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Abstract

In this paper we consider the zeros of the chromatic polynomial of series-parallel
graphs. Complementing a result of Sokal, giving density outside the disk |q − 1| 󰃑 1,
we show density of these zeros in the half plane ℜ(q) > 3/2 and we show there exists
an open region U containing the interval (0, 32/27) such that U\{1} does not contain
zeros of the chromatic polynomial of series-parallel graphs.

We also disprove a conjecture of Sokal by showing that for each large enough in-
teger ∆ there exists a series-parallel graph for which all vertices but one have degree
at most ∆ and whose chromatic polynomial has a zero with real part exceeding ∆.

Keywords Chromatic polynomial, chromatic zeros, series-parallel graphs, Montel’s
theorem.

Mathematics Subject Classifications: 05C31, 30D45

1 Introduction

Recall that the chromatic polynomial of a graph G = (V,E) is defined as

Z(G; q) :=
󰁛

F⊆E

(−1)|F |qk(F ),

where k(F ) denotes the number of components of the graph (V, F ). We call a number
q ∈ C a chromatic zero if there exists a graph G such that Z(G; q) = 0.

About twenty years ago Sokal [12] proved that the set of chromatic zeros of all graphs
is dense in the entire complex plane. In fact, he only used a very small family of graphs to
obtain density. In particular, he showed that the chromatic zeros of all generalized theta
graphs (parallel compositions of equal length paths) are dense outside the disk B1(1). (We
denote for c ∈ C and r > 0 by Br(c) the closed disk centered at c of radius r.) Extending
this family of graphs by taking the disjoint union of each generalized theta graph with
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an edge and connecting the endpoints of this edge to all other vertices, he then obtained
density in the entire complex plane.

As far as we know it is still open whether the chromatic zeros of all planar graphs or
even series-parallel graphs are dense in the complex plane. Motivated by this question and
Sokal’s result we investigate in the present paper what happens inside the disk B1(1) for
the family of series-parallel graphs. See Section 2 for a formal definition of series-parallel
graphs. Our first result implies that the chromatic zeros of series-parallel are not dense
in the complex plane.

Theorem 1. There exists an open set U containing the open interval (0, 32/27) such that
Z(G; q) ∕= 0 for any q ∈ U \ {1} and for all series-parallel graphs G.

We note that the interval (0, 32/27) is tight, as shown in [8, 14]. In fact, Jackson [8]
even showed that there are no chromatic zeros in the interval (1, 32/27). Unfortunately,
we were not able to say anything about larger families of graphs and we leave open as a
question whether Theorem 1 is true for the family of all planar graphs for example.

In terms of chromatic zeros of series-parallel graphs inside the disk B1(1) we have
found an explicit condition, Theorem 16 below, that allows us to locate many zeros inside
this disk. Concretely, we have the following results.

Theorem 2. Let q > 32/27. Then there exists q′ ∈ C arbitrarily close to q and a series-
parallel graph G such that Z(G; q′) = 0.

This result may be seen as a a variation on Thomassen’s result [14] saying that real
chromatic zeros (of not necessarily series-parallel graphs) are dense in (32/27,∞).

Another result giving many zeros inside B1(1) is the following.

Theorem 3. The set of chromatic zeros of all series-parallel graphs is dense in the set
{q | ℜ(q) > 3/2}.

After inspecting our proof of Theorem 3 (given in Section 4) it is clear that one can
obtain several strengthenings of this result. Figure 1 below shows a computer generated
picture displaying where chromatic zeros of series-parallel graphs can be found as well as
the zero-free region from Theorem 1.

We next restrict our attention to a subclass of series-parallel graphs. A leaf joined tree
is a graph T̂ obtained from a rooted tree (T, v) by identifying all its leaves except possibly
v into a single vertex. A while ago Sokal conjectured [13, Conjecture 9.5’] that for each
integer ∆ 󰃍 3 the chromatic zeros of all graphs all of whose vertices have degree at most
∆ except possibly one vertex are contained in the half plane {q | ℜ(q) 󰃑 ∆}. For ∆ = 3
this conjecture was disproved by Royle, as Sokal mentions in footnote 31 in [13]. Here we
show that this is no coincidence, as we disprove this conjecture for all ∆ large enough.

Theorem 4. There exists ∆0 > 0 such that for all integers ∆ 󰃍 ∆0 there exists a leaf
joined tree T̂ obtained from a tree T of maximum degree ∆ such that T̂ has a chromatic
zero q with ℜ(q) > ∆.
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Figure 1: A pixel-picture of chromatic zeros and zero-free regions for series-parallel graphs,
with a resolution of 1001× 1001 pixels. Every orange pixel represent a provably zero-free
value of q, while every blue pixel represents a value of q in the closure of the set of all
chromatic zeros of series-parallel graphs. The region depicted in the picture ranges from
−i to 2 + i. We refer to Section 6 for more details concerning the shading.

The proof of this theorem, together with some explicit calculations, also allows us to
find such chromatic zeros for 4 󰃑 ∆ 󰃑 45. Table 1 in Section 6 records values of q, which
are accumulation points of chromatic zeros of leaf joined trees, corresponding with the
given ∆.

1.1 Approach

Very roughly the main tool behind the proofs of our results is to write the chromatic
polynomial Z(G; q) as the sum of two other polynomials Z1(G; q)+Z2(G; q) which can be
iteratively computed for all series-parallel graphs, see Section 2 for the precise definitions.
We also define the rational function R(G; q) := Z1(G;q)

Z2(G;q)
and clearly R(G; q) = −1 implies

Z(G; 0) = 0. A certain converse also holds under some additional conditions.
To prove Theorem 1 we essentially show that these rational functions avoid the value

−1. To prove presence of zeros we use that if the family of rational functions {q 󰀁→
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R(G; q)} behaves chaotically (formally, not being a normal family near some parameter
q0, see Section 4), then one can use the celebrated Montel theorem from complex analysis
to conclude that there must be a nearby value q and a graph G for which Z(G, q) = 0.

Our approach to obtaining density of chromatic zeros is similar in spirit to Sokal’s
approach [12], but deviates from it in the use of Montel’s theorem. Sokal uses Montel’s
‘small’ theorem to prove the Beraha-Kahane-Weis theorem [2], which he is able to apply
to the generalized theta graphs because their chromatic polynomials can be very explicitly
described. It is not clear to what extent this applies to more complicated graphs. Our use
of Montel’s theorem is however directly inspired by [6], which in turn builds on [10, 3, 4].
Our approach in fact also allows us to give a relatively short alternative proof for density
of chromatic zeros of generalized theta graphs outside the disk B1(1), see Corollary 25.

Our proof of Theorem 4 makes use of an observation of Sokal and Royle in the ap-
pendix of the arXiv version of [11] (see https://arxiv.org/abs/1307.1721), saying that
a particular recursion for ratios of leaf joined trees is up to a conjugation exactly the re-
cursion for ratios of independence polynomial on trees. We make use of this observation
to build on the framework of [6] allowing us to utilize some very recent work [1] giving an
accurate description of the location of the zeros of the independence polynomial for the
family of graphs with a given maximum degree.

