witnessing X ~'Y preserves row-sums, then the bijection witnessing
20X X 20Y preserves them too. See Jelinek and Mansour [10, Lemma 14].

Combining Fact 15 with Lemma 14 yields the following examples of I-Wilf-equivalent
patterns or sets of patterns.

Corollary 16. For any top-first pattern p, the following holds:

e for an integer k > 1, we have p © 012---(k — 1)k X p S k(k—1)---210, via a
bijection that preserves the number of occurrences of each symbol and also preserves
the positions and values of the weak LR mazima,

e p© {021,011} ~ p© {102,101}, and

o po {021,010} ~ p e {102,001}.

Remark 17. The previous corollary can in fact be restated in a slightly more general form,
where instead of the single pattern p we consider a set P of top-first patterns. While this
was not explicitly mentioned in any of the previous papers, it can be proven by the same
arguments.
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Example 18. Here are the [-Wilf equivalences between single patterns of small size that
follow from Corollary 16:

e 201 4 210,
e 3012 £ 3210 L 3201, 2201 ~ 2210,

e 40123 A 43210 £ 43012 ~ 43201, 42301 ~ 42310, 33012 ~ 33210 ~ 33201, 32201 &
32210, 32301 ~ 32310, 22201 & 22210,

Note that for some patterns p, we may determine whether an inversion sequence e € I,
contains p merely by looking at the total number of occurrences of each symbol in e and
at the number of times each symbol occurs as a weak LR maximum of e. We say that such
a pattern p is conservative. Formally, a pattern p (or a set of patterns P) is conservative,
if for every n and every two sequences e, ¢’ € I, such that

e ¢ and ¢ have the same number of occurrences of each symbol, and
e in e and €', each symbol appears the same number of times as a weak LR maximum,

the sequence e avoids p (or P) if and only if ¢’ avoids p (or P, respectively).

Observe that if a set of patterns P contains only conservative patterns, then P is itself
conservative. However, a set of patterns P may be conservative even when its individual
patterns are not, as we will see in the next observation. We use the short-hand notation
a™ for the word aa - - - a of length m.

Observation 19. For any m € N, the following patterns and sets are conservative:

e The pattern 0™: indeed 1,,(0™) contains precisely those inversion sequences in which
each symbol appears at most m — 1 times.

e The pattern 01™: 1,,(01™) contains precisely those inversion sequences in which each
symbol other than 0 appears at most m — 1 times.

e The pattern 10™: L,(10™) contains precisely those inversion sequences in which each
symbol has at most m — 1 occurrences that are not a weak LR mazimum.

e The pattern 021™: 1,(021™) contains precisely those inversion sequences in which
each symbol other than O has at most m — 1 occurrences that are not a weak LR
MaxTimum.

o The set {10™T1 010™}: L,(10™* 010™) contains precisely those inversion sequences
in which each symbol has at most m occurrences that are not weak LR maxima, and
moreover, each symbol that appears as a weak LR mazximum has at most m — 1
occurrences that are not weak LR mazima.

Combining the first item of Corollary 16 with Observation 19, we reach the following
conclusion.
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Corollary 20. For any conservative set C of patterns, any top-first pattern p, and any
kE>1,

Cu{pe012---(k—1k} ~CU{pok(k—1)---210}.
Example 21. By Corollary 20, we have
e {011,100,201} ~ {011,100, 210},

e {011,101,201} ~ {011,110,201} ~ {011,201} ~ {011,210} ~ {011,101,210} ~
{011,110, 210},

e {000,100,201} & {000, 100,210},

e {010,100,201} ~ {010,100, 210}.

5 Bijections

In this section, we will present bijective proofs for several I-Wilf equivalence relations that
do not follow from the general methods we described in the previous sections. We remark
that although we confine all our results to the setting of inversion sequences, many of these
bijections (specifically, those described in Theorems 22, 23, 27, 29, 30, 31, 33, 37 and 38)
can in fact be applied to arbitrary words, yielding bijections between pattern-avoiding
sets of words with arbitrarily prescribed strict LR maxima.

Theorem 22. We have
{100, 110,201} ~ {101, 110, 201}.

Proof. Given an inversion sequence e = (ey,...,e,) € I, an index k € [n] and a pattern
p = p1p2ps € P3, we say that e has a copy of p ending at position k, if there are indices ¢
and j such that ¢ < j < k and e;eje; is order-isomorphic to p. For the purposes of this
proof, we will say that e € I, is a k-hybrid inversion sequence if it satisfies the following
properties:

e ¢ avoids 110 and 201,
e for every ¢ < k, e has no copy of 101 ending at position ¢, and
e for every ¢ > k, e has no copy of 100 ending at position /.

We let T¥ (110, 201) denote the set of k-hybrid inversion sequences. Note that 1°(110,201)
is precisely the set I,(100,110,201), while I(110,201) is the set I,(101,110,201). To
prove the theorem, we will establish the stronger statement that all the sets I¥(110,201)
for k = 0,...,n have the same size. To this end, we will describe, for a fixed k € [n], a
bijection v: T¥-1(110,201) — 1%(110,201).
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Fix e = (e1,...,e,) € I871(110,201). If e has no copy of 101 ending at position k,
then e is also in I¥(110,201), and we set 1)(e) = e. Suppose now that e has a copy of
101 ending at position £, and fix ¢ < j < k such that e;eje;, is order-isomorphic to 101.
In addition, choose 7 and j in such a way that the value e; is as small as possible. We

now define a sequence e’ = (€}, ...,e),) = 1 (e) as follows: the entry e}, is equal to e;, and

every other entry of €’ is equal to the corresponding entry of e. Informally speaking, 1
replaces the value of e, with a smaller value, so that a copy of 101 ending at position k
in e turns into a copy of 100; if there are more possible values achieving this, the smallest

one is chosen. We now check that ¢’ belongs to I%(110,201):

e ¢’ avoids 110: suppose €, e e, forms a copy of 110 in ¢/, for some a < b < ¢. Clearly
k € {a,b,c} otherwise e would contain 110 as well. If £ = a or k = b, then e;ege,
forms a 110 in e, which is impossible. This leaves k = c. If b < j, then eyepe; forms
a 110 in e, and j = b is impossible, since €’ = ¢ while ¢, > ¢e;. Thus, j < b. Now
if e, > e;, then eqepey, forms 110 in e, while if e, < e;, then e;eje, forms either a 201
or a 101 ending at position b < k, which are both impossible.

e ¢’ avoids 201: suppose €, e,e. forms a copy of 201 in €/, for some a < b < ¢. Again,
k is one of a, b, c. If k = a, then e,epe. is a 201 in e. Suppose k = b. Now if e, > ey,
then e epe. is a 201 in e, if e. = e, then we get a 100 ending at position ¢ > k in e,
and if e, < ey, then e;eje. is a 201 in e, all of which is impossible.

e ¢’ avoids 101 ending at positions 0,1,...,k: there can be no 101 ending at
¢ < k in €', because e would contain it as well. Suppose there is a copy e} eye). of
101 ending at k in €’. Now if b < j, then e,epe; is a copy of 101 ending at j < k in
e, which is impossible, and if b > j, then b should have been chosen instead of j in
the choice of 7 and j above, since e;epe; is a copy of 101 with e, < e;, contradicting
the minimality of e;.

e ¢’ avoids 100 ending at positions k+1,...,n: suppose €, e;el. is a copy of 100
with ¢ > k. If k = b, then e;eje. forms a 100 in e, while if k& # b, then e epe. is a
copy of 100 in e.

Having verified that t(e) is in 1¥(110,201), we now show that the mapping ¢ can be
inverted by defining a function *: 1¥(110,201) — I¥71(110,201) and showing that it
is the inverse of ¥. Choose ¢ € I¥(110,201). We will find a sequence *(e/) = e €
1¥-1(110,201) as follows. If ¢’ has no 100 ending in k, then it belongs to I¥=1(110,201)
and we set ¥*(e/) = €',

Suppose there is a copy e;e’e; of 100 in €', and choose ¢ and j so that €] is as large
as possible. Define ¢*(¢’) = e = (ey, ..., e,) to be the sequence with e, = €}, and all the
other entries of e are the same as the corresponding entries of ¢’. Informally, we increase
the value of €], to turn a copy of 100 ending in k into a copy of 101, and choose the largest
possible value to achieve this. In particular, e;e;e; is now a copy of 101 ending at position
k in e.

Let us check that e is in I¥71(110, 201):
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e avoids 110: suppose egepe. is a copy of 110 in e. If ¢ = k, then €] ejel. is a copy of
110 in €', and if k = a, then ejeye;. is a copy of 110 in ¢'. Suppose k = b. If e. > ¢,
then ejeer, is a copy of 201, if e, = €, then ejele;, is a copy of 100 ending at ¢ > k,

/
1jc iejec

and if e. < ¢}, then ejeje; is a copy of 110.

e e avoids 201: suppose e,epe. is a copy of 201 in e. If £ = a, then ejeyel, is a copy

of 201 in €', and if k = b, then €/ eje, is a copy of 201 in e’. Suppose k = c. If
b > j, then e;e’e; forms a 201 in €', hence b < j. Then eje’e; forms a 100, and since

el > el, we should have chosen «a instead of i before.

e e avoids 101 ending at positions 0,1,...,k — 1: this is clear since the first
k — 1 positions of e have the same values as the corresponding positions of ¢’.

e e avoids 100 ending at positions k, ..., n: suppose e,epe, is such a copy of 100
with ¢ > k. If k = a, then ejeje! is a copy of 100 in ¢’ ending in ¢ > k. If k = b, then
eqeve, is a copy of 201 in ¢’. Finally, if k = ¢, then either b > j, and eje}e; forms
a 101 in €' ending at b < k, or b < j and e, e’e; forms a copy of 100 with e, > e,

contradicting again the choice of 7.

