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Abstract

If (X,Y ) is a partition of the vertices of a graph G = (V,E) and there are k edges
joining vertices in X to vertices in Y , then (X,Y ) is an edge separation of G of order
k. The graph G is (n, k)-edge connected, if whenever (X,Y ) is an edge separation
of G of order at most k, then either X or Y has at most n elements. We prove that
if G is cubic and (n, k)-edge connected, then one can find edges to delete so that
the resulting graph is (6n+ 2, k)-edge connected. We find an explicit bound on the
size of a cubic graph that is minimal in the immersion order with respect to having
carving-width k. The techniques we use generalise techniques used to prove similar
theorems for other structures. In an attempt to develop a unified setting we set up
an axiomatic framework to describe certain classes of connectivity functions. We
prove a theorem for such classes that gives sufficient conditions to enable a bound on
the size of members that are minimal with respect to having branch-width greater
than k. As well as proving the above mentioned result for edge connectivity in this
setting, we prove (known) bounds on the size of excluded minors for the classes of
matroids and graphs of branch-width k. We also bound the size of a connectivity
function that has branch-width greater than k and is minimal with respect to an
operation known as elision.

Mathematics Subject Classifications: 05B35, 05C40

1 Introduction

Let S be a finite set. A function λ : 2S → Z is normalised if λ(∅) = 0, is symmetric if
λ(X) = λ(S−X) for all X ⊆ S, and is submodular if λ(X∩Y )+λ(X∪Y )  λ(X)+λ(Y )
for all X, Y ⊆ S. If λ is normalised, symmetric and submodular, then the pair (λ, S) is a
connectivity function on S and we say that S is the ground set of λ.

Connectivity in a variety of combinatorial structures can be encoded via an associ-
ated connectivity function. Examples include connectivity in matroids and polymatroids,
vertex connectivity in graphs and edge connectivity in graphs.
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Branch-width was originally defined for graphs by Robertson and Seymour [12]. It
is implicit in [12] that branch-width is well defined for any connectivity function and
hence, for any structure with an associated connectivity function. This is made explicit
in [3] where branch-width for matroids is studied. Readers unfamiliar with branch-width
can find the standard definitions at the end of this section. For vertex connectivity in
graphs branch-width is qualitatively equivalent to tree width [12]. For edge connectivity
in graphs it is known as carving-width; see for example [14]. In many situations branch-
width is a powerful controller of the complexity of structures. Hard problems can have
polynomial-time algorithms for certain classes of structures of bounded branch-width.
In such classes it is natural to find, or at least bound the size of, the objects that are
minimal obstructions to having branch-width k for some fixed k. But what one means
by “minimal obstruction” depends on the class. In [4] a bound is given on the size of a
matroid that is minor-minimal with respect to having branch-width greater than k for
any fixed k. Analogous techniques are used in the thesis of Jowett [6]. There the class of
all connectivity functions is considered and obstructions are considered that are minimal
with respect to an operation known as elision.

In this paper we continue the theme by considering edge connectivity in cubic graphs.
The natural order on graphs when one considers edge connectivity is the immersion order
(see for example [13]) although for cubic graphs this order is, in essence, the topological-
minor order. With respect to this order we obtain, for any fixed k, an explicit bound
on the size of a cubic graph that is minimal with respect to having branch-width greater
than k.

The general strategy for such results is as follows. First one defines an appropriately
parameterised notion of connectivity. Then one shows that it is possible to find an element
to remove from the structure that does not damage the connectivity too much. After that
it is simply a matter of adapting the strategy used in [4] and [6] to the new situation.

Rather than simply mining the same techniques in a somewhat different context it
seemed worthwhile to prove a more general theorem that could potentially be used in
this, and possibly future situations, and that is the approach we have taken in this paper.
Finding the right mathematical umbrella to cover all the cases required an exercise in
axiomatics. This exercise may or may not be interesting in its own right.

Our main result on edge connectivity is proved in Section 6, the last section of the
paper. This section can be read independently from the rest of the paper. For positive
integers m and k, a graph G = (V,E) is (m, k)-edge connected if, whenever a partition
(X, Y ) of V induces an edge separation in G of order at most k, then either X or Y has
size at most m. It follows from Theorem 29 that a cubic (m, k)-edge connected graph G
has an edge e such that G\e is (6m+ 2, k)-edge connected.

The remainder of the paper is structured as follows. Section 2 recalls standard material
on branch-width. Section 3 introduces the notion of a monotone order for a class of
connectivity functions. Examples are given coming from matroids, vertex connectivity in
graphs, edge connectivity in graphs, and from the class of all connectivity functions. In
Section 4 a theorem is proved that gives sufficient conditions to obtain an explicit bound
on the size of minimal obstacles for branch-width k in a monotone order. Section 5 applies
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the results of Section 4 to matroids, to vertex connectivity in graphs, to the class of all
connectivity functions and finally to edge connectivity in cubic graphs.

2 Branch-width

In this section we review the basic definitions of branch-width and review some standard
classes of structures with associated connectivity functions.

Branch-width

A tree is cubic if every vertex has either degree 1 or degree 3. We call a vertex with
degree 1 a leaf. A partial branch-decomposition of a connectivity function (λ, S) is a
cubic tree T together with a function φ from S to the set of leaves of T . For a leaf l,
the set {s ∈ S : φ(s) = l} is the set of labels of l. This set may be empty. A branch-
decomposition is a partial branch-decomposition in which no leaf of T is labelled by more
than one element of E. If T is a branch-decomposition and T ′ is a subgraph of T whose
labelled leaves are labelled by exactly X ⊆ E, then we say that T ′ displays X. The
width of an edge, e, of T is λ(X) where X is one of the components displayed by T \ {e}.
Note that this is well-defined as λ is symmetric. The width of T is the maximum of the
widths of the edges. The branch-width of a connectivity function λ, denoted bw(λ), is the
minimum of the widths of all possible branch-decompositions of λ. While we allow branch-
decompositions to have unlabelled leaves we note that such a branch-decomposition can
always be modified, without altering the branch-width, so that all leaves are labelled.

Matroids

Few readers of this paper would be unfamiliar with matroids. But, given that very little
knowledge of matroid theory is required it is worthwhile to review some basics. While
there are many ways to define a matroid, if our interest is in connectivity functions, then
the best way to proceed is definitely via the rank function. Let S be a finite set. Recall
that a matroid M on S is a pair M = (rM , S), where rM : 2S → N is a function satisfying
the following.

(R1) If X ⊆ S, then 0  r(X)  |X|.

(R2) If X ⊆ Y ⊆ S, then r(X)  r(Y ).

(R3) If X and Y are subsets of S, then

r(X ∪ Y ) + r(X ∩ Y )  r(X) + r(Y ).

We say that rM is the rank function of M . The connectivity function λM : 2S → N of the
matroidM on S is defined, for all subsetsX of S by λM(X) = rM(X)+rM(S−X)−rM(S).
It is an easy exercise to prove that submodularity of the connectivity function is inherited
from the submodularity of the rank function of M . In other words, we have
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Lemma 1. Let M be a matroid on S. Then λM is a connectivity function.

The branch-width of a matroid M , denoted bw(M) is defined by bw(M) = bw(λM)+1.
This awkward offset occurs for historical reasons where it was felt desirable to match
connectivity in a graph with that in its cycle matroid.