Organization

The next section deals with formal definitions of series-parallel graphs and ratios. We
also collect several basic properties there that are used in later sections. Section 3 is
devoted to proving Theorem 1. In Section 4 we state a general theorem allowing us to
derive various results on presence of chromatic zeros for series-parallel graphs. Finally in
Section 5 we prove Theorem 4. We end the paper with some questions in Section 6

2 Recursion for ratios of series-parallel graphs

We start with some standard definitions needed to introduce, and set up some terminology
for series-parallel graphs. We follow Royle and Sokal [11] in their use of notation.

Let G1 and G2 be two graphs with designated start- and endpoints s1, t1, and s2, t2
respectively, referred to as two-terminal graphs. The parallel composition of G1 and G2

is the graph G1 󰀂 G2 with designated start- and endpoints s, t obtained from the disjoint
union of G1 and G2 by identifying s1 and s2 into a single vertex s and by identifying t1
and t2 into a single vertex t. The series composition of G1 and G2 is the graph G1 ⊲⊳ G2

with designated start- and endpoints s, t obtained from the disjoint union of G1 and G2 by
identifying t1 and s2 into a single vertex and by renaming s1 to s and t2 to t. Note that the
order matters here. A two-terminal graph G is called series-parallel if it can be obtained
from a single edge using series and parallel compositions. From now on we will implicitly
assume the presence of the start- and endpoints when referring to a two-terminal graph
G. We denote by GSP the collection of all series-parallel graphs and by G∗

SP the collection
of all series-parallel graphs G such that the vertices s and t are not connected by an edge.
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Recall that for a positive integer q and a graph G = (V,E) we have

Z(G; q) =
󰁛

φ:V→{1,...,q}

󰁜

uv∈E

(1− δφ(u),φ(v)),

where δi,j denotes the Kronecker delta. For a positive integer q and a two-terminal graph
G, we can thus write1,

Z(G; q) = Zsame(G; q) + Zdif(G; q), (1)

where Zsame(G; q) collects those contribution where s, t receive the same color and where
Zdif(G; q) collects those contribution where s, t receive the distinct colors. Since Zdif(G; q)
is equal to Z(G 󰀂 K2; q), where K2 denotes an edge, both these terms are polynomials in
q. Therefore (1) also holds for any q ∈ C.

We next collect some basic properties of Z, Zsame and Zdif under series and parallel
compositions in the lemma below. They can for example also be found in [12].

Lemma 5. Let G1 and G2 be two two-terminal graphs and let us denote by K2 an edge.
Then we have the following identities:

(P1) Zdif(G; q) = Z(G 󰀂 K2; q),

(P2) Zsame(G1 ⊲⊳ G2; q) = Z(G1 󰀂 G2; q),

(P3) Z(G1 ⊲⊳ G2; q) =
1
q
· Z(G1; q) · Z(G2; q),

(P4) Zsame(G1 󰀂 G2; q) =
1
q
· Zsame(G1; q) · Zsame(G2; q),

(P5) Zdif(G1 󰀂 G2; q) =
1

q(q−1)
· Zdif(G1; q) · Zdif(G2; q),

(P6) Zsame(G1 ⊲⊳ G2; q) =
1
q
· Zsame(G1; q) · Zsame(G2; q) +

1
q(q−1)

· Zdif(G1; q) · Zdif(G2; q),

(P7) Zdif(G1 ⊲⊳ G2; q) =
1
q
· Zsame(G1; q) · Zdif(G2; q) +

1
q
· Zdif(G1; q) · Zsame(G2; q)

+ q−2
q(q−1)

· Zdif(G1; q) · Zdif(G2; q).

An important tool in our analysis of absence/presence of complex zeros is the use of
the ratio defined as

R(G; q) :=
Zsame(G; q)

Zdif(G; q)
, (2)

which we view as a rational function in q. We note that in case G contains an edge
between s and t, the rational function q 󰀁→ R(G; q) is constantly equal to 0. We observe
that if R(G; q) = −1, then Z(G; q) = 0 and the converse holds provided Zdif(G; q) ∕= 0.

The next lemma provides a certain strengthening of this observation for series-parallel
graphs.

1This can be seen to be the deletion-contraction relation for G 󰀂 K2 with Zdif(G; q) = Z(G 󰀂 K2; q).
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Lemma 6. Let q ∈ C \ {0, 1, 2}. Then the following are equivalent

(i) Z(G; q) = 0 for some G ∈ GSP,

(ii) R(G; q) = −1 for some G ∈ G∗
SP,

(iii) R(G; q) ∈ {0,−1,∞} for some G ∈ G∗
SP.

Proof. Throughout the proof we will refer to the properties stated in Lemma 5 without
explicitly mentioning the lemma each time.

We start with ‘(i) ⇒ (ii)’. Let q be as in the statement of the lemma such that
Z(G; q) = 0 for some series-parallel graph G ∈ GSP. Take such a graph G with as few
edges as possible.

By the discussion between equation (2) and the statement of the present lemma, we
may assume that Zdif(G; q) = 0, for otherwise R(G; q) = −1 (and hence G ∈ G∗

SP). Then
also Zsame(G; q) = 0.

Suppose first that s, t are not connected by an edge. By minimality, (P3) and (P4),
G must be the parallel composition of two series-parallel graphs G1 and G2 such that,
say Zsame(G1, q) = 0 and G1 is not 2-connected, or in other words such that G1 is a
series composition of two smaller series-parallel graphs G′

1 and G′′
1. By (P2) we have that

Z(G′
1 󰀂 G′′

1; q) = 0. This is a contradiction since G′
1 󰀂 G′′

1 has fewer edges than G. We
conclude that R(G; q) = −1 in this case.

Suppose next that s and t are connected by an edge. We shall show that we can find
another series-parallel graph Ĝ ∈ G∗

SP, that is isomorphic to G as a graph (and hence has
q as zero of its chromatic polynomial) but not as two-terminal graph. By the argument
above we then have R(Ĝ; q) = −1.