Hence *(€) is in I¥71(110, 201).

We now check that for any e € I¥-1(110,201), 1*((e)) = e. This is clear when e has
no copy of 101 ending at k as then e belongs to I¥71(110,201) N I¥(110,201) and both
v and ¢* maps e to e. If e has a copy of 101 ending at k, then v chooses such a copy
eje;jer with e; smallest possible, then changes it into a copy of 100 by decreasing the k-th
element appropriately, resulting in a sequence ¢’ = ¢(e). To show that * reverses this
operation, we need to argue that e’ has no subsequence €/ e;e) forming a copy of 100, with
e/, > e;. This holds, because if such a subsequence existed, then e,eye, would have been
a copy of 201 in e, which is impossible. Hence ©*(¢(e)) = e.

Finally, we check that ¢(¢*(e’)) = €’ for any €’ € I¥(110,201). Again, the case when
e’ has no copy of 100 ending at k is trivial. Suppose e;e’e; is a copy of 100, with e} as
large as possible, so * changes ¢’ into a sequence e whose k-th element is equal to €.
We need to show that there are no a and b such that a < b < k, e,eper, is a copy of
101, and e, < e;. If such a and b existed, then either b < j, and e,epe; forms a copy of
201 in e, or b > j, and €jeye;, would form a copy of 101 ending at & in €', contradicting
¢’ € I5(110, 201). 0

Theorem 23. We have
{101, 201, 210} kS {110, 201, 210}.

Proof. Let e € I,, be an inversion sequence that avoids 201 and 210, and let € [n]y be
an integer. We will say that e contains 110 at height k if e contains the subsequence kk¢
for some ¢ < k, or in other words, e contains a copy of 110 in which the two symbols ‘1’
correspond to the value k. Similarly, we say that e contains 101 at height k if it contains
the subsequence klk for some ¢ < k.

For m € [n]o, we will say that a sequence e € I, is an m-hybrid sequence if it satisfies
the following properties:
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e ¢ avoids 201 and 210,
e for every k < m, e avoids 110 at height k£, and

e for every k > m, e avoids 101 at height k.

Note that 0-hybrid sequences are precisely the sequences from I,,(101,201,210), while n-
hybrid sequences are precisely the elements of 1,,(110,201,210) (recall that in a sequence
e € I, all the elements have value at most n — 1). We will show, for every m € [n — 1],
that there is a bijection 1 between m-hybrids and (m + 1)-hybrids.

Fix an m-hybrid sequence e = (e, ..., e,). By definition, it must avoid 101 at height
m. If the sequence also avoids 110 at height m, then it is an (m + 1)-hybrid, and we set
w(e) =e.

Suppose then that e contains 110 at height m. Let e; be the leftmost occurrence of m
in e. We say that an element e; is m-low if j > i and e; < m. Note that e must contain
at least one m-low element (since e contains 110 at height m), and that all the m-low
elements have the same value (otherwise e would contain 201 or 210). Let ¢ be the value
of the m-low elements.

We also say that an element e; is an m-repeat if j > ¢ and e; = m. The sequence must
contain at least one m-repeat, since it contains 110 at height m, and all the m-repeats
must appear to the left of any m-low element, since e avoids 101 at height m. Note also
that any element larger than m in e must appear to the right of any m-repeat, otherwise
e would contain 210.

We now construct a sequence €’ = 1)(e) as follows: for any j, if e; is an m-low element,
we define e;» = m, if e; is an m-repeat, we define e;- = ¢, and in all other cases we define
e; = e;. Informally, ¢ changes m-low elements into m-repeats and vice versa. Thus, in
e’, all the m-repeats are to the right of all the m-low elements, and any copy of 110 at
height m in e is transformed into a copy of 101 at height m in €'.

We claim that ¢’ is an (m+ 1)-hybrid. It is clear that ¢’ is an inversion sequence (since
it has the same positions and values of strict LR maxima as e) and that it avoids 110 at
height m (since all its m-repeats are to the right of all the m-low elements). It is also
straightforward to check that ¢ avoids both 210 and 201. Furthermore, for any k& > m
any copy of 101 at height & in €’ implies that the same three positions form a copy of 101
at height k£ in e, which is impossible. Finally, for k& < m if €’ contained a copy e, e;e’. of
110 at height k, then necessarily b < ¢ and either ¢ < 7 as well or €, is an m-low element.
In any case, e would contain 110 at height £ as well, which is impossible.

Hence, €’ is an (m+1)-hybrid. Conversely, any (m+1)-hybrid sequence is either an m-
hybrid already (if it avoids 110 at height m), or is transformed into an m-hybrid sequence
by exchanging the m-low and m-repeat elements, inverting the operation v defined above.
Therefore, the number of m-hybrid sequences is independent of the choice of m € [n]o,
implying the theorem. O

Remark 24. Note that by combining Theorem 23 with the identity 7[{100,201,210}] =
T1{101,201,210}] of generating trees (see Class 135 in Table 3), we obtain

{100,201,210} & {101,201, 210} ~ {110,201, 210}.
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Theorem 25. We have the equivalence
{011, 120,201} ~ {011, 120, 210},

and the equivalence is witnessed by a bijection from 1,(011,120,201) to 1,(011,120,210)
that preserves the positions and values of strict LR mazima, the positions and values of
weak LR mazima, and the number of occurrences of each symbol.

Proof. We will describe a bijection between the sets
A:=1,(011,120,201) and B :=1,(011, 120, 210),

but first we will analyze the structure of the inversion sequences in the two sets A and B.

An inversion sequence e = (ey,...,e,) € I, that has k strict LR maxima can be
uniquely decomposed into a concatenation e = By B, - - - By, where B; is the subword of e
that begins with the ¢-th strict LR maximum and ends with the element immediately pre-
ceding the (i+1)-th strict LR maximum. For example, with e = (0,0,0,2,0,1,3,3,5,3,4),
we have (after omitting redundant punctuation) B; = 000, By = 201, B3 = 33, and
B, = 534. We will call B; the i-th LR block of e.

Note that e avoids 011 if and only if each value greater than 0 appears at most once
in e. Note further that if e avoids 120, then for any two LR blocks B; and B; with i < 7,
the smallest value in B; is at least as large as the largest value of B;; in other words
max B; < min B;. Furthermore, the previous inequality is strict, except perhaps when
j=1+1

It follows that for any e € I,(011,120), any copy of the pattern 210 must appear
within a single LR block of e, and also any copy of the pattern 201 must appear within
a single LR block of e.

Suppose that an inversion sequence e avoids 011, and let B; = byby - - - b,,, be its i-th LR
block. Note that B; avoids 210 if and only if bybs - - - b, is a weakly increasing sequence,
and B; avoids 201 if and only if bybs - - - by, is weakly decreasing — here we use the fact that
due to O11-avoidance, either all the elements of B; are zeros, or by is the unique maximum
of BZ

For a sequence B; = biby - - b, let B denote the sequence byb,,by,—1 - - - b, i.e., the
sequence obtained from B; by reversing the order of all the elements after the first one.
We now describe an involution ¢ on I, which, when restricted to the set A, yields the
required bijection between A and B. Fix e € I,,, and decompose it into LR blocks as
e = B1By--- By. Define 9(e) as the concatenation B Bj--- Bf. Observe that ¢(e) is
again an inversion sequence, B is its i-th LR block, and ¢ (¢(e)) = e. Moreover, e
belongs to A if and only if ¥ (e) belongs to B. Thus, the restriction of ¢ to the set A
provides the required bijection.

By construction, ¢ preserves the positions and values of strict LR maxima and the
number of occurrences of each element. Moreover, when restricted to 011-avoiding se-
quences, v also preserves the positions and values of weak LR maxima, since in a 011-
avoiding sequence, the only weak LR maxima that are not strict LR maxima appear in
the first LR block, which is unchanged by . O]
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Since the bijection used to prove Theorem 25 preserves the number of occurrences of
each element as well as the number of occurrences of each element as weak LR maximum,
we know that the bijection preserves the avoidance of any conservative set of patterns.
Thus, by the same argument as in Corollary 20, we get the following consequence.

Corollary 26. For any conservative set of patterns C, we have C' U {011,120,201} ~
C U {011, 120,210}. For example, taking C = {000}, we get {000,011,120,201} L
{000,011, 120, 210}.

Theorem 27. We have
{101,120, 201} L {101,120, 210}.

Proof. Our argument is very similar to the proof of Theorem 25. We consider again the
decomposition of an inversion sequence e € I, into LR blocks By, ..., By. Again, if e
avoids 120, then for any two LR blocks B; and B; with i < j, we have max B; < min Bj,
with equality only possible when j = ¢ + 1. It follows that any copy of 210 or 201 in e
must be confined to a single LR block.

If in addition to 120 the sequence e also avoids 101, then the equality max B; =
min B; 1 can only occur when all the elements of B; are equal to max B;. Moreover, in
an inversion sequence that avoids 101, in every LR block B;, all the elements equal to
max B; appear consecutively at the beginning of B;. We will say that the elements of B;
that are equal to max B; form the head of B;, and the remaining elements form the tail of
B;; note that the tail may be empty. Note also that B; avoids 210 if and only if its tail is
a weakly increasing sequence, and it avoids 201 if and only if its tail is weakly decreasing.

