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Abstract

Fix ε > 0 and a graph H with at least one vertex. A well-known theorem of
Rödl from the 80s says that every graph G with no induced copy of H contains
a linear-sized ε-restricted set S ⊆ V (G), which means S induces a subgraph with
maximum degree at most ε|S| in G or its complement. There are two extensions of
this result:

• quantitatively, Nikiforov relaxed the condition “no induced copy of H” to “at
most κ|G||H| induced copies of H for some κ > 0 depending on H and ε;” and

• qualitatively, Chudnovsky, Scott, Seymour, and Spirkl recently showed that
there existsN > 0 depending onH and ε such thatG is (N, ε)-restricted, which
means V (G) has a partition into at most N subsets that are ε-restricted.

A natural common generalization of these two asserts that every graph G with
at most κ|G||H| induced copies of H is (N, ε)-restricted for some κ, N > 0 depending
on H and ε. This is unfortunately false; but we prove that for every ε > 0, κ and N
still exist so that for every d 󰃍 0, every graph G with at most κd|H| induced copies
of H has an (N, ε)-restricted induced subgraph on at least |G| − d vertices. This
unifies the two aforementioned theorems, and is optimal up to κ and N for every
value of d.

Mathematics Subject Classifications: 05C35, 05C42, 05C69

1 Introduction

Graphs in this paper are finite and simple. For a graph G with vertex set V (G) and
edge set E(G), let |G| := |V (G)|, and let G denote its complement. For S ⊆ V (G),
let G[S] denote the subgraph of G induced by S, and let G \ S := G[V (G) \ S]. For a
nonnull graph H, a copy of H in G is a graph isomorphism from H to G[S] for some
S ⊆ V (G). Let indH(G) be the number of copies of H in G; and say that G is H-free if
indH(G) = 0. Given ε > 0, a subset S ⊆ V (G) is ε-restricted in G if one of G[S], G[S] has
maximum degree at most ε|S|. The following well-known theorem of Rödl [16] from 1986
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has become a standard tool in the investigation of the Erdős–Hajnal conjecture1 [8, 7]
(see [4] for a survey).

Theorem 1 ([16]). For every ε > 0 and every graph H, there exists δ = δ(H, ε) > 0 such
that for every H-free graph G, there is an ε-restricted S ⊆ V (G) in G with |S| 󰃍 δ|G|.

Since its inception, Theorem 1 has found many extensions. Among these is the fol-
lowing useful quantitative improvement first proved by Nikiforov [14] (see [6, 12, 13] for
several applications).

Theorem 2 ([14]). For every ε > 0 and every graph H, there exist δ = δ2(H, ε) > 0
and κ = κ2(H, ε) > 0 such that for every graph G with indH(G) 󰃑 κ|G||H|, there is an
ε-restricted S ⊆ V (G) in G with |S| 󰃍 δ|G|.

Rödl’s original proof of Theorem 1 and Nikiforov’s proof of Theorem 2 (we remark
that Theorem 2 is already implicit in [16]) both employ the regularity lemma, and so
give bounds on δ−1 and κ−1 which are towers of twos of height polynomial in ε−1 with
constants depending on H. Fox and Sudakov [10] offered an alternative proof of Theo-
rem 2 showing that both δ and κ can be chosen as 2−c log2(ε−1) for some constant c > 0
depending on H; and very recently Bucić, Nguyen, Scott, and Seymour [3] improved this
to 2−c log2(ε−1)/ log log(ε−1). In [12], it is conjectured that both δ and κ can in fact be taken
to be a polynomial of ε in Theorem 2, which would imply the Erdős–Hajnal conjecture
itself (see [9, 12, 13] for current progress on this topic).

Recently, Chudnovsky, Scott, Seymour, and Spirkl [5] provided a qualitative refine-
ment of Theorem 1, which says that the vertex set of every H-free graph can even be
partitioned into a bounded number of ε-restricted subsets. Formally, for ε, N > 0, a
graph G is (N, ε)-restricted if there is a partition of V (G) into at most N subsets that are
ε-restricted in G; thus G is (N, ε)-restricted if and only if G is.

Theorem 3 ([5]). For every ε > 0 and every graph H, there exists N = N(H, ε) > 0
such that every H-free graph is (N, ε)-restricted.

The edge density of a graphG equals |E(G)|/
󰀃|G|

2

󰀄
if |G| 󰃍 2 and equals 0 if |G| 󰃑 1. For

ε > 0, a subset S ⊆ V (G) is weakly ε-restricted in G if one of G[S], G[S] has edge density
at most ε. Thus if S is 1

2
ε-restricted in G then it is weakly ε-restricted; and if S is weakly

1
4
ε-restricted in G then it has an ε-restricted subset of size ⌈1

2
|S|⌉. Hence the strength of

Theorems 1 and 2 remain unaffected if “ε-restricted” is replaced by “weakly ε-restricted.”
As discussed in [5], however, Theorem 3 becomes significantly weaker if “(N, ε)-restricted”
is replaced by “weakly (N, ε)-restricted,” which means V (G) has a partition into at most
N subsets that are weakly ε-restricted in G. Indeed, repeated applications of Theorem 2
yield the following result proved in [14].

Theorem 4 ([14]). For every ε > 0 and every graph H, there exist κ = κ(H, ε) > 0
and N = N(H, ε) > 0 such that every graph G with indH(G) 󰃑 κ|G||H| is weakly (N, ε)-
restricted.
1The very last sentence of [7] was actually the first time Erdős and Hajnal formally stated their well-
known conjecture.
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(As shown in [14, 10], with more care one can even take the corresponding weakly
ε-restricted sets to have size differences at most 1 in this result.) It thus would be natural
(and quite tempting) to conjecture the following, which would have unified Theorems 2
and 3 and strengthened Theorem 4 considerably.

Conjecture 5 (false). For every ε > 0 and every graph H, there exist N = N(H, ε) > 0
and κ = κ(H, ε) > 0 such that every graph G with indH(G) 󰃑 κ|G||H| is (N, ε)-restricted.

Unfortunately, the following proposition2 refutes this conjecture in a strong sense.