Let G′ be obtained from G by removing the edge {s, t}. Then by (P1) Zdif(G′; q) =
Z(G; q) = 0. If Zsame(G′; q) = 0, then Z(G′; q) = 0, contradicting the minimality of G.
Therefore Zsame(G′; q) ∕= 0. If G′ is the parallel composition of G1 and G2, then by (P5),

Zdif(G1; q)Z
dif(G2; q) = q(q − 1)Zdif(G′; q) = 0,

so there is a smaller graph, (namely G1 󰀂 K2 or G2 󰀂 K2), where q is a zero, contradicting
our choice of G. Hence G′ is the series composition of two graphs G1 and G2. The
graphs G1 and G2 cannot both be single edges, for otherwise G would be a triangle and
we excluded the values q = 0, 1, 2. So let us assume that G1 is not a single edge. We
will now construct G in a different way as series-parallel graph. First switch the roles of
s2 and t2 in G2 and denote the resulting series-parallel graph by GT

2 . Then put GT
2 in

series with a single edge, and then put this in parallel with G1. In formulas this reads as
Ĝ := (K2 ⊲⊳ GT

2 ) 󰀂 G1. The resulting graph Ĝ is then isomorphic to G (but not equal
to G as a two-terminal graph). In case Ĝ is not contained in G∗

SP , then G1 is also not in
G∗
SP . In that case let G′

2 be obtained from GT
2 by first taking a series composition with

an edge and then a parallel composition with an edge, that is, G′
2 = (K2 ⊲⊳ GT

2 ) 󰀂 K2.
We then have by (P1) and (P5),

Z(G; q) = Z(Ĝ; q) = Zdif(Ĝ; q) = 1
q(q−1)

Zdif(G1; q)Z
dif(K2 ⊲⊳ GT

2 ; q)

= 1
q(q−1)

Z(G1; q)Z(G
′
2; q),
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So q must be a zero of Z(G1; q), or of Z(G
′
2; q). Because G1 is not an edge, both G1 and

G′
2 contain fewer edges than G contradicting the choice of G. Hence we conclude that Ĝ

is contained in G∗
SP , finishing the proof of the first implication.

The implication ‘(ii) ⇒ (iii)’ is obvious. So it remains to show ‘(iii) ⇒ (i)’.
To this end suppose that R(G; q) ∈ {−1, 0,∞} for some series-parallel graph G ∈ G∗

SP.
If the ratio equals −1, then clearly Z(G; q) = 0. So let us assume that the ratio equals
0. Then Zsame(G; q) = 0 and we may assume that Zdif(G; q) ∕= 0. Let us take such a
graph G with the smallest number of edges. By minimality, G cannot arise as the parallel
composition of two series-parallel graphs G1 and G2 by (P4) and (P5). Therefore G must
be equal to the series composition of two series-parallel graphs G1 and G2. Now, as in
the proof of ‘(i) ⇒ (ii)’, identify vertices s and t of G to form a new series-parallel graph
G′, such that Z(G′; q) = Zsame(G; q) = 0.

Let us finally consider the case that the ratio is equal to ∞. In this case Zdif(G; q) = 0.
Then by (P1), Z(G 󰀂 K2; q) = Zdif(G; q) = 0 and we are done.

We next provide a description of the behavior of the ratios under the series and parallel
compositions. To simplify the calculations, we will look at the modified ratio

yG(q) := (q − 1)R(G; q), (3)

which, loosely following Sokal [12], we call the effective edge interaction.

Remark 7. Observe that yG(q) cannot be equal to any of the functions q 󰀁→ −1, q 󰀁→ ∞
and q 󰀁→ 1− q, since the numerator, (q − 1)Zsame(G; q), and the denominator, Zdif(G; q),
have the same degree and leading coefficient, unless G has an edge connecting s and t, in
which case yG(q) is the constant 0 function.

Given q0 ∈ C define
E(q0) := {yG(q0) | G ∈ GSP}, (4)

the set of all values of the effective edge interaction at q0 for the family of series-parallel
graphs as a subset of the Riemann sphere, Ĉ = C ∪ {∞}. As an example note that
0 ∈ E(q0) for any q0, being the effective edge interaction of a single edge.

For any q ∕= 0 define the following Möbius transformation2

y 󰀁→ fq(y) := 1 +
q

y − 1

and note that fq is an involution, i.e. fq(fq(y)) = y for all y.
The next lemma captures the behavior of the effective edge interactions under series

and parallel compositions and can be easily derived from Lemma 5.

2Readers familiar with the Tutte polynomial will recognize this formula as expressing the x-coordinate
from the y-coordinate (or the other way around) on the hyperbola (x − 1)(y − 1) = q, on which, for
positive integer q, the Tutte polynomial corresponds to the q-state Potts model partition function. See
e.g. [13] for more on the connection between the Tutte polynomial and the Potts model.
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Lemma 8. Let G1, G2 be two two-terminal graphs. Then

yG1󰀂G2 = yG1yG2 ,

yG1⊲⊳G2 = fq(fq(yG1)fq(yG2)).

Moreover, for any fixed q0 ∈ C, if {yG1(q0), yG2(q0)} ∕= {0,∞}, then

yG1󰀂G2(q0) = yG1(q0)yG2(q0),

and if {yG1(q0), yG2(q0)} ∕= {1, 1− q0}, then

yG1⊲⊳G2(q0) = fq0(fq0(yG1(q0))fq0(yG2(q0))).

We include a proof of the lemma for convenience of the reader.

Proof. First of all we note that the product yG1yG2 is always a well-defined rational func-
tion. By Remark 7, fq(yGi

) cannot be constant 0, but could be constant ∞. Therefore
the product fq(yG1)fq(yG2) could be constant ∞, but applying fq once more to it results
again in a well-defined rational function.

The statements for the parallel connections follow directly from (P4) and (P5) from
Lemma 5 and the definition of the effective edge interaction. For the statements for the
series connections let us denote y1 = yG1 , y2 = yG2 and yser = yG1⊲⊳G2 . We use (P6)
and (P7) from Lemma 5 to write yser = y1y2+q−1

y1+y2+q−2
. It is then not difficult to see that

fq(yser) = fq(y1)fq(y2). Therefore, since fq is an involution,

yser = fq(fq(yser)) = fq(fq(y1)fq(y2)),

as desired. The statements for the evaluation at a fixed value q0 ∈ C now follow directly.

Remark 9. Note that this lemma allows us to compute the effective edge interaction of
any series-parallel graph. For example, the effective edge interaction of the path on three
vertices, P2, can be computed as

yP2 = yK2⊲⊳K2 = fq(fq(0)
2) = fq((1− q)2) =

q − 1

q − 2
.

3 Absence of zeros near (0,32/27)

In this section we prove Theorem 1. In the proof we will use the following condition that
guarantees absence of zeros and check this condition in three different regimes. We first
need a few quick definitions.

For a set S ⊆ C, denote S2 := {s1s2 | s1, s2 ∈ S}. For subsets S, T of the complex
plane, we use the notation S ⋐ T (and say S is strictly contained in T ) to say that the
closure of S is contained in the interior of T . For r > 0 we define Br to be the closed disk
of radius r centered at 0.
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Lemma 10. Let q ∈ C \ {0, 1, 2} and let V ⊆ C be a set satisfying: 0 ∈ V , 1 − q /∈ V 2,
V 2 ⊆ V and fq(fq(V )2) ⊆ V . Then Z(G; q) ∕= 0 for all series-parallel graphs G.

Proof. By Lemma 6 it suffices to show that the ratios avoid the point −1. Or equivalently,
since q ∕= 1, that the effective edge interactions at q avoid the point 1− q.