There are two natural connectivity functions associated with a graph; one captures
vertex connectivity and the other captures edge connectivity. Somewhat confusingly ver-
tex connectivity is captured by a set function on the edges of the graph, while edge
connectivity is captured by a function on the vertices of the graph. Both are interesting.

Vertex Connectivity

LetG = (V,E) be a graph. For a subsetX of E let V (X) denote the set of vertices incident
with edges inX. Let νG : 2E → N be defined by νG(X) = |V (X)|+|V (E−X)|−|V (E)| for
all X ⊆ V . It follows from an elementary counting argument that (νG, E) is a connectivity
function and we say that νG is the vertex-connectivity function of G. It is well known
that, modulo eliminating trivialities, the function νG captures vertex connectivity in G.

The branch-width of G, denoted bw(G), is defined to be the branch-width of νG. Let
M(G) denote the cycle matroid of the graph G. Note that νG and λM(G) are certainly
different functions; for example consider values on singletons. Nonetheless, it is known
that for graphs with a cycle of size at least two, the branch-width of a graph is equal to
that of its cycle matroid [5, 10].

Edge Connectivity

Again, let G = (V,E) be a graph. For a set X let E(X) denote the set of edges incident
with at least one vertex in X. Define εG : 2V → N to be the set function on V defined
by εG(X) = |E(X)| + |E(V −X)| − |E(V )| for all X ⊆ V . Again, it is well known and
easily seen that (εG, V ) is a connectivity function. We say that εG is the edge-connectivity
function of G. The carving-width of G is defined to be the branch-width of εG.

3 Monotone Orders

The problem of finding the “obstacles” to branch-width k for a given class depends very
much on the class since the natural notion of substructure for a connectivity function will
depend on the class we are interested in, and not just the connectivity function itself.
The purpose of this section is to develop an axiomatic framework in which these notions
can be unified.

We begin by recalling some straightforward facts about connectivity functions. Let
(λ, S) be a connectivity function. If X ⊆ S, then 2λ(X) = λ(X) + λ(S − X)  λ(∅) +
λ(S) = 0 so that λ(X)  0. We say that λ is connected if λ(X) > 0 for all proper nonempty
subsets of S. The case when λ is not connected leads to a familiar decomposition. We
omit the elementary proof of the next lemma.
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Lemma 2. Let (λ1, S1) and (λ2, S2) be connectivity functions on disjoint sets S1 and S2.
Define (λ1 ⊕ λ2, S1 ∪ S2) by (λ1 ⊕ λ2)(X) = λ1(X ∩ S1) + λ2(X ∩ S2). Then λ1 ⊕ λ2 is a
connectivity function.

We say that λ1 ⊕ λ2 is the direct sum of λ1 and λ2. Consider the converse. Note
that simply restricting a connectivity function to a subset T of the ground set does not
usually give a connectivity function as we may lose symmetry. But in the special case
that λ(T ) = 0 no problems arise. The straightforward proof of Lemma 3 is given in [6].

Lemma 3. Let (λ, S) be a connectivity function and let (S1, S2) be a partition of S with
λ(S1) = 0. For i ∈ {1, 2}, define (λi, Si) by λi(X) = λ(X) for all X ⊆ Si. Then λi is a
connectivity function and (λ, S) = (λ1, S1)⊕ (λ2, S2).

Monotone Orders

Let (λ, S) be a connectivity function. For disjoint sets X, Y ⊆ S we define κλ(X, Y ) by
κλ(X, Y ) = min{λ(Z) : X ⊆ Z ⊆ E − Y }.

Let C be a class of connectivity functions and let ≼ be a partial order on C. We say
that (λ, S) covers (µ, T ) if (λ, S) ≻ (µ, T ), and there is no member (ν, U) of C such that
(λ, S) ≻ (ν, U) ≻ (µ, T ). We say that the pair (C,≼) is a monotone order if the following
hold for all (µ, T ), (λ, S) ∈ C.

C1 If (µ, T ) ≼ (λ, S), then T ⊆ S.

C2 If (λ, S) covers (µ, T ), then |T |  |S|− 1.

C3 If s ∈ S, then there exists a pair (ν, S − {s}) such that (ν, S − {s}) ≼ (λ, S).

C4 If (λ, S) = (λ1, S1)⊕ (λ2, S2) for some pair of connectivity functions λ1 and λ2, then
(λ1, S1) ≼ (λ, S).

C5 If (µ, T ) ≼ (λ, S), and X ⊆ T , then µ(X)  κλ(X, T −X).

Properties (C1), (C2), (C3) and (C4) are essentially non-triviality conditions that are
easily seen to hold in any natural situations that we can think of. Saying that µ ≼ λ is
meant to express that µ is some sort of substructure of λ. One should never expect to gain
information in moving to a substructure; and that is what (C5) is attempting to express.
Let (C,≼) be a monotone order. If (µ, T ) ≼ (λ, S), then we say that µ is a C-minor of λ,
or simply minor if no ambiguity threatens. If λ covers µ in (C,≼), then we say that µ is
an immediate minor of λ. If µ is a minor of λ and µ ∕= λ, then we say that µ is a proper
minor of λ. It is possible for a proper minor of λ to have the same ground set as λ. In
particular, if µ is an immediate minor of λ, then either T = S, or T = S − {s} for some
s ∈ S.

It is not clear whether monotone orders are sufficiently interesting to be worthy of
investigation in their own right. Nonetheless, they do give a general setting that serves
us well for this paper.

the electronic journal of combinatorics 30(3) (2023), #P3.21 5



Each of the classes of connectivity functions considered in the previous section leads to
natural monotone orders. We begin with matroids. Let CM denote the class of connectivity
functions of matroids. Thus λ ∈ CM if and only if there exists a matroid M ∈ M such
that λ = λM . If µ,λ ∈ CM , then we say that µ ≼ λ if there exists a matroid M and
a minor N of M such that µ = λM and ν = λN . Then (CM ,≼) is a monotone order.
Property (C1), (C2), (C3) and (C4) are clear, while property (C5) is well known and
easily verified.

Let Cν denote the class of vertex connectivity functions of graphs. For µ,λ ∈ Cν , we
say that µ ≼ λ if there exists a graph G and a minor H of G such that µ = νH and λ = νG.
Again it follows from easily established well-known facts that (Cν ,≼) is a monotone class
of connectivity functions.

As noted in the introduction, if one is interested in edge connectivity for graphs, the
natural associated order on graphs is the immersion order. It is straightforward to trans-
late this order to a monotone order on edge connectivity functions. This is particularly
straightforward for cubic graphs as the operation of vertex splitting does not arise except
in an essentially trivial way. We postpone more detailed discussion of this until later in
the paper.

Finally, let U denote the class of all connectivity functions. It seems that there is just
one natural order that makes sense on this all embracing class. Let (λ, S) be a connectivity
function and let R be a subset of S. Recall that, for a partition (X, Y ) of S−R, we define
κλ(X, Y ) by

κλ(X, Y ) = min{λ(Z) : X ⊆ Z ⊆ X ∪R}.

We define the function λ ↓ R : 2S−R → N by λ ↓ R(X) = κλ(X,S − (X ∪ R)) for all
X ⊆ S − R. In this case we say that λ ↓ R is obtained from λ by elision. In the case
that |R| = 1, elision has a particularly simple description. Say s ∈ S, and X ⊆ S − {s}.
Then λ↓ s(X) = min{λ(X),λ(X ∪{s})}. Now, for connectivity functions µ and λ, define
µ ≼ λ if µ = λ ↓ R for some subset R of the ground set of λ. It is an almost immediate
consequence of the definitions that (U ,≼) is a monotone order.