Proposition 6. Let N 󰃍 1. Then for all integers m,n with n 󰃍 m 󰃍 20N2, every
ε ∈ (0, 1

18
), and every graph H with h := |H| 󰃍 2, there is a graph on n vertices which has

at most hmnh−1 copies of H and is not (N, ε)-restricted. In particular, for every κ > 0
and every integer n 󰃍 20κ−1hN2, there is a graph on n vertices which has at most κnh

copies of H and is not (N, ε)-restricted.

Proof. In what follows, ∆(G) denotes the maximum degree of a graph G. By taking
complements if necessary, we may assume H is connected, and so H has at least one edge
as h 󰃍 2.

Let F be a random graph on m 󰃍 20N2 vertices where each edge appears inde-
pendently with probability 1

2
. For every T ⊆ V (F ) with |T | 󰃍 1

N
m, since 6ε < 1

3
,

Hoeffding’s inequality [11] implies that T is weakly 6ε-restricted in F with probablity
at most 2 exp(− 1

72

󰀃|T |
2

󰀄
) 󰃑 2 exp(− 1

300N2m
2); and so, since 2m · 2 exp(− 1

300N2m
2) < 1 (as

m 󰃍 20N2), there is a choice of F with no weakly 6ε-restricted set of size at least 1
N
m.

Consequently F has no 3ε-restricted subset of size at least 1
N
m.

Now, fix such an F ; and for every n 󰃍 m, let G be a graph obtained from F by adding
n−m isolated vertices and making each of them adjacent to every vertex in V (F ). Since
H has at least one edge, every copy of H in G has at least one image vertex in V (F ); thus

indH(G) 󰃑
h󰁛

i=1

󰀕
h

i

󰀖
mi(n−m)h−i = nh − (n−m)h = m

h󰁛

i=1

ni−1(n−m)h−i 󰃑 hmnh−1.

It thus remains to show that G is not (N, ε)-restricted. Suppose not; and let A1 ∪
· · · ∪ Ak be a partition of V (G) for some k 󰃑 N such that Ai is ε-restricted for all
i ∈ {1, 2, . . . , k}. Then

󰁖k
i=1(Ai ∩ V (F )) is a partition of V (F ), and so we may assume

T := A1 ∩ V (F ) has size at least 1
N
m. Thus T is not 3ε-restricted in F ; hence S :=

A1 \ V (F ) is nonempty. It follows that

∆(G[A1]) = |S|+∆(F [T ]) > ε|S|+ 3ε|T | > ε(|S|+ |T |) = ε|A1|,
∆(G[A1]) = max(|S|− 1,∆(F [T ])) 󰃍 max(|S|− 1, 3ε|T |) > ε(|S|+ |T |) = ε|A1|.

Therefore A1 is not ε-restricted in G, a contradiction. This proves Proposition 6. 󰃈
2We remark that Alex Scott (personal communication) independently discovered similar counterexam-
ples.
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The graphs constructed in Proposition 6 suggest that an “exceptional” set of vertices
should necessarily be removed in order for the remaining vertices to admit a partition
into a bounded number of ε-restricted pieces. Our main theorem shows that this is also
sufficient.

Theorem 7. For every ε > 0 and every graph H, there exist κ = κ7(H, ε) > 0 and
N = N7(H, ε) > 0 such that for every d 󰃍 0 and every graph G with indH(G) 󰃑 κd|H|,
there is a set S ⊆ V (G) with |S| 󰃑 d such that G\S is (N, ε)-restricted; equivalently, G can
be made (N, ε)-restricted by removing at most C · indH(G)1/|H| vertices where C = κ−1/|H|.

We would like to make three remarks. First, Theorem 3 is a special case of Theorem 7
with d = 0; and taking d = ε|G| in Theorem 7 yields Theorem 2. Thus Theorem 7 can be
viewed as a remedy for the false Conjecture 5; and the counterexamples in Proposition 6
(with suitable choices of m,n depending on d and more isolated vertices added) show that
Theorem 7 is optimal up to κ and N for any given value of d.

Second, Theorem 7 is related to the induced removal lemma [1, 17] which also implies
Theorem 2. Here, we are dealing with the property of being (N, ε)-restricted which
is weaker than H-freeness (by Theorem 3) and not closed under the induced subgraph
relation. But the trade-off is worth considering: removing only a handful of vertices
instead of adding/deleting edges; and working well for all graphs, including those with
subquadratic number of edges and only few copies of H.

Third, our proof of Theorem 7 generalizes the proof of Theorem 3 given in [5], demon-
strating that the argument there can be extended to graphs with a bounded number of
copies of H (at the cost of removing a small number of vertices). The resulting bounds
on κ−1

7 (H, ε) and N7(H, ε), as a result, are better than what the regularity lemma could
provide (but still huge functions, namely towers of twos of height depending solely on |H|
with ε−1 on top). It would be interesting to prove Theorem 7 with bounds on κ−1 and N
similar to the bounds obtained in [10] or even in [3].

In what follows, for an integer k 󰃍 0, let [k] denote {1, 2, . . . , k} if k 󰃍 1 and ∅ if
k = 0. The vertex set of H will always be {v1, . . . , vh} for some h 󰃍 1; and we drop the
subscript H from the notation indH .

2 A slight digression

This section provides a short and self-contained proof of Theorem 2 without using the reg-
ularity lemma, which will be used frequently in the proof of Theorem 7. The presentation
here mostly follows [10].

For ε > 0, a graph G, and disjoint subsets A,B of V (G), B is ε-sparse to A in G if
every vertex in B is adjacent to fewer than ε|A| vertices of A in G, and ε-dense to A in G
if it is ε-sparse to A in G. Say that B is ε-tight to A if it is either ε-sparse or ε-dense to A.
The following lemma implicitly appears in [10, Lemma 4.1], which in turn generalizes an
old result of Erdős and Hajnal [8, Theorem 1.5]. This result will also be useful later on.
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Lemma 8. Let H be a graph, and let ε1, . . . , εh−1, δ1, . . . , δh−1 ∈ (0, 1). Let G be a graph,
and let D1, . . . , Dh be disjoint nonempty subsets of V (G) such that for all indices i, j with
1 󰃑 i < j 󰃑 h, there do not exist A ⊆ Di and B ⊆ Dj with |A| 󰃍

󰁔h−1
t=j εt · |Di| and

|B| 󰃍 δj−1

j−1

󰁔h−1
t=j εt · |Dj| satisfying B is εj-sparse to A if vivj ∈ E(H) and εj-dense to A

if vivj /∈ E(H). Then there are at least
󰁔h−1

t=1 (1− δt)ε
t
t ·
󰁔h

i=1|Di| copies ϕ of H in G with
ϕ(vi) ∈ Di for all i ∈ [h].