For an LR block B;, let B} denote the sequence obtained by keeping the head of B;
the same, and reversing the order of elements in the tail of B;. For a sequence e € I,
with LR block decomposition By Bs - - - By, define 1(e) as ¢(e) = By B; - - - B;. We observe
that 1 is an involution on I,,, which restricts to a bijection between I, (101, 120, 210) and
I,,(101,120,201). O

The argument we used to deduce Corollary 26 from Theorem 25 can be used here
as well, since the bijection we used to prove Theorem 27 has all the required statistic-
preserving properties.

Corollary 28. For any conservative set of patterns C, we have C' U {101,120,201} ~

C U {101, 120,210}. For exzample, taking C = {000}, we get {000,101, 120,201} X
{000, 101, 120, 210}.

Theorem 29. We have
{100, 120,201} L {110,120, 201}.

Proof. We again apply the decomposition if e € I, into LR blocks Bi,..., By, as in
Theorems 25 and 27. If e avoids 120, this implies that for any ¢ € [k], the maximum of B;
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cannot be larger than the minimum of B;,;. This implies that in a 120-avoiding sequence,
any copy of any of the patterns 100, 110 or 201 must be confined to a single LR block B;.
We shall therefore investigate the structure of individual blocks imposed by avoidance of
these patterns.

The avoidance of 201 implies that in each LR block B = b1by---b,,, the elements
smaller than the maximum b; must form a weakly decreasing sequence. If we further
impose 110-avoidance, this means that every value other than the maximum or the min-
imum must appear at most once, and moreover, if there are any further occurrences of
the maximum value by, these must appear after all the other values. In particular, for
e =1,(110,120,201), each LR block B of e has the structure B = byby - - - bq_lb‘;bl{, where
by > by > -+ >0y, a>1and b > 0. Conversely, we routinely verify that if e € I, is an
inversion sequence whose every block has this structure, and additionally the maximum
of B; is not larger than the minimum of B;, 1, then e belongs to I,(110, 120, 201).

Assume now that e is from I,,(100,120,201), and let B = by ---b,, be an LR block
of e. Avoidance of 100 means that each value in B smaller than the maximum b; can
only appear once. Avoidance of 120 further means that any occurrence of the maximum
value by can only appear either before all the smaller values or after them. Thus, the
block has the form B = b‘be-~-bq_1bqb’1’, where by > by > -+ > by, a > 1 and b > 0.
Conversely, if e € I,, is an inversion sequence whose every block has this structure, and
additionally the maximum of B; is not larger than the minimum of B, 1, then e belongs
to I1,,(100, 120, 201).

It is now clear how to transform bijectively a sequence e € 1,(110,120,201) into
a sequence e* € I,(100,120,201): we partition e into LR blocks and then transform
each LR block of e, which as we know has the form bybs - - - bq,lbgbl{, into the sequence
b3by - - - by_1b,b%. This changes e into a sequence e*, which has the same strict LR maxima
as e, and belongs to I,,(100, 120, 201). ]

Theorem 30. We have
{000, 100, 101} L {000, 100, 110}.

Proof. Let e € I, be an inversion sequence that avoids 000 and 100, and let k € [n]y be
an integer. We will say that e contains the pattern 101 at height k if it contains a copy of
the pattern 101 in which the symbol 1 of the pattern is represented by the symbol £ in e;
in other words, e contains 101 at height k if it contains a subsequence of the form k/¢k for
some ¢ < k. Similarly, we say that e contains 110 at height k£, if it contains a subsequence
kkl for some ¢ < k.

We will say that an inversion sequence e € I,, is an m-hybrid sequence, if it satisfies
the following properties:

e ¢ avoids 000 and 100,
e for every k < m, e avoids 101 at height k£, and

e for every k > m, e avoids 110 at height k.
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Note that the 0-hybrid sequences are precisely the sequences avoiding {000, 100, 110},
while the n-hybrid ones are precisely the avoiders of {000, 100,101}. Thus, the theorem is
equivalent to the statement that 0-hybrid sequences are equinumerous with the n-hybrid
ones. To prove this, we will in fact show that the number of m-hybrid sequences does not
depend on m. To this end, we now describe, for any m € [n — 1]o, a bijection 9, between
the m-hybrid and the (m + 1)-hybrid sequences.

Fix an m-hybrid sequence e = e; - - - e,,. If e has at most one occurrence of the symbol
m, then it contains neither 101 nor 110 at height m, and therefore it is also an (m + 1)-
hybrid sequence. In such case, we define ¢,,(e) = e.

Suppose now that e has at least two occurrences of m. Since e avoids 000, it follows
that e in fact has exactly two occurrences of m. Let these occurrences be e, and ey, with
a < b. Note that e, is a strict LR maximum otherwise we would have a copy on 100 in e.
Note also that all the elements of e after e, are larger than m, otherwise e would contain
a copy of 000, or a copy of 110 at height m, which is impossible in an m-hybrid sequence.

Let us say that an element e; of e is crucial if a < ¢ < b and e; < m. In particular, e, is
a crucial element, and the remaining crucial elements (if any) all form a copy of the pattern
101 at height m with e, and e,. Let 11 <19 < -+ <. = b be the indices of all the crucial
elements, in left-to-right order. We now define a new sequence 1,,(e) = e* = e} ... el as
follows:

e If ¢; is not a crucial element, then e = e;.
o If ¢; is the leftmost crucial element (i.e., i = iy), we set ef = e, = m.

e If ¢; is a crucial element, but not the leftmost one (i.e., i = i, for some ¢ > 1), we
let e; be equal to the immediately preceding crucial element of e, i.e., € = ¢; _,.

Intuitively speaking, we obtain e* from e by performing a cyclic shift of the crucial el-
ements, with the rightmost crucial element being moved to the position of the leftmost
one, and any other crucial element being moved one step to the right in the subsequence
of crucial elements.

We claim that e* is an (m+ 1)-hybrid sequence. First note that the strict LR maxima
of e coincide with those of e*, which implies that e* is indeed an inversion sequence. Note
also that every symbol has the same number of occurrences in e* as in e, and in particular
e* avoids 000. Also, in e* as in e, each symbol has at most one occurrence that is not a
strict LR maximum, implying e* avoids 100. It remains to analyze the copies of 101 and
110 at various heights. Note that the symbols smaller than m form the same subsequence
in e as in e* (although not necessarily at the same positions), and in particular, e* avoids
101 at height k for each k£ < m, because e avoided it. Moreover, e* also avoids 101 at
height m, since in e*, the two occurrences of m (namely e} and e} ) have no element
smaller than m between them. It remains to check that e* avoids 110 at every height
k > m: to see this, note that the elements larger than m are identical in e* as in e, and
for any ¢ € [n], we have e < m <= ¢; < m. Thus, any copy of 110 at height k¥ > m in
e* would imply that the same positions in e also have a copy of 110 at the same height,
which is impossible. We conclude that e* is an (m + 1)-hybrid sequence.
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To show that the mapping 1, is a bijection, we describe its inverse v, . Suppose ¢
is an (m + 1)-hybrid sequence. If it has at most one occurrence of m, we put ¥, !(e) = e,
otherwise e has two occurrences of m, say e, and e,. Note that there are no elements
smaller than m between e, and ey, since e avoids 101 at height m. We say that an element
e; is crucial, if i > b and ¢; < m. To define e* = 1! (e), we rearrange the crucial elements
by moving the leftmost crucial element (namely e,) to the position of the rightmost one
and moving every other crucial element to the position of the immediately preceding one.
We easily check, with a similar argument as in the preceding paragraph, that e* is an
m-hybrid sequence, and that the mapping we now described is the inverse to the mapping
1, defined above. n

Theorem 31. We have
{010,120, 101} L {010,120, 110}.

Proof. We use a similar argument, and analogous terminology, as in the proof of Theo-
rem 30.

Let e € I,, be an inversion sequence that avoids 010 and 120, and let k € [n]y be an
integer. We will again say that e contains the pattern 101 at height k if it contains a
subsequence of the form kfk for some ¢ < k, and we say that e contains 110 at height k,
if it contains a subsequence kk{ for some ¢ < k.

We will say that an inversion sequence e € I,, is an m-hybrid sequence, if it satisfies
the following properties:

e ¢ avoids 010 and 120,
e for every k < m, e avoids 101 at height k£, and
e for every k > m, e avoids 110 at height k.

We again want to show that 0-hybrid sequences are equinumerous with the n-hybrid
ones, and we again do this by proving that the number of m-hybrid sequences does not
depend on m. Hence we again describe a bijection 1, between the m-hybrid and the
(m 4 1)-hybrid sequences.

Fix an m-hybrid sequence e = e;---e,. Let ¢ be the number of occurrences of the
symbol m in e. If ¢ < 1, then e contains neither 101 nor 110 at height m, and therefore
it is also an (m + 1)-hybrid sequence. In such case, we define 1,,(e) = e.

Suppose now that ¢ > 1. Let ¢, be the leftmost occurrence of m in e. Let us say that
an element e; of e is crucial if a < i and e; < m. In particular, all the occurrences of
m other than e, are crucial. Note that the crucial elements form a consecutive block of
e starting immediately to the right of e,; in other words, any non-crucial element of e is
either one of e, eq, ..., €., or it appears to the right of the rightmost crucial element. If
not, then e would contain 010 or 120 (in the latter case, using e, in the place of ‘1’).