We will do so by proving the following stronger statement:

E(q) ⊆ V and 1− q /∈ E(q). (5)

We show this by induction on the number of edges. The base case follows since 0 ∈ V
and q ∕= 1. Assume next that y ∈ E(q) \ {0} and suppose that y is the effective edge
interaction of some series-parallel graph G. If G is the parallel composition of two series-
parallel graphs G1 and G2 with effective edge interactions y1 and y2 respectively, then,
by induction, y1, y2 ∈ V and neither of them is equal to 1 − q. By Lemma 8 and our
assumption we have y = y1y2 ∈ V 2 ⊆ V . Since 1− q /∈ V 2, we also have that y ∕= 1− q.
If G is the series composition of two series-parallel graphs G1 and G2 with effective edge
interactions y1 and y2 respectively, then, by induction, y1, y2 ∈ V and neither of them is
equal to 1− q. Therefore fq(yi) ∕= 0 for i = 1, 2. Then by Lemma 8 and our assumption,
y = fq(fq(y1)fq(y2)) ∈ V . Moreover, fq(1 − q) = 0 ∕= fq(y1)fq(y2) = fq(y). Therefore
y ∕= 1− q. This shows (5) and finishes the proof.

Below we prove three lemmas allowing us to apply the previous lemma to different
parts of the interval (0, 32/27). First we collect two useful tools. For two complex numbers
a, b we denote by C(a, b) the circle in the complex plane with the line segment between a
and b as a diameter. In case a = b, C(a, b) consists of the single point {a}.

Lemma 11. Let q, r ∈ R, then the circle C(r, fq(r)) is fq-invariant.

Proof. First note that fq maps the real line to itself, because q is real. Now let C =
C(r, fq(r)). Then C intersects the real line at right angles. The Möbius transformation
fq sends C to a circle through fq(r), fq(fq(r)) = r, and because fq is conformal the image
must again intersect the real line at right angles. Therefore fq(C) = C.

Proposition 12. Let V ⊆ C be a disk. Then

V 2 = {y2 | y ∈ V }.

Proof. Obviously the second is contained in the first. The other inclusion is an immediate
consequence of the Grace-Walsh-Szegő theorem.

Now we can get into the three lemmas mentioned.

Lemma 13. For each q ∈ (0, 1) there exists a closed disk V ⊆ C strictly contained in
B√

1−q, satisfying 0 ∈ V , fq(V ) = V and V 2 ⋐ V .
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Proof. Let r =
√
1− q and choose real numbers a ∈ (r2, r), b ∈ (−r,−r2) with fq(a) = b.

They exist because fq(r) = −r and f ′
q(r) = −q

(1−r)2
< 0. Let V be the closed disk with

diameter the line segment between a and b. Clearly V ⋐ Br and 0 ∈ V . From Lemma 11
it follows that the boundary of V is mapped to itself. Further, the interior point 0 ∈ V is
mapped to fq(0) = 1− q = r2 which is also an interior point of V . Therefore fq(V ) = V .
Last, we see that V 2 ⊆ B2

r = Br2 ⋐ V , confirming all properties of V .

Lemma 14. For each q ∈ (1, 32/27) there exists a closed disk V ⊆ C strictly contained
in B√

q−1 satisfying 0 ∈ V , fq(V ) = V and V 2 ⋐ V .

Proof. The equation fq(z) = z2 has a solution in (−1/3, 0), since fq(0) = 1 − q < 0 and
fq(−1/3) = 1− 3q/4 > 1/9. Denote one such solution as r. Then we see that

f ′
q(r) =

−q

(r − 1)2
= −r − 1 < 2r = [z2]′z=r, (6)

and
q − 1 = r3 − r2 − r > −1

3
r2 − r2 + 3r2 > r2. (7)

Since fq(r) = r2 < −r, it follows that for t ∈ (−1/3, r) close enough to r we have
fq(t) < −t, t2 < fq(t) by (6) and t > −

√
q − 1 by (7). Fix such a value of t and let V be

the closed disk with diameter the line segment between t and fq(t). The exterior point ∞
is now mapped to the exterior point 1, so by Lemma 11 we then know that fq(V ) = V .
By construction we have that

V 2 ⊆ B2
t = Bt2 ⋐ Bfq(t) ⊆ V

and so V satisfies the desired properties.

Lemma 15. There exists an open neighborhood I around 1 such that for each q ∈ I \ {1}
there exists a disk V ⊆ C, satisfying 0 ∈ V , 1− q ∕∈ V 2, V 2 ⊆ V and fq(fq(V )2) ⊆ V .

Proof. Let R =
󰁳

|1− q|. We claim that if R is sufficiently small, there exists an 0 < s <
R such that V = Bs satisfies the required conditions. Actually, we will show this to be
true with R < 2−

√
3, thus giving for I the open disk |q − 1| < 7− 4

√
3.

Trivially, 0 ∈ V, 1−q ∕∈ V 2 and V 2 ⊆ V , so we only need to show that fq(fq(V )2) ⊆ V ,
or equivalently fq(V )2 ⊆ fq(V ).

We start with bounding the image of the disk Bs:

fq(Bs) =

󰀝
y + q − 1

y − 1

󰀏󰀏󰀏󰀏 y ∈ Bs

󰀞

⊆
󰀝
y + q′ − 1

y′ − 1

󰀏󰀏󰀏󰀏 y, y
′ ∈ Bs, q

′ ∈ BR2(1)

󰀞

⊆
󰀝

z

y′ − 1

󰀏󰀏󰀏󰀏 y
′ ∈ Bs, z ∈ BR2+s

󰀞

⊆
󰀝
z

󰀏󰀏󰀏󰀏 |z| 󰃑
R2 + s

1− s

󰀞
.
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So if we define ρ(s) = R2+s
1−s

, then fq(Bs) ⊆ Bρ(s). Since fq is an involution, we have

Bρ−1(s) ⊆ fq(Bs).

Now we claim that if R < 2−
√
3, then there exists 0 < s < R such that ρ(s)2 < ρ−1(s).

This is sufficient since for this value of s we have

fq(Bs)
2 ⊆ B2

ρ(s) = Bρ(s)2 ⊆ Bρ−1(s) ⊆ fq(Bs),

as desired.
We now prove the claim. As 0 < s < R < 1, the inequality ρ(s)2 < ρ−1(s) = s−R2

1+s
is

equivalent to

(R2 + 1)(3s2 + (R2 − 1)s+R2) < 0, 0 < s < R.

If we have a solution, then the quadratic polynomial in the variable s should have 2 real
solutions, since its main coefficient is positive. Since the linear term is negative and the
constant term is positive, both roots are positive. Thus it is sufficient to prove that the
“smaller” real root is less then R, i.e.

(1−R2)−
󰁳

(1−R2)2 − 12R2

6
< R.