Proof. Induction on h 󰃍 1. We may assume that h 󰃍 2. For i ∈ [h − 1], let Pi be the
set of vertices in Dh with fewer than εh−1|Di| neighbors in Di if vivh ∈ E(H) and the
set of vertices in Dh with fewer than εh−1|Di| nonneighbors in Di if vivh /∈ E(H). By

the hypothesis, |Pi| 󰃑 δh−1

h−1
|Dh| for all i ∈ [h − 1]. Let D′

h := Dh \ (
󰁖

i∈[h−1] Pi); then

|D′
h| 󰃍 (1− δh−1)|Dh|.
Now, for each u ∈ D′

h and i ∈ [h − 1], let Du
i be the set neighbors of u in Di if

vivh ∈ E(H) and the set of nonneighbors of u in Di if vivh /∈ E(H); then |Du
i | 󰃍 εh−1|Di|

for all i ∈ [h − 1]. Thus for all indices i, j with 1 󰃑 i < j 󰃑 h − 1, there do not exist

A ⊆ Du
i and B ⊆ Du

j with |A| 󰃍
󰁔h−2

t=j εt · |Du
i | and |B| 󰃍 δj−1

j−1

󰁔h−2
t=j εt · |Du

j | such that B

is εj-sparse to A if vivj ∈ E(H) and εj-dense to A if vivj /∈ E(H). So by induction, there

are at least
󰁔h−2

t=1 (1− δt)ε
t
t ·
󰁔h−1

i=1 |Du
i | copies ϕu of H \ vh in G \Dh with ϕu(vi) ∈ Du

i for
all i ∈ [h− 1]. Summing up over all u ∈ D′

h, we deduce that there are at least

󰁛

u∈D′
h

󰀣
h−2󰁜

t=1

(1− δt)ε
t
t ·

h−1󰁜

i=1

|Du
i |
󰀤

󰃍 |D′
h|
󰀣

h−2󰁜

t=1

(1− δt)ε
t
t

󰀤󰀣
εh−1
h−1

h−1󰁜

i=1

|Di|
󰀤

󰃍
h−1󰁜

t=1

(1− δt)ε
t
t ·

h󰁜

i=1

|Di|

copies ϕ of H in G such that ϕ(vi) ∈ Di for all i ∈ [h]. This proves Lemma 8. 󰃈

Corollary 9. Let ε ∈ (0, 1), let H be a graph, and let κ = κ9(H, ε) := (4h)−hε(
h
2). Then

every G with ind(G) 󰃑 κ|G|h contains disjoint A,B ⊆ V (G) with |A|, |B| 󰃍 (2h)−2εh−1|G|
such that B is ε-tight to A.

Proof. We may assume |G| 󰃍 h. Let D1, . . . , Dh be disjoint subsets of V (G) each of size
⌊ 1
h
|G|⌋; then |Dt| 󰃍 1

2h
|G| for all t ∈ [h]. It suffices to apply Lemma 8 with εt = ε and

δt =
1
2
for all t ∈ [h]. 󰃈

For ε1, ε2,κ > 0 and a graph H, let β(H,κ, ε1, ε2) be the largest constant β with
0 < β 󰃑 1 such that every graph G with ind(G) 󰃑 κ|G|h has an induced subgraph with
at least β|G| vertices and edge density at most ε1 or at least 1− ε2; then β(H,κ, ε1, ε2) is
decreasing in κ and β(H,κ, ε1, ε2) = 1 for all κ > 0 whenever ε1+ε2 󰃍 1 (and so whenever
ε1ε2 󰃍 1). We need the following lemma.

Lemma 10. Let ε1, ε2 > 0, let H be a graph, and let η := η10(H, ε1, ε2) :=
1
2
(2h)−2(1

4
ε)h−1

where ε = min(ε1, ε2). Then for every κ with 0 < κ 󰃑 κ9(H, 1
4
ε), we have

β(H,κ, ε1, ε2) 󰃍 η ·min(β(H, η−hκ, 3
2
ε1, ε2), β(H, η−hκ, ε1,

3
2
ε2)).
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Proof. Let β1 := β(H, η−hκ, 3
2
ε1, ε2), β2 := β(H, η−hκ, ε1,

3
2
ε2), and β0 := η ·min(β1, β2).

Let G be a graph with ind(G) 󰃑 κ|G|h; we need to show there is a set S ⊆ V (G) with
|S| 󰃍 β0|G| such that G[S] has edge density at most ε1 or at least 1− ε2. By Corollary 9,
G has disjoint subsets A,B ⊆ V (G) with |A|, |B| 󰃍 2η|G| such that B is 1

4
ε-tight to A;

and we may assume B is 1
4
ε-sparse to A.

Because ind(G[B]) 󰃑 κ|G|h 󰃑 η−hκ|B|h, by the definition of β and by averaging, there
exists B1 ⊆ B with |B1| = ⌈β1η|G|⌉ 󰃍 β0|G| such that G[B1] has edge density at most
3
2
ε1 or at least 1− ε2. If the latter holds then we are done, so we may assume the former

holds.
Let A0 be the set of vertices in A each with at most 1

2
ε|B1| neighbors in B1. Since

G has fewer than 1
4
ε|A||B1| edges between A and B1, we have |A0| 󰃍 1

2
|A| 󰃍 η|G|. Thus

ind(G[A0]) 󰃑 η−hκ|A0|h, and so by the definition of β and by averaging, there exists
A1 ⊆ A0 with |A1| = ⌈β1η|G|⌉ 󰃍 β0|G| such that G[A1] has edge density at most 3

2
ε1 or

at least 1− ε2. Again, we may assume the former holds.
Now, let S := A1 ∪ B1; then |S| = 2|A1| = 2|B1| 󰃍 2β0|G|. Since G[A1], G[B1] each

have edge density at most 3
2
ε1 and G has at most 1

2
ε|A1||B1| edges between A1 and B1,

we deduce that

|E(G[S])| 󰃑 |E(G[A1])|+ |E(G[B1])|+
1

2
ε|A1||B1|

󰃑 3

2
ε1

󰀕
|A1|
2

󰀖
+

3

2
ε1

󰀕
|B1|
2

󰀖
+

1

2
ε1|A1||B1|

= 3ε1

󰀕
|A1|
2

󰀖
+

1

2
ε1|A1|2

󰃑 ε1

󰀕
2|A1|
2

󰀖

= ε1

󰀕
|S|
2

󰀖
.

