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Abstract

An inversion sequence of length n is a sequence of integers e = e1 · · · en which
satisfies for each i ∈ [n] = {1, 2, . . . , n} the inequality 0 6 ei < i. For a set of
patterns P , we let In(P ) denote the set of inversion sequences of length n that
avoid all the patterns from P . We say that two sets of patterns P and Q are I-
Wilf-equivalent if |In(P )| = |In(Q)| for every n. In this paper, we show that the
number of I-Wilf-equivalence classes among triples of length-3 patterns is 137, 138
or 139. In particular, to show that this number is exactly 137, it remains to prove

{101, 102, 110} I∼ {021, 100, 101} and {100, 110, 201} I∼ {100, 120, 210}.
Mathematics Subject Classifications: 05A05, 05A15

1 Introduction

An inversion sequence [7, 17] of length n is a sequence of integers e = e1 · · · en which
satisfies for each i ∈ [n] = {1, 2, . . . , n} the inequality 0 6 ei < i. The set of inversion
sequences of length n is denoted In. Note that |In| = n!, and there is a simple bijection
between In and the set of all the permutations of the set [n]: an inversion sequence
e = e1 · · · en ∈ In corresponds to the unique permutation π = π1 · · · πn with the property
that for each i ∈ [n], ei is equal to the number of elements in the set {π1, π2, . . . , πi−1}
which are larger than πi.

Let [k]0 denote the set {0, 1, 2, . . . , k} = {0} ∪ [k]. For a set S, we let Sn denote
the set of words of length n over the alphabet S, i.e., all the n-tuples w = w1w2 · · ·wn

with wi ∈ S. In all the words we consider in this paper, the alphabet is a subset of
N0 = {0, 1, 2, . . . }. The height of a word w = w1w2 · · ·wn, denoted ht(w), is the largest
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number that appears as a symbol in w, or in other words

ht(w) = max{w1, . . . , wn}.

We say that a word x = x1 · · ·xn is order-isomorphic to a word y = y1 · · · yn if for
every pair of indices i, j ∈ [n], we have xi < xj if and only if yi < yj; notice that this also
implies that xi = xj if and only if yi = yj. We say that a word w = w1 · · ·wn contains a
word p = p1 · · · pm if w contains a (not necessarily consecutive) subsequence of length m
which is order-isomorphic to p. Otherwise, we say that w avoids p. A subsequence of w
order-isomorphic to p is referred to as a copy of p in w.

We say that a word w of height k is reduced, if each number from the set [k]0 appears
at least once in w. Note that every word is order-isomorphic to a unique reduced word.
Furthermore, if p and q are order-isomorphic, then a word w contains p if and only if w
contains q. Thus, when dealing with pattern-avoidance in words, we may without loss of
generality restrict our attention to reduced patterns. Throughout this paper, we use the
term pattern as a synonym for reduced word.

For a set B of patterns, we let In(B) denote the set of inversion sequences of length
n that avoid all the elements from B, and let I(B) denote the set

⋃∞
n=0 In(B). To avoid

notational clutter, we often omit nested braces and write, e.g, In(p, q) instead of In({p, q}).
We say that two sets of patterns P and Q are I-Wilf-equivalent, denoted P

I∼ Q, if
|In(P )| = |In(Q)| for every n.

The systematic study of pattern-avoidance for inversion sequences started around 2015
[7,17]. Several aspects of pattern-avoidance for inversion sequences have been considered
(for example, see [1, 2, 5, 6, 11, 15, 16, 18–21] and references therein). In particular, the
results of [3, 5, 20, 21] determined all the I-Wilf-equivalence classes of pairs of length-3
patterns. Note that there are 13 patterns of 3 letters, namely,

P3 = {000, 001, 010, 011, 012, 021, 100, 101, 102, 110, 120, 201, 210}.

The main result of this paper can be formulated as follows.

Theorem 1. The number of I-Wilf-equivalence classes of triples of length-3 patterns is
137, 138 or 139.

To show that there are exactly 137 I-Wilf-equivalence classes, as the computational
data seem to suggest, it remains to solve the following two conjectures.

Conjecture 2. We make the following two conjectures:

1. {101, 102, 110} I∼ {021, 100, 101} (see Class 110 in Table 3). Note that in [4] it is

shown that {021, 100, 101} I∼ {021, 101, 110}, so the conjecture can be equivalently

stated as {101, 102, 110} I∼ {021, 101, 110}.

2. {100, 110, 201} I∼ {100, 120, 210} (see Class 129 in Table 3). Note that we can show,

via generating trees, that {100, 110, 201} I∼ {101, 110, 201} and {100, 120, 210} I∼
{110, 120, 210}.
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Let L be the set of all triples of patterns in P3, namely,

L = {X | X ⊆ P3, |X| = 3}.

A candidate class is a maximal subset C of L such that for any B,B′ ∈ C, |In(B)| =
|In(B′)| for all n = 1, 2, . . . , 9. Table 7 shows all the 137 candidate classes of L. A
candidate class is called trivial if it contains exactly one triple, otherwise, it is called
nontrivial. Clearly, any I-Wilf equivalence class is contained in a candidate class, and
Conjecture 2 implies that candidate classes coincide with I-Wilf equivalence classes.

To establish the I-Wilf equivalence of two triples from L, we employ several different
approaches. For some triples T ∈ L, we can find a proper subset T ′ ( T (i.e., a pair
or even a singleton) such that In(T ′) = In(T ) for every n. We can then directly exploit
previous results on inversion sequences avoiding smaller sets of patterns to obtain the
enumeration of In(T ). We develop this approach in Section 2.

Another fruitful approach is based on the concept of generating trees, and uses the
recent algorithmic method of Kotsireas, Mansour, and Yıldırım [11]. We outline this
method in Section 3. We note that by combining the methods from Sections 3 and 2, we
are able to solve several open problems related to the enumeration of inversion sequences
avoiding pairs of patterns; see Theorems 10 and 11.

In several cases, neither of the previous two approaches is sufficient for our purposes.
We then turn to bijective arguments. Several of our bijections are based on a relationship
between inversion sequences and diagram fillings, which we describe in Section 4, and
which allows us to tie the previously studied concept of shape-Wilf equivalence with I-
Wilf equivalence.

In Section 5, we solve a handful of remaining cases of I-Wilf equivalence by new, direct
bijections. Finally, in Section 6, we enumerate several trivial candidate classes, by again
using the technique of generating trees.

Our main goal is to focus on the equivalence relations and enumeration results that
cannot be deduced by routine applications of known methods. Accordingly, to keep the
length of the paper manageable, we omit detailed presentations of repetitive cases which
are not meaningfully different from previously solved cases and focus on the ‘hard’ cases
that require novel approaches.

2 Equipotence of pattern sets

We will say that two sets A and B of patterns are equipotent, denoted A ≈ B, if the set
I(A) is equal to the set I(B). Obviously, equipotent sets are I-Wilf equivalent, and their
corresponding generating trees T (A) and T (B) are identical.

We are particularly interested in the cases when a set A of three patterns from P3 is
equipotent to a set B of two patterns from P3 or even a single pattern from P3. Such a
situation will allow us to reduce the enumeration of In(A) to previous results. To deduce
all the needed equipotence relations in a uniform way, we now prove several general criteria
of equipotence, which cover all the cases of interest.
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Observation 3. The following holds:

(a) For any three sets of patterns A,B,C, if A ≈ B then A ∪ C ≈ B ∪ C.

(b) For any set of patterns A, and any reduced pattern p, if p contains at least one
pattern from A, then A ≈ A ∪ {p}.

For a word w = w1 · · ·wn and an integer k ∈ N0, let w + k denote the word w1 +
k, w2 + k, . . . , wn + k.

Lemma 4. Let p = p1p2 · · · pk be a reduced pattern with p1 > 0. Then every inversion
sequence that contains p also contains at least one of the two patterns 0p and 00(p + 1).
Consequently,

{0p, 00(p+ 1), p} ≈ {0p, 00(p+ 1)}.

Proof. Let e = e1 · · · en be an inversion sequence containing p, and let s = ei(1)ei(2) · · · ei(k)
be a subsequence of e order-isomorphic to p. Since p is reduced, there is an index j such
that pj = 0. Let v = ei(j), i.e., v is the smallest value appearing in s. Let q be the prefix
of e of length v + 1, i.e., q = e1e2 · · · ev+1. All the values in q are less than or equal to v,
and therefore, they are strictly smaller than ei(1). In particular, the whole subsequence s
appears in e to the right of the rightmost entry of q.

We distinguish two possibilities: either q contains an entry equal to v, or it does not.
If there is such an entry (necessarily it must be the rightmost entry ev+1), then this entry
together with s forms a copy of the pattern 0p in e. On the other hand, if there is no
such entry, then q only contains the values from the set [v − 1]0, and in particular, there
is a value w ∈ [v − 1]0 that appears at least twice in q. It follows that e contains the
subsequence wws, which is order-isomorphic to 00(p+ 1).

We conclude that any inversion sequence containing p also contains 0p or 00(p + 1),
or equivalently, any inversion sequence avoiding both 0p and 00(p+ 1) also avoids p. This
implies that {0p, 00(p+ 1), p} ≈ {0p, 00(p+ 1)}.

Example 5. The set {001, 010, 120} is equipotent to {001, 010}. To see this, note that

{0120, 00231} ≈ {0120, 00231, 120}

by Lemma 4, hence

{0120, 00231} ∪ {001, 010} ≈ {0120, 00231, 120} ∪ {001, 010}

by Observation 3 part (a), and therefore

{001, 010} ≈ {001, 010, 120}

by Observation 3 part (b).

The argument presented in Example 5 shows the typical way to deduce that a set of
three patterns is equipotent to its proper subset. It applies to many analogous situations,
and we will from now on omit the details of the arguments, as long as they are analogous
to Example 5.
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Lemma 6. Let p = p1p2 · · · pk be a reduced pattern with the following properties:

• p1 = 0 and p2 > 1,

• apart from p1, no other entry of p is equal to 0.

Then every inversion sequence containing p also contains at least one of the two patterns
p′ and p′′, where p′ = 0p = 00p2p3 · · · pk and p′′ = 01p2p3 · · · pk. Consequently, {p′, p′′, p} ≈
{p′, p′′}.

Proof. Let e = e1 · · · en be an inversion sequence containing p, and let s = ei(1)ei(2) · · · ei(k)
be a subsequence of e order-isomorphic to p. Let v be the smallest value appearing in the
suffix ei(3)ei(4) · · · ei(k) of s, i.e., v is the value in s that corresponds to the value 1 in p.
By the assumptions on p, we have ei(1) < v < ei(2), and in particular v > 0.

Let q be the prefix of e of length v + 1, i.e., q = e1e2 · · · ev+1. All the values in q are
less than or equal to v, and therefore, they are strictly smaller than ei(2), which therefore
appears to the right of q.

The rest of the argument is analogous to the proof of Lemma 4: if q contains an entry
with value v, then e contains the subsequence 0vei(2)ei(3) · · · ei(k), which is order-isomorphic
to p′′. If, on the other hand, q does not contain the value v, then it contains a value
w ∈ [v − 1]0 repeated at least twice, and e contains the subsequence wwei(2)ei(3) · · · ei(k)
order-isomorphic to p′.

Example 7. The set {001, 012, 021} is equipotent to {001, 012}. This follows by an
argument analogous to Example 5, by using Lemma 6 instead of Lemma 4.

Lemma 8. Let p = p1 · · · pk be a reduced pattern with p1 > 2, and let e be an inversion
sequence containing p. Then e contains the pattern 000 or it contains both the patterns
011 and 012. Consequently, {000, 011, p} ≈ {000, 011} and {000, 012, p} ≈ {000, 012}.

Proof. Let e = e1 · · · en be an inversion sequence containing p, and let s = ei(1)ei(2) · · · ei(k)
be a subsequence of e order-isomorphic to p. Assume that e avoids the pattern 000; our
goal is then to show that e contains both 012 and 011.

Let us first show that e contains the pattern 012. Set v = ei(1). By assumption, we
have v > p1 > 2. Consider the prefix of e of length v. If this prefix contains a nonzero
value w, then e has the subsequence 0wv order-isomorphic to 012. Suppose then that
the first v values of e are all zeros. Since e avoids 000, this means that v = 2. However,
this means that ei(1) = 2, which implies that all the entries equal to 0, 1, or 2 in p must
correspond to entries with the same value in s, and in particular, s contains at least one
entry ei(j) equal to 0. This entry, together with the first two entries of e forms a copy of
000, contradicting our assumptions. We conclude that e contains 012.

We now show that e contains 011. Let v0 < v1 < v2 be the three smallest values
appearing in s, i.e., the values corresponding, respectively, to the values 0, 1, and 2 in p.
Let q be the prefix of e of length v1 + 1. Necessarily, all the values in q are smaller than
v2, and so q is completely to the left of s. If any nonzero value w appears in q more than
once, then q contains the subsequence 0ww, and we are done. Also, if q contains the value
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v1, then e contains the subsequence 0v1v1, and we are again done. Finally, if q contains
more than two entries equal to 0, then e contains 000 contradicting our assumptions. This
leaves us with the case when q contains exactly two entries equal to 0, and v1− 1 nonzero
entries, each equal to a distinct value from the set [v1 − 1]. But now we consider that s
contains an entry ei(j) equal to v0. If v0 = 0, then ei(j) forms a copy of 000 together with
the two zero entries of q, and if v0 > 0, we obtain a subsequence 0v0v0 in e, which gives
the claimed copy of 011.

Table 1: Classes involving triples equipotent with their proper subsets. Where no reference
for the enumeration result is given, the result follows from the classification of pairs of
triples by Yan and Lin [21] or from a reference given therein. For each triple of patterns, we
either list an equipotent pair or singleton pattern, or we list the rules of the corresponding
generation tree.