Note also, that since e avoids 110 at height m, all the ¢ —1 crucial elements equal to m
appear to the right of any crucial element smaller than m; in particular, both the crucial
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elements equal to m and those smaller than m form consecutive blocks. We now create
a sequence e* = 1,,(e), by exchanging the order of these two blocks, that is, by shifting
the crucial elements equal to m to the beginning of the sequence of crucial elements,
and by shifting every other crucial element by ¢ — 1 steps to the right. To describe
¥, more formally, let p be the number of crucial elements of e smaller than m; as we
know, these elements are e,i1,€442,--.,€q4p, and they are followed by ¢ — 1 elements
Catptls- - s €atprq—1 all equal to m. Then e* is defined as follows:

o If e; is not crucial, then e = e;.
e Foric{a+1,a+2,...,a+q— 1}, we have e¢f = m.
e Foriec{a+qa+q+1,...,a+p+q—1}, we have e] = e;_441.

We easily observe that e* is an inversion sequence, that it avoids 010, that it avoids
101 at all heights £ < m, and that it avoids 110 at all heights & > m, using the same
ideas as in the proof of Theorem 30. To see that e* is an (m+ 1)-hybrid, we need to check
that it avoids 120. Suppose for contradiction that a triple ejeje; with ¢ < j < k forms
a copy of 120 in e*. Necessarily at least one of the three elements must belong to the
block of crucial elements, i.e., at least one of the three indices ¢, 7, K must belong to the
set {a+1,a+2,...,a+p+q—1}. Since e}, is the smallest and rightmost of the three, it
must belong to this crucial block, i.e., a < k < a+ p+ ¢q. If e} is the only such element,
i.e., if j < a, then e also contains 120 formed by the same three values ejefe; (although
the last value may be at a different position than in e*). If, on the other hand, we have
i<aand a<j<k<a+p+q, then necessarily i < a (otherwise ef = e* = m, which
cannot be smaller than e}), and we may replace e} with e = e, = m to transform the
situation to the previous case. Finally, if all three elements are in the crucial block, i.e.,
a <i<j<k<a+p+q, then the three values ejeje; are all smaller than m (otherwise
e; = m, but no crucial element equal to m has a smaller crucial element to its left in e).
But that means that the three elements e;,_¢11,€;_¢11, €x—q+1 form a copy of 120 in e, a
contradiction. This shows that e* is indeed an (m + 1)-hybrid.

We easily observe that 1, is a bijection between the m-hybrids and (m + 1)-hybrids.

m

We may observe that the bijection in the proof of Theorem 31 preserves the number
of occurrences of each element, as well as the number of its occurrences as weak LR
maximum. This leads to the usual conclusion.

Corollary 32. For any conservative set of patterns C, we have C' U {010,120,101} ~
C'u {010,120, 110}.

Theorem 33. We have

{010, 210,100} ~ {010,210, 101}.
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Proof. For a sequence e = ejes - - - e,, we say that an element e; is a repeat if the value e;

already appears among the elements ey, ..., e;_;. Consider now a sequence e = ey ---e, €
I,,(010,210). Observe that such a sequence avoids 100 if and only if every repeat e; is
equal to the largest element among ey, ..., e;_1, while the sequence avoids 101 if and only

if every repeat e; is equal to e;_1.

We construct a bijection ¢: I,,(010,210,100) — I,(010,210,101) as follows: from a
sequence e € I,(010,210,100), we obtain a sequence e* = 1(e) by replacing, in left-to-
right order, the value of every repeat e; in e with the value e; := e,_;. Note that e* has the
same strict LR maxima as e and in particular, it is again an inversion sequence. Note also
that e* has repeats at the same positions as e. In particular, 1 is injective, and its inverse
1~1(e*) is obtained by replacing every repeat e} of e* by the value max{ef,...,ef ;}.

We may routinely check that neither 1(e) nor ¢~1(e) can contain any copy of 010 or
210, as long as e avoids both these patterns. It follows that 1 is a bijection witnessing

that {010,210, 100} L {010, 210, 101}. O
Theorem 34. We have
{010,101, 210} L {010,101, 201}.

Proof. As in the proof of Theorem 33, we call an element e; of a sequence e =e¢;---¢, a
repeat if it is equal to some of the previous elements. Notice that a sequence of e =¢;---¢,
avoids the two patterns 010 and 101 if an only if every repeat e; is equal to the immediately
preceding element e; ;. In other words, in a sequence avoiding 010 and 101, all the
occurrences of a given value v appear in a single consecutive block.

We have seen in Fact 15, that the patterns 210 = 0510 and 201 = 0501 are shape-Wilf
equivalent. Since the two patterns are top-first, this implies by Lemma 13 that they are

also rL—equivalent. However, the bijection witnessing this equivalence does not preserve
avoidance of 010 and 101, so we cannot use it directly. Instead, we combine the bijection
with a ‘compression’ step, which removes repeats from the sequence.

Fix e =e;---e, € 1,(010,101). As we have seen, for each value v appearing in e, the
occurrences of v will form a consecutive block of elements. The compression c(e) of e is
the sequence cjcs ... ¢, obtained from e by replacing, for each v € {ey,...,e,}, all the
(necessarily consecutive) occurrences of v in e by a single occurrence. For example, with
e = 0001444435, we have c(e) = 01435. Note that c(e) is not necessarily an inversion
sequence. Observe that all the elements of ¢(e) are distinct and that c(e) avoids 210 if
and only if e avoids 210, and likewise for the pattern 201. For j = 1,...,k, let m; denote
the number of occurrences of the value ¢; in e. For instance, with the above example of
e = 0001444435 and c(e) = 01435, we have m; = 3, mg =1, m3 =4, my = 1 and ms = 1.

Suppose now that the inversion sequence e additionally avoids the pattern 210. Then
c(e) avoids 210 as well, and by Fact 15, there is a bijection transforming the 210-avoiding
rectangular filling F'(c(e)) into a 201-avoiding rectangular filling F'(c¢*), for some 201-
avoiding sequence ¢* = ¢ ---c;. Additionally, we know that ¢* has the same positions
and values of weak LR maxima as c¢(e), and the same number of occurrences of each
symbol as c(e). In particular, the elements of ¢* are pairwise distinct. We now use the
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values myq, ..., my, defined above, to transform c¢* into a sequence e*, obtained from c*
by replacing each element ¢ by a sequence of m, consecutive copies of ¢;. Note that e*
has the same positions and values of weak LR maxima as e, and in particular, e* is an
inversion sequence. By construction, e* belongs to I,,(010,101,201). All the steps of the
transform from e to e* can be inverted, and therefore the transform yields a bijection
between I,,(010, 101, 210) and I,(010, 101, 201). O

Note that the bijection used in the preceding proof does not necessarily preserve the
number of occurrences of each symbol, and therefore it does not allow us to add any
conservative set to the list of forbidden patterns. However, we may directly observe that
the bijection preserves 0™-avoidance for any m > 1. We state this as a corollary.

Corollary 35. For any m > 1, we have
{0™,010, 101,210} ~ {0™,010, 101,201} and {10™,010, 101,210} ~ {10™,010, 101, 201}.

Corollary 36. The four sets of patterns A = {010, 100,201}, B = {010, 100,210}, C =
{010,101,201} and D = {010,101,210} are all I- Wilf-equivalent.

Proof. We know that A i B by Corollary 20 (see Example 21), B XD by Theorem 33,
and C' A D by Theorem 34. O

Theorem 37. We have
{000,010, 201} L {000,010, 210}.

Proof. Avoidance of 000 means that each value can appear at most twice. As in the proof
of Theorem 34, we will use the shape-Wilf equivalence of 201 and 210. But we again need
to take care of repeated elements.

For a sequence e € I,, we say that e; is a low repeat, if e; is a repeat (i.e., e; €
{e1,...,ei_1}), and moreover, ¢; is not a weak LR maximum.

We claim that if the sequence e avoids 000 and 010, and moreover avoids at least one
of the two patterns 201 and 210, then every low repeat e; satisfies e; = e;_1. To see this,
suppose that e; is a low repeat such that e; = e; for some 7 < ¢ — 1. Since each value
appears at most twice in e, we know that all the values between e; and e; are different
from e;. If at least one of these values is larger than e;, we obtain a copy of 010. If all
these values are smaller than e;, then e; is not a weak LR maximum (recall that e; is not a
weak LR maximum since it is a low repeat), hence there is a k < j such that e, > e; = e;.
For any ¢ strictly between j and ¢, we further have e, < e; = e;. Thus, exeje, is a copy of
210, while egege; is a copy of 201, contradicting our assumptions.

We will now use the same compression argument as in the proof of Theorem 34, except
now we will only compress low repeats. Fix e € I,,(000,010,201). Let c(e) = ¢;---cx be
the sequence obtained from e by erasing all the low repeats. Note that c(e) has the same
values of weak LR maxima as e (although not necessarily at the same positions). Note
also that any value ¢; that is not a weak LR maximum is distinct from all the other values
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in c(e). Let us say that an element c; is compressed if ¢; is not a weak LR maximum
in ¢(e) and e has two occurrences of the value ¢; (hence one of them is necessarily a low
repeat).