Therefore S has the desired property. This proves Lemma 10. 󰃈

We are now give a proof of Theorem 2 in the following equivalent form, which leads
to the dependence of δ2(H, ε) and κ2(H, ε) on ε and h as mentioned in the introduction.

Theorem 11. For every ε > 0 and every graph H, there exist δ = δ(H, ε) > 0 and
κ = κ(H, ε) > 0 such that every graph G with ind(G) 󰃑 κ|G|h contains a weakly ε-
restricted set of size at least δ|G|.

Proof. Let s := ⌈log 3
2
(ε−2)⌉, η := η10(H, ε, ε), δ := ηs, and κ := ηsh · κ9(H, 1

4
ε). Note

that η10(H, ·, ·) is decreasing in each of the last two components. Thus, since β(H, ·, ·, ·)
is decreasing in the second component and equals 1 whenever the last two components
have product at least 1, applying Lemma 10 for s times yields β(H,κ, ε, ε) 󰃍 ηs = δ. This
proves Theorem 11. 󰃈
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3 Key lemma

This section introduces and proves our key lemma, the following.

Lemma 12. For all ε, η, θ ∈ (0, 1
2
) and every graph H, there are κ = κ12(H, ε, η, θ) > 0

and N = N12(H, ε, η, θ) > 0 with the following property. For every d 󰃍 0 and every graph
G with ind(G) 󰃑 κdh, there is a set S ⊆ V (G) with |S| 󰃑 d such that V (G) \ S can be
partitioned into nonempty sets

A1, . . . , Am; B1, . . . , Bm; C1, . . . , Cn

where m 󰃑
󰀃
h
2

󰀄
and n 󰃑 N , such that

• A1, . . . , Am, C1, . . . , Cn are ε-restricted in G; and

• for every i ∈ [m], |Bi| 󰃑 η|Ai| and Bi is θ-tight to Ai.

This contains [5, Theorem 1.5] as a special case with d = 0, and already gives The-
orem 2 with ε = η = θ and d = ε|G|. We shall employ the same approach as in [5,
Section 2], and recommend reading the detailed sketch there first. Here we explain the
modifications.

We recall some definitions. For c, ε > 0 and a graph G, a pair (A,B) of disjoint
nonempty subsets of V (G) is (c, ε)-full in G if for every A1 ⊆ A and B1 ⊆ B with
|A1| 󰃍 c|A| and |B1| 󰃍 c|B|, G has at least ε|A1||B1| edges between A1, B1; and (A,B)
is (c, ε)-empty in G if it is (c, ε)-full in G. Thus for every c′ > c and every A′ ⊆ A and
B′ ⊆ B with |A′| 󰃍 c′|A| and |B′| 󰃍 c′|B|, (A′, B′) is (c/c′, ε)-full if (A,B) is (c, ε)-full and
is (c/c′, ε)-empty if (A,B) is (c, ε)-empty. A collection {D1, . . . , Dh} of disjoint nonempty
subsets of V (G) is a (c, ε)-blowup of H if for all distinct i, j ∈ [h], (Di, Dj) is (c, ε)-full if
vivj ∈ E(H) and is (c, ε)-empty if vivj /∈ E(H).

In proving Lemma 12, we shall be concerned with partitions of V (G) into “rows” of
subsets and pairs of subsets as follows:

• first row: pairs (A1, B1), . . . , (Am, Bm) for some m 󰃍 0 such that for all i ∈ [m], Ai

is ε-restricted, Bi is very tight to Ai and has size smaller than a tiny fraction of Ai

(Bi might be empty);

• second row: ε-restricted nomempty sets C1, . . . , Cn for some n 󰃍 0;

• third row: ε′-restricted nonempty sets D1, . . . , Dt for some t with 0 󰃑 t 󰃑 h, such
that {D1, . . . , Dt} is a (c, ξ)-blowup of H[{v1, . . . , vt}] for some appropriately chosen
c, ε′, ξ > 0; and

• fourth row: the set L of “leftover” vertices such that whenever t > 0, L has size
smaller than a tiny fraction of each Di.
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Such a partition certainly exists, with m = n = t = 0 and L = V (G). Starting from
t = 0 with this partition, we shall attempt to increase t one by one for at most h steps. Let
S be the set of vertices in L with the “correct adjacencies” to the collection {D1, . . . , Dt},
that is, those having at least a small fraction of neighbors in Di if vt+1vi ∈ E(H) and
at least a small fraction of nonneighbors in Di if vt+1vi /∈ E(H). Then L \ S can be
partitioned into (possibly empty) sets L1, . . . , Lt such that Li is (very) tight to Di for
every i ∈ [t]. As the notation suggests, if |S| 󰃑 d then we stop the iteration and rearrange
the sets A1, . . . , Am, B1, . . . , Bm, C1, . . . , Cn, D1, . . . , Dt, L1, . . . , Lt to form a partition of
V (G) \ S with the desired property (this is not hard, and the bounds on m and n will
come up later).

So let us assume |S| > d. We can then apply Theorem 2 to find an ε′-restricted
subset S0 of S. Keeping in mind that {D1, . . . , Dt, S0} now form a “partial” blowup of
H[{v1, . . . , vt, vt+1}], we iteratively construct a nested sequence S0 ⊇ S1 ⊇ . . . ⊇ St and
subsets P1 ⊆ D1, . . . , Pt ⊆ Dt such that each pair (Si, Pi) is reasonably full (if vt+1vi ∈
E(H)) or reasonably empty (if vt+1vi /∈ E(H)); then the collection {P1, . . . , Pt, St} will be
a sufficiently good blowup of H[{v1, . . . , vt, vt+1}] while P1, . . . , Pt, St are still ε

′-restricted
(for suitable c, ε′, ξ). To execute this process, we need the following useful theorem of
Yuejian, Rödl, and Ruciński [15, Theorem 1.3] which allows us to extract decent full-
ness/emptiness from moderate denseness/sparseness. (We remark that [15, Theorem 1.3]
is stated only for balanced bipartite graphs; but the proof there works equally well for
unbalanced ones.)