4 Bounding branch-width

Let (C,≼) be a monotone order of connectivity functions. A subclass D of C is minor-
closed if every C-minor of a member of D also belongs to D. If D is minor-closed and
λ ∈ C has the property that λ /∈ D, but all proper minors of λ are in D, then λ is an
excluded minor for D.

Lemma 4. Let (C,≼) be a monotone order of connectivity functions. For any integer
k  0, the class consisting of those members of C of branch-width at most k is minor-
closed.

Proof. Assume that (λ, S) has branch-width at most k and that (µ,R) is a minor of
(λ, S). Let T be a branch-decomposition of λ. Let T ′ be the labelled tree obtained by
removing the labels in S − R from T . Let e be an edge of T (and hence also of T ′). Let
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(A,B) and (A′, B′) be the partitions displayed in T and T ′ respectively by e. By (C5),
µ(A′)  λ(A)  k. Hence T ′ is a branch-decomposition of µ of width at most k.

Let (λ, S) be a connectivity function and let (A,B) be a partition of S. A branching
of B is a partial branch-decomposition of λ in which there is a leaf displaying A and no
other leaf is multiply labelled. We say that B is k-branched if there is a branching, T , of
B with branch-width at most k. The following lemma is proved in [4]. In the lemma we
allow members of a partition to be empty.

Lemma 5. Let (λ, S) be a connectivity function. Suppose λ has branch-width at most k.
Let (A,B) be a partition of S such that λ(A)  k. If B is not k-branched, then there is
a partition (A1, A2, A3) of A such that λ(Ai) < λ(A) for all i ∈ {1, 2, 3}.

Lemma 6. Let (C,≼) be a monotone order of connectivity functions. Let k  0 be an
integer and let (λ, S) be an excluded minor for the members of C of branch-width at most
k. Then λ is connected.

Proof. Suppose that λ is not connected. Then there exists a partition (S1, S2) of S into
nonempty parts such that λ(S1) = 0. By Lemma 3, there are connectivity functions
(λ1, S1) and (λ2, S2) such that λ = λ1 ⊕ λ2. Since the ground sets of λ1 and λ2 are
properly contained in S neither λ1 nor λ2 is equal to λ. By (C4) λ1 and λ2 are proper
minors of λ. Let T1 be a branch-decomposition of λ1 with branch-width at most k and
T2 be a branch-decomposition of λ2 with branch-width at most k. Consider the graph
obtained by subdividing an edge of T1 and subdividing an edge of T2 and joining the two
new vertices with a new edge, e. Call this new tree T . Clearly e has weight 0 in T , and
T is a branch-decomposition of λ with branch-width at most k.

Lemma 7. Let (C,≼) be a monotone class of connectivity functions. Let k  0 be an
integer, let (λ, S) be a member of C, and let (A,B) be a partition of E. If both A and B
are k-branched then bw(λ)  k. In particular λ is not an excluded minor for the members
of C of branch-width at most k.

Proof. Assume that A and B are k-branched. Let T1 be a branching of A of width at most
k, and let T2 be a branching of B of width at most k. There is a vertex in T1 labelled by
B. Let e be the edge incident with this vertex. The width of e is equal to λ(B) = λ(A).
Similarly in T2 the edge, f , incident with the vertex labeled by A has width λ(A) = λ(B).
Let v1 be the internal vertex of T1 incident with e, and let v2 be the internal vertex of T2

incident with f . The graph obtained by joining T1 \{e} to T2 \{f} via a new edge g, that
is incident with vertices v1 and v2 and has weight λ(A), gives a branch-decomposition of
λ that has width at most k.
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B
λ(B)

T1

A
λ(A)

T2

g

Let (C,≼) be a monotone order of connectivity functions and let (µ,R) be a minor
of (λ, S) in C. A set X ⊆ R is (µ,λ)-unperturbed if µ(Z) = λ(Z) for all Z ⊆ X. If the
function λ is clear from context, we simply say that X is unperturbed in µ.

For a non-negative real n and non-negative integer k, we say that a connectivity
function (λ, S) is (n, k)-connected if whenever X ⊆ S has λ(X)  k, then either |X|  n
or |S − X|  n. Let [k] denote the set {0, 1, . . . , k} and let N denote the set of non-
negative integers. Let f : N → R0 be a function. We say that λ is (f, [k])-connected if λ
is (f(i), i)-connected for all i ∈ [k].

Let h : N×N → N/3 be a function. We say that the monotone order (C,≼) is h-strong
if the following holds. If (λ, S) ∈ C is (n, k)-connected, (A,B) is a partition of S such
that |A|, |B|  h(n, k) and λ(A) = k + 1, then there exists a minor (λA, SA) of λ such
that the following hold.

S1 Either SA = S or SA = S − {a} for some a ∈ A.

S2 λA is (h(n, k), k)-connected.

S3 If |A| > 3h(n, k) then we can, in addition, choose λA such that B is unperturbed in
λA.

Lemma 8. Let N/3 = {n/3 : n ∈ N}. Let h : N × N → N/3 be a function such
that C is h-strong. For k ∈ N define the function g : [k + 1] → N by g(0) = 0 and
g(i + 1) = 3h(g(i), i) + 1 for all i ∈ {1, 2, . . . , k}. If λ is an excluded minor for the
members of C of branch-width at most k, then λ is (g, [k + 1])-connected.

Proof. By Lemma 6, λ is connected, so that λ is (g, [0])-connected. Suppose that 0  t  k
and that λ is (g, [t])-connected. Assume for a contradiction that λ has a separation (A,B)
of order t + 1 such that |A|, |B|  g(t + 1) = 3h(g(t), t) + 1. Since λ has branch-width
greater than k we may assume that B is not k-branched. As C is h-strong, there is a
minor (λA, R) of λ such that the following hold.

(i) Either R = S or R = S − {a} for some a ∈ A.

(ii) λA is (g(t+ 1), t)-connected, and
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(iii) B is unperturbed in λA.

Now λ is an excluded minor for Ck so that λA has branch-width at most k. Let A′ = A∩R.
Since B is unperturbed in λA, we have λA(A

′) = t+1. Consider any partition (A1, A2, A3)
of A′. We have |Ai|  h(g(t), t)+1 for some i ∈ {1, 2, 3}. Hence λA(Ai)  t+1 = λA(B).
Thus A′ is not k-branched in λA, so by Lemma 7, B is k-branched in λA. But B is
unperturbed in λA, so B is k-branched in λ. We deduce from this contradiction that λ is
(g(t+ 1), t)-connected and hence that λ is (g, [t+ 1])-connected.

The following lemma is well-known; see for example [11, Lemma 14.2.2].

Lemma 9. If T is a tree with at least one edge, then T has an edge, e, such that each of
the two components of T \ e contains at least one-third of the leaves of T .

We say that the monotone order (C,≼) is smooth if whenever (µ,R) is an immediate
minor of (λ, S), and (X, Y ) is a partition of R, then µ(X)  κλ(X, Y ) − 1. Said more
prosaically we have µ(X)  λ(X) − 1 if S = T and µ(X)  min{λ(X) − 1,λ(Y ) − 1} if
T = S − {z} for some z ∈ S.