Since c(e) avoids 201, we may apply the bijection from Fact 15 to transform it into
a 210-avoiding sequence c¢* = ¢ ---¢; with the same weak LR maxima and the same
multiplicities of elements as c(e). In particular, if ¢; is compressed in c(e), then ¢j is not
a weak LR maximum (because c¢; isn’t). We claim that ¢} is distinct from all the other
elements of ¢*; indeed, if the value ¢} occurred more than once in ¢*, then it would also
occur more than once in ¢(e), hence all its occurrences in ¢(e) would have to be weak
LR maxima, but since ¢* has the same weak LR maxima and at the same positions as
c(e), this would mean that in c*, the value ¢ has more occurrences than in c(e), which
contradicts the properties of the bijection.

We then ‘decompress’ ¢* into a sequence e* in an obvious way: whenever an element c;
is compressed in ¢(e), modify ¢* by replacing ¢; by two consecutive copies of ¢;. It follows
from the discussion in the previous paragraph that this cannot create a copy of the pattern
000, and it is easy to see that this cannot create a copy of 010 or 210 either. We see that
e* has the same weak LR maxima as e, and therefore it is an inversion sequence, hence
e* € 1,(000,010,210). The mapping e — e* can be inverted in an obvious way and is the
required bijection. O

Theorem 38. We have
{000, 101, 201} ~ {000, 110, 210}.

Proof. Note that a sequence avoids the pattern 000 if and only if each symbol appears at
most twice in it. We will prove the theorem by showing that there is a bijection ¢ between
I,,(101,201) and I,(110,210) which additionally preserves the number of occurrences of
each symbol. In fact, ¥ will also preserve the positions and values of strict LR maxima.

To describe the bijection, we consider an arbitrary inversion sequence e =e;---¢e, €
I,. First, we describe a procedure that encodes e into a particular filling of a Ferrers
diagram.

For ¢ € [n], define h; = max{e,eq,...,e;}. Note that hy < hy < --- < hy,, and that
h,, is the height ht(e) of e. Consider the filling F'(e), and recall that this filling has h,, + 1
rows and n columns. We will now restrict the filling F(e) to a filling of a Ferrers diagram,
by removing from F(e) every box (i, ) such that j > h;. Let D be the resulting filling.
Note that all the boxes we removed from F(e) were O-cells, and that D is a filling of a
Ferrers diagram. In fact, the underlying diagram of D is the smallest Ferrers subdiagram
of F(e) which contains all the 1-cells of F'(e). Note also that the shape of D only depends
on the values of hy, ..., h,, and therefore it only depends on the positions and values of
the strict LR maxima of e.

As the next step, we transform the filling D into its subfilling D~ be removing from
D all the columns corresponding to the strict LR maxima of e (that is, if e; is a strict
LR maximum of e, we remove from D its i-column). After removing a column, we shift
the columns to its right by one step to the left, to fill the gap. D~ is again a filling of a
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Ferrers diagram. The key observation is that e belongs to I,,(110,210) if and only if D~
avoids the pattern 10 (i.e., it avoids the 2 x 2 subdiagram F(10) = }9), while e belongs
to I,,(101,201) if and only if D~ avoids the pattern 01.

We now use the fact that 10 and 01 are shape-Wilf equivalent to describe the required
bijection v. Start with an inversion sequence e € I,,(101,201). Construct successively the
fillings D and D~ as described above. As we observed, D~ avoids 01. By Fact 15, D™ can
be bijectively transformed to a filling D~ which avoids 10 and has the same row-sums.
We then enlarge D~ into a filling D, by reinserting the columns that were removed from
D to obtain D~. These columns will have the same position and filling in D as in D.
We now use D to define a sequence é = é, ..., é,, where & = j if and only if D has the
1-cell (i,7). Note that € has the same strict LR maxima as e, and in particular, it is an
inversion sequence. Since D~ avoided 10, we easily deduce that é avoids 101 and 201.
Defining ¢ (e) := €, we have obtained the required bijection. ]

Theorem 39. We have
{102,110, 210} L {102,120, 210}.

Proof. Let us say that an element e; of an inversion sequence e = ejes - - - e, € I, is high
if there is an element e; such that ¢ < j and e; > e;. An element is low if it is not high.
Observe that the low elements must form a weakly increasing subsequence of e. Moreover,
e avoids 210 if and only if its high elements form a weakly increasing subsequence. We
will now characterize the two classes of inversion sequences of interest, and state the
characterization as a pair of claims.

Claim A. An inversion sequence e belongs to I,,(102,110,210) if and only if it satisfies
the following properties:

e For any high element e, and any low element e;, we have e; > e;.
e The high elements form a strictly increasing subsequence.

e The high elements all appear consecutively, that is, there are no three indices ¢ <
J < k such that e; and e, are high while e; is low.

To prove Claim A, we first easily observe that an inversion sequence containing a copy of
102, 110, or 210 must violate at least one of these three conditions. Conversely, suppose
e violates at least one of the three conditions of the claim. If it violates the first one, it
contains a low element e; and a high element e; with e; > e;. Then necessarily e; is to
the right of e; otherwise e; would be high; moreover, since e; is high, there is a smaller
element ej, to the right of it. But e; cannot be to the right of e;, since e; is low. Thus,
we get ¢ < k < j, and e;, e; and e, form a forbidden copy of 102. If e violates the second
condition, then it contains 110 or 210, which are both forbidden. Finally, if e satisfies the
first two conditions but violates the third one, then it contains 102. This proves Claim A.

Claim B. An inversion sequence e belongs to I,,(102, 120, 210) if and only if it satisfies
these two conditions:
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e For any high element e, and any low element e;, we have e; > e;.

e The high elements all have the same value.

We again easily observe that if e contains 102, 120, or 210, then it violates one of the
two conditions. To see the converse, suppose e violates one of the two conditions. If it
violates the first one, then it contains 102, by the same argument as in the previous claim.
Suppose that e violates the second condition, i.e., it contains two high elements e; and
ej, with e; > e;. If i < j, then e contains 210, while if 7 > j, then e contains 102 or 120.
This proves Claim B.

It is now easy to describe a bijection ¢: I,,(102,110,210) — I,(102,120,210). Fix
e=ep---e, €1,(102,110,210). If e has no high element, then it avoids 10 and therefore
it is a weakly increasing sequence. In such case, we define 1)(e) = e. Suppose that e has
at least one high element. Let ey be the leftmost high element, and let m > 0 be the
number of high elements other than e;. We know from Claim A that these remaining high
elements are exy1, €12, ..., Exrm, and that e < epr; < --- < égprm. Fore=0,1,... m,
define d; = ejy; — ex, so that we have 0 = dy < dy < dy < --- < d,,,. Note that, by the
definition of inversion sequence, we have

kE4+m > epim = e+ dn. (1)

We now transform the sequence e into a sequence ¢ = v(e) € 1,(102, 120, 210) by the
following two steps:

1. Delete from e all the high elements eg, exi1,. .., €xim, leaving only the weakly in-
creasing sequence of length n — m — 1 formed by the low elements of e.

2. Into the obtained sequence, insert m -+ 1 new symbols, all of them equal to e,
so that the newly inserted symbols will appear at positions &k +m — d,,,, k + m —
dm_1,...,k+m —dy=k+ m. Call the resulting sequence €.

We claim that ¢’ has exactly m + 1 high elements, and these correspond precisely to the
elements inserted in step 2 above. To see that the inserted elements are high in ¢, it is
enough to note that e, was high in e, and therefore e has an element e; smaller than e
which appears to the right of all the high elements e, ex11, ..., €xrm. Since the positions
to the right of ey, are not modified by the mapping e — ¢, we have e; = €, and
this element ¢ guarantees that all the symbols inserted in the second step are high. By
construction, there can be no other high symbols in €.

Let us verify that ¢’ is an inversion sequence. For this, it is enough to check that
each symbol inserted in the second step is smaller than its index. Since all the inserted
symbols have the same value ey, it is enough to verify this inequality for the leftmost
inserted symbol, i.e., to verify e = €}, 4 < k+m — d,,. However, this follows from
(1). We conclude that €’ is an inversion sequence, and from Claim B, it follows that €’
belongs to I,,(102, 120, 210).

To see that the mapping v is a bijection, let us describe a transformation ¢, which will
turn out to be its inverse. Fix f = f;--- f,, € I,,(102, 120, 210). If f has no high elements,
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then it is weakly increasing and we put ¢'(f) = f. Suppose f has at least one high
element, and let f; be the rightmost high element of f. Let m > 0 be the number of high
elements to the left of f.. Fix a sequence 0 = dy < d; < dy < --+ < d,, so that the high
elements of f (in right to left order) are precisely at positions k — do, k — dy, ..., k — d,,.
Recall from Claim B that all the m + 1 high elements are equal to fi. Note that the
definition of inversion sequence implies that

Je = fr—dn <k —dp. (2)
We then transform f into a sequence [’ as follows

1. Delete from f all the high elements, leaving only the weakly increasing sequence of
length n — m — 1 formed by the low elements of f.

2. Into the obtained sequence, insert m+1 new symbols forming an increasing sequence
fes fut+di, fr+da, ..., fr+d,; the symbols are inserted at positions k —m, k—m +
1,..., k. Call the resulting sequence f’.

We may easily verify that the high elements of f’ are precisely the m+ 1 elements inserted
in the second step. With the help of (2), we can verify that f’ is an inversion sequence.
With the help of Claim A, we may then confirm that f’ belongs to I,(102,110,210).
We can then define ¢/(f) = f’, and check that v’ is the inverse of 1. This shows that

both ¢ and ¢’ are injective, and therefore bijections witnessing that {102,110,210} A
{102,120, 210}. O

Our next goal is to establish the I-Wilf equivalence of {021,100} and {101, 102,210},
Recall from Section 2 that the set {021,100} is equipotent to {021,100,201} as well as
to {021, 100,210} (and to {021,100,201,210} as well). It follows that all these sets of
patterns are [-Wilf equivalent.