Lemma 13 ([15]). Let c ∈ (0, 1) and ε ∈ (0, 1
4
). Then, for γ = γ13(c, ε) :=

1
2
(2ε)12/c ∈

(0, 1
3
), the following holds. Let G be a graph with A,B ⊆ V (G) disjoint and nonempty

such that G has at least 2ε|A||B| edges between A and B. Then there exist A′ ⊆ A and
B ⊆ B′ with |A′| 󰃍 γ|A| and |B′| 󰃍 γ|B| such that (A′, B′) is (c, ε)-full.

Observe that L is nonempty since S is, which implies each Di is quite large, and so
we can take each Pi to have size at least a (small) fraction of Di yet at most half of Di

simultaneously. Then each Li is still quite tight to and tiny compared to Di \ Pi; and we
can move each pair (Di \ Pi, Li) to the first row.

Now, we want to use Theorem 2 to pull out as many ε-restricted sets as possible from
S \St (assuming this is nonempty) so that the resulting new “leftover” set L′ still has size
smaller than a tiny fraction of St and of each Pi; then we can move those new restricted
sets to the third row. A potential issue here is that Theorem 2 may not be applicable
if S \ St is not large enough while most of the copies of H in G are “concentrated” on
G[S \ St]. This can be avoided, conveniently, by making sure that |S0| is not too large
compared to |S| right in the first place (if |S| 󰃍 2), which will be done by the following
simple corollary of Theorem 2 itself (we believe this is well-known, but still include a proof
for completeness).

Corollary 14. For every ε > 0 and every graph H, there exist δ = δ14(H, ε) ∈ (0, 1
4
) and

κ = κ14(H, ε) > 0 such that for every graph G with ind(G) 󰃑 κ|G|h, G has an ε-restricted
set T with |T | = ⌈δ|G|⌉; in particular |T | = 1 if |G| = 1 and |G \ T | 󰃍 1

2
|G| if |G| 󰃍 2.
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Proof. Let δ := 1
4
· δ2(H, 1

8
ε) and κ := κ2(H, 1

8
ε). By Theorem 2, G has an 1

8
ε-restricted

set U with |U | 󰃍 2δ|G|; in particular U is weakly 1
4
ε-restricted. By averaging, there is a

weakly 1
4
ε-restricted subset U ′ of U such that |U ′| = ⌈2δ|G|⌉, and so there is T ⊆ U ′ with

|T | = ⌈1
2
|U ′|⌉ = ⌈1

2
⌈2δ|G|⌉⌉ = ⌈δ|G|⌉ such that T is ε-restricted in G. In particular, if

|G| 󰃑 4 then |T | = 1; and if |G| > 4 then |G \ T | > |G|− 1− δ|G| 󰃍 3
4
|G|− 1

4
|G| = 1

2
|G|.

This proves Corollary 14. 󰃈

For δ, η ∈ (0, 1), let φ(δ, η) be the least integer p 󰃍 1 with (1 − δ)p 󰃑 η; then
φ(δ, η) 󰃑 δ−1 log η. The next corollary of Theorem 2 formalizes the process of repeatedly
pulling out ε-restricted sets from S \ St.

Corollary 15. For every ε, η ∈ (0, 1), for every graph H, and for δ := δ2(H, ε) > 0,
there exists κ = κ15(H, ε, η) > 0 such that for every graph G with ind(G) 󰃑 κ|G|h, there
is T ⊆ V (G) with |T | 󰃑 η|G| such that G \ T is (φ(δ, η), ε)-restricted.

Proof. Let κ := ηh · κ2(H, ε). We may assume |G| 󰃍 1. Let U0 := V (G); and for i 󰃍 0,
as long as Ui is defined and |Ui| > η|G|, let Ui+1 ⊆ Ui such that Ui \ Ui+1 is ε-restricted
and |Ui \ Ui+1| 󰃍 δ|Ui|, which is possible by Theorem 2 since

ind(G[Ui]) 󰃑 κ|G|h = κ2(H, ε) · (η|G|)h < κ2(H, ε) · |Ui|h.

This produces a chain of sets V (G) = U0 ⊇ U1 ⊇ . . . ⊇ Un for some p 󰃍 1 such that
|Ui+1| 󰃑 (1−δ)|Ui| 󰃑 (1−δ)i+1|G| and |Ui| > η|G| for all i ∈ {0, 1, . . . , p−1}. In particular
η|G| < |Un−1| 󰃑 (1− δ)n−1|G|; thus p− 1 < φ(δ, η) and so p 󰃑 φ(δ, η). Let T := Up; then󰁖p

i=1(Ui \Ui−1) is a partition of V (G) \ T into p subsets which are ε-restricted in G. This
proves Corollary 15. 󰃈

Now assume we have reached t = h and obtained a decent blowup {D1, . . . , Dh} of
H. Observe that to be able to reach t = h means the “exceptional” set S in each step
always had size more than d; so it is not hard to see that each |Di| is still more than a
(tiny) fraction of d. It thus suffices to apply the following, which is a direct corollary of
Lemma 8 and is an analogue of the induced counting lemma [2, Lemma 3.2].

Corollary 16. Let ε ∈ (0, 1
2
), let H be a graph, and let G be a graph with an (εh, ε)-blowup

{D1, . . . , Dh} of H. Then there are at least (1 − ε)h−1ε(
h
2)|D1| · · · |Dh| copies ϕ of H in

G with ϕ(vi) ∈ Di for all i ∈ [h].

Proof. This follows from Lemma 8 with εt := ε and δt := t · εt for all t ∈ [h − 1]; note
that δt 󰃑 t2−t+1ε 󰃑 ε since ε ∈ (0, 1

2
). 󰃈

We are now ready to prove Lemma 12.