Beginning of Table 1

Class Triple Equipotent subset (or gen. tree specification) G.f. formula or reference

7 001,010,021 001,010
001,010,100
001,010,101
001,010,102
001,010,110
001,010,120
001,010,201
001,010,210
001,011,021 001,011
001,011,101
001,011,102
001,011,110
001,011,201
001,011,210
001,012,021 001,012
001,012,101
001,012,102
001,012,120
001,012,201
001,012,210

000,001,110 am  (00)m+1am+1; am = 01 · · ·m x
(1−x)2

9 000,001,100 000,001
000,001,101
000,001,102
000,001,201

010,011,012 am  b1 · · · bmam+1, bm  b1 · · · bm−1; am = 0m, bm = amm
x(1+x)

1−x−x2

21 000,012,102 000,012
000,012,120
000,012,201

000,012,210 x + 2x2 + 4x3 + 5x4 + 2x5 + x6

23 001,021,101 001,021
001,021,102
001,021,201
001,021,210
001,101,120 001,120
001,102,120
001,120,201
001,120,210
001,102,110 001,110
001,101,110
001,110,201
001,110,210
000,011,021 0  00, 0, 00  00, 002, 002  002
001,100,210 am  (010)mbmam+1, bm  (010)mbm; am = 01 · · ·m, bm = amm

010,012,021 am  (01)mam+1, 01  01; am = 0m

011,012,021
x(1−x+x2)

(1−x)3

24 001,100,101 001,100
001,100,102
001,100,201
000,011,120 0  0, 01, 01  0, 012, 012  012 x

(1−x)(1−x−x2)
26 001,102,210 001,210

001,201,210
001,101,210

011,012,210 am  b1 · · · bmam+1, bm  (0021)m−1bm; am = 0m, bm = amm
x(1−2x+2x2)

(1−x)4

29 000,011,100 000,011
000,011,101
000,011,110
000,011,201
000,011,210
001,101,102 001
001,101,201
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Continuation of Table 1

Class Triple Equipotent subset (or gen. tree specification) G.f. formula or reference

001,102,201
010,012,101 010,012
010,012,102
010,012,120
010,012,201
011,012,101 011,012
011,012,102
011,012,110
011,012,120
010,011,021 am  b1 · · · bmam+1, bm  b1 · · · bm; am = 0m, bm = am1 x

1−2x
34 010,011,100 010,011

010,011,101

010,011,110
∑

j>1
xj

1−jx
42 012,100,102 012,100

012,100,120 Enumeration open

44 012,021,102 012,021
012,021,120
012,021,201
012,021,210
012,102,110 012,110
012,110,120
012,101,201 am  am+1b1 · · · bm, bm  eb1 · · · bm, e  e;

am = 0m, bm = 0mm, e = 010
011,021,102 am  am+1bm · · · b1, bm  ebm · · · b1,

. e  e; am = 0m, bm = 0m1, e = 010
x(1−2x+2x2)

(1−x)2(1−2x)
46 012,101,102 012,101

012,101,120
x(1−x+x2)

1−3x+2x2−x3

49 012,102,201 012,201
012,120,201
012,102,210 012,210

012,120,210
x(1−4x+7x2−5x3+2x4)

(1−x)4(1−2x)
53 011,101,102 011,102

011,102,110

012,102,120 012
x(1−x)

1−3x+x2

58 000,021,100 000,021
000,021,201
000,021,210 Theorem 10

63 010,021,100 010,021
010,021,101
010,021,102
010,021,110
010,021,120
010,021,201
010,021,210
011,021,101 011,021
011,021,110
011,021,201
011,021,210 C(x) − 1, [4]

64 011,101,120 011,120
011,110,120

68 011,100,101 011,100

011,100,110 (1 − x)
∑

j>1
xj

1−(j+1)x
,

80 011,101,201 011,201
011,110,201 Enumeration open
011,101,210 011,210 I-Wilf equivalence: [21]
011,110,210 See also Example 21

103 021,102,201 021,102
021,102,210 Theorem 11

115 021,120,201 021,120

021,120,210
1−4x+

√
−16x3+20x2−8x+1

2(x−1)(4x−1)
117 021,100,201 021,100

021,100,210
021,110,201 021,110
021,110,210 Theorem 12
101,102,210 Theorem 40

120 021,101,201 021,101
021,101,210 A106228 in OEIS

End of Table 1

3 Inversion sequences and generating trees

To establish a useful connection between generating trees and the avoidance problem
in inversion sequences, we recall the generating trees for pattern avoidance in inversion
sequences as described in [11]. For a given set of patterns B, let I(B) = ∪∞n=0In(B). We
will construct a pattern-avoidance tree T (B) for the class of pattern-avoiding inversion
sequences I(B). The tree T (B) is understood to be empty if there is no inversion sequence
of any length avoiding the set B. Otherwise, the root can always be taken as 0 (inversion
sequence with one letter), that is, 0 ∈ T (B). Starting with this root which stays at level
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1, the nodes at level n+1 of the tree T (B) can be constructed from the nodes at level n in
such a way that the children of e = e1 · · · en ∈ In(B) are e′ = e1 · · · enj with j = 0, 1, . . . , n
such that e′ ∈ In+1(B).

Now, we relabel the vertices of the tree T (B) as follows. Define T (B; e) to be the
subtree consisting of the inversion sequence e as the root and its descendants in T (B). We
say that e is equivalent to e′, denoted by e ∼ e′, if and only if T (B; e) ∼= T (B; e′) (in the
sense of plane trees). Let V [B] denote the set of all equivalence classes in the quotient set
T (B)/ ∼. We will represent each equivalence class [v] by the label of the unique node v
which appears on the tree T (B) as the first node (from top to bottom from left to right).
Let T [B] be the same tree T (B) where we replace each node v by its equivalence class
label.

The basic outline of the generating tree method is the following.

(1) We use the main algorithm of [11] for finding the generating tree T [B] up to a level
4− 7, for all B ∈ L. Those sets B of patterns for which the generating tree is finite
(V [B] is a finite set) are called regular, while all other sets of patterns are called
non-regular. In Table 7, we denote each regular class by (r). Thus, in L there are
exactly 64 regular classes.

(2) We try to guess the rules of the generating tree T [B] for any B ∈ L such that B
belongs to a nontrivial candidate class, as described in [11]. Tables 1 and 3 present
all the nontrivial candidate classes C, all the triples B ∈ C, and the generating
tree T [B] for any B ∈ C. In the case we fail to guess and prove the generating
tree T [B], we leave the cell in the column of T [B] empty. Moreover, sometimes we
succeed to find the generating tree T [B] while we fail to find an explicit formula for
the generating function FB(x) =

∑
n>1 |In(B)|xn. In this case, we leave the cell in

the column of FB(x) empty.

(3) For a triple B, we translate the rules of T [B] (if we succeed to find them) into a
system of recurrence relations. Then we solve the system, either by induction or by
the kernel method (see [9] and references therein).

Remark 9. For a given triple B, assume that we have guessed the rules R of the generating
tree T [B] (the root is assumed to be the inversion sequence 0). To prove that R are the
rules of the generating tree T [B], we proceed by induction on the length of the labels.
For example, let B = {001, 100, 210} and our algorithm guessed the following rules

am  cmam and bm  cmambm+1,

where am = 01 · · ·mm, bm = 01 · · ·m and c = 010. Note that, for the inversion sequence
010, there are no children (because the children of 010 are 0100, 0101, 0102 and 0103,
where each contains either 100 or 001). To show that the rules hold, we have to show
that the children of am and children of bm satisfy the same set of rules. The inversion
sequence bm has the children 01 · · ·mj ∼ 010 for all j = 0, 1, . . . ,m − 1, and am, bm+1,
which creates the rule bm  cmambm+1. Similarly, the inversion sequence am has the
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children 01 · · ·mmj ∼ 010 for all j = 0, 1, . . . ,m − 1, and 012 · · ·mmm ∼ am, which
creates the rule am  cmam, as required.

We used this method after we guessed the generating tree T [B] for any possible
triple B. From now on, we omit the proofs for the generating trees T [B].

Table 3: Nontrivial candidate classes not listed in Table 1, generating trees T [B], and
generating functions FB(x)

Begin of Table 3

Class B T [B] FB(x)

2 000,001,010 0  0, 00

000,001,011

001,010,011 0  00, 00, 00  00

001,010,012

001,011,012
x(1+x)
1−x

5 001,011,100(r) 0  00, 01, 00  00, 01  01, 010

001,012,100(r)

001,011,120(r) 0  00, 01, 00  00, 01  00, 00

001,012,110(r)
x(1+x+x2)

1−x
6 000,001,021(r) 0  00, 01, 01  00, 011, 01, 011  00

000,001,120(r)
x(1+x+x2+x3)

1−x
22 000,011,102(r) 0  0, 01, 01  010, 01

001,021,100(r) 0  00, 01, 00  00, 01  010, 011, 01, 011  010, 011

001,100,120(r)

001,021,110(r) 0  00, 01, 00  00, 01  00, 00, 01

001,110,120(r)

001,021,120(r) 0  00, 01, 00  00, 01  00, 011, 011, 011  00, 011

001,100,110 am  am+1bcm, b  b; am = 01 · · ·m, b = 00, c = 010
x(1+x2)

(1−x)2

27 010,012,100 am  b1 · · · bmam+1, bm  c2 · · · cmbm, cm  c2 · · · cm−1;

am = 0m, bm = amm, cm = bm(m − 1)

010,012,110 am  b1 · · · bmam+1, bm  b1 · · · bm−1b1; am = 0m, bm = amm

011,012,201 am  b1 · · · bmam+1, bm  b1 · · · bm; am = 0m, bm = amm
x(1−x+x3)

(1−x)2(1−x−x2)

33 010,011,201 am  am+1bm,1bm,1bm,3 · · · bm,m,

bm,1  bm,1bm,1bm,3 · · · bm,m,

bm,j  bm+2−j,1bm+3−j,1bm+4−j,3 · · · bm,j−1bm,j · · · bm,m with

j = 3, . . . ,m; am = 0m, bm,j = amj

010,011,210

35 012,021,100 am  am+1(01)m, 01  010, 01, 010  010; am = 0m

012,021,101

012,021,110 am  am+1(01)m, 01  011, 01, 011  011; am = 0m
x(1−2x+3x2−x3)

(1−x)4

40 012,100,210 am  am+1b1 · · · bm, bm  cmem−1bm, cm  em−1cm;

am = 0m, bm = 0mm, cm = 0mm0, e = 0021

012,110,210 am  am+1b1 · · · bm, bm  bmem, e  e; am = 0m,

bm = 0mm, e = 011

x(1−3x+5x2−3x3+x4)

(1−x)5

41 012,100,201 am  am+1b1 · · · bm, bm  c1 · · · cmbm, cm  dc2 · · · cm−1;

am = 0m, bm = amm, cm = bm(m − 1), e = 00210

012,110,201 am  am+1b1 · · · bm, bm  b1c2 · · · cmd,

cm  d2c2 · · · cm−1; am = 0m, bm = amm, cm = bm(m − 1), e = 011

x(1−3x+4x2−x3−2x4)

(1−x−x2)(1−x)4

50 011,021,100 am  am+1b1 · · · bm, bm  cmb1 · · · bm, cm  c1 · · · cm,

0103  0103; am = 0m, bm = am1, cm = bm0

011,021,120 am  am+1b1 · · · bm, bm  bm+1c1 · · · cm, cm  c1 · · · cm;

am = 0m, bm = am1, cm = bm2

011,102,210
x(1−3x+3x2)

(1−x)(1−2x)2

62 011,120,201 am  am+1bm,1 · · · bm,m,

bm,j  bm+2−j,1bm,j−1 · · · bm+2−j,1cm+1−j,2 · · · cm+1−j,m+2−j ,

cm,j  cm,j−1 · · · cm+3−j,2cm+2−j,m+3−j · · · cm+2−j,2; am = 0m,

bm,j = amj, cm,j = am1j

011,120,210 am  am+1bm,1 · · · bm,m,

bm,j  bm+1,jcm,j · · · cm+2−j,2cm+1−j,m+2−j · · · cm+1−j,2,

cm,j  cm,j−1 · · · cm+3−j,2cm+2−j,m+3−j · · · cm+2−j,2; am = 0m,

bm,j = amj, cm,j = am1j

Theorem 25

65 011,100,201 am  am+1bm,1 · · · bm,m,

bm,j  bm+1−j,1bm+2−j,1 · · · bm−1,j−1bm,j · · · bm,m; am = 0m,

bm,j = 0mj

011,100,210 Example 21

82 010,101,120

010,110,120 Theorem 31

88 000,100,101

000,100,110 Theorem 30

93 000,101,201

000,110,210 Theorem 38
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Continuation of Table 3

Class B T [B] FB(x)

94 010,100,201 am  am+1ambm,2 · · · , bm,m,

bm,j  am+2−jbm+3−j,2 · · · bm+1,jbm,j · · · bm,m; am = 0m,

bm,j = amj

010,100,210

010,101,201

010,101,210 Corollary 36

98 000,100,201

000,100,210 Example 21

105 021,100,120 am  am+1b1 · · · bm, bm  bm+1c1 · · · cme,

cm  c1 · · · cm+1e, e  c1e; am = 0m, bm = am1, cm = am10,

e = 012

021,101,120

021,110,120 am  am+1b1 · · · bm, bm  eb1 · · · bm+1, e  b1e; am = 0m,

bm = am1

1−4x+2x2+2x3−(1−2x)
√

1−4x

2x2(1−x)
,

Theorem 11

110 021,100,101 am  am+1b1 · · · bm, bm  cmb1 · · · bm+1,

cm  c1 · · · cm+1; am = 0m, bm = am1, cm = am10

021,101,110 am  am+1b1 · · · bm, bm  am+1cmb1 · · · bm,

cm  c1 · · · cm+1e, e  c1e; am = 0m, bm = am1, cm = am11,

e = 0113

[4]

101,102,110 OPEN

114 102,110,210

102,120,210 Theorem 39

126 101,120,201

101,120,210 Theorem 27

128 100,120,201

110,120,201 Theorem 29

129 100,110,201

101,110,201 Theorem 22

100,120,210 am  am+1bm,1 · · · bm,m,

bm,j  am+2−jbm+1,j · · · bm+2−j,1bm+1−j,1 · · · bm+1−j,m+1−j ;

am = 0m, bm,j = 0mj

110,120,210 OPEN

135 100,201,210 am  am+1bm,1 · · · bm,m,

bm,j  (am+2−j)
jbm+1,j · · · bm+1,m+1; am = 0m, bm,j = 0mj

101,201,210

110,201,210 am  am+1bm,1 · · · bm,m,

bm,j  (bm+2−j,1)jam+2−jbm+1,j+1 · · · bm+1,m+1; am = 0m,

bm,j = 0mj

Remark 24

End of Table 3

As we have said, to find the generating function FB(x) for a given triple B ∈ L,
we translate the rules of T [B] (if we succeed to find them) into a system of recurrence
relations. Then, we solve the system, mostly either by induction or by the kernel method
(see [9] and references therein). Since our main focus is on the cases that cannot be
handled by routine methods, we do not give the details of finding FB(x) when FB(x) is a
polynomial or rational generating function.

The enumeration of In(000, 021) has been left as an open problem by Yan and Lin [21].
Our next result settles the problem.

Theorem 10. Let B ∈ {{000, 021, 100}, {000, 021, 201}, {000, 021, 210}, {000, 021}}. We
have

FB(x) =
3x3 + x2 − 3x+ 1

2x2
√

(1 + x)(1− 3x)
+

3x4 − 4x3 − 2x2 + 4x− 1

2x2(1 + x)(1− 3x)
.

Proof. Note that the sets {000, 021, 100}, {000, 021, 201}, {000, 021, 210} and {000, 021}
are all equipotent, so the choice of B makes no difference for the purposes of the calcula-
tion. The generating tree T [B] is given by a root a0 and rules

am  bmdm+1 · · · d1, dm  cmamdm · · · d1, cm  bmcm · · · c1e,
bm  cm+1 · · · c1e, e b0e,

where am = dmm, bm = 0dmm, cm = 0dm, dm = 011 · · · (m− 1)(m− 1)m, and e = 002.
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Define Am(x) (respectively, Bm(x), Cm(x), Dm(x), E(x)) to be the generating function
for the number of nodes at level n > 1 for the subtree of T (L; am) (respectively, T (L; bm),
T (L; cm), T (L; dm), T (L; e)), where its root has level 1. Thus,

Am(x) = x+ xBm(x) + x(Dm+1(x) + · · ·+D1(x)), m > 0,

Bm(x) = x+ x(Cm+1(x) + · · ·+ C1(x)), m > 0,

Cm(x) = x+ xBm(x) + x(Cm(x) + · · ·+ C1(x)) + xE(x), m > 1,

Dm(x) = x+ xCm(x) + xAm(x) + x(Dm(x) + · · ·+D1(x)), m > 1,

E(x) = x+ xB0(x) + xE(x).