This indeed holds true for R < 2−
√
3.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. For every q ∈ (0, 32/27) we will now find an open U around q, such
that U \ {1} does not contain chromatic zeros of series-parallel graphs. For q = 1 this
follows directly from Lemmas 15 and 10. For q ∈ (0, 1) and q ∈ (1, 32/27) we appeal to
Lemmas 13 and 14 respectively to obtain a closed disk V with V ⋐ B√|1−q|, fq(V ) = V

and V 2 ⋐ V . We then claim that there is an open U around q, for which this disk V still
satisfies the requirements of Lemma 10 for all q′ ∈ U .
Certainly 0 ∈ V and V 2 ⊆ V remain true. Because V ⋐ B√|1−q| holds, we can take U

small enough such that V ⊆ B√|1−q′| still holds, which confirms 1 − q′ ∕∈ V 2. Lastly, we

know that fq(fq(V )2) = fq(V
2) ⋐ fq(V ) = V . Because V is compact, and the function

y 󰀁→ fq′(fq′(y)
2) depends continuously on q′, the inclusion fq′(fq′(V )2) ⋐ V remains true

on a small enough open U around q.

4 Activity and zeros

In this section we prove Theorems 2 and 3. We start with a theorem that gives a concrete
condition to check for presence of chromatic zeros. For any q ∕= 0 we call any y ∈ fq(E(q))
a virtual interaction. For example, fq(0) = 1 − q is a virtual interaction (obtained from
the effective edge interaction of a single edge).
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Theorem 16. Let q0 ∈ C\{0}. If there exists either an effective edge interaction y ∈ E(q0)
or a virtual interaction y ∈ fq0(E(q0)) such that |y| > 1, then there exists q arbitrarily
close to q0 and G ∈ GSP such that Z(G; q) = 0.

We will provide a proof for this result in the next subsection. First we consider some
corollaries.

The first corollary recovers a version of Sokal’s result [12].

Corollary 17. Let q ∈ C such that |1− q| > 1. Then there exists q′ arbitrarily close to q
and G ∈ GSP such that Z(G; q′) = 0.

Proof. First of all note that as mentioned above, y = fq(0) = 1−q, is a virtual interaction
(since 0 is the effective edge interaction of a single edge). By assumption we thus have a
virtual interaction y such that |y| > 1. The result now directly follows from Theorem 16.

Remark 18. Recall that a generalized theta graph is the parallel composition of a number
of equal length paths. Sokal [12] in fact showed that we can take G in the corollary above
to be a generalized theta graph. Our proof of Theorem 16 in fact also gives this. We will
elaborate on this in Corollary 25 after giving the proof.

Our second corollary gives us Theorem 2.

Corollary 19. Let q > 32/27. Then there exists q′ arbitrarily close to q and G ∈ GSP

such that Z(G; q′) = 0.

Proof. Consider the map g(z) = fq(z
2). We claim that g(z) < z for any z ∈ (−1, 0]. As

g(0) = 1−q < 0, it is sufficient to show that g(z) ∕= z for any z ∈ (−1, 0). Or equivalently,

q ∕= (z − 1)2(z + 1).

The maximal value of (z − 1)2(z + 1) on the interval (−1, 0] is 32/27 (which is achieved
at −1/3), thus the claim holds.

We next claim that there exists k such that g◦k(0) 󰃑 −1. (Here g◦k denotes the k-fold
iterate of the map g.) Suppose not, then since the sequence {g◦k(0)}k󰃍0 is decreasing it
must have a limit L. By construction, L ∈ [−1, 0] and it must be a fixed point of the
map g. Since limz→−1+ g(z) = −∞, it follows that g has no fixed points in [−1, 0], a
contradiction.

We also claim that g◦k(0) is an element of E(q)∪fq(E(q)) for any integer k 󰃍 0. Indeed
this follows by induction, the base case being k = 0. Assuming that g◦i(0) ∈ E(q) for
some i 󰃍 0, it follows that g◦i(0)2 ∈ E(q) by Lemma 8 and therefore g◦i+1(0) ∈ fq(E(q)).
And similarly, if g◦i(0) ∈ fq(E(q)) for some i 󰃍 0, it follows that g◦i(0) = fq(y) for some
y ∈ E(q) and hence by Lemma 8, g◦i+1(0) = fq(fq(y)

2) ∈ E(q).
To finish the proof, we choose k ∈ N such that g◦k(0) 󰃑 −1. If the inequality is actually

strict, so g◦k(0) < −1, the result now directly follows from Theorem 16, since g◦k(0) is an
element of E(q) ∪ fq(E(q)). If on the other hand g◦k(0) = −1, then g◦k+1(0) = ∞. For
even k, we see that g◦k(0) is an effective interaction. As a rational function of q, it cannot
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be constant −1 by Remark 7. So the value of g◦k(0) for some q′ arbitrarily close to q is
outside the unit disk and we again apply Theorem 16. For odd k we see that g◦k+1(0) is
an effective interaction and cannot be constant ∞, again by Remark 7. Hence there again
exists q′ arbitrarily close to q where the value is finite and outside the unit disk and we
again can apply Theorem 16.

Our next corollary gives us Theorem 3.

Corollary 20. Let q ∈ C such that ℜ(q) > 3/2. Then there exists q′ arbitrarily close to
q and G ∈ GSP such that Z(G; q′) = 0.

Proof. Consider the path P2 of length 2, which is the series composition of two single
edges. Therefore, by Lemma 8 its effective edge interaction is given by

fq(fq(0)
2) = fq((1− q)2) =

q − 1

q − 2
.

Now the Möbius transformation q 󰀁→ q−1
q−2

maps the half plane {z | ℜ(z) 󰃍 3/2} to the

complement of the unit disk, since ∞ 󰀁→ 1, 3/2 󰀁→ −1 and the angle that the image of
{z | ℜ(z) = 3/2} makes with R at −1 is 90 degrees and since 0 󰀁→ 1/2. The result now
directly follows from Theorem 16.

4.1 Proof of Theorem 16

We first introduce some definitions inspired by [6]. Let G be a family of two-terminal
graphs. Let q0 ∈ Ĉ. Then we call q0 passive for G if there exists an open neighborhood U
around q0 such that the family of ratios {q 󰀁→ R(G; q) | G ∈ G} is a normal family on U ,
that is, if any infinite sequence of ratios contains a subsequence that converges uniformly
on compact subsets of U to a holomorphic function f : U → Ĉ. We call q0 active for G is
q0 is not passive for G. We define the activity locus of G by

AG := {q0 ∈ Ĉ | q0 is active for G}. (8)

Note that the activity locus is a closed subset of Ĉ.
We next state Montel’s theorem, see [5, 9] for proofs and further background.

Theorem 21 (Montel). Let F be a family of rational functions on an open set U ⊆ Ĉ.
If there exists three distinct points a, b, c ∈ Ĉ such that for all f ∈ F and all u ∈ U ,
f(u) /∈ {a, b, c}, then F is a normal family on U .

Montel’s theorem combined with activity and Lemma 6 give us a very quick way to
demonstrate the presence of chromatic zeros.