Proof of Lemma 12. Let ξ := 1
4
θ and εh := min(ε, ξh). Let Γt,t = λt,t := 1; and for

t = h− 1, h− 2, . . . , 0 in turn, do the following:

• for i = t− 1, t− 2, . . . , 0 in turn, let Γt,i := λt,i+1Γt,i+1 and λt,i := γ13(
1
3
εt+1Γt,i+1, ξ);

and
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• let εt := εt+1λt,0.

Now, define

ε′ := min
t∈{0,1,...,h−1}

εt+1Γt,0, δ′ := δ14(H, ε′),

η′ :=
1

2
ηδ′ · min

t∈{0,1,...,h−1}
Γt,0, N :=

󰀕
h

2

󰀖
+ (h− 1) · φ(δ′, η′).

Also, for i = 1, 2, . . . , h in turn, do the following:

• let Λi,i := δ′Γi−1,0; and

• for t = i, i+ 1, . . . , h− 1 in turn, let Λt+1,i := λt,iΛt,i.

Finally, put

κ := min
󰀓
(1− ξ)h−1ξ(

h
2)Λh,1 · · ·Λh,h, κ14(H, ε′), 2−h · κ15(H, ε, η′)

󰀔
.

For integers m,n, t 󰃍 0 with t 󰃑 h, an (m,n, t)-partition in G is a partition of V (G) into
(not necessarily nonempty) subsets

A1, . . . , Am; B1, . . . , Bm; C1, . . . , Cn; D1, . . . , Dt; L

such that

• m 󰃑
󰀃
t
2

󰀄
and n 󰃑 t · φ(δ′, η′);

• A1, . . . , Am, C1, . . . , Cn are nonempty and ε-restricted;

• for every i ∈ [m], |Bi| 󰃑 η|Ai| and Bi is θ-tight to Ai;

• {D1, . . . , Dt} is an (εt, ξ)-blowup of H[{v1, . . . , vt}]; and

• if t > 0, then |Di| > max(Λt,id, 2η
−1|L|) and Di is εt-restricted for every i ∈ [t].

For the readers’ convenience, let us write such a partition as follows

(A1, B1), . . . , (Am, Bm);

C1, . . . , Cn;

D1, . . . , Dt;

L.

Observe that V (G) itself is a (0, 0, 0)-partition in G. Thus, there is t ∈ {0, 1, . . . , h}
maximal such that there is an (m,n, t)-partition in G. If t = h, then {D1, . . . , Dh} would
be a (ξh−1, ξ)-blowup of H; so by Corollary 16, G would contain at least

(1− ξ)hξ(
h
2)|D1| · · · |Dh| > (1− ξ)hξ(

h
2)Λh,1 · · ·Λh,hd

h 󰃍 κdh 󰃍 ind(G)
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copies of H, a contradiction. Thus t < h.
Let S be the set of vertices u in L with the property that for every i ∈ [t], u has at

least 2ξ|Di| neighbors in Di if vt+1vi ∈ E(H) and at least 2ξ|Di| nonneighbors in Di if
vt+1vi /∈ E(H). Then there is a partition L \ S = L1 ∪ · · · ∪ Lt such that Li is 2ξ-tight
to Di for all i ∈ [t]. We shall prove that S satisfies the lemma; and the following crucial
claim is the key step.

Claim 17. |S| 󰃑 d.

Proof. Suppose that |S| > d; then |S| 󰃍 1. Since δ′ = δ14(H, ε′) and

ind(G[S]) 󰃑 κdh < κ14(H, ε′) · |S|h

by the definitions of δ′ and κ, Corollary 14 yields an ε′-restricted subset S0 of S with
|S0| = ⌈δ′|G|⌉; in particular |S0| = 1 if |S| = 1 and |S \ S0| 󰃍 1

2
|S| > 1

2
d if |S| 󰃍 2. We

shall define a chain of sets S0 ⊇ S1 ⊇ . . . ⊇ St together with sets P1, . . . , Pt of vertices
such that for all i ∈ [t],

• |Si| 󰃍 λt,i|Si−1|;

• Pi ⊆ Di and λt,i|Di| 󰃑 |Pi| 󰃑 1
2
|Di|; and

• (Si, Pi) is (εt+1Γt,i, ξ)-full if vivt+1 ∈ E(H) and is (εt+1Γt,i, ξ)-empty if vivt+1 /∈
E(H).

To this end, assume that for i ∈ [t], Si−1 and Pi−1 have been defined. Assume vivt+1 ∈
E(H) without loss of generality; then by the choice of L, every vertex of Si−1 ⊆ S has at
least 2ξ|Di| neighbors in Di. Thus Lemma 13 and the definition of λt,i yield Si ⊆ Si−1

and D′
i ⊆ Di with |Si| 󰃍 λt,i|Si−1| and |D′

i| 󰃍 λt,i|Di| so that (Si, D
′
i) is (1

3
εt+1Γt,i, ξ)-

full. Let Pi ⊆ D′
i with |Pi| = min(|D′

i|, ⌊1
2
|Di|⌋); then since ⌊1

2
|Di|⌋ 󰃍 1

3
|Di| 󰃍 λt,i|Di|

(as |Di| > 2η−1|S| > 1), max(λt,i|Di|, 13 |D
′
i|) 󰃑 |Pi| 󰃑 1

2
|Di|. In particular, (Si, Pi) is

(εt+1Γt,i, ξ)-full. This defines Si and Pi in the case vivt+1 ∈ E(H); and similar arguments
with (1

3
εt+1Γt,i, ξ)-full replaced by (1

3
εt+1Γt,i, ξ)-empty also define Si and Pi in the case

vivt+1 /∈ E(H).
From the above construction, we see that |St| = 1 if |S| = 1 and |S\St| 󰃍 |S\S0| > 1

2
d

if |S| 󰃍 2. Let L′ := ∅ if the former holds; and if the latter holds, then since

ind(G[S \ St]) 󰃑 κdh < κ15(H, ε, η′) · |S \ St|h

by the definition of κ, Corollary 15 yields L′ ⊆ S \ St with |L′| 󰃑 η′|S \ St| such that
S \ (St ∪ L′) is (φ(δ′, η′), ε)-restricted. Thus there is always a subset L′ ⊆ S \ St with
|L′| 󰃑 η′|S \ St| such that S \ (St ∪L′) has a partition into nonempty ε-restricted subsets
Q1, . . . , Qs for some s 󰃑 φ(δ′, η′).