Define G(x, v) =
∑

m>sGm(x)vm for G ∈ {A,C} and s = 1, and for G ∈ {B,D} and
s = 0. Then this system of recurrence relations can be written as

A(x, v) =
xv

1− v
+ xC(x, v) + x(D(x, v)−D(x, 0)) +

x

1− v
A(x, v),

B(x, v) =
x

1− v
+

x

1− v
E(x) +

x

v(1− v)
C(x, v),

C(x, v) =
xv

1− v
+ x(B(x, v)−B(x, 0)) +

x

1− v
C(x, v) +

xv

1− v
E(x),

D(x, v) =
x

1− v
+ xB(x, v) +

x

v(1− v)
A(x, v),

E(x) = x+ xB(x, 0) + xE(x).

By using the kernel method for a linear system of equations [9], we obtain, in particular,
an explicit formula for the generating function A(x, 0), as required.

Our next result addresses the enumeration of In(021, 102), solving another open case
of Yan and Lin [21].

Theorem 11. We have that

F{021,102,201}(x) = F{021,102,210}(x) = F{021,102}(x) = f,

F{021,100,120}(x) = F{021,101,120}(x) = F{021,110,120}(x) = g,

where

f =
1− 7x+ 19x2 − 27x3 + 24x4 − 12x5 + 4x6

2x(1− x)4(1− 2x)
−
√

1− 4x

2x(1− x)
,

g =
1− 4x+ 2x2 + 2x3 − (1− 2x)

√
1− 4x

2x2(1− x)
.

Proof. Due to the similarity of Classes 103(1-2) and 105(1-3), we present only the proof for
the Class 105(1-2). Let Am(x) (respectively, Bm(x), Cm(x), and D(x)) be the generating
function for the number of nodes at level n > 1 for the subtree of T (L; am) (respectively,
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T (L; bm), T (L; cm) and T (L; e)), see Class 105(1-2) in Table 3. By translating the rules
of the generating trees, we obtain

Am(x) = x+ xAm+1(x) + x(B1(x) + · · ·+Bm(x)),

Bm(x) = x+ xBm+1(x) + x(C1(x) + · · ·+ Cm(x)) + xD(x),

Cm(x) = x+ x(C1(x) + · · ·+ Cm+1(x)) + xD(x),

D(x) = x+ xC1(x) + xD(x).

Define G(x, v) =
∑

m>1Gm(x)vm−1, for all G ∈ {A,B,C}. Then

A(x, v) =
x

1− v
+
x

v
(A(x, v)− A(x, 0)) +

x

1− v
B(x, v),

B(x, v) =
x

1− v
+
x

v
(B(x, v)−B(x, 0)) +

x

1− v
C(x, v) +

x

1− v
D(x),

C(x, v) =
x

1− v
+

x

1− v
C(x, v) +

x

v
(C(x, v)− C(x, 0)) +

x

1− v
D(x),

D(x) =
x(1 + C1(x))

1− x
.

By solving this system by [9], we complete the proof.

Theorem 12. For a set of patterns B ∈ {{021, 100, 201}, {021, 100, 210}, {021, 110, 201},
{021, 110, 210}, {021, 100}, {021, 110}}, we have

FB(x) = f,

where

f =
(1− 3x)2

2x2
√

1− 4x
− (1− x)(1− 3x)

2x2
.

Proof. We know that {021, 100, 201} ≈ {021, 100, 210} ≈ {021, 100} and
{021, 110, 201} ≈ {021, 110, 210} ≈ {021, 110}. Moreover, Yan and Lin [21, Theorem
8.1] show that {021, 100} and {021, 110} are I-Wilf equivalent. It follows that the value
of FB(x) does not depend on the choice of B. By translating the rules of the generating
trees (see Class 117(1-4) in Table 1), we obtain

Am(x) = x+ xAm+1(x) + x(B1(x) + · · ·+Bm(x)),

Bm(x) = x+ xCm(x) + x(B1(x) + · · ·+Bm+1(x)),

Cm(x) = x+ x(C1(x) + · · ·+ Cm+1(x)) + xD(x),

D(x) = x+ xC1(x) + xD(x).

Define G(x, v) =
∑

m>1Gm(x)vm−1, for all G ∈ {A,B,C}. Then

A(x, v) =
x

1− v
+
x

v
(A(x, v)− A(x, 0)) +

x

1− v
B(x, v),

B(x, v) =
x

1− v
+ xC(x, v) +

x

1− v
B(x, v) +

x

v
(B(x, v)−B(x, 0)),

C(x, v) =
x

1− v
+

x

1− v
C(x, v) +

x

v
(C(x, v)− C(x, 0)) +

x2(1 + C(x, 0))

(1− x)(1− v)
.

By solving this system by [9], we complete the proof.
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4 Inversion sequences and diagram fillings

Some known results on pattern-avoiding fillings of Ferrers diagrams can directly be trans-
lated into results on pattern-avoiding inversion sequences.

Recall that for a word w = w1 · · ·wn and an integer k ∈ N0, we let w + k denote the
word w1 + k, w2 + k, . . . , wn + k. Let x and y be two words with ht(x) = k and ht(y) = `.
Their direct sum, denoted x⊕y, is the word obtained by concatenating x with y+(k+1),
while their skew sum, denoted x	y, is the concatenation of x+(`+1) and y. Notice that
if x and y are reduced, then so is x⊕ y and x	 y. If x and y are words and X and Y are
sets of words, we use the shorthand x⊕ Y for {x⊕ y; y ∈ Y }, X ⊕ y for {x⊕ y; x ∈ X},
X ⊕ Y for {x⊕ y; x ∈ X ∧ y ∈ Y }, and similarly for 	.

A diagram (or polyomino) is a finite collection of unit boxes in the Cartesian plane
whose vertices have integer coordinates. Box (i, j) refers to the box in the i-th column
and j-th row of the diagram. We assume that columns are numbered left to right and
rows are numbered bottom to top. We adopt the convention that the leftmost nonempty
column of D is column number 1, while the bottommost nonempty row is row 0.

A diagram D is convex if, whenever D contains two boxes b and b′ in the same row
or column, it also contains all the boxes lying between b and b′. A diagram is bottom-
justified if the bottommost boxes in all the nonempty columns lie in the same row (by
convention, this is row 0); right-justified, top-justified, and left-justified diagrams are
defined analogously. A diagram is bottom-right justified if it is both bottom-justified and
right-justified. A Ferrers diagram is a convex, bottom-right justified diagram1.

For the purposes of this paper, a filling of a diagram D is a mapping that assigns to
every box of D the value of 0 or 1, in such a way that every column of D contains exactly
one box with value 1.

A word w = w1w2 · · ·wn of height k and length n can be naturally represented as a
filling of a rectangular diagram with k + 1 rows and n columns: the filling has value 1 in
each box (i, wi) for i = 1, . . . , n, and value 0 elsewhere. We let F (w) denote this filling.

Let P be a filling of a rectangular diagram with n columns and k + 1 rows. Let F
be any filling of a diagram. We say that F contains P , if F has n distinct columns
c1 < c2 < · · · < cn and k + 1 distinct rows r0 < r1 < · · · < rk with the following two
properties:

• For every i ∈ [n] and j ∈ [k]0, the column ci intersects the row rj inside F , i.e., the
diagram of F actually contains the box (ci, rj).

• For every i ∈ [n] and j ∈ [k]0, if the box (i, j) is a 1-entry of P , then the box (ci, rj)
is a 1-entry of F .

Note that since we only consider fillings that have exactly one 1-entry in each column,
the properties above actually imply that for every 0-entry (i, j) in P , the entry (ci, rj) in

1In the literature, it is usual to define Ferrers diagrams as either top-left or bottom-left justified shapes,
but our convention will be more practical for our applications.
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F is a 0-entry as well. In particular, the two properties informally state that the rows
r0, . . . , rk and columns c1, . . . , cn induce in F a rectangular subdiagram equal to P .

Observe that a word x contains a reduced word y if and only if the filling F (x) contains
the filling F (y).

Let Tn denote the Ferrers diagram with n columns whose i-th column contains exactly
i boxes. Observe that to an inversion sequence e = e1e2 · · · en ∈ In we may associate a
filling of Tn whose 1-entries are precisely the boxes (i, ei) for i = 1, . . . , n. This filling will
be denoted Tn(e). Note that the mapping e 7→ Tn(e) is a bijection between In and the set
of fillings of Tn.

Let p be a reduced word and let e ∈ In be an inversion sequence. Note that if the
filling Tn(e) contains the rectangular filling F (p), then e contains p; however, the converse
does not necessarily hold: for example, the inversion sequence 011 contains the pattern
01, but the triangular filling T3(011) does not contain the 2× 2 filling F (01).

To get an equivalence between the containment of words and the containment of
inversion sequences, we need to put a restriction on the pattern p. We say that a word
p = p1 · · · pm is a top-first pattern if p is reduced and the first symbol of p is its maximum;
that is, p1 = ht(p).

Lemma 13. Let p be a top-first pattern. Then an inversion sequence e ∈ In contains p
if and only if the filling Tn(e) contains F (p).

Proof. =⇒ : Let k be the height of p and m its length. Suppose e contains p. Let
i1 < i2 < · · · < im be the indices inducing a copy of p in e, that is, the subsequence
ei1ei2 · · · eim is order-isomorphic to p. Let j0 < j1 < · · · < jk be the k + 1 values that
appear in the subsequence ei1ei2 · · · eim . Since p is a top-first pattern, we know that
ei1 = jk. To show that Tn(e) contains F (p), we consider the columns i1 < · · · < im and
rows j0 < · · · < jk. Note that ei1 = jk, so the box (i1, jk) is a 1-entry, and in particular
the box lies inside Tn. It follows that each of the columns i1, . . . , im intersects any of the
rows j0, . . . , jk inside Tn, and by construction, these columns and rows induce in Tn(e) a
copy of F (p). Hence Tn(e) contains F (p).
⇐=: If Tn(e) contains a copy of F (p) in columns i1 < i2 < · · · < im, then the

subsequence ei1 · · · eim of e is order-isomorphic to p, hence e contains p.

Lemma 13 allows us to exploit known results on fillings of diagrams to obtain results
on pattern-avoiding inversion sequences.

We say that two fillings P and Q are shape-Wilf-equivalent, denoted P
s∼ Q, if for

every Ferrers diagram D, the number of P -avoiding fillings of D is the same as the
number of Q-avoiding fillings of D. We extend the notion of shape-Wilf equivalence to
sets of patterns in an obvious way. To avoid clutter in our notation, we will identify a
word w with its corresponding filling F (w), and we will say, e.g., that two words x and y
are shape-Wilf-equivalent when F (x) and F (y) are shape-Wilf-equivalent.

Lemma 14. If X and Y are shape-Wilf-equivalent sets of top-first patterns, then X and
Y are also I-Wilf-equivalent.
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Proof. If X and Y are shape-Wilf-equivalent, then for every n, the number of X-avoiding
fillings of Tn is the same as the number of its Y -avoiding fillings. By Lemma 13, this

means that |In(X)| = |In(Y )|, and hence X
I∼ Y .

In a word w = w1 · · ·wn, an element wi is a weak LR maximum if wj 6 wi for each
j < i, and it is a strict LR maximum if wj < wi for each j < i. Similarly, in a filling F , we
say that a 1-entry (c, r) is a weak LR maximum if all the 1-entries in columns 1, . . . , c− 1
only appear in rows 0, . . . , r, and (c, r) is a strict LR maximum if all the 1-entries in
columns 1, . . . , c− 1 only appear in rows 0, . . . , r − 1.

Shape-Wilf equivalence has a long history, and the paper by Guo et al. [8] gives a
summary of known results to date. We now summarize here the known facts that are
relevant to us.

Fact 15.

• For any k > 0, we have 012 · · · (k − 1)k
s∼ k(k − 1) · · · 210. This equivalence is

witnessed by a bijection that preserves the number of 1-entries in each row. See
Krattenthaler [12].

• {021, 011} s∼ {102, 101}. See Guo et al. [8, Theorem 12].

• {021, 010} s∼ {102, 001}. See Guo et al. [8, Theorem 13].

• If the reduced words x and y are shape-Wilf-equivalent, and z is any nonempty
reduced word, then z	x and z	y are also shape-Wilf-equivalent. More generally, if
X and Y are shape-Wilf-equivalent sets of reduced words and z is a nonempty reduced
word, then z	X and z	Y are also shape-Wilf-equivalent. Additionally, the bijection
witnessing z	X s∼ z	Y preserves the positions and values of weak LR maxima, and
if the bijection witnessing X

s∼ Y preserves row-sums, then the bijection witnessing
z 	X s∼ z 	 Y preserves them too. See Jeĺınek and Mansour [10, Lemma 14].

Combining Fact 15 with Lemma 14 yields the following examples of I-Wilf-equivalent
patterns or sets of patterns.

Corollary 16. For any top-first pattern p, the following holds:

• for an integer k > 1, we have p 	 012 · · · (k − 1)k
I∼ p 	 k(k − 1) · · · 210, via a

bijection that preserves the number of occurrences of each symbol and also preserves
the positions and values of the weak LR maxima,

• p	 {021, 011} I∼ p	 {102, 101}, and

• p	 {021, 010} I∼ p	 {102, 001}.

Remark 17. The previous corollary can in fact be restated in a slightly more general form,
where instead of the single pattern p we consider a set P of top-first patterns. While this
was not explicitly mentioned in any of the previous papers, it can be proven by the same
arguments.
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Example 18. Here are the I-Wilf equivalences between single patterns of small size that
follow from Corollary 16:

• 201
I∼ 210,

• 3012
I∼ 3210

I∼ 3201, 2201
I∼ 2210,

• 40123
I∼ 43210

I∼ 43012
I∼ 43201, 42301

I∼ 42310, 33012
I∼ 33210

I∼ 33201, 32201
I∼

32210, 32301
I∼ 32310, 22201

I∼ 22210.

Note that for some patterns p, we may determine whether an inversion sequence e ∈ In
contains p merely by looking at the total number of occurrences of each symbol in e and
at the number of times each symbol occurs as a weak LR maximum of e. We say that such
a pattern p is conservative. Formally, a pattern p (or a set of patterns P ) is conservative,
if for every n and every two sequences e, e′ ∈ In such that

• e and e′ have the same number of occurrences of each symbol, and

• in e and e′, each symbol appears the same number of times as a weak LR maximum,

the sequence e avoids p (or P ) if and only if e′ avoids p (or P , respectively).
Observe that if a set of patterns P contains only conservative patterns, then P is itself

conservative. However, a set of patterns P may be conservative even when its individual
patterns are not, as we will see in the next observation. We use the short-hand notation
am for the word aa · · · a of length m.