Lemma 22. Let q0 ∈ C \ {0, 1, 2} and suppose that q0 is contained in the activity locus
of GSP. Then there exists q arbitrarily close to q0 and G ∈ GSP such that Z(G; q) = 0.
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Proof. Suppose not. Then by Lemma 6, there must be an open neighborhood of q0 on
which family of ratios must avoid the points −1, 0,∞. Montel’s theorem then gives that
the family of ratios must be normal on this neighborhood, contradicting the assumptions
of the lemma.

Lemma 23. Let q0 ∈ C, and assume there exists an effective edge interaction y ∈ E(q0)
or a virtual interaction y ∈ fq0(E(q0)) such that |y| > 1. Then q0 is contained in the
activity locus of GSP.

Proof. We will show that for every open U ′ around q0 there exists a family of series-
parallel graphs G such that {q 󰀁→ yG(q) | G ∈ G} is non-normal. This of course implies
non-normality of the family {q 󰀁→ R(G; q) | G ∈ G} on U ′ and hence that q0 is contained
in the activity locus AGSP

.
We will first assume that y ∈ fq0(E(q0)) and |y| > 1. Suppose y = fq0(yq0(G)))

for some series-parallel graph G. The virtual interaction is not a constant function of
q, because at q = ∞ the virtual interaction is ∞, cf. Remark 7. Therefore any open
neighborhood U ′ of q0 is mapped to an open neighborhood U of y and we may assume
that U ′ is small enough, such that U lies completely outside the closed unit disk. Now
the pointwise powers {un | u ∈ U}n∈N converge to ∞ and the complex argument of the
powers arg({un | u ∈ U}) = n arg(U) cover the entire unit circle for n large enough.

Let us denote the unit circle by C ⊆ C. Then fq(C) is a straight line through 1

for every q. Inside the Riemann sphere, Ĉ, these lines are circles passing through ∞.
For U ′ small enough and q ∈ U ′, and in a neighborhood of ∞, these circles will lie in
two sectors. More precisely, there exists R large enough such that the argument of the
complex numbers in

󰁖
q∈U ′ fq(C)∩ {z ∈ C | |z| > R} are contained in two small intervals.

Therefore we can find two sectors S1 and S2 around ∞ such that fq(S1) lies inside C
for all q ∈ U ′ and fq(S2) lies outside of C for all q ∈ U ′. Because the pointwise powers
{un | u ∈ U} converge towards ∞ and the argument of the complex numbers are spread
over the entire unit circle, there must be an N for which {uN | u ∈ U} intersects with both
S1 and S2. Then {fq(fq(yG(q))N) | q ∈ U ′} has points inside and outside the unit circle.
Now the family {q 󰀁→ fq(fq(yG(q))

N)m | m ∈ N} is non-normal on U ′. Indeed, the values
inside the unit circle converge to 0, and the values outside the unit circle converge to
∞. So any limit function of any subsequence can therefore not be holomorphic. An easy
induction argument, as in the proof of Corollary 19, shows that fq(fq(yG(q))

N)m is the
effective edge interaction of the parallel composition of m copies of the series composition
of N copies of the graph G.

For the case y ∈ E(q0) with |y| > 1, we note again that this interaction cannot be a
constant function of q, because at q = ∞ the value must be 1, cf. Remark 7. If we perform
the same argument as above, we obtain a non-normal family of virtual interactions on
U ′. Applying fq to this family, produces a non-normal family on U ′ of effective edge
interactions of series compositions of copies of parallel compositions of copies of the graph
G.

Remark 24. For later reference we record the family of graphs that provides the non-
normal family of interactions/ratios. In the case that we have a virtual interaction
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|fq0(yG(q0))| > 1 for a graph G, the family consists of N copies of G in series, and m
copies of this in parallel. For the case of an effective edge interaction |yG(q0)| > 1, we
instead put N copies of G in parallel, and m copies of this in series.

Proof of Theorem 16. For q ∈ C \ {0, 1, 2} where either the interaction or the virtual
interaction escapes the unit disk, the theorem is a direct consequence of Lemmas 22 and
23. If for q ∈ {0, 1, 2} there is an interaction or virtual interaction escaping the unit disk,
this holds for all q′ in a neighborhood as well. At these values, we already know that zeros
accumulate, so they will accumulate at q as well.

We now explain how to strengthen Corollary 17 to generalized theta graphs. Let Θ
denote the family of all generalized theta graphs.

Corollary 25. Let q ∈ C such that |1− q| > 1. Then there exists q′ arbitrarily close to q
and G ∈ Θ such that Z(G; q′) = 0.

Proof. Note that y = fq(0) = 1−q is a virtual activity such that |y| > 1. From Lemma 23
and Remark 24 we in fact find that q is in the activity locus of Θ. By Theorem 21 (Montel’s
theorem) we may thus assume that there exists G ∈ Θ such that R(G; q) ∈ {−1, 0,∞}.
We claim that the ratio must in fact equal −1, meaning that q is in fact a zero of the
chromatic polynomial of the generalized theta graph G.

The argument follows the proof of ‘(iii) ⇒ (i)’ in Lemma 6. Suppose that the ratio is
∞. Then we add an edge between the two terminals and realize that the resulting graph
is equal to a number cycles glued together on an edge. Since chromatic zeros of cycles
are all contained in B1(1), this implies that the ratio could not have been equal to ∞. If
the ratio equals 0, then we again obtain a chromatic zero of a cycle after identifying the
start and terminal vertices. This proves the claim and hence finishes the proof.

5 Chromatic zeros of leaf joined trees from independence zeros

This section is devoted to proving Theorem 4. Fix a positive integer ∆ 󰃍 2 and write
d = ∆ − 1. Given a rooted tree (T, v) consider the two-terminal graph T̂ obtained from
(T, v) by identifying all leaves (except v) into a single vertex u. We take v as the start
vertex and u as the terminal vertex of T̂ . Following Royle and Sokal [11], we call T̂ a leaf
joined tree. We abuse notation and say that a leaf joined tree T̂ has maximum degree
∆ = d + 1 if all its vertices except possibly its terminal vertex have degree at most ∆.
We denote by Td the collection of leaf joined trees of maximum degree at most d + 1 for
which the start vertex has degree at most d.

Our strategy will be to use Lemma 6 in combination with an application of Montel’s
theorem, much like in the previous section. To do so we make use of an observation of
Royle and Sokal in the appendix of the arXiv version of [11] saying that ratios of leaf
joined trees, where the underlying tree is a Cayley tree, are essentially the occupation
ratios (in terms of the independence polynomial) of the Cayley tree. We extend this
relation here to all leaf-joined trees and make use of a recent description of the zeros of
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the independence polynomial on bounded degree graphs of large degree due to the first
author, Buys and Peters [1].

5.1 Ratios and occupation ratios

For a graph G = (V,E) the independence polynomial in the variable λ is defined as

I(G;λ) =
󰁛

I⊆V
I ind.