Theorem 10. Let h : N × N → N/3 be a function and let (C,≼) be a smooth, h-strong
monotone order of connectivity functions. Define the function g : N → N by g(0) = 0
and g(i + 1) = 3h(g(i), i) + 1 for all i ∈ N. If (λ, S) is an excluded minor for Ck, then
|S|  g(k + 2).

Proof. It is easily seen that we may assume that |S|  3, and that k  1. Let µ be
an immediate minor of λ. Assume that µ is not (h(g(k + 1), k + 1), k + 1)-connected.
Then, as C is smooth, λ has a (k + 1)-separation, both sides of which have size at least
h(g(k + 1), k + 1). As C is h-strong, we deduce that λ has an immediate minor which is,
indeed, (h(g(k + 1), k + 1), k + 1)-connected. Say that ν is such a minor.

As λ is an excluded minor and C is smooth, ν has branch-width k. Let T be a width-
k branch-decomposition of ν. Since |S|  3, T has at least two labelled leaves. By
Lemma 9, T has an edge e such that the sets X1 and X2 labelled by the components
of T\e each have at least (|S| − 1)/3 elements. Assume that |X1|  |X2|. Then, since
ν is (h(g(k + 1), k + 1), k + 1)-connected, we have |X1|  h(g(k + 1), k + 1). Thus
|S|  3h(g(k + 1), k + 1) + 1 = g(k + 2), as required.

5 Examples

We now consider examples. We begin with matroids.

Matroidal Connectivity Functions

Recall that (CM ,≼) denotes the class of matroidal connectivity functions, where, for
µ,λ ∈ CM , we say that µ ≼ λ if there exist matroids N and M such that µ = λN , λ = λM ,
and N is a minor of M . The next theorem is [4, Theorem 1.1].
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Theorem 11. If M is an excluded minor for the class of matroids of branch-width at
most k, and k  2, then |E(M)|  (6k − 1)/5.

The techniques of this paper are, in essence, a generalisation of the techniques used in
[4]. Nonetheless it is of some interest to derive the theorem from the results of this paper
and we do this now.

Note that, in Lemma 13, the function h(n, k) is independent of k. This is the case
in all our examples. However we foresee applications to edge connectivity in graphs with
arbitrary vertex degrees where the more general version is required. We first note an easy
lemma, the proof of which is omitted.

Lemma 12. Let x be an element of the matroid M on S, and let Z ⊆ S − {x}. If
λM/x(Z) = λM(Z), then Z is unperturbed in λM/x.

Lemma 13. Let h : N× N → N be defined by h(n, k) = 2n. Then CM is h-strong.

Proof. Say that (λ, S) ∈ CM is (m, k)-connected. Let M be a matroid such that λ = λM .
Note that λ is (f, [k])-connected where f : N → N is defined by f(i) = m for all i ∈ N.
It now follows from [4, Lemma 3.1] that either λM\x or λM/x is (2m, k)-connected for all
x ∈ S.

Assume that (A,B) is a partition of S such that |A|, |B|  2n and λM(A) = k + 1.
Say a ∈ A. Using the argument of the previous paragraph and duality we may assume
that λM/a is (2m, k)-connected. Thus (S1) and (S2) hold.

Assume that |A|  3h(m, k) = 6m. Then λM/a(B) = λM(B), as otherwise λM/a is not
(2m, k)-connected. Now, by Lemma 12, B is unperturbed in M/a.

Theorem 14. Let (λ, S) be an excluded minor for members of (CM ,≼) of branch-width
at most k, where k ∈ N. Then |S|  (6k+1 − 1)/5.

Proof. It is evident that (CM ,≼) is a smooth monotone order. By Lemma 13, (CM ,≼
) is h-strong where h(n, k) = 2n. Define the function g by g(0) = 0, and otherwise
g(i+1) = 3h(g(i), i)+ 1 = 6g(i)+ 1. Then g(k) = (6k−1− 1)/5 for all k. By Theorem 10,
|S|  g(k + 2) = (6k+1 − 1)/5.

Theorem 11 follows by recalling that a matroid M has branch-width k if and only if
λM has branch-width k − 1.

Vertex Connectivity in Graphs

It is shown in [5, 10], that for graphs with a cycle of size at least two, the branch-width of
a graph is equal to that of its cycle matroid [5, 10]. Using this fact and Theorem 11, we
obtain a bound on the size of excluded minors for vertex connectivity functions of graphs.
Specifically, if λG is an excluded minor for vertex connectivity functions of graphs of
branch-width at most k, then G has at most (6k − 1)/5 edges. Alternatively, one can
derive this fact from the results of this paper. Rather than pursuing that routine exercise,
we take the liberty of discussing a topic that we find interesting.

An (integral) polymatroid is a pair P = (S, r), where E is a finite set, and r : 2S → N
is a function satisfying the following.
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(P1) r(∅) = 0.

(P2) If X ⊆ Y ⊆ S, then r(X)  r(Y ).

(P3) If X and Y are subsets of S, then

r(X ∪ Y ) + r(X ∩ Y )  r(X) + r(Y ).

In other words, we have the same axioms as for matroids but we omit the requirement
that singletons have rank at most one. A k-polymatroid is one where singletons have
rank at most k. The connectivity function (λP , S) of a polymatroid is defined just as for
matroids, so that λP (X) = r(X) + r(S −X) − r(S). We define the branch-width of the
polymatroid P to be the branch-width of λP .

The Dilworth truncation of the collection of lines of a matroid was first defined by
Mason [9]. The operation itself was first used by Dilworth [2] in his proof that every
lattice can be embedded in a geometric lattice. Lovász [7] generalised the operation to
polymatroids, indeed to more general submodular functions. The Dilworth truncation of
a 2-polymatroid is a matroid.

One can obtain a 2-polymatroid PG = (r, E) from a graph G = (V,E), by letting
r(X) = |V (X)| for all X ⊆ E. Then the vertex connectivity function νG of G is precisely
the connectivity function of PG. The fact that the branch-width of a graph and its cycle
matroid are the same can then be stated as a result about the branch-width of a class of
polymatroids and their Dilworth Truncations.

To enable a more unified statement we remove the pesky +1 from the definition of
matroid branch-width. We conjecture that the result for connectivity functions of graphs
and their cycle matroids holds more generally.

Conjecture 15. Let P be a 2-polymatroid and D(P ) be its Dilworth truncation. If
bw(P )  3, then bw(D(P )) = bw(P )− 1.

We further believe that the condition that P is a 2-polymatroid is redundant.

Conjecture 16. Let P be a k-polymatroid and D(P ) be its Dilworth truncation. If
bw(P )  k + 1, then bw(D(P )) = bw(P )− 1.

The condition that bw(P )  3 in Conjecture 15 is just to eliminate low branch-width
counterexamples caused, in the 2-polymatroid case, essentially by trees. We see similar
tree-like problematic structures for more general k-polymatroids. Hence the requirement
that bw(P )  k + 1 in Conjecture 16. These requirements could possibly be refined
somewhat.

Elision in Connectivity Functions

Let (U ,≼) denote the class of all connectivity function ordered by elision. In this world,
(µ,R) is a minor of (λ, S) if there is a subset T of S such that µ = λ↓ T .
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Theorem 17. Let (λ, S) be an excluded minor for the members of (U ,≼) of branch-width
at most k. Then |S|  (3k+2 − 1)/2.