Observation 19. For any m ∈ N, the following patterns and sets are conservative:

• The pattern 0m: indeed In(0m) contains precisely those inversion sequences in which
each symbol appears at most m− 1 times.

• The pattern 01m: In(01m) contains precisely those inversion sequences in which each
symbol other than 0 appears at most m− 1 times.

• The pattern 10m: In(10m) contains precisely those inversion sequences in which each
symbol has at most m− 1 occurrences that are not a weak LR maximum.

• The pattern 021m: In(021m) contains precisely those inversion sequences in which
each symbol other than 0 has at most m − 1 occurrences that are not a weak LR
maximum.

• The set {10m+1, 010m}: In(10m+1, 010m) contains precisely those inversion sequences
in which each symbol has at most m occurrences that are not weak LR maxima, and
moreover, each symbol that appears as a weak LR maximum has at most m − 1
occurrences that are not weak LR maxima.

Combining the first item of Corollary 16 with Observation 19, we reach the following
conclusion.
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Corollary 20. For any conservative set C of patterns, any top-first pattern p, and any
k > 1,

C ∪ {p	 012 · · · (k − 1)k} I∼ C ∪ {p	 k(k − 1) · · · 210}.

Example 21. By Corollary 20, we have

• {011, 100, 201} I∼ {011, 100, 210},

• {011, 101, 201} I∼ {011, 110, 201} I∼ {011, 201} I∼ {011, 210} I∼ {011, 101, 210} I∼
{011, 110, 210},

• {000, 100, 201} I∼ {000, 100, 210},

• {010, 100, 201} I∼ {010, 100, 210}.

5 Bijections

In this section, we will present bijective proofs for several I-Wilf equivalence relations that
do not follow from the general methods we described in the previous sections. We remark
that although we confine all our results to the setting of inversion sequences, many of these
bijections (specifically, those described in Theorems 22, 23, 27, 29, 30, 31, 33, 37 and 38)
can in fact be applied to arbitrary words, yielding bijections between pattern-avoiding
sets of words with arbitrarily prescribed strict LR maxima.

Theorem 22. We have

{100, 110, 201} I∼ {101, 110, 201}.

Proof. Given an inversion sequence e = (e1, . . . , en) ∈ In, an index k ∈ [n] and a pattern
p = p1p2p3 ∈ P3, we say that e has a copy of p ending at position k, if there are indices i
and j such that i < j < k and eiejek is order-isomorphic to p. For the purposes of this
proof, we will say that e ∈ In is a k-hybrid inversion sequence if it satisfies the following
properties:

• e avoids 110 and 201,

• for every ` 6 k, e has no copy of 101 ending at position `, and

• for every ` > k, e has no copy of 100 ending at position `.

We let Ikn(110, 201) denote the set of k-hybrid inversion sequences. Note that I0n(110, 201)
is precisely the set In(100, 110, 201), while Inn(110, 201) is the set In(101, 110, 201). To
prove the theorem, we will establish the stronger statement that all the sets Ikn(110, 201)
for k = 0, . . . , n have the same size. To this end, we will describe, for a fixed k ∈ [n], a
bijection ψ : Ik−1n (110, 201)→ Ikn(110, 201).
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Fix e = (e1, . . . , en) ∈ Ik−1n (110, 201). If e has no copy of 101 ending at position k,
then e is also in Ikn(110, 201), and we set ψ(e) = e. Suppose now that e has a copy of
101 ending at position k, and fix i < j < k such that eiejek is order-isomorphic to 101.
In addition, choose i and j in such a way that the value ej is as small as possible. We
now define a sequence e′ = (e′1, . . . , e

′
n) = ψ(e) as follows: the entry e′k is equal to ej, and

every other entry of e′ is equal to the corresponding entry of e. Informally speaking, ψ
replaces the value of ek with a smaller value, so that a copy of 101 ending at position k
in e turns into a copy of 100; if there are more possible values achieving this, the smallest
one is chosen. We now check that e′ belongs to Ikn(110, 201):

• e′ avoids 110: suppose e′ae
′
be
′
c forms a copy of 110 in e′, for some a < b < c. Clearly

k ∈ {a, b, c} otherwise e would contain 110 as well. If k = a or k = b, then eiekec
forms a 110 in e, which is impossible. This leaves k = c. If b < j, then eaebej forms
a 110 in e, and j = b is impossible, since e′j = e′k while e′b > e′k. Thus, j < b. Now
if eb > ei, then eaebek forms 110 in e, while if eb 6 ei, then eiejeb forms either a 201
or a 101 ending at position b < k, which are both impossible.

• e′ avoids 201: suppose e′ae
′
be
′
c forms a copy of 201 in e′, for some a < b < c. Again,

k is one of a, b, c. If k = a, then eaebec is a 201 in e. Suppose k = b. Now if ec > ek,
then eaebec is a 201 in e, if ec = ek, then we get a 100 ending at position c > k in e,
and if ec < ek, then eiejec is a 201 in e, all of which is impossible.

• e′ avoids 101 ending at positions 0, 1, . . . , k: there can be no 101 ending at
` < k in e′, because e would contain it as well. Suppose there is a copy e′ae

′
be
′
k of

101 ending at k in e′. Now if b < j, then eaebej is a copy of 101 ending at j < k in
e, which is impossible, and if b > j, then b should have been chosen instead of j in
the choice of i and j above, since eiebek is a copy of 101 with eb < ej, contradicting
the minimality of ej.

• e′ avoids 100 ending at positions k+ 1, . . . , n: suppose e′ae
′
be
′
c is a copy of 100

with c > k. If k = b, then eiejec forms a 100 in e, while if k 6= b, then eaebec is a
copy of 100 in e.

Having verified that ψ(e) is in Ikn(110, 201), we now show that the mapping ψ can be
inverted by defining a function ψ∗ : Ikn(110, 201) → Ik−1n (110, 201) and showing that it
is the inverse of ψ. Choose e′ ∈ Ikn(110, 201). We will find a sequence ψ∗(e′) = e ∈
Ik−1n (110, 201) as follows. If e′ has no 100 ending in k, then it belongs to Ik−1n (110, 201)
and we set ψ∗(e′) = e′.

Suppose there is a copy e′ie
′
je
′
k of 100 in e′, and choose i and j so that e′i is as large

as possible. Define ψ∗(e′) = e = (e1, . . . , en) to be the sequence with ek = e′i, and all the
other entries of e are the same as the corresponding entries of e′. Informally, we increase
the value of e′k to turn a copy of 100 ending in k into a copy of 101, and choose the largest
possible value to achieve this. In particular, eiejek is now a copy of 101 ending at position
k in e.

Let us check that e is in Ik−1n (110, 201):
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• e avoids 110: suppose eaebec is a copy of 110 in e. If c = k, then e′ae
′
be
′
c is a copy of

110 in e′, and if k = a, then e′ie
′
be
′
c is a copy of 110 in e′. Suppose k = b. If ec > e′j,

then e′ie
′
je
′
c is a copy of 201, if ec = e′j, then e′ie

′
je
′
c is a copy of 100 ending at c > k,

and if ec < e′j, then e′je
′
ke
′
c is a copy of 110.

• e avoids 201: suppose eaebec is a copy of 201 in e. If k = a, then e′ie
′
be
′
c is a copy

of 201 in e′, and if k = b, then e′ae
′
be
′
c is a copy of 201 in e′. Suppose k = c. If

b > j, then e′ie
′
je
′
b forms a 201 in e′, hence b 6 j. Then e′ae

′
je
′
k forms a 100, and since

e′a > e′i, we should have chosen a instead of i before.

• e avoids 101 ending at positions 0, 1, . . . , k − 1: this is clear since the first
k − 1 positions of e have the same values as the corresponding positions of e′.

• e avoids 100 ending at positions k, . . . , n: suppose eaebec is such a copy of 100
with c > k. If k = a, then e′ie

′
be
′
c is a copy of 100 in e′ ending in c > k. If k = b, then

e′aebe
′
c is a copy of 201 in e′. Finally, if k = c, then either b > j, and e′ie

′
je
′
b forms

a 101 in e′ ending at b < k, or b < j and e′ae
′
je
′
k forms a copy of 100 with e′a > e′i,

contradicting again the choice of i.

Hence ψ∗(e′) is in Ik−1n (110, 201).
We now check that for any e ∈ Ik−1n (110, 201), ψ∗(ψ(e)) = e. This is clear when e has

no copy of 101 ending at k as then e belongs to Ik−1n (110, 201) ∩ Ikn(110, 201) and both
ψ and ψ∗ maps e to e. If e has a copy of 101 ending at k, then ψ chooses such a copy
eiejek with ej smallest possible, then changes it into a copy of 100 by decreasing the k-th
element appropriately, resulting in a sequence e′ = ψ(e). To show that ψ∗ reverses this
operation, we need to argue that e′ has no subsequence e′ae

′
be
′
k forming a copy of 100, with

e′a > e′i. This holds, because if such a subsequence existed, then eaebek would have been
a copy of 201 in e, which is impossible. Hence ψ∗(ψ(e)) = e.

Finally, we check that ψ(ψ∗(e′)) = e′ for any e′ ∈ Ikn(110, 201). Again, the case when
e′ has no copy of 100 ending at k is trivial. Suppose e′ie

′
je
′
k is a copy of 100, with e′i as

large as possible, so ψ∗ changes e′ into a sequence e whose k-th element is equal to e′i.
We need to show that there are no a and b such that a < b < k, eaebek is a copy of
101, and eb < ej. If such a and b existed, then either b < j, and eaebej forms a copy of
201 in e, or b > j, and e′je

′
be
′
k would form a copy of 101 ending at k in e′, contradicting

e′ ∈ Ikn(110, 201).

Theorem 23. We have

{101, 201, 210} I∼ {110, 201, 210}.

Proof. Let e ∈ In be an inversion sequence that avoids 201 and 210, and let ∈ [n]0 be
an integer. We will say that e contains 110 at height k if e contains the subsequence kk`
for some ` < k, or in other words, e contains a copy of 110 in which the two symbols ‘1’
correspond to the value k. Similarly, we say that e contains 101 at height k if it contains
the subsequence k`k for some ` < k.

For m ∈ [n]0, we will say that a sequence e ∈ In is an m-hybrid sequence if it satisfies
the following properties:
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• e avoids 201 and 210,

• for every k < m, e avoids 110 at height k, and

• for every k > m, e avoids 101 at height k.

Note that 0-hybrid sequences are precisely the sequences from In(101, 201, 210), while n-
hybrid sequences are precisely the elements of In(110, 201, 210) (recall that in a sequence
e ∈ In, all the elements have value at most n− 1). We will show, for every m ∈ [n− 1]0,
that there is a bijection ψ between m-hybrids and (m+ 1)-hybrids.

Fix an m-hybrid sequence e = (e1, . . . , en). By definition, it must avoid 101 at height
m. If the sequence also avoids 110 at height m, then it is an (m + 1)-hybrid, and we set
ψ(e) = e.

Suppose then that e contains 110 at height m. Let ei be the leftmost occurrence of m
in e. We say that an element ej is m-low if j > i and ej < m. Note that e must contain
at least one m-low element (since e contains 110 at height m), and that all the m-low
elements have the same value (otherwise e would contain 201 or 210). Let ` be the value
of the m-low elements.

We also say that an element ej is an m-repeat if j > i and ej = m. The sequence must
contain at least one m-repeat, since it contains 110 at height m, and all the m-repeats
must appear to the left of any m-low element, since e avoids 101 at height m. Note also
that any element larger than m in e must appear to the right of any m-repeat, otherwise
e would contain 210.

We now construct a sequence e′ = ψ(e) as follows: for any j, if ej is an m-low element,
we define e′j = m, if ej is an m-repeat, we define e′j = `, and in all other cases we define
e′j = ej. Informally, ψ changes m-low elements into m-repeats and vice versa. Thus, in
e′, all the m-repeats are to the right of all the m-low elements, and any copy of 110 at
height m in e is transformed into a copy of 101 at height m in e′.

We claim that e′ is an (m+1)-hybrid. It is clear that e′ is an inversion sequence (since
it has the same positions and values of strict LR maxima as e) and that it avoids 110 at
height m (since all its m-repeats are to the right of all the m-low elements). It is also
straightforward to check that e′ avoids both 210 and 201. Furthermore, for any k > m
any copy of 101 at height k in e′ implies that the same three positions form a copy of 101
at height k in e, which is impossible. Finally, for k < m if e′ contained a copy e′ae

′
be
′
c of

110 at height k, then necessarily b < i and either c < i as well or e′c is an m-low element.
In any case, e would contain 110 at height k as well, which is impossible.

Hence, e′ is an (m+1)-hybrid. Conversely, any (m+1)-hybrid sequence is either an m-
hybrid already (if it avoids 110 at height m), or is transformed into an m-hybrid sequence
by exchanging the m-low and m-repeat elements, inverting the operation ψ defined above.
Therefore, the number of m-hybrid sequences is independent of the choice of m ∈ [n]0,
implying the theorem.

Remark 24. Note that by combining Theorem 23 with the identity T [{100, 201, 210}] =
T [{101, 201, 210}] of generating trees (see Class 135 in Table 3), we obtain

{100, 201, 210} I∼ {101, 201, 210} I∼ {110, 201, 210}.
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Theorem 25. We have the equivalence

{011, 120, 201} I∼ {011, 120, 210},

and the equivalence is witnessed by a bijection from In(011, 120, 201) to In(011, 120, 210)
that preserves the positions and values of strict LR maxima, the positions and values of
weak LR maxima, and the number of occurrences of each symbol.

Proof. We will describe a bijection between the sets

A := In(011, 120, 201) and B := In(011, 120, 210),

but first we will analyze the structure of the inversion sequences in the two sets A and B.
An inversion sequence e = (e1, . . . , en) ∈ In that has k strict LR maxima can be

uniquely decomposed into a concatenation e = B1B2 · · ·Bk, where Bi is the subword of e
that begins with the i-th strict LR maximum and ends with the element immediately pre-
ceding the (i+1)-th strict LR maximum. For example, with e = (0, 0, 0, 2, 0, 1, 3, 3, 5, 3, 4),
we have (after omitting redundant punctuation) B1 = 000, B2 = 201, B3 = 33, and
B4 = 534. We will call Bi the i-th LR block of e.

Note that e avoids 011 if and only if each value greater than 0 appears at most once
in e. Note further that if e avoids 120, then for any two LR blocks Bi and Bj with i < j,
the smallest value in Bj is at least as large as the largest value of Bi; in other words
maxBi 6 minBj. Furthermore, the previous inequality is strict, except perhaps when
j = i+ 1.

It follows that for any e ∈ In(011, 120), any copy of the pattern 210 must appear
within a single LR block of e, and also any copy of the pattern 201 must appear within
a single LR block of e.

Suppose that an inversion sequence e avoids 011, and let Bi = b1b2 · · · bm be its i-th LR
block. Note that Bi avoids 210 if and only if b2b3 · · · bm is a weakly increasing sequence,
and Bi avoids 201 if and only if b2b3 · · · bm is weakly decreasing – here we use the fact that
due to 011-avoidance, either all the elements of Bi are zeros, or b1 is the unique maximum
of Bi.