λ|I|, (9)

where the sum ranges over all sets of G. (Recall that a set of vertices I ⊆ V is called
independent if no two vertices in I form an edge of G.) We define the occupation ratio of
G at v ∈ V as the rational function

PG,v(λ) :=
λI(G \N [v];λ)

I(G− v;λ)
, (10)

where G− v (resp. G \N [v]) denotes the graph obtained from G by removing v (resp. v
and all its neighbors). We define for a positive integer ∆, G∆ to be the collection of rooted
graphs (G, v) of maximum degree at most ∆ such that the root vertex, v, has degree at
most d := ∆− 1. We next define the relevant collection of occupation ratios,

P∆ := {PG,v | (G, v) ∈ G∆}.

A parameter λ0 ∈ C is called active for G∆ if the family P∆ is not normal at λ0.
We will use the following alternative description of P∆. Define

Fλ,d(z1, . . . , zd) =
λ

󰁔d
i=1(1 + zi)

and let Rλ,d be the family of rational maps, parametrized by λ, and defined by

(i) the identify map z 󰀁→ z is contained in Rλ,d

(ii) if r1, . . . , rd ∈ Rd,λ, then Fλ,d(r1(z), . . . , rd(z)) ∈ Rλ,d.

Lemma 26 (Lemma 2.4 in [1]). Let ∆ 󰃍 2 be an integer and write d = ∆− 1. Then

P∆ = {λ 󰀁→ rλ(0) | rλ ∈ Rλ,d}.

We will next show that, up to a simple factor, the occupation ratios of graphs of
maximum degree at most ∆ are contained in the family of chromatic ratios of leaf joined
tree of maximum degree at most ∆. Define

λ(q, d) :=
(q − 1)d

(q − 2)d+1
.
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Proposition 27. Let ∆ 󰃍 2 be a positive integer and write d = ∆− 1. Then
󰀝
q 󰀁→ q − 2

q − 1
rλ(q,d)(0) | rλ ∈ Rλ,d

󰀞
⊆ {q 󰀁→ R(T̂ ; q) | (T, v) ∈ Td}.

Proof. Suppose that rλ ∈ Rλ,d and that rλ(z) = Fλ,d(rλ;1(z), . . . , rλ;d(z)) for certain rλ;i ∈
Rλ,d. We need to show that the map q 󰀁→ q−2

q−1
rλ(q,d)(0) is equal to the ratio R(T̂ ; q) for

some rooted tree (T, v) ∈ Td. By induction we may assume that there are leaf joined trees
T̂1, . . . T̂d ∈ Td such that there exists rλ;i ∈ Rλ,d for each i = 1, . . . , d such that

q 󰀁→ q − 2

q − 1
rλ(q,d);i(0) = R(T̂i; q). (11)

Note that the base case is covered since the map q 󰀁→ 0 is the ratio of the edge {v, u}.
Let (T1, v1), . . . , (Td, vd) be the underlying rooted trees of the T̂i. Let T̂ be the leaf

joined tree whose underlying rooted tree (T, v) is obtained from (T1, v1), . . . , (Td, vd) by
adding a new root vertex v and connecting it to all the vi. We claim that

R(T̂ ; q) = q 󰀁→ q − 2

q − 1
rλ(q,d),d(0). (12)

To prove this we will first compute the effective edge interaction of T̂ . To do so observe
that T̂ is obtained by first putting K2 in series with T̂i for i = 1, . . . , d and then putting
the resulting graphs in parallel. (Incidentally this shows that all leaf joined trees are
series-parallel graphs). In formulas this reads as

T̂ = (K2 ⊲⊳ T̂1) 󰀂 (K2 ⊲⊳ T̂2) 󰀂 · · · 󰀂 (K2 ⊲⊳ T̂d). (13)

Suppose the graphs T̂i have effective edge interaction yi (i = 1, . . . , d), then by Lemma 8
T̂ has effective interaction y given by

y =
d󰁜

i=1

fq(fq(0)fq(yi)) =

󰀕
q − 1

q − 2

󰀖d d󰁜

i=1

1

1 + yi/(q − 2)
. (14)

Recall that R(T̂ ; q) = yG(q)/(q − 1). If we now define the modified ratio 󰁨R(G; q) =
q−1
q−2

R(G; q) for any two-terminal graph G, we can write this relation as

󰁨R(T̂ ; q) =
λ(q, d)

󰁔d
i=1(1 +

󰁨R(T̂i; q))

= Fλ(q,d),d

󰀓
󰁨R(T̂1; q), . . . , 󰁨R(T̂d; q)

󰀔

= rλ(d,q)(0)

by (11). This finishes the proof.

Corollary 28. Let ∆ 󰃍 2 be an integer and write d = ∆− 1. Let q0 ∈ C \ {1, 2, 1− d}.
If λ(q0, d) is active for G∆, then q0 is active for Td.
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Proof. Note that the derivative of λ(q, d) with respect to q is given by

−(q + d− 1)
(q − 1)d−1

(q − 2)d+2
.

Therefore the map q 󰀁→ λ(q, d) is injective on a neighborhood of q0 and the result follows
from the previous proposition.

5.2 Proof of Theorem 4

We are now ready to harvest some results from [1] and provide a proof of Theorem 4.
Let for an integer ∆ 󰃍 2 and u ∈ C

λ∆(u) :=
−(∆− 1)∆−1u

(∆− 1 + u)∆

and define
C∆ := {λ∆(u) | |u| < 1} .

Define the following collection of active parameters

N∆ := {u ∈ B1/2(1/2) | the family P∆ is not normal at λ∆(−u)}.

Theorem 29. There exists ∆0 > 0 such that for all integers ∆ 󰃍 ∆0 the set N∆ contains
a nonempty open set and in particular is nonempty.

Proof. This follows directly from [1, Theorem 1.2 and 1.3] combined with [6, Theorem
1] and the fact that the boundary of the set U∞ (as defined in [1]) is not differentiable
at e. Indeed, a close inspection of the function describing the part of the boundary with
positive imaginary part near e shows that it in fact makes an angle of 120 degrees with
the real axis.

We now give a proof of Theorem 4.

Proof of Theorem 4. Let ∆0 from the theorem above. Fix any integer ∆ 󰃍 ∆0 and write
d = ∆ − 1. Choose any non real u0 ∈ N∆. Define q0 = 1 + d/u0 and observe that since
the Möbius transformation u 󰀁→ 1 + d/u maps the disk B1/2(1/2) onto the half plane
{z ∈ C | ℜ(z) 󰃍 d+ 1}, it follows that ℜ(q0) > ∆. Furthermore,

λ(q0, d) =
(q0 − 1)d

(q0 − 2)d+1
=

(d/u0)
d

((d− u0)/u0)d+1
=

ddu0

(d− u0)d+1
= λ∆(−u0).

Therefore, by Corollary 28 and Theorem 29, we obtain that q0 ∈ ATd , the activity locus
of the family of ratios of the leaf joined trees contained in Td. By Theorem 21 (Montel’s
theorem) we conclude that there must exist q such that ℜ(q) > ∆ and a leaf joined tree
T̂ ∈ Td such that R(T̂ ; q) ∈ {0,−1,∞}.
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We now show that there exists a leaf joined tree of maximum degree ∆ for which q is
zero of its chromatic polynomial. We cannot directly invoke Lemma 6, but its proof will
essentially give us what we need.