Now, let Pt+1 := St; we shall prove that the following partition of V (G)

(A1, B1), . . . , (Am, Bm), (D1 \ P1, L1), . . . , (Dt \ Pt, Lt);

C1, . . . , Cn, Q1, . . . , Qs;

P1, . . . , Pt, Pt+1;

L′
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is an (m + t, n + s, t + 1)-partition in G, which contradicts the maximality of t. To this
end, observe the following.

• Since m 󰃑
󰀃
t
2

󰀄
and n 󰃑 t·φ(δ′, η′), we have m+t 󰃑

󰀃
t+1
2

󰀄
and n+s 󰃑 (t+1)·φ(δ′, η′).

• A1, . . . , Am, C1, . . . , Cn, Q1, . . . , Qs are nonempty and ε-restricted by definition; and
for every i ∈ [t], |Di \ Pi| 󰃍 1

2
|Di| > 0 from the construction of Pi, in particular

Di \ Pi is ε-restricted since Di is εt-restricted and 2εt 󰃑 ε.

• For every i ∈ [m], |Bi| 󰃑 η|Ai| and Bi is θ-tight to Ai by definition; and for every
i ∈ [t], |Li| 󰃑 |L| < 1

2
η|Di| 󰃑 η|Di \Pi| and Li is θ-tight to Di \Pi since it is 2ξ-tight

to Di while ξ = 1
4
θ.

• {P1, . . . , Pt} is an (εt+1, ξ)-blowup ofH[{v1, . . . , vt}] since |Pi| 󰃍 λt,i|Di| 󰃍 εtε
−1
t+1|Di|

for all i ∈ [t] and {D1, . . . , Dt} is an (εt, ξ)-blowup of H[{v1, . . . , vt}]. Also, from
the above construction, for all i ∈ {0, 1, . . . , t}, we have

|Pt+1| = |St| 󰃍 (λt,tλt,t−1 · · ·λt,i+1)|Si| = Γt,i|Si|;

in particular (Pi, Pt+1) is (εt+1, ξ)-full if vivt+1 ∈ E(H) and is (εt+1, ξ)-empty
if vivt+1 /∈ E(H). Thus {P1, . . . , Pt, Pt+1} is an (εt+1, ξ)-blowup of
H[{v1, . . . , vt, vt+1}].

• For every i ∈ [t], since Λt+1,i = λt,iΛt,i, |L′| 󰃑 η′|S \ St| < η′|S| 󰃑 η′|L| as |St| > 0,
and η′ 󰃑 Γt,0 < λt,i by the definition of η′, we have

|Pi| 󰃍 λt,i|Di| > λt,i max(Λt,id, 2η
−1|L|)

󰃍 max(Λt+1,id, 2η
−1λt,i(η

′)−1|L′|) 󰃍 max(Λt+1,id, 2η
−1|L′|);

and since Λt+1,t+1 = δ′Γt,0 and η′ 󰃑 1
2
ηδ′Γt,0 by definition, we deduce that

|Pt+1| = |St| 󰃍 Γt,0|S0| 󰃍 Γt,0δ
′|S| > max(Λt+1,t+1d,Γt,0δ

′(η′)−1|L′|)
󰃍 max(Λt+1,t+1d, 2η

−1|L′|).

Also, for every i ∈ [t], Pi is εt+1-restricted since Di is εt-restricted; and Pt+1 = St is
εt+1-restricted since S0 is ε′-restricted and ε′ 󰃑 εt+1Γt,0 by the definition of ε′.

This proves Claim 17. □

Now, recall that V (G) \ S is partitioned into (possibly empty) subsets

A1, . . . , Am; B1, . . . , Bm; C1, . . . , Cn; D1, . . . , Dt; L1, . . . , Lt

such that

• m 󰃑
󰀃
t
2

󰀄
and n 󰃑 t · φ(δ′, η′);

• A1, . . . , Am, C1, . . . , Cn are nonempty and ε-restricted;
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• for every i ∈ [m], |Bi| 󰃑 η|Ai| and Bi is θ-tight to Ai; and

• if t > 0, then for every i ∈ [t], |Di| > 2η−1|Li| 󰃍 η−1|Li|, Di is ε-restricted (since it
is εt-restricted), and Li is θ-tight to Di.

By renumbering the above sets if necessary, we may assume there exist q ∈ {0, 1, . . . ,m}
and r ∈ {0, 1, . . . , t} such that Bi ∕= ∅ for all i ∈ [q] and Bi = ∅ for all i ∈ [m] \ [q], and
Li ∕= ∅ for all i ∈ [r] and Li = ∅ for all i ∈ [t] \ [r]. Then the following partition of V (G)

A1, . . . , Aq, D1, . . . , Dr; B1, . . . , Bq, L1, . . . , Lr; Aq+1, . . . , Am, Dr+1, . . . , Dt, C1, . . . , Cn

has the desired property, because q + r 󰃑 m+ t 󰃑
󰀃
t
2

󰀄
+ t =

󰀃
t+1
2

󰀄
󰃑

󰀃
h
2

󰀄
, and

(m− q) + (t− r) + n 󰃑
󰀕
t

2

󰀖
+ t+ t · φ(δ′, η′) 󰃑

󰀕
h

2

󰀖
+ (h− 1) · φ(δ′, η′) = N.

This proves Lemma 12. 󰃈

We remark that, according to [15, Theorem 1.4], the choice γ13(c, ε) =
1
2
(2ε)12/c is opti-

mal up to a constant factor in the exponent. This choice leads to bounds on κ−1
12 (H, ε, η, θ)

and N12(H, ε, η, θ) which are towers of twos of height depending on h with (εηθ)−1 on top,
which results in the tower-type dependence of κ−1

7 (H, ε) and N7(H, ε) on ε−1 and h men-
tioned in the introduction.

4 Finishing the proof

With Lemma 12 in hand, it now suffices to make obvious changes to [5, Section 3] to
complete the proof of Theorem 7. For ε > 0, an integer k 󰃍 0, and a graph G, a (k, ε)-
path-partition of G is a sequence (W0,W1, . . . ,Wk) of disjoint nonempty sets with union
V (G) such that for every i ∈ {0, 1, . . . , k − 1},

• Wi is ε-restricted in G;

• |Wi| 󰃍 12|Wk|; and

• Wi+1 ∪ · · · ∪Wk is 1
12
ε-tight to Wi.