We first establish some elementary facts.

Lemma 18. If (λ, S) is an (n, k)-connected connectivity function, then λ ↓ s is (n, k)-
connected for all s ∈ S.

Proof. Say that (X, Y ) is a partition of S − {s} and λ↓ s(Z)  k. Then either λ(X) or
λ(X ∪ {s})  k. Either case implies that one of X or Y has at most n elements.

Lemma 19. Let (λ, S) be a connectivity function, let X be a subset of S and y an element
of S −X. If λ(X ∪ {y})  λ(X), then λ(X ′ ∪ {y})  λ(X ′) for all X ′ ⊆ X.

Proof. By submodularity λ(X ′ ∪ {y}) + λ(X)  λ(X ′) + λ(X ∪ {y}). The lemma follows
easily from this observation.

The next lemma is an immediate consequence of Lemma 19.

Lemma 20. Let (λ, S) be a connectivity function and s ∈ S. If Z ⊆ S − {s} and
λ↓ s(Z) = λ(Z), then Z is unperturbed in λ↓ s.

Lemma 21. Let (λ, S) be a connectivity function and (X, Y ) be a partition of S with
λ(X) = k. If |X| > k, then there exists x ∈ X such that Y is unperturbed in λ↓ x.

Proof. Say X = {x1, x2, . . . , xt}. As t > k, there exists an i ∈ {1, 2, . . . , t} such that
λ(Y ∪ {x1, x2, . . . , xi−1}) = λ(Y ∪ {x1, x2, . . . , xi}. By Lemma 20 Y ∪ {x1, x2, . . . , xi−1} is
unperturbed in λ↓ xi; in particular Y is unperturbed in λ↓ xi.

The next lemma is an immediate consequence of Lemmas 18 and 21.

Lemma 22. Let h : N× N → N/3 be defined by h(n, k) = n/3. Then (U ,≼) is h-strong.

We are now able to prove Theorem 17.

Proof of Theorem 17. Let h(n, k) be defined as in Lemma 22 and let g : N → N be defined
as in Theorem 10. Thus g(0) = 0, and, for i > 1, we have g(i + 1) = 3h(g(i), i) + 1 =
3g(i) + 1. Observe that g(k) = (3k − 1)/2. By Theorem 10, if (λ, S) is an excluded
minor for the members of (U ,≼) of branch width at most k, then |S|  g(k + 2), that is
|S|  (3k+2 − 1)/2, as required.

Edge Connectivity in Subcubic Graphs

Recall that the edge connectivity function εG of a graph G = (V,E) is defined by εG(X) =
|E(X)|+ |E(V −X)|− |E(V )| for all X ⊆ V . The branch-width of εG is the carving-width
of G.

For edge connectivity in graphs the natural order to consider is the immersion order.
Let G = (V,E) be a graph and let xy, yz be edges of G with a common neighbour y. The
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graph G′ is said to be obtained by splitting off xy, yz at y, if G′ is obtained by deleting
the edges xy, yz and adding an edge xz. We say that a graph H is immersed in G if
H can be obtained by a sequence of splittings and edge and vertex deletions. Immersion
leads to a natural monotone order on edge connectivity functions of graphs. Note that, in
this order, one has proper minors with the same ground set, as neither splitting vertices
nor deleting edges changes the ground set of the edge connectivity function.

Vertex splitting is not of particular interest for us as we focus on cubic graphs.
Nonetheless we believe that it is of interest to extend the results we obtain for cubic
graphs to more general graphs where vertex splitting will necessarily play a role.

A graph is subcubic if all of its vertices have degree at most 3. Let G = (V,E) be
a subcubic graph and let H be a graph whose vertex set is V − {v}. In this class, the
graph H is an immersion minor of G if and only if H is a topological minor of G. In other
words, H can be obtained from G by a sequence of edge deletions, suppression of degree-2
vertices (not incident with a loop) and deletion of isolated vertices. Let C3

ε denote the
following class of connectivity functions: λ ∈ C3

ε if and only if there is a subcubic graph
G such that λ = εG. Define ≼ in C3

ε by µ ≼ λ if there exist subcubic graphs H and G
such that µ = εH and λ = εG, and H is a topological minor of G. It is easily seen that
(C3

ε ,≼) is a monotone order.
More formally, for µ,λ ∈ C3

ε , we say that µ ≼ λ if there exist graphs H and G such
that µ = εH , λ = εG, and H can be obtained from G via a sequence of the following
operations:

I1 deleting an edge;

I2 suppressing a degree-2 vertex unless it is adjacent to a loop; and

I3 deleting a vertex of degree at most one.

If e is an edge of the graph G = (V,E), then λG and λG\e have the same ground set;
namely V . It follows that in (C3

ε ,≼) we have proper minors that preserve ground sets.
Finally we can state our main theorem.

Theorem 23. If (λ, S) is an excluded minor for the members of (C3
ε ,≼) of branch-width

at most k, then |S|  7(18k+2 − 1)/17.

In another language we have.

Corollary 24. If G = (V,E) is an excluded immersion minor for the class of subcubic
graphs of carving-width at most k, then |V |  7(18k+2 − 1)/17.

Theorem 23 will follow from some straightforward lemmas that put us in a position
to apply the theorems of Section 4 and 6. We omit the easy proof of the next lemma.

Lemma 25. The monotone class (C3
ε ,≼) is smooth.

Loops have no effect on the edge connectivity function, so may safely be ignored. The
next lemma enables us to reduce to the simple cubic case. We omit the straightforward
proof.
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Lemma 26. Let G = (V,E) be a subcubic graph with at least three vertices. Assume
that G′ is obtained from G by one of the following operations: suppressing a degree-2
vertex, deleting a degree-1 vertex, or deleting an edge that is parallel to another edge.
Then bw(εG′) = bw(εG).

Let G1, G2 and G3 denote graphs having a 2-element vertex set and, respectively,
one, two and three edges joining those vertices. It is easily checked that εG1 , εG2 and
εG3 are, respectively, the unique excluded minors for the edge connectivity functions of
cubic graphs of branch-width 0, 1 and 2 respectively. The next result follows easily from
Lemma 26.

Corollary 27. Let G be an excluded minor for the class of subcubic graphs of branch-width
k, where k  3. Then G is simple and cubic.

The next lemma is routinely seen to hold for subcubic graphs, but we only need it for
cubic graphs.

Lemma 28. Let h : N → N be defined by h(m, k) = 6m + 2. Say (λ, S) ∈ (C3
ε ,≼) and

λ = εG for a simple cubic graph G. Then λ is h-strong.

Proof. Assume that εG is (m, k)-connected. Then the graph G is (m, k)-edge connected.
Let (A,B) be a partition of S such that |A|, |B|  6n + 2, and ε(A) = k + 1. By
Theorem 30, there exists an edge e ∈ E(A) such that G\e is (6n+ 2)-connected, so that
λG\e is (6n+2)-connected. As e ∈ E(A), it is easily seen that e is not in the edge boundary
of any subset of B. Thus εG\e(Z) = εG(Z) for any Z ⊆ B, so that B is unperturbed in
εG\e. It now follows that εG is h-strong.