If the ratio, R(T̂ ; q), is equal to −1 then Z(T̂ ; q) = 0. If the ratio equals ∞ we add
an edge between the two terminal vertices such that q is a chromatic zero of the resulting
leaf joined tree, whose maximum degree is still ∆. Finally, suppose the ratio equals 0.
We know that T̂ is the parallel composition of d leaf joined trees T̂i each in series with K2

(see (13)). Since the ratio equals 0 we know by Lemma 5 that Zsame(K2 ⊲⊳ T̂i; q) = 0 for
some i. Now putting the graph K2 ⊲⊳ T̂i in parallel with an edge gives a new leaf joined
tree T̂ ′

i of maximum degree ∆ such that Z(T̂ ′
i ; q) = Zsame(T̂i; q) = 0. This finishes the

proof.

6 Concluding remarks, questions and conjectures

In this paper we embarked on the quest to determine the location of the chromatic zeros of
the family of series-parallel graphs. While we have made several contributions, a complete
characterization remains elusive, as is visible in Figure 1. Several concrete questions and
conjectures arise in this regard.

First of all, it is important to note that Figure 1 is a pixel picture, and the color
of a pixel only displays the behavior of the center point of the pixel. Potential fea-
tures of the picture that are smaller than the resolution will therefore be invisible. We
believe however that with a bit more effort one can create a more rigorous picture
that looks exactly the same. A pixel is colored blue, if for q at the center of the
pixel, there exist integers n1, . . . , nk (within the search depth n1 · . . . · nk 󰃑 300) with
|fq(fq(· · · fq(fq(0)n1)n2 · · · )nk)| > 1; the darkest shade of blue corresponds to a search
depth of 75 the lighter shades correspond to a depth of 150 and 300 respectively. This
composition is either an effective edge interaction, or a virtual interaction, of a series-
parallel graph with n1 · . . . · nk edges and so Theorem 16 ensures that q is contained in
the closure of the chromatic zeros of series parallel graphs.

Answering a question from a previous version of the present paper, the second author
showed in his thesis that Theorem 16 actually gives a complete characterization of the
chromatic zeros of series parallel graphs. More precisely, in [7, Theorem 2.26] he showed
that if Z(G; q) = 0 for some q ∈ C \ {0, 1, 2} for some G ∈ GSP then there exists G′ ∈ GSP

such that 1 < |yG′(q)| < ∞.
A pixel is colored orange in Figure 1, if for q at the center of the pixel, it is possible

to find a disk V such that fq(V ) = V and which satisfies the conditions of Lemma 10.
There is a very explicit description of the disks V satisfying fq(V ) = V . This makes it
easy to check 0 ∈ V and 1 − q ∕∈ V 2. The condition V 2 ⊆ V is verified by checking
that sup{|z|2 | z ∈ V } < inf{|z| | z ∈ C \ V }. Figure 1 directly motivates the following
conjecture.

Conjecture 30. For each q in the punctured disk B5/27(1) \ {1} and any series-parallel
graph G, Z(G; q) ∕= 0.
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Note that our proof of Lemma 15 gives a punctured disk of radius (2−
√
3)2 ≈ 0.072

around 1, which is much less than 5/27 ≈ 0.185.
Another interesting question motivated by Theorem 4 is whether there exist chromatic

zeros with real part larger than the second largest degree for all degrees. We have verified
this question up to ∆ 󰃑 45, see Table 1 below. The values were obtained using the

∆ q type
4 4.027 + 0.783i 3, 2
5 5.088 + 0.836i 4, 3
6 6.132 + 0.881i 5, 4
7 7.058 + 1.521i 6, 4
8 8.120 + 1.577i 7, 5
9 9.012 + 2.194i 8, 5
10 10.084 + 2.256i 9, 6
11 11.147 + 2.314i 10, 7
12 12.038 + 2.928i 11, 7
13 13.109 + 2.990i 12, 8
14 14.173 + 3.049i 13, 9
15 15.063 + 3.662i 14, 9
16 16.133 + 3.724i 15, 10
17 17.197 + 3.784i 16, 11
18 18.087 + 4.395i 17, 11
19 19.157 + 4.457i 18, 12
20 20.222 + 4.518i 19, 13
21 21.111 + 5.129i 20, 13
22 22.180 + 5.191i 21, 14
23 23.246 + 5.252i 22, 15
24 24.135 + 5.862i 23, 15

∆ q type
25 25.204 + 5.925i 24, 16
26 26.269 + 5.986i 25, 17
27 27.158 + 6.596i 26, 17
28 28.227 + 6.658i 27, 18
29 29.293 + 6.719i 28, 19
30 30.182 + 7.329i 29, 19
31 31.251 + 7.392i 30, 20
32 32.317 + 7.453i 31, 21
33 33.206 + 8.063i 32, 21
34 34.274 + 8.125i 33, 22
35 35.340 + 8.187i 34, 23
36 36.229 + 8.796i 35, 23
37 37.298 + 8.859i 36, 24
38 38.364 + 8.920i 37, 25
39 39.252 + 9.530i 38, 25
40 40.321 + 9.592i 39, 26
41 41.387 + 9.654i 40, 27
42 42.276 + 10.263i 41, 27
43 43.344 + 10.326i 42, 28
44 44.411 + 10.387i 43, 29
45 45.299 + 10.997i 44, 29

Table 1: Table of parameters q with real part bigger than ∆, such that q is active for the
following family of leaf joined trees: construct trees where alternately every vertex has
down degree exactly d1 resp. d2, add d1− d2 leaves to the down vertices of degree d2, and
add one vertex connected to all leaves. The proof of Theorem 4 implies that chromatic
zeros of leaf joined trees of maximum degree d1 + 1 accumulate at q.

technique of Buys [4] to find zeros of the independence polynomial. First we find a family
of spherically regular trees of degree d1 󰃍 d2 that are active at λ ∈ C for this family, using
Appendix B of [4]. Therefore by Corollary 28 we obtain that q0 is active for Td1 , where
we choose q0 to be the solution of λ(q0, d1) = λ of the largest real part.

Figure 2 strongly supports the following conjecture. This is related to a question
from [10, 4] on zeros of the independence polynomial of bounded degree graphs.

Conjecture 31. Theorem 4 is true with ∆0 = 3.
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Figure 2: For each ∆ = 4, . . . , 45 we record the value of ℜ(q)/∆ from Table 1. The orange
dashed line denotes the limiting value as d1 → ∞ and d2/d1 → 2/3.

We end with a question on the possible extension of one of our result to a larger family
of graphs to which our techniques do not seem to apply.

Question 1. What can be said about planar or triangulated planar graphs? Is it true
that there are no chromatic zeros for these graphs in a punctured open set containing the
interval (0, 32/27)?
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[3] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič.
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