We need the following result from [5, Theorem 3.3].

Lemma 18 ([5]). For all ε ∈ (0, 1
3
), every graph with a (⌈4ε−1⌉, 1

4
ε)-path-partition is

(2400ε−2, ε)-restricted.

The following lemma allows us to “lengthen” a given path-partition of length less than
⌈4ε−1⌉ by one, at the cost of removing a small number of vertices.
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Lemma 19. Let ε ∈ (0, 1
3
) and K := ⌈4ε−1⌉. Let H be a graph with h := |H| 󰃍 2. Let

ε′ := h−2Kε, η := h−2, θ :=
1

12
h−2Kε,

κ = κ19(H, ε) := h−2Kh · κ12(H, ε′, η, θ), N = N19(H, ε) := N12(H, ε′, η, θ).

Let k be an integer with 0 󰃑 k 󰃑 K. Let d 󰃍 0, and let G be a graph with ind(G) 󰃑 κdh

such that G has a (k, h2(k−K)ε)-path-partition (W0,W1, . . . ,Wk). Then there is a set S ⊆
V (G) with |S| 󰃑 h−2kd such that G \ S is (h2(K−k)(2400ε−2 +N)−N, ε)-restricted.

Proof. We proceed by backward induction on k. If k = K then the conclusion follows
by Lemma 18. We may assume that k < K and that the lemma holds for k + 1. Since

ind(G[Wk]) 󰃑 κdh 󰃑 κ12(H, ε′, η, θ) · (h−2(k+1)d)h,

by Lemma 12 applied to G[Wk] with d replaced by h−2(k+1)d, there is T ⊆ Wk with
|T | 󰃑 h−2(k+1)d such that Wk \ T can be partitioned into nonempty sets

A1, . . . , Am, B1, . . . , Bm, C1, . . . , Cn

where m 󰃑
󰀃
h
2

󰀄
and n 󰃑 N , such that

• A1, . . . , Am, C1, . . . , Cn are ε′-restricted in G; and

• for every i ∈ [m], |Bi| 󰃑 η|Ai| and Bi is θ-tight to Ai.

If m = 0 then G \ T is (k + N, ε)-restricted and we are done (note that h 󰃍 2 and
k 󰃑 4ε−2); thus we may assume m 󰃍 1. It follows that |Wk| 󰃍 |A1| 󰃍 η−1|B1| 󰃍 h2 󰃍 2m,
and so |Wi| 󰃍 12|Wk| 󰃍 24m for all i ∈ {0, 1, . . . , k − 1}. Thus for each such i, Wi has a
partition W 1

i ∪ · · · ∪Wm
i with |W j

i | 󰃍 ⌊ 1
m
|Wi|⌋ 󰃍 1

2m
|Wi| 󰃍 h−2|Wi| for all j ∈ [m]. Let

Uj :=
󰁖k−1

i=0 W
j
i ∪ (Aj ∪Bj) for every j ∈ [m].

Claim 20. For all j ∈ [m], (W j
0 ,W

j
1 , . . . ,W

j
k−1, Aj, Bj) is a (k + 1, h2(k+1−K)ε)-path-

partition of G[Uj].

Proof. It suffices to observe the following.

• Aj is h
2(k+1−K)ε-restricted since it is ε′-restricted and ε′ = h−2Kε; and also, for each

i ∈ {0, 1, . . . , k− 1}, W j
i is h2(k+1−K)ε-restricted since Wi is h

2(k−K)ε-restricted and
|W j

i | 󰃍 h−2|Wi|.

• For every i ∈ {0, 1, . . . , k − 1}, since 12|Wk| 󰃑 |Wi| 󰃑 h2|W j
i |, we have

12|Bj| 󰃑 12η|Aj| 󰃑 min(12h−2|Wk|, |Aj|) 󰃑 min(|W j
i |, |Aj|).

• Bj is 1
12
h2(k+1−K)ε-tight to Aj by the definition of θ; and also, for every i ∈

{0, 1, . . . , k − 1}, (W j
i+1 ∪ · · · ∪W j

k−1) ∪ (Aj ∪Bj) is
1
12
h2(k+1−K)ε-tight to W j

i since

Wi+1 ∪ · · · ∪Wk is 1
12
h2(k−K)ε-tight to Wi and |W j

i | 󰃍 h−2|Wi|.
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This proves Claim 20. □

By Claim 20 and induction, for each j ∈ [m], there is a set Sj ⊆ Uj with |Sj| 󰃑
h−2(k+1)d such that G[Uj \ Sj] is (h2(K−k−1)(2400ε−2 + N) − N, ε)-restricted. Put S :=󰁖

j∈[m] Sj ∪ T ; then |S| 󰃑 (m+ 1)h−2(k+1)d 󰃑 h−2kd as h 󰃍 2, and since

m · (h2(K−k−1)(2400ε−2 +N)−N) + n 󰃑 h2 · (h2(K−k−1)(2400ε−2 +N)−N) +N

󰃑 h2(K−k)(2400ε−2 +N)−N,

we see that G\S is (h2(K−k)(2400ε−2+N)−N, ε)-restricted. This proves Lemma 19. 󰃈

We are now ready to finish the proof of Theorem 7, which we restate here for the
reader’s convenience.

Theorem 21. For every ε > 0 and every graph H, there exist κ = κ(H, ε) > 0 and
N = N(H, ε) > 0 such that for every d 󰃍 0 and every graph G with ind(G) 󰃑 κdh, there
is a set S ⊆ V (G) with |S| 󰃑 d such that G \ S is (N, ε)-restricted.

Proof. We may assume h 󰃍 2. Let κ := κ19(H, ε) and N := h2K(2400ε−2 + N19(H, ε)).
Then Theorem 21 follows from Lemma 19 applied to the (0, h−2Kε)-partition V (G) of
G. 󰃈
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[15] Y. Peng, V. Rödl, and A. Ruciński. Holes in graphs. Electron. J. Combin., 9(1):#R1,
18, 2002.
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