Proof of Theorem 23. Let (λ, S) be an excluded minor for the members of (C3
ε ,≼) of

branch-width at most k. Let g : N → N be defined by g(0) = 0, and otherwise g(i+ 1) =
18g(i) + 7. It follows from Lemma 28 and Theorem 10 that |S|  g(k + 2), that is,
|S|  7(18k+2 − 1)/17.

Finally we note that Corollary 24 follows easily from Theorem 23.

6 Edge Connectivity in Cubic Graphs

In this section we prove two theorems on edge connectivity in cubic graphs. In essence we
prove that if G is a graph with a certain type of edge connectivity then one can always find
an edge e whose deletion does not erode the connectivity of G by an arbitrary amount.
It is possible that a reader may be interested in the results of this section without being
interested in the other results of this paper. To facilitate this we repeat some definitions.

Let G = (V,E) be a graph. For a set X ⊆ V we let E(X) denote the set of edges
of G incident with at least one vertex in X. We define the edge connectivity function
εG : 2V → N of G by εG(X) = |E(X)|+ |E(V −X)|− |E(V )| for all X ⊆ V . If G is clear
from context we abbreviate εG to ε. It is well known that the edge connectivity function
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of a graph is submodular, and it follows easily that it is a connectivity function in the
sense of this paper. Note that ε(X) counts the number of edges joining vertices in X to
vertices in V −X.

At times it is useful to use the language of separations. We say that a partition (X, Y )
of V is an edge separation of G of order ε(X). We say that (X, Y ) is a k-separation
if ε(X)  k. We say that X is k-separating if ε(X)  k and is exactly k-separating if
ε(X) = k.

One can use the edge-connectivity function to define various notions of edge connec-
tivity. In particular G is k-edge connected if ε(X)  k for all proper nonempty subsets of
V . In general k-edge connectivity is a restrictive property. A less restrictive notion is to
control the size of sets (or the size of their complement) whose connectivity is low.

The notion that will prove useful here is the following. For positive integers k and m,
we say that G is (m, k)-edge connected if whenever (X, Y ) is a k-separation of G, then
either |X|  m or |Y |  m. We can now state the two main results of this section. Our
interest in this section is solely in edge connectivity, we will often abbreviate “(m, k)-edge
connected” to “(m, k)-connected”.

Theorem 29. Let G be a cubic, (m, k)-edge connected graph with at least two edges. Then
there exist at least two edges, x and y, such that G\x and G\y are both (6m+ 2, k)-edge
connected.

While Theorem 29 is simple to state, the more useful theorem for us will be the
following.

Theorem 30. Let G be a simple cubic (m, k)-edge connected graph, and let (X, Y ) be a
(k + 1)-separation of G such that |X|, |Y | > 3m + 2. Then there exist edges x ∈ E(X)
and y ∈ E(Y ) such that G\x and G\y are both (6m+ 2, k)-edge connected.

The strategy for proving the above theorems is as follows. Let v be a vertex of the
(m, k)-connected cubic graph G. One might hope that at least one of the edges incident
with v could be deleted to give a graph that is (6m + 2, k)-connected. Sadly this is not
always possible, but when it is not, we can deduce something about the structure of the
graph relative to the vertex v. We then show that, if we look carefully, we can find vertices
of G that are not compatible with the presence of such a structure. Before diving into
the details we note a useful lemma. This lemma appears as an exercise in [8] and follows
from a straightforward counting argument.

Lemma 31 (3-Way Submodularity). Let A, B, and C be subsets of vertices of a graph
G. Then

ε(A) + ε(B) + ε(C)

ε(A ∩B ∩ C) + ε(A− (B ∪ C)) + ε(B − (A ∪ C)) + ε(C − (A ∪B)).

The property of 3-way submodularity seems to be an interesting one that is particular
to edge connectivity; it is easily seen not to hold for vertex connectivity in graphs. It is
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perhaps worthwhile to investigate other structures whose associated connectivity function
is 3-way submodular. Can one say anything interesting about the classes of matroids or
polymatroids whose connectivity functions are 3-way submodular?

And one more definition. Let e be an edge of the graph G and (X, Y ) a separation of
G\e. We say that (X, Y ) is induced in G if εG(X) = εG\e(X).

Tripods

Let G = (V,E) be an (m, k)-connected graph and let v be a degree-3 vertex of G whose
incident edges are e, f and g. Let e′, f ′ and g′ be the other vertices incident with e, f and
g respectively. A tripod for v is a partition (Ae, Af , Ag, C) of V such that the following
hold:

• v ∈ C, e′ ∈ Ae, f
′ ∈ Af , and g′ ∈ Ag;

• ε(Ae) = ε(Af ) = ε(Ag) = k + 1;

• |Ae|, |Af |, |Ag| > 4m+ 2.

Ae Af

Ag

eI

f

gI

f 

g

e
v

I

C

Figure 1: A Tripod for v

The goal is to show that tripods are the obstacles to being able to remove an edge
incident with a degree-3 vertex while maintaining the desired connectivity. In particular
we prove

Lemma 32. Let v be a vertex of degree 3 in a simple, connected, (m, k)-connected graph
G. If G\x is not (6m+2, k)-connected for any edge x incident with v, then G has a tripod
for v.
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Proof. Assume that v is incident with edges e = ve′, f = vf ′ and g = vg′, and assume
that none of G\e, G\f and G\g is (6m + 2)-connected. By assumption, there exist k-
separations (E1, E2), (F1, F2) and (G1, G2) of G\e, G\f and G\g respectively such that
|E1|, |E2|, |F1|, |F2|, |G1|, |G2| > 6m+ 2. Suppose that e′ ∈ E2, f

′ ∈ F2 and g′ ∈ G2.

32.1. {v, f ′, g′} ⊆ E1, {v, e′, g′} ⊆ F1 and {v, e′, f ′} ⊆ G1.

Proof. Consider (E1, E2). As e′ ∈ E2, we must have v ∈ E1, as otherwise (E1, E2) is
induced in G and we contradict the fact that G is (m, k)-connected. It follows that
v ∈ E1 ∩ F1 ∩G1.

Assume that f ′ ∈ E2. Suppose g′ ∈ E1. Then the separation (E1 − {v}, E2 ∪ {v}) is
also a k-separation of G\e and as |E1|, |E2| > 6m+2 then |E1−{v}|, |E2∪{v}| > m. But
(E1 − {v}, E2 ∪ {v}) is induced in G, contradicting the fact that G is (m, k)-connected.

For the other case, suppose g′ ∈ E2. Then (E1−{v}, E2∪{v}) is also a k-separation of
G\e, and as |E1|, |E2| > 6m+2, we have |E1−{v}|, |E2∪{v}| > m. But (E1−{v}, E2∪{v})
is induced in G, again contradicting the fact that G is (m, k)–connected.

It follows {v, f ′, g′} ⊆ E1, and, by symmetry we also have {v, e′, g′} ⊆ F1 and
{v, e′, f ′} ⊆ G1.

We now consider how the separations (F1, F2) and (G1, G2) interact with one another.
We have v ∈ F1 ∩ G1, which needs to be remembered as this is not obvious from the
diagrams.

F1 F2

G1

G2

d1

h1

d2

h2

v1 v2

eI

gI

If

f
ge

v

Figure 2: Crossing Separations

In Figure 2 v1 represents the number of edges of E−{e, f, g} joining vertices in F1∩G2

to vertices in F1 ∩G1. The numbers v2, d1, d2, h1 and h2 are defined in a similar obvious
way. Recall that εG(F1) = εG(G1) = k + 1. We therefore have

32.2. h1 + d1 + d2 + h2 = k and v1 + d1 + d2 + v2 = k.
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We now bound the size of either F1 ∩ G1 or F2 ∩ G2, and we do this by bounding
connectivity.