For a sequence Bi = b1b2 · · · bm, let B∗i denote the sequence b1bmbm−1 · · · b2, i.e., the
sequence obtained from Bi by reversing the order of all the elements after the first one.
We now describe an involution ψ on In which, when restricted to the set A, yields the
required bijection between A and B. Fix e ∈ In, and decompose it into LR blocks as
e = B1B2 · · ·Bk. Define ψ(e) as the concatenation B∗1B

∗
2 · · ·B∗k. Observe that ψ(e) is

again an inversion sequence, B∗i is its i-th LR block, and ψ(ψ(e)) = e. Moreover, e
belongs to A if and only if ψ(e) belongs to B. Thus, the restriction of ψ to the set A
provides the required bijection.

By construction, ψ preserves the positions and values of strict LR maxima and the
number of occurrences of each element. Moreover, when restricted to 011-avoiding se-
quences, ψ also preserves the positions and values of weak LR maxima, since in a 011-
avoiding sequence, the only weak LR maxima that are not strict LR maxima appear in
the first LR block, which is unchanged by ψ.
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Since the bijection used to prove Theorem 25 preserves the number of occurrences of
each element as well as the number of occurrences of each element as weak LR maximum,
we know that the bijection preserves the avoidance of any conservative set of patterns.
Thus, by the same argument as in Corollary 20, we get the following consequence.

Corollary 26. For any conservative set of patterns C, we have C ∪ {011, 120, 201} I∼
C ∪ {011, 120, 210}. For example, taking C = {000}, we get {000, 011, 120, 201} I∼
{000, 011, 120, 210}.

Theorem 27. We have

{101, 120, 201} I∼ {101, 120, 210}.

Proof. Our argument is very similar to the proof of Theorem 25. We consider again the
decomposition of an inversion sequence e ∈ In into LR blocks B1, . . . , Bk. Again, if e
avoids 120, then for any two LR blocks Bi and Bj with i < j, we have maxBi 6 minBj,
with equality only possible when j = i + 1. It follows that any copy of 210 or 201 in e
must be confined to a single LR block.

If in addition to 120 the sequence e also avoids 101, then the equality maxBi =
minBi+1 can only occur when all the elements of Bi are equal to maxBi. Moreover, in
an inversion sequence that avoids 101, in every LR block Bi, all the elements equal to
maxBi appear consecutively at the beginning of Bi. We will say that the elements of Bi

that are equal to maxBi form the head of Bi, and the remaining elements form the tail of
Bi; note that the tail may be empty. Note also that Bi avoids 210 if and only if its tail is
a weakly increasing sequence, and it avoids 201 if and only if its tail is weakly decreasing.

For an LR block Bi, let B∗i denote the sequence obtained by keeping the head of Bi

the same, and reversing the order of elements in the tail of Bi. For a sequence e ∈ In
with LR block decomposition B1B2 · · ·Bk, define ψ(e) as ψ(e) = B∗1B

∗
2 · · ·B∗k. We observe

that ψ is an involution on In, which restricts to a bijection between In(101, 120, 210) and
In(101, 120, 201).

The argument we used to deduce Corollary 26 from Theorem 25 can be used here
as well, since the bijection we used to prove Theorem 27 has all the required statistic-
preserving properties.

Corollary 28. For any conservative set of patterns C, we have C ∪ {101, 120, 201} I∼
C ∪ {101, 120, 210}. For example, taking C = {000}, we get {000, 101, 120, 201} I∼
{000, 101, 120, 210}.

Theorem 29. We have

{100, 120, 201} I∼ {110, 120, 201}.

Proof. We again apply the decomposition if e ∈ In into LR blocks B1, . . . , Bk, as in
Theorems 25 and 27. If e avoids 120, this implies that for any i ∈ [k], the maximum of Bi
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cannot be larger than the minimum of Bi+1. This implies that in a 120-avoiding sequence,
any copy of any of the patterns 100, 110 or 201 must be confined to a single LR block Bi.
We shall therefore investigate the structure of individual blocks imposed by avoidance of
these patterns.

The avoidance of 201 implies that in each LR block B = b1b2 · · · bm, the elements
smaller than the maximum b1 must form a weakly decreasing sequence. If we further
impose 110-avoidance, this means that every value other than the maximum or the min-
imum must appear at most once, and moreover, if there are any further occurrences of
the maximum value b1, these must appear after all the other values. In particular, for
e = In(110, 120, 201), each LR block B of e has the structure B = b1b2 · · · bq−1baqbb1, where
b1 > b2 > · · · > bq, a > 1 and b > 0. Conversely, we routinely verify that if e ∈ In is an
inversion sequence whose every block has this structure, and additionally the maximum
of Bi is not larger than the minimum of Bi+1, then e belongs to In(110, 120, 201).

Assume now that e is from In(100, 120, 201), and let B = b1 · · · bm be an LR block
of e. Avoidance of 100 means that each value in B smaller than the maximum b1 can
only appear once. Avoidance of 120 further means that any occurrence of the maximum
value b1 can only appear either before all the smaller values or after them. Thus, the
block has the form B = ba1b2 · · · bq−1bqbb1, where b1 > b2 > · · · > bq, a > 1 and b > 0.
Conversely, if e ∈ In is an inversion sequence whose every block has this structure, and
additionally the maximum of Bi is not larger than the minimum of Bi+1, then e belongs
to In(100, 120, 201).

It is now clear how to transform bijectively a sequence e ∈ In(110, 120, 201) into
a sequence e∗ ∈ In(100, 120, 201): we partition e into LR blocks and then transform
each LR block of e, which as we know has the form b1b2 · · · bq−1baqbb1, into the sequence
ba1b2 · · · bq−1bqbb1. This changes e into a sequence e∗, which has the same strict LR maxima
as e, and belongs to In(100, 120, 201).

Theorem 30. We have

{000, 100, 101} I∼ {000, 100, 110}.

Proof. Let e ∈ In be an inversion sequence that avoids 000 and 100, and let k ∈ [n]0 be
an integer. We will say that e contains the pattern 101 at height k if it contains a copy of
the pattern 101 in which the symbol 1 of the pattern is represented by the symbol k in e;
in other words, e contains 101 at height k if it contains a subsequence of the form k`k for
some ` < k. Similarly, we say that e contains 110 at height k, if it contains a subsequence
kk` for some ` < k.

We will say that an inversion sequence e ∈ In is an m-hybrid sequence, if it satisfies
the following properties:

• e avoids 000 and 100,

• for every k < m, e avoids 101 at height k, and

• for every k > m, e avoids 110 at height k.
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Note that the 0-hybrid sequences are precisely the sequences avoiding {000, 100, 110},
while the n-hybrid ones are precisely the avoiders of {000, 100, 101}. Thus, the theorem is
equivalent to the statement that 0-hybrid sequences are equinumerous with the n-hybrid
ones. To prove this, we will in fact show that the number of m-hybrid sequences does not
depend on m. To this end, we now describe, for any m ∈ [n− 1]0, a bijection ψm between
the m-hybrid and the (m+ 1)-hybrid sequences.

Fix an m-hybrid sequence e = e1 · · · en. If e has at most one occurrence of the symbol
m, then it contains neither 101 nor 110 at height m, and therefore it is also an (m + 1)-
hybrid sequence. In such case, we define ψm(e) = e.

Suppose now that e has at least two occurrences of m. Since e avoids 000, it follows
that e in fact has exactly two occurrences of m. Let these occurrences be ea and eb, with
a < b. Note that ea is a strict LR maximum otherwise we would have a copy on 100 in e.
Note also that all the elements of e after eb are larger than m, otherwise e would contain
a copy of 000, or a copy of 110 at height m, which is impossible in an m-hybrid sequence.

Let us say that an element ei of e is crucial if a < i 6 b and ei 6 m. In particular, eb is
a crucial element, and the remaining crucial elements (if any) all form a copy of the pattern
101 at height m with ea and eb. Let i1 < i2 < · · · < ic = b be the indices of all the crucial
elements, in left-to-right order. We now define a new sequence ψm(e) = e∗ = e∗1 . . . e

∗
n as

follows:

• If ei is not a crucial element, then e∗i = ei.

• If ei is the leftmost crucial element (i.e., i = i1), we set e∗i = eb = m.

• If ei is a crucial element, but not the leftmost one (i.e., i = iq for some q > 1), we
let e∗i be equal to the immediately preceding crucial element of e, i.e., e∗i = eiq−1 .

Intuitively speaking, we obtain e∗ from e by performing a cyclic shift of the crucial el-
ements, with the rightmost crucial element being moved to the position of the leftmost
one, and any other crucial element being moved one step to the right in the subsequence
of crucial elements.

We claim that e∗ is an (m+ 1)-hybrid sequence. First note that the strict LR maxima
of e coincide with those of e∗, which implies that e∗ is indeed an inversion sequence. Note
also that every symbol has the same number of occurrences in e∗ as in e, and in particular
e∗ avoids 000. Also, in e∗ as in e, each symbol has at most one occurrence that is not a
strict LR maximum, implying e∗ avoids 100. It remains to analyze the copies of 101 and
110 at various heights. Note that the symbols smaller than m form the same subsequence
in e as in e∗ (although not necessarily at the same positions), and in particular, e∗ avoids
101 at height k for each k < m, because e avoided it. Moreover, e∗ also avoids 101 at
height m, since in e∗, the two occurrences of m (namely e∗a and e∗i1) have no element
smaller than m between them. It remains to check that e∗ avoids 110 at every height
k > m: to see this, note that the elements larger than m are identical in e∗ as in e, and
for any i ∈ [n], we have e∗i 6 m ⇐⇒ ei 6 m. Thus, any copy of 110 at height k > m in
e∗ would imply that the same positions in e also have a copy of 110 at the same height,
which is impossible. We conclude that e∗ is an (m+ 1)-hybrid sequence.
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To show that the mapping ψm is a bijection, we describe its inverse ψ−1m . Suppose e
is an (m+ 1)-hybrid sequence. If it has at most one occurrence of m, we put ψ−1m (e) = e,
otherwise e has two occurrences of m, say ea and eb. Note that there are no elements
smaller than m between ea and eb, since e avoids 101 at height m. We say that an element
ei is crucial, if i > b and ei 6 m. To define e∗ = ψ−1m (e), we rearrange the crucial elements
by moving the leftmost crucial element (namely eb) to the position of the rightmost one
and moving every other crucial element to the position of the immediately preceding one.
We easily check, with a similar argument as in the preceding paragraph, that e∗ is an
m-hybrid sequence, and that the mapping we now described is the inverse to the mapping
ψm defined above.

Theorem 31. We have

{010, 120, 101} I∼ {010, 120, 110}.

Proof. We use a similar argument, and analogous terminology, as in the proof of Theo-
rem 30.

Let e ∈ In be an inversion sequence that avoids 010 and 120, and let k ∈ [n]0 be an
integer. We will again say that e contains the pattern 101 at height k if it contains a
subsequence of the form k`k for some ` < k, and we say that e contains 110 at height k,
if it contains a subsequence kk` for some ` < k.

We will say that an inversion sequence e ∈ In is an m-hybrid sequence, if it satisfies
the following properties:

• e avoids 010 and 120,

• for every k < m, e avoids 101 at height k, and

• for every k > m, e avoids 110 at height k.

We again want to show that 0-hybrid sequences are equinumerous with the n-hybrid
ones, and we again do this by proving that the number of m-hybrid sequences does not
depend on m. Hence we again describe a bijection ψm between the m-hybrid and the
(m+ 1)-hybrid sequences.

Fix an m-hybrid sequence e = e1 · · · en. Let q be the number of occurrences of the
symbol m in e. If q 6 1, then e contains neither 101 nor 110 at height m, and therefore
it is also an (m+ 1)-hybrid sequence. In such case, we define ψm(e) = e.

Suppose now that q > 1. Let ea be the leftmost occurrence of m in e. Let us say that
an element ei of e is crucial if a < i and ei 6 m. In particular, all the occurrences of
m other than ea are crucial. Note that the crucial elements form a consecutive block of
e starting immediately to the right of ea; in other words, any non-crucial element of e is
either one of e1, e2, . . . , ea, or it appears to the right of the rightmost crucial element. If
not, then e would contain 010 or 120 (in the latter case, using ea in the place of ‘1’).

Note also, that since e avoids 110 at height m, all the q−1 crucial elements equal to m
appear to the right of any crucial element smaller than m; in particular, both the crucial
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elements equal to m and those smaller than m form consecutive blocks. We now create
a sequence e∗ = ψm(e), by exchanging the order of these two blocks, that is, by shifting
the crucial elements equal to m to the beginning of the sequence of crucial elements,
and by shifting every other crucial element by q − 1 steps to the right. To describe
ψm more formally, let p be the number of crucial elements of e smaller than m; as we
know, these elements are ea+1, ea+2, . . . , ea+p, and they are followed by q − 1 elements
ea+p+1, . . . , ea+p+q−1 all equal to m. Then e∗ is defined as follows:

• If ei is not crucial, then e∗i = ei.

• For i ∈ {a+ 1, a+ 2, . . . , a+ q − 1}, we have e∗i = m.

• For i ∈ {a+ q, a+ q + 1, . . . , a+ p+ q − 1}, we have e∗i = ei−q+1.

We easily observe that e∗ is an inversion sequence, that it avoids 010, that it avoids
101 at all heights k 6 m, and that it avoids 110 at all heights k > m, using the same
ideas as in the proof of Theorem 30. To see that e∗ is an (m+1)-hybrid, we need to check
that it avoids 120. Suppose for contradiction that a triple e∗i e

∗
je
∗
k with i < j < k forms

a copy of 120 in e∗. Necessarily at least one of the three elements must belong to the
block of crucial elements, i.e., at least one of the three indices i, j, k must belong to the
set {a+ 1, a+ 2, . . . , a+ p+ q− 1}. Since e∗k is the smallest and rightmost of the three, it
must belong to this crucial block, i.e., a < k < a + p + q. If e∗k is the only such element,
i.e., if j 6 a, then e also contains 120 formed by the same three values e∗i e

∗
je
∗
k (although

the last value may be at a different position than in e∗). If, on the other hand, we have
i 6 a and a < j < k < a + p + q, then necessarily i < a (otherwise e∗i = e∗a = m, which
cannot be smaller than e∗j), and we may replace e∗j with e∗a = ea = m to transform the
situation to the previous case. Finally, if all three elements are in the crucial block, i.e.,
a < i < j < k < a+ p+ q, then the three values e∗i e

∗
je
∗
k are all smaller than m (otherwise

e∗j = m, but no crucial element equal to m has a smaller crucial element to its left in e∗).
But that means that the three elements ei−q+1, ej−q+1, ek−q+1 form a copy of 120 in e, a
contradiction. This shows that e∗ is indeed an (m+ 1)-hybrid.

We easily observe that ψm is a bijection between the m-hybrids and (m+ 1)-hybrids.