Theorem 40. We have
{021,100} ~ {101,102,210},

and therefore also {021,100,210} ~ {101,102, 210}.

Proof. Let us say that an element e; in an inversion sequence e is covered if there is a
J < i such that e; > e;. In other words, an element is covered if and only if it is not a
weak LR maximum.

Claim A. An inversion sequence e = eq - - - €,, avoids the two patterns 021 and 100 if
and only if it has at most one covered element, and this element (if it exists) is equal to
0.

To prove the claim, notice that an inversion sequence contains 021 if and only if it
contains a covered element larger than zero. Moreover, a 021-avoiding inversion sequence
has at most one covered element if and only if it avoids 100. The claim follows.

Recall from the proof of Theorem 39 that an element e; of an inversion sequence is
high if there is a j > 4 such that e; > e;, otherwise ¢, is low. The low elements necessarily
form a weakly increasing sequence.
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Claim B. An inversion sequence ¢ = e; - - - ¢, avoids the three patterns 101, 102 and
210 if and only if it satisfies the following conditions:

e Any high element is strictly larger than all the low elements.
e The high elements form a weakly increasing subsequence of e.

e The high elements all appear consecutively, that is, there are no three indices 7 <
J < k such that e; and e, are high while e; is low.

It is straightforward to check that the copy of any of the three patterns 101, 102 and
210 in e implies that e violates at least one of the three conditions of Claim B. Suppose
conversely that e violates one of the conditions. If the first condition is violated, then e
contains a high element e; and a low element e; such that e; < e;. Since e; is high, there
is also an element ej such that ¢ < k& and e; > ej. Since e; is low, it must be to the right
of ey, otherwise, it would be high due to e;. Thus, we have ¢ < k < j and e; < ¢; < ¢,
which means that the three elements form a copy of 101 or 102. If the first condition
holds but the second does not, then e contains 210. Finally, if the first two conditions
hold but the third does not, we again obtain a copy of 101 or 102. This proves Claim B.

We now describe a bijection : I,(021,100) — I,(101,102,210). To describe the
bijection, it is convenient to encode inversion sequences from I,, as lattice paths of a
special form connecting the point (0,0) to the point (n,n). To a sequence e € I,,, we
associate a path P(e) defined as follows.

e For each i € [n], the path P(e) contains a horizontal segment connecting the points
(1 —1,e;) and (i, ¢€;).

e For each i € [n — 1], the path P(e) contains a (possibly trivial) vertical segment
connecting (7, €;) to (7, €;41).

e The path P(e) contains the vertical segment from (n,e,) to (n,n).

Notice that if we orient P(e) from (0,0) towards (n,n), then it can be decomposed into
a sequence of unit-length steps of three types: right-steps going from a point (i,7) to
(1+1,7), up-steps from (i, 7) to (i,7 + 1), and down-steps from (i, j) to (i,j — 1). Notice
also that P(e) is wholly inside the closed triangle with vertices (0,0), (n,0) and (n,n).
Conversely, any lattice path inside this triangle composed of steps of the above three types
encodes a unique inversion sequence.

Fix e € 1,,(021, 100). If e has no covered element, it means that e is a weakly increasing
sequence with no high elements, and we define ¥ (e) = e. Consider therefore that e has a
covered element e;. As we know from Claim A, e; is equal to 0 and it is the only covered
element of e, while the remaining n — 1 elements of e form a weakly increasing sequence.
Define h = e;_1. Since e; is covered, we know that h > 0. Furthermore, let d be the
number of occurrences of the value A in the subsequence ejes - - - e;_1. By monotonicity,
we know that h =e;_1 =e;_9 =--- = €;_4 > €;_q_1. Since e is an inversion sequence, we
know that h = e;,_4 < 7 — d, and therefore h + d < 1.
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The bijection ¢: I,(021,100) — I,(101,102,210) in this case will be described in
terms of a geometric manipulation with the lattice path P(e). We begin by identifying
four auxiliary points W, X,Y, Z on the path P(e):

e W is the point (i —d — 1, h)
e X is the point (i — 1, h)
e Y is the point (i, h)

e 7 is the leftmost intersection of P(e) with the horizontal line y = h + d. Note that
such an intersection point exists since, as we have pointed out, h + d < i so P(e)
must cross the line y = h + d at least once.

These four points partition P(e) into five subpaths, denoted Py, P, ..., Py in their left-
to-right order. Note that P is a horizontal segment of length d, while P, consists of two
vertical segments of length h separated by a single right-step.

We now transform P(e) into a path P’ via the mapping that sends a point (z,y) to
(n —y,n — x). Note that this mapping is the mirror reflection through the line passing
through the two points (n,0) and (0,n). Let W/, X" Y’ Z' be the respective images of
W, X,Y, Z under this mapping, and let P/ denote the image P; for i = 0,... 4.

We now obtain a path P” from P’ by this sequence of steps:

e Delete P/, P;, and all the vertical steps of Fj that belong to the vertical line z = n.

e Take the subpath P (which connects W’ to (n,n)) and move it d steps to the left
and d steps down, and call the resulting path Fj. Notice that the leftmost point
of P} is at the same vertical line as the point Z’, and that all the points of P are
strictly above the horizontal line y = n — 4, while P{ U P; has its topmost point on
this line. Note also that P} has exactly h horizontal steps.

e Take Pj, and move it h steps to the right, calling the resulting path P3’. Note that
the leftmost point of P4 is at the same vertical line as the rightmost point of P,
while the rightmost point of P} is on the vertical line z = n. Note that P} has
exactly d horizontal steps.

e Insert three vertical segments, connecting, respectively, Z’ to the leftmost point of
Py, the rightmost point of B} to the leftmost point of Pj, and the rightmost point
of P! to (n,n). This yields a path P".

Note that for every ¢ € [n], P” has a unique right-step of the form (i — 1, j) to (¢, ) for
some j. In particular, there is a unique inversion sequence ¢’ € I,, such that P” = P(¢);
recall that e, = j if and only if P” has a unique right-step of the form (i — 1, 7) to (i, j).
We define the image of e under 1 to be the sequence €.

With the help of Claim B, we check that ¢ avoids the patterns 101, 102 and 210.
Note that the high elements of €’ correspond precisely to the horizontal steps of BJ, and
these steps are all higher than any of the other horizontal steps. Thus, ¢’ satisfies the first
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condition of Claim B. It follows from the construction, that e’ also satisfies the other two
conditions, hence ¢’ is in 1,,(101, 102, 210).

To show that the mapping v is injective, all we need to do is show that from the
sequence f € I,,(101,102,210), we can uniquely reconstruct the preimage under ¢. If f
has no high elements, then f is weakly increasing, and we have ¢ ~!(f) = f. Suppose
that f has a high element. Let h be the number of high elements (which, as we know,
form a consecutive subsequence in f), and let d be the number of elements that follow the
rightmost high element. We may now define P” = P(f), let P§ be its subpath induced
by the d rightmost horizontal steps, and P} the subpath induced by the h horizontal
steps preceding Py'. With the knowledge of Py, Py, d and h, we can reverse the mapping
P~ P” described above, and obtain the path P encoding the sequence ¢ = ¢)~!(¢’). By
construction, e contains a unique covered element, which is equal to 0, and therefore e is
in I,,(021, 100). m

6 Further results: Trivial Classes

The main goal of our paper was to show there are at least 137 and at most 139 I-
Wilf-equivalences for inversion sequences avoiding triples of patterns of length three, see
Theorem 1. The main tool that we used to achieve this goal was the concept of generating
trees. We remark that by applying the same tool, we can also enumerate several trivial
classes. The results we obtained are summarized in Table 5. The proofs for the classes
in this table are omitted because of their similarity to the analytical proofs presented
in Section 3.

Table 5: Several trivial classes, generating trees 7[B], and generating functions F(x)

Begin of Table 5

Class | B T(B] Fp(z)

1 000,001,012(r) 0 ~ 00,01, 01 ~ 00, 011, 011 ~ 00 z + 2202 + 225 + o7

3 000,011,012(r) 0 ~ 00,01, 00 ~ 001,01, 01 ~ 001 o + 202 + 325 + o7

4 000,010,012(r) 0 ~ 00, 01, 00 ~ 01, 002, z + 222 + 325 + 327 + 22° + 20
002 ~» 01, 0022, 01 ~» 011, 022 ~ 01,