32.3. Either εG(F2 ∩G2)  k or εG((F1 ∩G1)− {v})  k.

Proof. Suppose the claim does not hold so that εG(F2 ∩G2)  k + 1 and εG((F1 ∩G1)−
{v})  k+1. Clearly εG(F2∩G2) = h2+d1+v2 and εG((F1∩G1)−{v}) = h1+d1+v1+1.
Using this fact and (32.2), we have

2k + 2  ε(G1 ∩ F1 − {v}) + ε(G2 ∩ F2)

= h1 + d1 + v1 + h2 + d1 + v2 + 1

< h1 + d1 + v1 + h2 + d1 + v2 + 2

 (v1 + d1 + d2 + v2) + (h1 + d1 + d2 + h2) + 2

= 2k + 2.

The claim follows from this contradiction.

As an almost immediate consequence of (32.3) we have

32.4. Either |F2 ∩G2|  m or |(F1 ∩G1)− {v}|  m.

We now consider F1∩G2 and F2∩G1. By (32.4), and the fact that |F1|, |F2|, |G1|, |G2| >
6m+ 2, we have

32.5. |F1 ∩G2|, |F2 ∩G1| > 5m+ 2.

It follows from (32.5) that εG(F1 ∩G2)  k+ 1 and εG(F2 ∩G1)  k+ 1. It turns out
that equality holds.

32.6. ε(F1 ∩G2) = ε(F2 ∩G1) = k + 1.

Proof. Consider F1 ∩G2. We have

2k + 2 = εG(F1) + εG(G2)

 εG(F1 ∩G2) + εG(F1 ∪G2)

= εG(F1 ∩G2) + εG(F2 ∩G1)

 2k + 2.

Hence all inequalities are equalities and the claim follows.

We are now able to be more specific about the values of v1, v2, d1, d2, h1, h2.

32.7. d1 = 0, v1 = h1 and v2 = h2.

Proof. By (32.6), we have εG(F2∩G1) = εG(F1∩G2) = k+1 and therefore h1+d2+v2 = k
and v1 + d2 + h2 = k respectively. Therefore (h1 + d2 + v2) + (v1 + d2 + h2) = 2k. But
(h1 + d1 + d2 + h2) + (v1 + d1 + d2 + v2) = 2k, and so d1 = 0. As d1 = 0, we know
h1 + d1 + d2 + h2 = k = h1 + d2 + h2. As h1 + d2 + v2 = k, we must have h2 = v2.

Similarly, combining h1 + d2 + h2 = k and v1 + d2 + h2 = k, we get h1 = v1 and the
claim holds.
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With the information we now have we can refine our diagram to obtain the one illus-
trated in Figure 3. In the figure a = h1 = v1, d = d2 and b = h2 = v2, and a+ b+ d = k.

F1 F2

G1

G2

a

d

b

a b

eI

gI

If

f
ge

v

Figure 3: Refined Crossing

Note that everything we have said about how (F1, F2) crosses (G1, G2) is also true for
how (E1, E2) crosses (F1, F2) and how (E1, E2) crosses (G1, G2). This symmetry provides
additional information, which we now exploit, in order to refine 32.3.

32.8. Up to switching labels ε((F1 ∩G1)− {v}) > k.

Proof. Suppose for a contradiction that ε((F1 ∩G1)− {v})  k, ε((E1 ∩G1)− {v})  k
and ε((E1 ∩ F1) − {v})  k. As the complement of each of these three sets has at least
m + 1 elements, we have |F1 ∩ G1|, |E1 ∩ F1|, |E1 ∩ G1|  m + 1. As |E1| > 6m + 2, and
|E1 ∩ F1| + |E1 ∩ G1|  2m + 2, we deduce that |E1 − (F1 ∪ G1)| > m. By symmetry,
we also have |F1 − (E1 ∪ G1)| > m, and |G1 − (F1 ∪ E1)| > m. But the complement
of each of these sets has size at least m + 1, so we have εG(E1 − (F1 ∪ G1))  k + 1,
εG(F1 − (E1 ∪G1))  k + 1, and εG(G1 − (F1 ∪ E1))  k + 1.

Consider E1 ∩ F1 ∩ G1. Observe that v belongs to this set, but each of e′, f ′ and
g′ belong to its complement. It follows that εG(E1 ∩ F1 ∩ G1)  3. All up we have
εG(E1− (F1∪G1))+ εG(F1− (E1∪G1))+ εG(G1− (F1∪E1))+ εG(E1∩F1∩G1)  3k+6.
But εG(E1)+ εG(F1)+ εG(G1) = 3k+3, and we have contradicted 3-way modularity.

32.9. The following hold.

(i) ε(E2 ∩ F2), ε(F2 ∩G2), ε(E2 ∩G2)  k.

(ii) |E2 ∩ F2|, |F2 ∩G2|, |E2 ∩G2|  m.

Proof. Note that (ii) follows from (i) and the fact that the corresponding complements of
the sets in question have size greater thanm. By (32.3) and (32.8), we have ε(F2∩G2)  k
and hence |F2 ∩G2|  m.
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We did not break the symmetry between (E1, E2), (F1, F2), and (G1, G2) until (32.8).
Thus, it follows from (32.5) that |E1 ∩ F2| > 5m + 2 and |E1 ∩ G2| > 5m + 2. Since
E1 ∩ F2 = (E1 ∩ F2 ∩ G1) ∪ (E1 ∩ F2 ∩ G2), and E1 ∩ F2 ∩ G2 ⊆ F2 ∩ G2, we have
|E1 ∩ F2 ∩ G1|  4m + 2. But E1 ∩ F2 ∩ G1 ⊆ E1 ∩ G1, so |(E1 ∩ G1) − {v}| > m. The
complement of this set also has more than m elements. Hence ε((E1 ∩ G1) − {v}) > k.
Therefore, by (32.4) we have ε(E2 ∩ F2)  k.

A symmetric argument proves that we also have ε(E2 ∩G2)  k.

32.10. |E2 ∩ F1 ∩G1|, |E1 ∩ F2 ∩G1|, |E1 ∩ F1 ∩G2| > 4m+ 2.

Proof. Observe that E2 = (E2 ∩F1 ∩G1)∪ (E2 ∩F2)∪ (E2 ∩G2). We have |E2| > 6m+2,
and by (32.9), |E2 ∩ F2|  m and |E2 ∩ G2|  m. Hence |E2 ∩ F1 ∩ G1| > 4m + 2. The
rest of the claim follows by symmetry.

32.11. E2 ∩ F2 ∩G2 = ∅.

Proof. By (32.10), ε(E2 ∩ F1 ∩ G1), ε(E1 ∩ F2 ∩ G1), ε(E1 ∩ F1 ∩ G2)  k + 1. But
E2 ∩ F1 ∩ G1 = E2 − (F2 ∪ G2), E1 ∩ F2 ∩ G1 = F2 − (E2 ∪ G2), and E1 ∩ F1 ∩ G2 =
G2 − (E2 ∪ F2). We are now in a position to utilise 3-way submodularity. We have
ε(E2 − (F2 ∪ G2))  k + 1, ε(F2 − (E2 ∪ G2))  k + 1, and ε(G2 − (E2 ∪ F2))  k + 1.
But we also have ε(E2) = ε(F2) = ε(G2) = k + 1. It follows that ε(E2 ∩ F2 ∩ G2) = 0,
as otherwise we contradict 3-way submodularity. Since G is connected, we conclude that
E2 ∩ F2 ∩G2 = ∅.