We may observe that the bijection in the proof of Theorem 31 preserves the number
of occurrences of each element, as well as the number of its occurrences as weak LR
maximum. This leads to the usual conclusion.

Corollary 32. For any conservative set of patterns C, we have C ∪ {010, 120, 101} I∼
C ∪ {010, 120, 110}.

Theorem 33. We have

{010, 210, 100} I∼ {010, 210, 101}.
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Proof. For a sequence e = e1e2 · · · en, we say that an element ei is a repeat if the value ei
already appears among the elements e1, . . . , ei−1. Consider now a sequence e = e1 · · · en ∈
In(010, 210). Observe that such a sequence avoids 100 if and only if every repeat ei is
equal to the largest element among e1, . . . , ei−1, while the sequence avoids 101 if and only
if every repeat ei is equal to ei−1.

We construct a bijection ψ : In(010, 210, 100) → In(010, 210, 101) as follows: from a
sequence e ∈ In(010, 210, 100), we obtain a sequence e∗ = ψ(e) by replacing, in left-to-
right order, the value of every repeat ei in e with the value e∗i := ei−1. Note that e∗ has the
same strict LR maxima as e and in particular, it is again an inversion sequence. Note also
that e∗ has repeats at the same positions as e. In particular, ψ is injective, and its inverse
ψ−1(e∗) is obtained by replacing every repeat e∗i of e∗ by the value max{e∗1, . . . , e∗i−1}.

We may routinely check that neither ψ(e) nor ψ−1(e) can contain any copy of 010 or
210, as long as e avoids both these patterns. It follows that ψ is a bijection witnessing

that {010, 210, 100} I∼ {010, 210, 101}.

Theorem 34. We have

{010, 101, 210} I∼ {010, 101, 201}.

Proof. As in the proof of Theorem 33, we call an element ei of a sequence e = e1 · · · en a
repeat if it is equal to some of the previous elements. Notice that a sequence of e = e1 · · · en
avoids the two patterns 010 and 101 if an only if every repeat ei is equal to the immediately
preceding element ei−1. In other words, in a sequence avoiding 010 and 101, all the
occurrences of a given value v appear in a single consecutive block.

We have seen in Fact 15, that the patterns 210 = 0	10 and 201 = 0	01 are shape-Wilf
equivalent. Since the two patterns are top-first, this implies by Lemma 13 that they are

also
I∼-equivalent. However, the bijection witnessing this equivalence does not preserve

avoidance of 010 and 101, so we cannot use it directly. Instead, we combine the bijection
with a ‘compression’ step, which removes repeats from the sequence.

Fix e = e1 · · · en ∈ In(010, 101). As we have seen, for each value v appearing in e, the
occurrences of v will form a consecutive block of elements. The compression c(e) of e is
the sequence c1c2 . . . ck obtained from e by replacing, for each v ∈ {e1, . . . , en}, all the
(necessarily consecutive) occurrences of v in e by a single occurrence. For example, with
e = 0001444435, we have c(e) = 01435. Note that c(e) is not necessarily an inversion
sequence. Observe that all the elements of c(e) are distinct and that c(e) avoids 210 if
and only if e avoids 210, and likewise for the pattern 201. For j = 1, . . . , k, let mj denote
the number of occurrences of the value cj in e. For instance, with the above example of
e = 0001444435 and c(e) = 01435, we have m1 = 3, m2 = 1, m3 = 4, m4 = 1 and m5 = 1.

Suppose now that the inversion sequence e additionally avoids the pattern 210. Then
c(e) avoids 210 as well, and by Fact 15, there is a bijection transforming the 210-avoiding
rectangular filling F (c(e)) into a 201-avoiding rectangular filling F (c∗), for some 201-
avoiding sequence c∗ = c∗1 · · · c∗k. Additionally, we know that c∗ has the same positions
and values of weak LR maxima as c(e), and the same number of occurrences of each
symbol as c(e). In particular, the elements of c∗ are pairwise distinct. We now use the
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values m1, . . . ,mk, defined above, to transform c∗ into a sequence e∗, obtained from c∗

by replacing each element c∗i by a sequence of mi consecutive copies of c∗i . Note that e∗

has the same positions and values of weak LR maxima as e, and in particular, e∗ is an
inversion sequence. By construction, e∗ belongs to In(010, 101, 201). All the steps of the
transform from e to e∗ can be inverted, and therefore the transform yields a bijection
between In(010, 101, 210) and In(010, 101, 201).

Note that the bijection used in the preceding proof does not necessarily preserve the
number of occurrences of each symbol, and therefore it does not allow us to add any
conservative set to the list of forbidden patterns. However, we may directly observe that
the bijection preserves 0m-avoidance for any m > 1. We state this as a corollary.

Corollary 35. For any m > 1, we have

{0m, 010, 101, 210} I∼ {0m, 010, 101, 201} and {10m, 010, 101, 210} I∼ {10m, 010, 101, 201}.

Corollary 36. The four sets of patterns A = {010, 100, 201}, B = {010, 100, 210}, C =
{010, 101, 201} and D = {010, 101, 210} are all I-Wilf-equivalent.

Proof. We know that A
I∼ B by Corollary 20 (see Example 21), B

I∼ D by Theorem 33,

and C
I∼ D by Theorem 34.

Theorem 37. We have

{000, 010, 201} I∼ {000, 010, 210}.

Proof. Avoidance of 000 means that each value can appear at most twice. As in the proof
of Theorem 34, we will use the shape-Wilf equivalence of 201 and 210. But we again need
to take care of repeated elements.

For a sequence e ∈ In, we say that ei is a low repeat, if ei is a repeat (i.e., ei ∈
{e1, . . . , ei−1}), and moreover, ei is not a weak LR maximum.

We claim that if the sequence e avoids 000 and 010, and moreover avoids at least one
of the two patterns 201 and 210, then every low repeat ei satisfies ei = ei−1. To see this,
suppose that ei is a low repeat such that ei = ej for some j < i − 1. Since each value
appears at most twice in e, we know that all the values between ej and ei are different
from ei. If at least one of these values is larger than ei, we obtain a copy of 010. If all
these values are smaller than ei, then ej is not a weak LR maximum (recall that ei is not a
weak LR maximum since it is a low repeat), hence there is a k < j such that ek > ej = ei.
For any ` strictly between j and i, we further have e` < ej = ei. Thus, ekeje` is a copy of
210, while eke`ei is a copy of 201, contradicting our assumptions.

We will now use the same compression argument as in the proof of Theorem 34, except
now we will only compress low repeats. Fix e ∈ In(000, 010, 201). Let c(e) = c1 · · · ck be
the sequence obtained from e by erasing all the low repeats. Note that c(e) has the same
values of weak LR maxima as e (although not necessarily at the same positions). Note
also that any value ci that is not a weak LR maximum is distinct from all the other values
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in c(e). Let us say that an element cj is compressed if cj is not a weak LR maximum
in c(e) and e has two occurrences of the value cj (hence one of them is necessarily a low
repeat).

Since c(e) avoids 201, we may apply the bijection from Fact 15 to transform it into
a 210-avoiding sequence c∗ = c∗1 · · · c∗k with the same weak LR maxima and the same
multiplicities of elements as c(e). In particular, if cj is compressed in c(e), then c∗j is not
a weak LR maximum (because cj isn’t). We claim that c∗j is distinct from all the other
elements of c∗; indeed, if the value c∗j occurred more than once in c∗, then it would also
occur more than once in c(e), hence all its occurrences in c(e) would have to be weak
LR maxima, but since c∗ has the same weak LR maxima and at the same positions as
c(e), this would mean that in c∗, the value c∗j has more occurrences than in c(e), which
contradicts the properties of the bijection.

We then ‘decompress’ c∗ into a sequence e∗ in an obvious way: whenever an element cj
is compressed in c(e), modify c∗ by replacing c∗j by two consecutive copies of c∗j . It follows
from the discussion in the previous paragraph that this cannot create a copy of the pattern
000, and it is easy to see that this cannot create a copy of 010 or 210 either. We see that
e∗ has the same weak LR maxima as e, and therefore it is an inversion sequence, hence
e∗ ∈ In(000, 010, 210). The mapping e 7→ e∗ can be inverted in an obvious way and is the
required bijection.

Theorem 38. We have

{000, 101, 201} I∼ {000, 110, 210}.

Proof. Note that a sequence avoids the pattern 000 if and only if each symbol appears at
most twice in it. We will prove the theorem by showing that there is a bijection ψ between
In(101, 201) and In(110, 210) which additionally preserves the number of occurrences of
each symbol. In fact, ψ will also preserve the positions and values of strict LR maxima.

To describe the bijection, we consider an arbitrary inversion sequence e = e1 · · · en ∈
In. First, we describe a procedure that encodes e into a particular filling of a Ferrers
diagram.

For i ∈ [n], define hi = max{e1, e2, . . . , ei}. Note that h1 6 h2 6 · · · 6 hn, and that
hn is the height ht(e) of e. Consider the filling F (e), and recall that this filling has hn + 1
rows and n columns. We will now restrict the filling F (e) to a filling of a Ferrers diagram,
by removing from F (e) every box (i, j) such that j > hi. Let D be the resulting filling.
Note that all the boxes we removed from F (e) were 0-cells, and that D is a filling of a
Ferrers diagram. In fact, the underlying diagram of D is the smallest Ferrers subdiagram
of F (e) which contains all the 1-cells of F (e). Note also that the shape of D only depends
on the values of h1, . . . , hn, and therefore it only depends on the positions and values of
the strict LR maxima of e.

As the next step, we transform the filling D into its subfilling D− be removing from
D all the columns corresponding to the strict LR maxima of e (that is, if ei is a strict
LR maximum of e, we remove from D its i-column). After removing a column, we shift
the columns to its right by one step to the left, to fill the gap. D− is again a filling of a
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Ferrers diagram. The key observation is that e belongs to In(110, 210) if and only if D−

avoids the pattern 10 (i.e., it avoids the 2× 2 subdiagram F (10) = 1 0
0 1 ), while e belongs

to In(101, 201) if and only if D− avoids the pattern 01.
We now use the fact that 10 and 01 are shape-Wilf equivalent to describe the required

bijection ψ. Start with an inversion sequence e ∈ In(101, 201). Construct successively the
fillings D and D− as described above. As we observed, D− avoids 01. By Fact 15, D− can
be bijectively transformed to a filling D̃− which avoids 10 and has the same row-sums.
We then enlarge D̃− into a filling D̃, by reinserting the columns that were removed from
D to obtain D−. These columns will have the same position and filling in D̃ as in D.
We now use D̃ to define a sequence ẽ = ẽ1, . . . , ẽn, where ẽi = j if and only if D̃ has the
1-cell (i, j). Note that ẽ has the same strict LR maxima as e, and in particular, it is an
inversion sequence. Since D̃− avoided 10, we easily deduce that ẽ avoids 101 and 201.
Defining ψ(e) := ẽ, we have obtained the required bijection.

Theorem 39. We have

{102, 110, 210} I∼ {102, 120, 210}.

Proof. Let us say that an element ei of an inversion sequence e = e1e2 · · · en ∈ In is high
if there is an element ej such that i < j and ei > ej. An element is low if it is not high.
Observe that the low elements must form a weakly increasing subsequence of e. Moreover,
e avoids 210 if and only if its high elements form a weakly increasing subsequence. We
will now characterize the two classes of inversion sequences of interest, and state the
characterization as a pair of claims.

Claim A. An inversion sequence e belongs to In(102, 110, 210) if and only if it satisfies
the following properties:

• For any high element ei and any low element ej, we have ei > ej.

• The high elements form a strictly increasing subsequence.

• The high elements all appear consecutively, that is, there are no three indices i <
j < k such that ei and ek are high while ej is low.

To prove Claim A, we first easily observe that an inversion sequence containing a copy of
102, 110, or 210 must violate at least one of these three conditions. Conversely, suppose
e violates at least one of the three conditions of the claim. If it violates the first one, it
contains a low element ej and a high element ei with ej > ei. Then necessarily ej is to
the right of ei otherwise ej would be high; moreover, since ei is high, there is a smaller
element ek to the right of it. But ek cannot be to the right of ej, since ej is low. Thus,
we get i < k < j, and ei, ej and ek form a forbidden copy of 102. If e violates the second
condition, then it contains 110 or 210, which are both forbidden. Finally, if e satisfies the
first two conditions but violates the third one, then it contains 102. This proves Claim A.

Claim B. An inversion sequence e belongs to In(102, 120, 210) if and only if it satisfies
these two conditions:
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• For any high element ei and any low element ej, we have ei > ej.

• The high elements all have the same value.

We again easily observe that if e contains 102, 120, or 210, then it violates one of the
two conditions. To see the converse, suppose e violates one of the two conditions. If it
violates the first one, then it contains 102, by the same argument as in the previous claim.
Suppose that e violates the second condition, i.e., it contains two high elements ei and
ej, with ei > ej. If i < j, then e contains 210, while if i > j, then e contains 102 or 120.
This proves Claim B.

It is now easy to describe a bijection ψ : In(102, 110, 210) → In(102, 120, 210). Fix
e = e1 · · · en ∈ In(102, 110, 210). If e has no high element, then it avoids 10 and therefore
it is a weakly increasing sequence. In such case, we define ψ(e) = e. Suppose that e has
at least one high element. Let ek be the leftmost high element, and let m > 0 be the
number of high elements other than ek. We know from Claim A that these remaining high
elements are ek+1, ek+2, . . . , ek+m, and that ek < ek+1 < · · · < ek+m. For i = 0, 1, . . . ,m,
define di = ek+i − ek, so that we have 0 = d0 < d1 < d2 < · · · < dm. Note that, by the
definition of inversion sequence, we have

k +m > ek+m = ek + dm. (1)

We now transform the sequence e into a sequence e′ = ψ(e) ∈ In(102, 120, 210) by the
following two steps:

1. Delete from e all the high elements ek, ek+1, . . . , ek+m, leaving only the weakly in-
creasing sequence of length n−m− 1 formed by the low elements of e.

2. Into the obtained sequence, insert m + 1 new symbols, all of them equal to ek,
so that the newly inserted symbols will appear at positions k + m − dm, k + m −
dm−1, . . . , k +m− d0 = k +m. Call the resulting sequence e′.

We claim that e′ has exactly m+ 1 high elements, and these correspond precisely to the
elements inserted in step 2 above. To see that the inserted elements are high in e′, it is
enough to note that ek was high in e, and therefore e has an element ej smaller than ek
which appears to the right of all the high elements ek, ek+1, . . . , ek+m. Since the positions
to the right of ek+m are not modified by the mapping e 7→ e′, we have ej = e′j, and
this element e′j guarantees that all the symbols inserted in the second step are high. By
construction, there can be no other high symbols in e′.