8 000,001,210 am ~ (oo)mbmam+1, bm ~ (00)™; am =01 -m, by = amm 1((1#;;)

z(l—z—a>

10 000,010,011(r) | 0 ~ 00,01, 00 ~ 00, 00, 01 ~ 01 Oeal—22)
14 000,010,100 A~ (anL(jil))anLb",‘ja”,‘j S @ (2m)
j—m .
bmj > (1)) T " 1) S (m 1) (2m42)5
Ay =00 (m = 1)(m — 1)j and by = apyjd, g =m,m+1,. .., 2m
15 000,010,101 Amj = bmamm © - Gy (2m) ‘ Ti>0 Toa) LG=GTD5
bmj ™ G (m41)(m41) U (mA1)(2m42); Gmj = 00 (m —1)(m —1)j,
by = 00---mm, j =m,m+1,...,2m
17 000,012,021 (r) 0 ~» 00, 00, 00 ~ 001, 001, 001 ~» 0011 z + 222 + 4z° + 4z
18 000,012,110(r) 0 ~ 00,01, 00 ~ 001,01, 01 ~ 001,011, 001 ~ 011 z + 222 + 4z° + 4zt + P
19 000,012,101 (r) 0 ~ 00,01, 00 ~ 001, 002, 01 ~ 010, 001, 001 ~ 010, z + 222 + 4z° + 4zt + 220 + 20
002 ~ 001, 0022, 0022 ~ 001
20 000,012,100(r) 0 ~ 00,01, 00 ~ 001, 002, 01 ~ 001, 001, 001 ~ 0011, o + 202 + 425 + 52F 4 2©
002 ~ 0011, 001
1 _2_ .3
25 011,012,100 am ~ b1 bmam i, by ~> b1 by _1cm, ”llﬁ*‘—}
Cm ~> €1 C— 15 @m = 0", by = amm, cm = by 0 (A—z—a2)
2 3 I
28 010,012,210 am ~ b1 bmam i1, bm ~ b bmi am = 0™, b = amm %
—z
1717\/172307312
31 000,010,021 am ~> ag - - ambm, bm ~ aQ - Gyt — -
A = 0011 - (m — 1)(m — 1)m, by = amm
z(l—z+z2)
38 012,101,110 am ~> b1 bmag, g1, bm > by by 1emd, Aoy (1 —aay
Cm o~ b1 by 1ems  de di am = 0™, by = amm, em = bm0,
d =010
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Continuation of Table 5
Class B T[B] Fp(x)
17‘7:7127237(1+a:2)\/172a:73a:2
39 000,021,102 ag ~ bgey, am ~ bmay - ame, e~ boe, o _
. z
bm ~> Gy - ate, ¢y ~ gdih, cm ~ fdmem - - - coe, o2 4 oh
dm ~> femypr - - cah, g~ f, h ~ fdqh;
am =00 (m —1)(m = 1)m, byp = amm,
cm =011---(m — 1)(m — 1)m, dy, = cmym, e = 002, f = 0101, g = 010,
h = 012
_ 2 _ 2_ 3
43 012,101,210 am ~ apy1b1 o bm, e~ e, bm ~ cme™ Loy, z(l—ztw ()51 ?;g+4z z°)
—xT
em ~ eme™ ™1 ay = 0™, e = 0101, by = amm cm = bm0
2 3
47 000,021,120 ag ~ bg(01), 01 ~ ajaq(002), @, ~ bmay -+ - am (002), Lﬂc—;zﬁ _
bm ~> @y - a1(002), 002 ~» bg(002); 12 \/72
am =00---(m —1)(m — 1)m, by, = amm (3—3z—x<) 21—21—31
2
IRV ;1
51 011,102,201 am ~ ayt1bm 1 bm,om, bm,1 ~ dbm 1 bm,m, (Tilr)zfr_zQ:_mf))
bm,j ~ d2esCiby i bmom,  d diam = 0", by, 5 = am3j,
cm = amm(m — 1), d = 010
73221323
52 000,021,110 0~ age, e~ byage, am ~> byyyq - bif, WJF
b ~> ambm - b1 f, f o~ agfi am = 00---mm, by = ap,_1m, 5 x
e =01, f = 002 (z2+2x—2)y/(1+z)(1—3=)
222 (1—x)
55 000,021,101 ag ~ bgeq, am ~ bmay - --ame, bm ~ ai - amyie, — 2z 1, [4]
em ~ by _1dmey - em, dm ~ bmey - g1, e ~ bge; 3z—1+/1—2z—322
am =00---(m —1)(m — 1)m, bym = amm,
cm =011---(m — 1)(m — 1)m, dm = cmm, e = 002
71 010,102,120 am ~> @Gyt 1ambm 2 bmom,
b, €1 G —10mt 1,5 bmt 15,2 0 b= mt1—5
Cm,j ~7 €41 €5, —1%m,Cm—j,1 " Cm—j,m—1—j%m+1—j>
dm ~> Cm—1,1""" Cmfl,w1—2dm? am = 0", b7n,j =amj,
cm,j = 0"mj, dm = 0" mlm
83 010,100,110 am ~ Gyt 13mbm,2 s bm,m,
g~ mj1) " tam o bm g bmumi am = 0™, by j = ami
84 010,101,110 am ~ Gpt1ambm,2 > bm,ms
b j ~ amamia_jbm 2 bm,miam =0", by, i =ami
87 010,100,101 am ~ Gpt1ambm,2 > bm,m,
j—1
b~ (Cm, i) T bmg i 0m g bmyms
Cm,2 ~ ambm 2 bm m, e~ (Cm =17 "2 o1 bm,ms
am = 0™, by, j = ami, ¢y j = 0751
T 3 P S 5 4]
99 021,102,110 am ~ a 1b1 - bm, bm ~ cmdy - -dme, cm ~>c1--c 1fs 1—8x+26x° —44x° 4432~ —222°+22°
m+ m+ 20(1—z)4(1—2x)
dm ~ dy - -dmcemg, e~ eg, f~c1f, g~ giam =07, Neerrs
bm = aml, ¢cm = amll, dm = aml2, e = 010, f = 0113, g = 0101 T - - - -
1—7x419z% —25z° +18z% —4a
100 021,102,120 am ~ Gp1b1 b, bm2~., baicl - emd, et _
Cm ~> €1 Cms d~ d%; am = 0™, by = aml, cm = am 12, Vvi—dz
d = 010 e
pj 3 d13.0
1—5z48x2 —4a° — 3
101 021,100,102 am ~ @py1b1 - bm, by ~ bm‘*'lf,,l Cemd, S5+ ;T’(lizw)zlz +3x°
em ~ el Cpp1e,  d~diam =0, by = am1, ¢m = am12, (14e) Ttz
d = 010, e = 0120 S— -
102 021,101,102 Am ~ Gpyp1blcbm, bm o~ b byie, e~ ¢ oam =07, 1-3z+2= ;211' —(-2)/1-dz
b = aml, ¢ = 010 z(l—wx)
104 021,100,110 am ~ apq1blccbm, by, ~ cgnbl < b, Cm ~> C1 Gyt (1—x)(1—3;()11(21;2z) 1—4x
e~ cie; am = 0", by, = aml, ¢y = am 10, e = 0103
119 101,102,201 [4]
127 021,201,210 A ~> Ay g 1G] 0 @25 Gm = 07", 1,(021,201,210) = I, (021)
End of Table 5
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7 Appendix A