32.12. The sets E1 ∩G2, E2 ∩ F1, F2 ∩G1 and E1 ∩ F1 ∩G1 partition V .

Proof. It is easily seen that the sets are disjoint. Say z ∈ V does not belong to their
union. Since z /∈ E1 ∩ F1 ∩ G1, we may assume without loss of generality that z ∈ E2.
Then z /∈ E2 ∩ F1, so z ∈ F2. But then z /∈ F2 ∩G1, so z ∈ G2. Hence z ∈ E2 ∩ F2 ∩G2,
contradicting the fact that this set is empty.

By (32.6) and symmetry, we have λ(E2 ∩ F1) = λ(F2 ∩ G1) = λ(E1 ∩ G2) = k + 1.
Moreover E2 ∩ F1 ⊇ E2 ∩ F1 ∩G1. So, by (32.10), |E2 ∩ F1| > 4m+ 2, and, of course, we
also have |F2 ∩G1| > 4m+ 2 and |E1 ∩G2| > 4m+ 2. Finally, observe that e′ ∈ E2 ∩ F1,
f ′ ∈ F2 ∩G1, g

′ ∈ E1 ∩G2 and v ∈ E1 ∩ F1 ∩G1.
Altogether we obtain the desired tripod for v by letting Ae = E2 ∩ F1, Af = F2 ∩G1,

Ag = E1 ∩G2, and C = E1 ∩ F1 ∩G1.

Avoiding a Tripod

Let X be a subset of vertices of a graph G. We say that the vertex x ∈ X is an internal
vertex of X if all neighbours of x belong to X. We now prove that internal vertices of
sets satisfying certain conditions cannot be contained in a tripod, thus enabling us to find
edges to delete.

Lemma 33. Let G = (V,E) be a simple, connected, cubic (m, k)–connected graph. As-
sume that a partition (R,B) of V satisfies the following conditions:
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(i) ε(R) = k + 1;

(ii) |R|, |B| > 3m+ 2;

(iii) there is no proper subset X ⊂ R, such that the separation (X, V −X) satisfies the
above two conditions.

Then, if v is an internal vertex of R, then G\a is (6m + 2, k)-connected for at least one
edge a incident with v.

Proof. Let v be an internal vertex of R and suppose there is no edge a incident to v such
that G\a is (6m + 2, k)-connected. Let e = ve′, f = vf ′, and g = vg′ denote the edges
incident with v. By Lemma 32, G has a tripod (Ae, Af , Ag, C) for v depicted in Figure 4.
In the figure members of R and B are coloured red and blue respectively.

Ae Af

Ag

eI

f

gI

g

e
v

If

C

Figure 4: Crossing a Tripod

33.1. |B ∩ Ae|, |B ∩ Af |, |B ∩ Ag| > m.

Proof. Suppose for contradiction that |B ∩ Ae|  m. Then as |B| > 3m + 2, we have
|B ∩ (V −Ae)| > m. But this set and its complement both have at least m+ 1 elements.
The complement of B ∩ (V −Ae) is R ∪Ae, so that ε(R ∪Ae)  k + 1. As |B ∩Ae|  m
and |Ae| > 4m+2, we have |R∩Ae| > 3m+2 and ε(R∩Ae)  k+1. By submodularity
ε(R ∩Ae) + ε(R ∪Ae)  ε(R) + ε(Ae) = 2k + 2. We deduce that ε(R ∩Ae) = k + 1. But
R∩Ae ⊆ R, and |R∩Ae| > 3m+2, so we have contradicted the minimality of the choice
of R, and by symmetry the claim follows.

33.2. |R ∩ (Ae ∪ C)|, |R ∩ (Af ∪ C)|, |R ∩ (Ag ∪ C)|  m+ 2.
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Proof. Suppose for contradiction that |R ∩ (Ae ∪ C)|  m + 1, |R ∩ (Af ∪ C)|  m + 1
and |R ∩ (Ag ∪C)|  m+ 1. As v ∈ C, we have |R|  |R ∩ (Ae ∪C)|+ |R ∩ (Af ∪C)|+
|R ∩ (Ag ∪ C)|− 2  3m+ 1. This contradicts the fact that |R| > 3m+ 2.

We will now use 3-way submodularity to complete the proof. We use the following
three sets: R, Af ∪ {v} and Ag ∪ {v}. On one side we have ε(R) = k + 1, ε(Af ∪ {v}) =
(k + 1) + 1 = k + 2, and ε(Ag ∪ {v}) = (k + 1) + 1 = k + 2. Hence

ε(R) + ε(Af ∪ {v}) + ε(Ag ∪ {v}) = 3k + 5.

On the other hand, we first have ε(R∩(Af∪{v})∩(Ag∪{v})) = ε({v}) = 3. Note that
R− ((Af ∪ {v})∪ (Ag ∪ {v})) = (R∩ (Ae ∪C))− {v}. By (33.2), |R∩ (Ae ∪C)|  m+2.
Therefore |(R∩(Ae∪C))−{v}|  m+1. As the complement of this set also has size at least
m+1, we have ε((R∩(Ae∪C))−{v})  k+1. We also have (Af∪{v})−(R∪(Ag∪{v})) =
B ∩ Af . Recall that |B ∩ Af | > m so ε(Af ∪ {v}− (R ∪ (Ag ∪ {v})))  k + 1. Similarly
ε(Ag ∪ {v}− (R ∪ (Af ∪ {v})))  k + 1. Altogether, we have

ε(R ∩ (Af ∪ {v}) ∩ (Ag ∪ {v})) + ε(R− ((Af ∪ {v}) ∪ (Ag ∪ {v})))+
ε(Af ∪ {v}− (R ∪ (Ag ∪ {v}))) + ε(Ag ∪ {v}− (R ∪ (Af ∪ {v})))

3 + 3(k + 1) = 3k + 6,

and we have contradicted 3-way submodularity. The lemma follows from this contradic-
tion.

6.1 Proofs of the Main Theorems

We are now in a position to prove our main theorems.

Proof of Theorem 30. Let R ⊆ X be minimal in size with respect to ε(R) = k + 1 and
|R| > 3m+ 2. Then the separation (R, V −R) satisfies the hypotheses of Lemma 33, so,
by that lemma there exists an edge x ∈ E(R) such that G\x is (6m+2, k)-connected. By
symmetry, there also exists an edge y ∈ Y such that G\y is (6m + 2, k)-connected and
the theorem follows.

Proof of Theorem 29. Assume that the theorem fails. Then it is easily seen that G has
a vertex v such that none of its incident edges can be deleted to maintain (6m + 2, k)-
connectivity. Therefore by Lemma 32, G must have a tripod (Ae, Af , Ag, C) for v. We
have |Ae| > 4m + 2 > 3m + 2 and ε(Ae) = k + 1. By the previous Theorem 30, there
exist edges on each side of the separation (Ae, V − Ae) to delete such that the resulting
graph is (6m+ 2, k)-connected.
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