Let us verify that e′ is an inversion sequence. For this, it is enough to check that
each symbol inserted in the second step is smaller than its index. Since all the inserted
symbols have the same value ek, it is enough to verify this inequality for the leftmost
inserted symbol, i.e., to verify ek = e′k+m−dm < k + m − dm. However, this follows from
(1). We conclude that e′ is an inversion sequence, and from Claim B, it follows that e′

belongs to In(102, 120, 210).
To see that the mapping ψ is a bijection, let us describe a transformation ψ′, which will

turn out to be its inverse. Fix f = f1 · · · fn ∈ In(102, 120, 210). If f has no high elements,
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then it is weakly increasing and we put ψ′(f) = f . Suppose f has at least one high
element, and let fk be the rightmost high element of f . Let m > 0 be the number of high
elements to the left of fk. Fix a sequence 0 = d0 < d1 < d2 < · · · < dm so that the high
elements of f (in right to left order) are precisely at positions k − d0, k − d1, . . . , k − dm.
Recall from Claim B that all the m + 1 high elements are equal to fk. Note that the
definition of inversion sequence implies that

fk = fk−dm < k − dm. (2)

We then transform f into a sequence f ′ as follows

1. Delete from f all the high elements, leaving only the weakly increasing sequence of
length n−m− 1 formed by the low elements of f .

2. Into the obtained sequence, insert m+1 new symbols forming an increasing sequence
fk, fk +d1, fk +d2, . . . , fk +dm; the symbols are inserted at positions k−m, k−m+
1, . . . , k. Call the resulting sequence f ′.

We may easily verify that the high elements of f ′ are precisely the m+1 elements inserted
in the second step. With the help of (2), we can verify that f ′ is an inversion sequence.
With the help of Claim A, we may then confirm that f ′ belongs to In(102, 110, 210).
We can then define ψ′(f) = f ′, and check that ψ′ is the inverse of ψ. This shows that

both ψ and ψ′ are injective, and therefore bijections witnessing that {102, 110, 210} I∼
{102, 120, 210}.

Our next goal is to establish the I-Wilf equivalence of {021, 100} and {101, 102, 210}.
Recall from Section 2 that the set {021, 100} is equipotent to {021, 100, 201} as well as
to {021, 100, 210} (and to {021, 100, 201, 210} as well). It follows that all these sets of
patterns are I-Wilf equivalent.

Theorem 40. We have
{021, 100} I∼ {101, 102, 210},

and therefore also {021, 100, 210} I∼ {101, 102, 210}.

Proof. Let us say that an element ei in an inversion sequence e is covered if there is a
j < i such that ej > ei. In other words, an element is covered if and only if it is not a
weak LR maximum.

Claim A. An inversion sequence e = e1 · · · en avoids the two patterns 021 and 100 if
and only if it has at most one covered element, and this element (if it exists) is equal to
0.

To prove the claim, notice that an inversion sequence contains 021 if and only if it
contains a covered element larger than zero. Moreover, a 021-avoiding inversion sequence
has at most one covered element if and only if it avoids 100. The claim follows.

Recall from the proof of Theorem 39 that an element ei of an inversion sequence is
high if there is a j > i such that ei > ej, otherwise ei is low. The low elements necessarily
form a weakly increasing sequence.
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Claim B. An inversion sequence e = e1 · · · en avoids the three patterns 101, 102 and
210 if and only if it satisfies the following conditions:

• Any high element is strictly larger than all the low elements.

• The high elements form a weakly increasing subsequence of e.

• The high elements all appear consecutively, that is, there are no three indices i <
j < k such that ei and ek are high while ej is low.

It is straightforward to check that the copy of any of the three patterns 101, 102 and
210 in e implies that e violates at least one of the three conditions of Claim B. Suppose
conversely that e violates one of the conditions. If the first condition is violated, then e
contains a high element ei and a low element ej such that ei 6 ej. Since ei is high, there
is also an element ek such that i < k and ei > ek. Since ej is low, it must be to the right
of ek, otherwise, it would be high due to ek. Thus, we have i < k < j and ek < ei 6 ej,
which means that the three elements form a copy of 101 or 102. If the first condition
holds but the second does not, then e contains 210. Finally, if the first two conditions
hold but the third does not, we again obtain a copy of 101 or 102. This proves Claim B.

We now describe a bijection ψ : In(021, 100) → In(101, 102, 210). To describe the
bijection, it is convenient to encode inversion sequences from In as lattice paths of a
special form connecting the point (0, 0) to the point (n, n). To a sequence e ∈ In, we
associate a path P (e) defined as follows.

• For each i ∈ [n], the path P (e) contains a horizontal segment connecting the points
(i− 1, ei) and (i, ei).

• For each i ∈ [n − 1], the path P (e) contains a (possibly trivial) vertical segment
connecting (i, ei) to (i, ei+1).

• The path P (e) contains the vertical segment from (n, en) to (n, n).

Notice that if we orient P (e) from (0, 0) towards (n, n), then it can be decomposed into
a sequence of unit-length steps of three types: right-steps going from a point (i, j) to
(i+ 1, j), up-steps from (i, j) to (i, j + 1), and down-steps from (i, j) to (i, j − 1). Notice
also that P (e) is wholly inside the closed triangle with vertices (0, 0), (n, 0) and (n, n).
Conversely, any lattice path inside this triangle composed of steps of the above three types
encodes a unique inversion sequence.

Fix e ∈ In(021, 100). If e has no covered element, it means that e is a weakly increasing
sequence with no high elements, and we define ψ(e) = e. Consider therefore that e has a
covered element ei. As we know from Claim A, ei is equal to 0 and it is the only covered
element of e, while the remaining n− 1 elements of e form a weakly increasing sequence.
Define h = ei−1. Since ei is covered, we know that h > 0. Furthermore, let d be the
number of occurrences of the value h in the subsequence e1e2 · · · ei−1. By monotonicity,
we know that h = ei−1 = ei−2 = · · · = ei−d > ei−d−1. Since e is an inversion sequence, we
know that h = ei−d < i− d, and therefore h+ d < i.
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The bijection ψ : In(021, 100) → In(101, 102, 210) in this case will be described in
terms of a geometric manipulation with the lattice path P (e). We begin by identifying
four auxiliary points W,X, Y, Z on the path P (e):

• W is the point (i− d− 1, h)

• X is the point (i− 1, h)

• Y is the point (i, h)

• Z is the leftmost intersection of P (e) with the horizontal line y = h+ d. Note that
such an intersection point exists since, as we have pointed out, h + d < i so P (e)
must cross the line y = h+ d at least once.

These four points partition P (e) into five subpaths, denoted P0, P1, . . . , P4 in their left-
to-right order. Note that P1 is a horizontal segment of length d, while P2 consists of two
vertical segments of length h separated by a single right-step.

We now transform P (e) into a path P ′ via the mapping that sends a point (x, y) to
(n − y, n − x). Note that this mapping is the mirror reflection through the line passing
through the two points (n, 0) and (0, n). Let W ′, X ′, Y ′, Z ′ be the respective images of
W,X, Y, Z under this mapping, and let P ′i denote the image Pi for i = 0, . . . , 4.

We now obtain a path P ′′ from P ′ by this sequence of steps:

• Delete P ′1, P
′
2, and all the vertical steps of P ′0 that belong to the vertical line x = n.

• Take the subpath P ′0 (which connects W ′ to (n, n)) and move it d steps to the left
and d steps down, and call the resulting path P ′′0 . Notice that the leftmost point
of P ′′0 is at the same vertical line as the point Z ′, and that all the points of P ′′0 are
strictly above the horizontal line y = n− i, while P ′3 ∪ P ′4 has its topmost point on
this line. Note also that P ′′0 has exactly h horizontal steps.

• Take P ′3, and move it h steps to the right, calling the resulting path P ′′3 . Note that
the leftmost point of P ′′3 is at the same vertical line as the rightmost point of P ′′0 ,
while the rightmost point of P ′′3 is on the vertical line x = n. Note that P ′′3 has
exactly d horizontal steps.

• Insert three vertical segments, connecting, respectively, Z ′ to the leftmost point of
P ′′0 , the rightmost point of P ′′0 to the leftmost point of P ′′3 , and the rightmost point
of P ′′3 to (n, n). This yields a path P ′′.

Note that for every i ∈ [n], P ′′ has a unique right-step of the form (i − 1, j) to (i, j) for
some j. In particular, there is a unique inversion sequence e′ ∈ In such that P ′′ = P (e′);
recall that e′i = j if and only if P ′′ has a unique right-step of the form (i− 1, j) to (i, j).
We define the image of e under ψ to be the sequence e′.

With the help of Claim B, we check that e′ avoids the patterns 101, 102 and 210.
Note that the high elements of e′ correspond precisely to the horizontal steps of P ′′0 , and
these steps are all higher than any of the other horizontal steps. Thus, e′ satisfies the first
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condition of Claim B. It follows from the construction, that e′ also satisfies the other two
conditions, hence e′ is in In(101, 102, 210).

To show that the mapping ψ is injective, all we need to do is show that from the
sequence f ∈ In(101, 102, 210), we can uniquely reconstruct the preimage under ψ. If f
has no high elements, then f is weakly increasing, and we have ψ−1(f) = f . Suppose
that f has a high element. Let h be the number of high elements (which, as we know,
form a consecutive subsequence in f), and let d be the number of elements that follow the
rightmost high element. We may now define P ′′ = P (f), let P ′′3 be its subpath induced
by the d rightmost horizontal steps, and P ′′0 the subpath induced by the h horizontal
steps preceding P ′′3 . With the knowledge of P ′′0 , P ′′3 , d and h, we can reverse the mapping
P 7→ P ′′ described above, and obtain the path P encoding the sequence e = ψ−1(e′). By
construction, e contains a unique covered element, which is equal to 0, and therefore e is
in In(021, 100).

6 Further results: Trivial Classes

The main goal of our paper was to show there are at least 137 and at most 139 I-
Wilf-equivalences for inversion sequences avoiding triples of patterns of length three, see
Theorem 1. The main tool that we used to achieve this goal was the concept of generating
trees. We remark that by applying the same tool, we can also enumerate several trivial
classes. The results we obtained are summarized in Table 5. The proofs for the classes
in this table are omitted because of their similarity to the analytical proofs presented
in Section 3.

Table 5: Several trivial classes, generating trees T [B], and generating functions FB(x)

Begin of Table 5

Class B T [B] FB(x)

1 000,001,012(r) 0  00, 01, 01  00, 011, 011  00 x + 2x2 + 2x3 + x4

3 000,011,012(r) 0  00, 01, 00  001, 01, 01  001 x + 2x2 + 3x3 + x4

4 000,010,012(r) 0  00, 01, 00  01, 002,

002  01, 0022, 01  011, 022  01,

x + 2x2 + 3x3 + 3x4 + 2x5 + x6

8 000,001,210 am  (00)mbmam+1, bm  (00)m; am = 01 · · ·m, bm = amm
x(1+x3)

(1−x)2

10 000,010,011(r) 0  00, 01, 00  00, 00, 01  01
x(1−x−x2)
(1−x)(1−2x)

14 000,010,100 amj  (am(j−1))
j−mbmjamj · · · am(2m),

bmj  (bm(j−1))
j−ma(m+1)j · · · a(m+1)(2m+2);

amj = 00 · · · (m − 1)(m − 1)j and bmj = amjj, j = m,m + 1, . . . , 2m

15 000,010,101 amj  bmamm · · · am(2m),

bmj  a(m+1)(m+1) · · · a(m+1)(2m+2); amj = 00 · · · (m − 1)(m − 1)j,

bm = 00 · · ·mm, j = m,m + 1, . . . , 2m

∑
j>0

j!x2j

(1−x)···(1−(j+1)x)

17 000,012,021(r) 0  00, 00, 00  001, 001, 001  0011 x + 2x2 + 4x3 + 4x4

18 000,012,110(r) 0  00, 01, 00  001, 01, 01  001, 011, 001  011 x + 2x2 + 4x3 + 4x4 + x5

19 000,012,101(r) 0  00, 01, 00  001, 002, 01  010, 001, 001  010,

002  001, 0022, 0022  001

x + 2x2 + 4x3 + 4x4 + 2x5 + x6

20 000,012,100(r) 0  00, 01, 00  001, 002, 01  001, 001, 001  0011,

002  0011, 001

x + 2x2 + 4x3 + 5x4 + x5

25 011,012,100 am  b1 · · · bmam+1, bm  b1 · · · bm−1cm,

cm  c1 · · · cm−1; am = 0m, bm = amm, cm = bm0

x(1−x2−x3)

(1−x−x2)2

28 010,012,210 am  b1 · · · bmam+1, bm  bm1 bm; am = 0m, bm = amm
x(1−3x+4x2−2x3+x4)

(1−x)5

31 000,010,021 am  a0 · · · ambm, bm  a0 · · · am+1;

am = 0011 · · · (m − 1)(m − 1)m, bm = amm

1−x−
√

1−2x−3x2

2x2 − 1

38 012,101,110 am  b1 · · · bmam+1, bm  b1 · · · bm−1cmd,

cm  b1 · · · bm−1cm, d  d; am = 0m, bm = amm, cm = bm0,

d = 010

x(1−x+x2)
(1−x)(1−2x)
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Continuation of Table 5

Class B T [B] FB(x)

39 000,021,102 a0  b0c1, am  bma1 · · · ame, e  b0e,

bm  am+1 · · · a1e, c1  gd1h, cm  fdmcm · · · c2e,

dm  fcm+1 · · · c2h, g  f, h  fd1h;

am = 00 · · · (m − 1)(m − 1)m, bm = amm,

cm = 011 · · · (m − 1)(m − 1)m, dm = cmm, e = 002, f = 0101, g = 010,

h = 012

1−x−x2−x3−(1+x2)

√
1−2x−3x2

2x2 −

x2 + x4

43 012,101,210 am  am+1b1 · · · bm, e  e, bm  cmem−1bm,

cm  cmem−1; am = 0m, e = 0101, bm = amm cm = bm0

x(1−x+x2)(1−3x+4x2−x3)

(1−x)6

47 000,021,120 a0  b0(01), 01  a1a1(002), am  bma1 · · · am(002),

bm  am+1 · · · a1(002), 002  b0(002);

am = 00 · · · (m − 1)(m − 1)m, bm = amm

3−6x−4x2+3x3

2x2 −

(3−3x−x2)

√
1−2x−3x2

2x2

51 011,102,201 am  am+1bm,1 · · · bm,m, bm,1  dbm,1 · · · bm,m,

bm,j  d2c3 · · · cjbm,j · · · bm,m, d  d; am = 0m, bm,j = amj,

cm = amm(m − 1), d = 010

x(1−2x+x2+x3)

(1−x)2(1−2x−x2)

52 000,021,110 0  a0e, e  b1a0e, am  bm+1 · · · b1f,

bm  ambm · · · b1f, f  a0f; am = 00 · · ·mm, bm = am−1m,

e = 01, f = 002

2−4x−3x2+3x3

2x2(1−x)
+

(x2+2x−2)
√

(1+x)(1−3x)

2x2(1−x)

55 000,021,101 a0  b0c1, am  bma1 · · · ame, bm  a1 · · · am+1e,

cm  bm−1dmc1 · · · cm, dm  bmc1 · · · cm+1, e  b0e;

am = 00 · · · (m − 1)(m − 1)m, bm = amm,

cm = 011 · · · (m − 1)(m − 1)m, dm = cmm, e = 002

2x

3x−1+

√
1−2x−3x2

− 1, [4]