Table 7: Inversion sequences avoiding a set B C P; with |B| = 3

Begin of Table 7
Class B {1 (B)})_, Class B {In(B)}) _g
1 000,001,012(r) 1,2,2,1,0,0,0,0,0 47 000,021,120 1,2,5,13,32,81,207,537,1409
2 000,001,010(r) 48 000,102,120 1,2,5,13,32,85,223,599,1617
000,001,011 (r) 49 012,102,201
001,010,011 (r) 012,102,210
001,010,012(r) 012,120,201
001,011,012(r) 1,2,2,2,2,2,2,2,2 012,120,210 1,2,5,13,33,80,185,411,885
3 000,011,012(r) 1,2,3,1,0,0,0,0,0 50 011,021,100
4 000,010,012(r) 1,2,3,3,2,1,0,0,0 011,021,120
5 001,011,100(r) 011,102,210 1,2,5,13,33,81,193,449,1025
001,011,120(r) 51 011,102,201 1,2,5,13,33,82,201,489,1185
001,012,100(r) 52 000,021,110 1,2,5,13,33,84,215,556,1453
001,012,110(r) 1,2,3,3,3,3,3,3,3 53 011,101,102
6 000,001,021 (r) 011,102,110
000,001,120(r) 1,2,3,4,4,4,4,4,4 012,102,120 1,2,5,13,34,89,233,610,1597
7 000,001,110 54 000,102,110 1,2,5,13,34,91,246,672,1850
001,010,021 (r) 55 000,021,101 1,2,5,13,35,96,267,750,2123
001,010,100(r) 56 011,100,120 1,2,5,13,36,103,306,935,2933
001,010,101 (r) 57 000,101,102 1,2,5,13,37,108,327,1010,3180
001,010,102(r) 58 000,021,100
001,010,110(r) 000,021,201
001,010,120(r) 000,021,210 2,5,14,39,111,317,911,2627
001,010,201 (r) 59 000,102,210 1,2,5,14,39,113,325,945,2747
001,010,210(r) 60 000,100,102 1,2,5,14,39,115,347,1069,3351
001,011,021 (r) 61 000,102,201 1,2,5,1 9,116,345,1060,3289
001,011,101 (r) 62 011,120,201
001,011,102(r) 011,120,210 1,2,5,14,41,123,375,1156,3590
001,011,110(r) 63 010,021,100
001,011,201(r) 010,021,101
001,011,210(r) 010,021,102
001,012,021(r) 010,021,110
001,012,101 (r) 010,021,120
001,012,102(r) 010,021,201
001,012,120(r) 010,021,210
001,012,201(r) 011,021,101
001,012,210(r) 1,2,3,4,5,6,7,8,9 011,021,110
8 000,001,210 1,2,3,5,7,9,11,13,15 011,021,201
9 000,001,100 011,021,210 1,2,5,14,42,132,429,1430,4862
000,001,101 64 011,101,120
000,001,102 011,110,120 1,2,5,14,42,132,431,1452,5026
000,001,201 65 011,100,201
010,011,012 1,2,3,5,8,13,21,34,55 011,100,210 1,2,5,14,42,133,441,1521,5425
10 000,010,011 (r) 1,2,3,5,9,17,33,65,129 66 000,101,120 1,2,5,14,43,143,505,1874,7258
11 000,010,102 1,2,4,10,27,73,204,587,1716 67 000,101,110 1,2,5,14,43,143,509,1922,7651
12 000,010,120 1,2,4,10,28,85,279,979,3624 68 011,100,101
13 000,010,110 1,2,4,10,28,86,284,1003,3762 011,100,110 1,2,5,14,43,144,523,2048,8597
14 000,010,100 1,2,4,10,28,87,297,1099,4373 69 000,110,120 1,2,5,14,45,156,581,2289,9468
15 000,010,101 1,2,4,10,28,88,304,1144,4648 70 000,100,120 1,2,5,15,49,176,670,2679,11159
16 000,010,201 71 010,102,120 1,2,5,15,50,175,627,2277,8347
000,010,210 1,2,4,10,29,95,343,1341,5599 72 010,102,110 1,2,5,15,50,175,628,2289,8436
17 000,012,021(r) 1,2,4,4,0,0,0,0,0 73 011,201,210 1,2,5,15,50,176,638,2354,8789
18 000,012,110(r) 1,2,4,4,1,0,0,0,0 74 010,100,102 2,5,15,50,177,650,2449,9410
19 000,012,101 (r) 1,2,4,4,2,1,0,0,0 75 010,101,102 1,2,5,15,50,178,662,2540,9977
20 000,012,100(r) 1,2,4,5,1,0,0,0,0 76 000,120,201 1,2,5,15,50,183,713,2924,12480
21 000,012,102(r) 7 000,120,210 1,2,5,15,50,183,715,2944,12642
000,012,120(r) 78 010,102,210 1,2,5,15,51,185,692,2629,10076
000,012,201 (r) 79 010,102,201 1,2,5,15,51,185,693,2648,10277
000,012,210(r) 1,2,4,5,2,1,0,0,0 80 011,101,201
22 000,011,102(r) 011,101,210
001,021,100(r) 011,110,201
001,021,110(r) 011,110,210 1,2,5,15,51,189,746,3091,13311
001,021,120(r) 81 010,100,120 1,2,5,15,51,190,758,3192,14045
001,100,110 82 010,101,120
001,100,120(r) 010,110,120 2,5,15,51,190,759,3206,14180
001,110,120(r) 1,2,4,6,8,10,12,14,16 83 010,100,110 1,2,5,15,51,190,761,3238,14515
23 000,011,021(r) 84 010,101,110 1,2,5,15,51,190,762,3256,14722
001,021,101(r) 85 000,110,201 1,2,5,15,51,191,769,3273,14552
001,021,102(r) 86 000,101,210 1,2,5,15,51,191,773,3336,15200
001,021,201(r) 87 010,100,101 2,5,15,51,192,789,3505,16706
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Continuation of Table 7
Class B {1,.(B)1}0 _¢ Class B {In(B)})_o
001,021,210(r) 88 000,100,101
001,100,210 000,100,110 1,2,5,15,51,193,797,3548,16866
001,101,110 89 010,110,201 1,2,5,15,52,200,829,3636,16672
001,101,120(r) 90 010,120,201 1,2,5,15,52,200,829,3638,16704
001,102,110 91 010,120,210 | 1,2,5,15,52,200,830,3654,16869
001,102,120(r) 92 010,110,210 | 1,2,5,15,52,200,830,3655,16893
001,110,201 93 000,101,201
001,110,210 000,110,210 | 1,2,5,15,52,201,849,3856,18607
001,120,201 (r) 04 010,100,201
001,120,210(r) 010,100,210
010,012,021 010,101,201
011,012,021 1,2,4,7,11,16,22,29,37 010,101,210 1,2,5,15,52,202,859,3930,19095
24 000,011,120(r) 95 011,101,110 1,2,5,15,52,203,877,4140,21147
001,100,101 96 010,201,210 | 1,2,5,15,53,213,038,4403,21640
001,100,102 07 000,201,210 | 1,2,5,16,59,242,1065,4932,23703
001,100,201 1,2,4,7,12,20,33,54,88 08 000,100,201
25 011,012,100 1,2,4,7,13,23,41,72,126 000,100,210 2,5,16,59,245,1111,5413,27961
26 001,101,210 99 021,102,110 | 1,2,6,19,57,168,506,1585,5165
001,102,210 100 021,102,120 | 1,2,6,19,58,174,528,1649,5328
001,201,210 101 021,100,102 | 1,2,6,19,59,183,580,1893,6347
011,012,210 1,2,4,8,15,26,42,64,93 102 021,101,102 | 1,2,6,19,60,191,619,2048,6909
27 010,012,100 103 021,102,201
010,012,110 021,102,210 1,2,6,20,66,213,683,2211,7291
011,012,201 1,2,4,8,15,27,47,80,134 104 021,100,110 1,2,6,20,68,232,794,2732,9468
28 010,012,210 1,2,4,8,16,31,57,99,163 105 021,100,120
29 000,011,100(r) 021,101,120
000,011,101 (r) 021,110,120 1,2,6,20,68,233,805,2807,9879
000,011,110(r) 106 100,102,120 1,2,6,20,69,240,842,2979,10628
000,011,201 (r) 107 102,110,120 | 1,2,6,20,69,242,859,3080,11140
000,011,210(r) 108 101,102,120 1,2,6,20,69,243,869,3145,11491
001,101,102 109 100,102,110 | 1,2,6,20,70,248,891,3236,11866
001,101,201 110 021,100,101
001,102,201 021,101,110
010,011,021 101,102,110 1,2,6,20,70,252,924,3432,12870
010,012,101 111 100,101,102 1,2,6,20,73,280,1116,4572,19140
010,012,102 112 102,110,201 1,2,6,21,75,267,951,3404,12268
010,012,120 113 102,120,201 1,2,6,21,76,274,979,3479,12351
010,012,201 114 102,110,210
011,012,101 102,120,210 1,2,6,21,76,276,1002,3641,13261
011,012,102 115 021,120,201
011,012,110 021,120,210 1,2,6,21,77,287,1079,4082,15522
011,012,120 1,2,4,8,16,32,64,128,256 116 100,102,210 1,2,6,21,78,296,1133,4356,16797
30 010,011,102 1,2,4,9,21,51,126,316,799 117 021,100,201
31 000,010,021 1,2,4,9,21,51,127,323,835 021,100,210
32 010,011,120 1,2,4,9,22,58,161,467,1402 021,110,201
33 010,011,201 021,110,210
010,011,210 1,2,4,9,23,65,198,639,2160 101,102,210 1,2,6,21,78,297,1144,4433,17238
34 010,011,100 118 100,102,201 1,2,6,21,78,299,1176,4729,19378
010,011,101 119 101,102,201 1,2,6,21,79,311,1265,5275,22431
010,011,110 1,2,4,9,23,66,210,733,2781 120 021,101,201
35 012,021,100 021,101,210 1,2,6,21,80,322,1347,5798,25512
012,021,101 121 100,101,120 1,2,6,2 1,333,1439,6466,29985
012,021,110 1,2,5,11,21,36,57,85,121 122 101,110,120 1,2,6,21,81,335,1463,6676,31596
36 012,100,110 1,2,5,11,22,39,66,108,175 123 100,101,110 1,2,6,21,81,337,1491,6945,33827
37 012,100,101 1,2,5,11,23,45,85,156,281 124 100,110,120 | 1,2,6,21,83,354,1601,7573,37125
38 012,101,110 1,2,5,11,23,47,95,191,383 125 102,201,210 1,2,6,22,85,328,1253,4754,17994
39 000,021,102 1,2,5,12,25,60,148,374,962 126 101,120,201
40 012,100,210 101,120,210 1,2,6,22,89,384,1743,8239,40215
012,110,210 1,2,5,12,26,51,92,155,247 127 021,201,210 1,2,6,22,90,394,1806,8558,41586
41 012,100,201 128 100,120,201
012,110,201 1,2,5,12,26,51,93,161,269 110,120,201 1,2,6,22,91,408,1939,9623,49371
42 012,100,102 129 100,110,201
012,100,120 1,2,5,12,27,56,110,207,378 100,120,210
43 012,101,210 1,2,5,12,27,57,113,211,373 101,110,201
44 011,021,102 110,120,210 1,2,6,22,91,409,1953,9763,50583
012,021,102 130 100,101,210 1,2,6,22,91,409,1955,9803,51085
012,021,120 131 101,110,210 1,2,6,22,91,410,1973,10012,53094
012,021,201 132 100,110,210 1,2,6,22,92,422,2074,10754,58202
012,021,210 133 100,101,201 1,2,6,2 2,424,2106,11102,61436
012,101,201 134 120,201,210 1,2,6,23,101,484,2468,13166,72630
012,102,110 135 100,201,210
012,110,120 1,2,5,12,27,58,121,248,503 101,201,210
45 011,102,120 1,2,5,12,28,64,144,320,704 110,201,210 1,2,6,23,102,495,2549,13682,75714
46 012,101,102 136 012,201,210 1,2,5,13,32,73,156,318,629
012,101,120 1,2,5,12,28,65,151,351,816 137 011,100,102 1,2,5,12,30,75,190,483,1235

End of Table 7
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