71 010,102,120 am  am+1ambm,2 · · · , bm,m,

bm,j  cj,1 · · · cj,j−1bm+1,jbm+1−j,2 · · · bm+1−j,m+1−j ,

cm,j  cj,1 · · · cj,j−1cm,jcm−j,1 · · · cm−j,m−1−jdm+1−j ,

dm  cm−1,1 · · · cm−1,m−2dm; am = 0m, bm,j = amj,

cm,j = 0mmj, dm = 0mm1m

83 010,100,110 am  am+1ambm,2 · · · , bm,m,

bm,j  (bm,j−1)j−1am+2−jbm,j · · · bm,m; am = 0m, bm,j = amj

84 010,101,110 am  am+1ambm,2 · · · , bm,m,

bm,j  amam+2−jbm,2 · · · bm,m; am = 0m, bm,j = amj

87 010,100,101 am  am+1ambm,2 · · · , bm,m,

bm,j  (cm,j)
j−1bm+1,jbm,j · · · bm,m,

cm,2  ambm,2 · · · bm,m, cm,j  (cm,j−1)j−2bm,j−1 · · · bm,m;

am = 0m, bm,j = amj, cm,j = 0mj1

99 021,102,110 am  am+1b1 · · · bm, bm  cmd1 · · · dme, cm  c1 · · · cm+1f,

dm  d1 · · · dmcmg, e  eg, f  c1f, g  g; am = 0m,

bm = am1, cm = am11, dm = am12, e = 010, f = 0113, g = 0101

1−8x+26x2−44x3+43x4−22x5+2x6

2x(1−x)4(1−2x)
−

√
1−4x
2x

100 021,102,120 am  am+1b1 · · · bm, bm  bm+1c1 · · · cmd,

cm  c1 · · · cm+1, d  d2; am = 0m, bm = am1, cm = am12,

d = 010

1−7x+19x2−25x3+18x4−4x5

2x(1−x)3(1−2x)
−

√
1−4x
2x

101 021,100,102 am  am+1b1 · · · bm, bm  bm+1c1 · · · cmd,

cm  c1 · · · cm+1e, d  d; am = 0m, bm = am1, cm = am12,

d = 010, e = 0120

1−5x+8x2−4x3−x4+3x5

2x(1−x)4
−

(1+x)
√

1−4x
2x

102 021,101,102 am  am+1b1 · · · bm, bm  b1 · · · bm+1c, c  c; am = 0m,

bm = am1, c = 010

1−3x+2x2−2x3−(1−x)
√

1−4x

2x(1−x)2

104 021,100,110 am  am+1b1 · · · bm, bm  c2mb1 · · · bm, cm  c1 · · · cm+1e,

e  c1e; am = 0m, bm = am1, cm = am10, e = 0103

(1−x)(1−3x)−(1−2x)
√

1−4x
x(1−2x)

119 101,102,201 [4]

127 021,201,210 am  am+1am+1 · · · a2; am = 0m, In(021, 201, 210) = In(021)

End of Table 5
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7 Appendix A

Table 7: Inversion sequences avoiding a set B ⊂ P3 with |B| = 3

Begin of Table 7

Class B {|In(B)|}9n=0 Class B {|In(B)|}9n=0
1 000,001,012(r) 1,2,2,1,0,0,0,0,0 47 000,021,120 1,2,5,13,32,81,207,537,1409

2 000,001,010(r) 48 000,102,120 1,2,5,13,32,85,223,599,1617

000,001,011(r) 49 012,102,201

001,010,011(r) 012,102,210

001,010,012(r) 012,120,201

001,011,012(r) 1,2,2,2,2,2,2,2,2 012,120,210 1,2,5,13,33,80,185,411,885

3 000,011,012(r) 1,2,3,1,0,0,0,0,0 50 011,021,100

4 000,010,012(r) 1,2,3,3,2,1,0,0,0 011,021,120

5 001,011,100(r) 011,102,210 1,2,5,13,33,81,193,449,1025

001,011,120(r) 51 011,102,201 1,2,5,13,33,82,201,489,1185

001,012,100(r) 52 000,021,110 1,2,5,13,33,84,215,556,1453

001,012,110(r) 1,2,3,3,3,3,3,3,3 53 011,101,102

6 000,001,021(r) 011,102,110

000,001,120(r) 1,2,3,4,4,4,4,4,4 012,102,120 1,2,5,13,34,89,233,610,1597

7 000,001,110 54 000,102,110 1,2,5,13,34,91,246,672,1850

001,010,021(r) 55 000,021,101 1,2,5,13,35,96,267,750,2123

001,010,100(r) 56 011,100,120 1,2,5,13,36,103,306,935,2933

001,010,101(r) 57 000,101,102 1,2,5,13,37,108,327,1010,3180

001,010,102(r) 58 000,021,100

001,010,110(r) 000,021,201

001,010,120(r) 000,021,210 1,2,5,14,39,111,317,911,2627

001,010,201(r) 59 000,102,210 1,2,5,14,39,113,325,945,2747

001,010,210(r) 60 000,100,102 1,2,5,14,39,115,347,1069,3351

001,011,021(r) 61 000,102,201 1,2,5,14,39,116,345,1060,3289

001,011,101(r) 62 011,120,201

001,011,102(r) 011,120,210 1,2,5,14,41,123,375,1156,3590

001,011,110(r) 63 010,021,100

001,011,201(r) 010,021,101

001,011,210(r) 010,021,102

001,012,021(r) 010,021,110

001,012,101(r) 010,021,120

001,012,102(r) 010,021,201

001,012,120(r) 010,021,210

001,012,201(r) 011,021,101

001,012,210(r) 1,2,3,4,5,6,7,8,9 011,021,110

8 000,001,210 1,2,3,5,7,9,11,13,15 011,021,201

9 000,001,100 011,021,210 1,2,5,14,42,132,429,1430,4862

000,001,101 64 011,101,120

000,001,102 011,110,120 1,2,5,14,42,132,431,1452,5026

000,001,201 65 011,100,201

010,011,012 1,2,3,5,8,13,21,34,55 011,100,210 1,2,5,14,42,133,441,1521,5425

10 000,010,011(r) 1,2,3,5,9,17,33,65,129 66 000,101,120 1,2,5,14,43,143,505,1874,7258

11 000,010,102 1,2,4,10,27,73,204,587,1716 67 000,101,110 1,2,5,14,43,143,509,1922,7651

12 000,010,120 1,2,4,10,28,85,279,979,3624 68 011,100,101

13 000,010,110 1,2,4,10,28,86,284,1003,3762 011,100,110 1,2,5,14,43,144,523,2048,8597

14 000,010,100 1,2,4,10,28,87,297,1099,4373 69 000,110,120 1,2,5,14,45,156,581,2289,9468

15 000,010,101 1,2,4,10,28,88,304,1144,4648 70 000,100,120 1,2,5,15,49,176,670,2679,11159

16 000,010,201 71 010,102,120 1,2,5,15,50,175,627,2277,8347

000,010,210 1,2,4,10,29,95,343,1341,5599 72 010,102,110 1,2,5,15,50,175,628,2289,8436

17 000,012,021(r) 1,2,4,4,0,0,0,0,0 73 011,201,210 1,2,5,15,50,176,638,2354,8789

18 000,012,110(r) 1,2,4,4,1,0,0,0,0 74 010,100,102 1,2,5,15,50,177,650,2449,9410

19 000,012,101(r) 1,2,4,4,2,1,0,0,0 75 010,101,102 1,2,5,15,50,178,662,2540,9977

20 000,012,100(r) 1,2,4,5,1,0,0,0,0 76 000,120,201 1,2,5,15,50,183,713,2924,12480

21 000,012,102(r) 77 000,120,210 1,2,5,15,50,183,715,2944,12642

000,012,120(r) 78 010,102,210 1,2,5,15,51,185,692,2629,10076

000,012,201(r) 79 010,102,201 1,2,5,15,51,185,693,2648,10277

000,012,210(r) 1,2,4,5,2,1,0,0,0 80 011,101,201

22 000,011,102(r) 011,101,210

001,021,100(r) 011,110,201

001,021,110(r) 011,110,210 1,2,5,15,51,189,746,3091,13311

001,021,120(r) 81 010,100,120 1,2,5,15,51,190,758,3192,14045

001,100,110 82 010,101,120

001,100,120(r) 010,110,120 1,2,5,15,51,190,759,3206,14180

001,110,120(r) 1,2,4,6,8,10,12,14,16 83 010,100,110 1,2,5,15,51,190,761,3238,14515

23 000,011,021(r) 84 010,101,110 1,2,5,15,51,190,762,3256,14722

001,021,101(r) 85 000,110,201 1,2,5,15,51,191,769,3273,14552

001,021,102(r) 86 000,101,210 1,2,5,15,51,191,773,3336,15200

001,021,201(r) 87 010,100,101 1,2,5,15,51,192,789,3505,16706
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Continuation of Table 7

Class B {|In(B)|}9n=0 Class B {|In(B)|}9n=0
001,021,210(r) 88 000,100,101

001,100,210 000,100,110 1,2,5,15,51,193,797,3548,16866

001,101,110 89 010,110,201 1,2,5,15,52,200,829,3636,16672

001,101,120(r) 90 010,120,201 1,2,5,15,52,200,829,3638,16704

001,102,110 91 010,120,210 1,2,5,15,52,200,830,3654,16869

001,102,120(r) 92 010,110,210 1,2,5,15,52,200,830,3655,16893

001,110,201 93 000,101,201

001,110,210 000,110,210 1,2,5,15,52,201,849,3856,18607

001,120,201(r) 94 010,100,201

001,120,210(r) 010,100,210

010,012,021 010,101,201

011,012,021 1,2,4,7,11,16,22,29,37 010,101,210 1,2,5,15,52,202,859,3930,19095

24 000,011,120(r) 95 011,101,110 1,2,5,15,52,203,877,4140,21147

001,100,101 96 010,201,210 1,2,5,15,53,213,938,4403,21640

001,100,102 97 000,201,210 1,2,5,16,59,242,1065,4932,23703

001,100,201 1,2,4,7,12,20,33,54,88 98 000,100,201

25 011,012,100 1,2,4,7,13,23,41,72,126 000,100,210 1,2,5,16,59,245,1111,5413,27961

26 001,101,210 99 021,102,110 1,2,6,19,57,168,506,1585,5165

001,102,210 100 021,102,120 1,2,6,19,58,174,528,1649,5328

001,201,210 101 021,100,102 1,2,6,19,59,183,580,1893,6347

011,012,210 1,2,4,8,15,26,42,64,93 102 021,101,102 1,2,6,19,60,191,619,2048,6909

27 010,012,100 103 021,102,201

010,012,110 021,102,210 1,2,6,20,66,213,683,2211,7291

011,012,201 1,2,4,8,15,27,47,80,134 104 021,100,110 1,2,6,20,68,232,794,2732,9468

28 010,012,210 1,2,4,8,16,31,57,99,163 105 021,100,120

29 000,011,100(r) 021,101,120

000,011,101(r) 021,110,120 1,2,6,20,68,233,805,2807,9879

000,011,110(r) 106 100,102,120 1,2,6,20,69,240,842,2979,10628

000,011,201(r) 107 102,110,120 1,2,6,20,69,242,859,3080,11140

000,011,210(r) 108 101,102,120 1,2,6,20,69,243,869,3145,11491

001,101,102 109 100,102,110 1,2,6,20,70,248,891,3236,11866

001,101,201 110 021,100,101

001,102,201 021,101,110

010,011,021 101,102,110 1,2,6,20,70,252,924,3432,12870

010,012,101 111 100,101,102 1,2,6,20,73,280,1116,4572,19140

010,012,102 112 102,110,201 1,2,6,21,75,267,951,3404,12268

010,012,120 113 102,120,201 1,2,6,21,76,274,979,3479,12351

010,012,201 114 102,110,210

011,012,101 102,120,210 1,2,6,21,76,276,1002,3641,13261

011,012,102 115 021,120,201

011,012,110 021,120,210 1,2,6,21,77,287,1079,4082,15522

011,012,120 1,2,4,8,16,32,64,128,256 116 100,102,210 1,2,6,21,78,296,1133,4356,16797

30 010,011,102 1,2,4,9,21,51,126,316,799 117 021,100,201

31 000,010,021 1,2,4,9,21,51,127,323,835 021,100,210

32 010,011,120 1,2,4,9,22,58,161,467,1402 021,110,201

33 010,011,201 021,110,210

010,011,210 1,2,4,9,23,65,198,639,2160 101,102,210 1,2,6,21,78,297,1144,4433,17238

34 010,011,100 118 100,102,201 1,2,6,21,78,299,1176,4729,19378

010,011,101 119 101,102,201 1,2,6,21,79,311,1265,5275,22431

010,011,110 1,2,4,9,23,66,210,733,2781 120 021,101,201

35 012,021,100 021,101,210 1,2,6,21,80,322,1347,5798,25512

012,021,101 121 100,101,120 1,2,6,21,81,333,1439,6466,29985

012,021,110 1,2,5,11,21,36,57,85,121 122 101,110,120 1,2,6,21,81,335,1463,6676,31596

36 012,100,110 1,2,5,11,22,39,66,108,175 123 100,101,110 1,2,6,21,81,337,1491,6945,33827

37 012,100,101 1,2,5,11,23,45,85,156,281 124 100,110,120 1,2,6,21,83,354,1601,7573,37125

38 012,101,110 1,2,5,11,23,47,95,191,383 125 102,201,210 1,2,6,22,85,328,1253,4754,17994

39 000,021,102 1,2,5,12,25,60,148,374,962 126 101,120,201

40 012,100,210 101,120,210 1,2,6,22,89,384,1743,8239,40215

012,110,210 1,2,5,12,26,51,92,155,247 127 021,201,210 1,2,6,22,90,394,1806,8558,41586

41 012,100,201 128 100,120,201

012,110,201 1,2,5,12,26,51,93,161,269 110,120,201 1,2,6,22,91,408,1939,9623,49371

42 012,100,102 129 100,110,201

012,100,120 1,2,5,12,27,56,110,207,378 100,120,210

43 012,101,210 1,2,5,12,27,57,113,211,373 101,110,201

44 011,021,102 110,120,210 1,2,6,22,91,409,1953,9763,50583

012,021,102 130 100,101,210 1,2,6,22,91,409,1955,9803,51085

012,021,120 131 101,110,210 1,2,6,22,91,410,1973,10012,53094

012,021,201 132 100,110,210 1,2,6,22,92,422,2074,10754,58202

012,021,210 133 100,101,201 1,2,6,22,92,424,2106,11102,61436

012,101,201 134 120,201,210 1,2,6,23,101,484,2468,13166,72630

012,102,110 135 100,201,210

012,110,120 1,2,5,12,27,58,121,248,503 101,201,210

45 011,102,120 1,2,5,12,28,64,144,320,704 110,201,210 1,2,6,23,102,495,2549,13682,75714

46 012,101,102 136 012,201,210 1,2,5,13,32,73,156,318,629

012,101,120 1,2,5,12,28,65,151,351,816 137 011,100,102 1,2,5,12,30,75,190,483,1235

End of Table 7
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