A further extension of Rödl's theorem

Tung H. Nguyen

Submitted: Oct 6, 2022; Accepted: Jul 13, 2023; Published: Aug 11, 2023 © The author. Released under the CC BY license (International 4.0).

Abstract

Fix $\varepsilon > 0$ and a graph H with at least one vertex. A well-known theorem of Rödl from the 80s says that every graph G with no induced copy of H contains a linear-sized ε -restricted set $S \subseteq V(G)$, which means S induces a subgraph with maximum degree at most $\varepsilon |S|$ in G or its complement. There are two extensions of this result:

- quantitatively, Nikiforov relaxed the condition "no induced copy of H" to "at most $\kappa |G|^{|H|}$ induced copies of H for some $\kappa > 0$ depending on H and ε ;" and
- qualitatively, Chudnovsky, Scott, Seymour, and Spirkl recently showed that there exists N > 0 depending on H and ε such that G is (N, ε) -restricted, which means V(G) has a partition into at most N subsets that are ε -restricted.

A natural common generalization of these two asserts that every graph G with at most $\kappa |G|^{|H|}$ induced copies of H is (N, ε) -restricted for some $\kappa, N > 0$ depending on H and ε . This is unfortunately false; but we prove that for every $\varepsilon > 0$, κ and Nstill exist so that for every $d \ge 0$, every graph G with at most $\kappa d^{|H|}$ induced copies of H has an (N, ε) -restricted induced subgraph on at least |G| - d vertices. This unifies the two aforementioned theorems, and is optimal up to κ and N for every value of d.

Mathematics Subject Classifications: 05C35, 05C42, 05C69

1 Introduction

Graphs in this paper are finite and simple. For a graph G with vertex set V(G) and edge set E(G), let |G| := |V(G)|, and let \overline{G} denote its complement. For $S \subseteq V(G)$, let G[S] denote the subgraph of G induced by S, and let $G \setminus S := G[V(G) \setminus S]$. For a nonnull graph H, a copy of H in G is a graph isomorphism from H to G[S] for some $S \subseteq V(G)$. Let $\operatorname{ind}_H(G)$ be the number of copies of H in G; and say that G is H-free if $\operatorname{ind}_H(G) = 0$. Given $\varepsilon > 0$, a subset $S \subseteq V(G)$ is ε -restricted in G if one of $G[S], \overline{G}[S]$ has maximum degree at most $\varepsilon |S|$. The following well-known theorem of Rödl [16] from 1986

Princeton University, Princeton, NJ 08544, USA (tunghn@math.princeton.edu).

has become a standard tool in the investigation of the $Erdős-Hajnal conjecture^{1}$ [8, 7] (see [4] for a survey).

Theorem 1 ([16]). For every $\varepsilon > 0$ and every graph H, there exists $\delta = \delta(H, \varepsilon) > 0$ such that for every H-free graph G, there is an ε -restricted $S \subseteq V(G)$ in G with $|S| \ge \delta |G|$.

Since its inception, Theorem 1 has found many extensions. Among these is the following useful quantitative improvement first proved by Nikiforov [14] (see [6, 12, 13] for several applications).

Theorem 2 ([14]). For every $\varepsilon > 0$ and every graph H, there exist $\delta = \delta_2(H, \varepsilon) > 0$ and $\kappa = \kappa_2(H, \varepsilon) > 0$ such that for every graph G with $\operatorname{ind}_H(G) \leq \kappa |G|^{|H|}$, there is an ε -restricted $S \subseteq V(G)$ in G with $|S| \geq \delta |G|$.

Rödl's original proof of Theorem 1 and Nikiforov's proof of Theorem 2 (we remark that Theorem 2 is already implicit in [16]) both employ the regularity lemma, and so give bounds on δ^{-1} and κ^{-1} which are towers of twos of height polynomial in ε^{-1} with constants depending on H. Fox and Sudakov [10] offered an alternative proof of Theorem 2 showing that both δ and κ can be chosen as $2^{-c\log^2(\varepsilon^{-1})}$ for some constant c > 0depending on H; and very recently Bucić, Nguyen, Scott, and Seymour [3] improved this to $2^{-c\log^2(\varepsilon^{-1})/\log\log(\varepsilon^{-1})}$. In [12], it is conjectured that both δ and κ can in fact be taken to be a polynomial of ε in Theorem 2, which would imply the Erdős–Hajnal conjecture itself (see [9, 12, 13] for current progress on this topic).

Recently, Chudnovsky, Scott, Seymour, and Spirkl [5] provided a qualitative refinement of Theorem 1, which says that the vertex set of every *H*-free graph can even be partitioned into a bounded number of ε -restricted subsets. Formally, for $\varepsilon, N > 0$, a graph *G* is (N, ε) -restricted if there is a partition of V(G) into at most *N* subsets that are ε -restricted in *G*; thus *G* is (N, ε) -restricted if and only if \overline{G} is.

Theorem 3 ([5]). For every $\varepsilon > 0$ and every graph H, there exists $N = N(H, \varepsilon) > 0$ such that every H-free graph is (N, ε) -restricted.

The edge density of a graph G equals $|E(G)|/{\binom{|G|}{2}}$ if $|G| \ge 2$ and equals 0 if $|G| \le 1$. For $\varepsilon > 0$, a subset $S \subseteq V(G)$ is weakly ε -restricted in G if one of $G[S], \overline{G}[S]$ has edge density at most ε . Thus if S is $\frac{1}{2}\varepsilon$ -restricted in G then it is weakly ε -restricted; and if S is weakly $\frac{1}{4}\varepsilon$ -restricted in G then it has an ε -restricted subset of size $\lceil \frac{1}{2}|S|\rceil$. Hence the strength of Theorems 1 and 2 remain unaffected if " ε -restricted" is replaced by "weakly ε -restricted." As discussed in [5], however, Theorem 3 becomes significantly weaker if " (N, ε) -restricted" is replaced by "weakly ε -restricted" in G. Indeed, repeated applications of Theorem 2 yield the following result proved in [14].

Theorem 4 ([14]). For every $\varepsilon > 0$ and every graph H, there exist $\kappa = \kappa(H, \varepsilon) > 0$ and $N = N(H, \varepsilon) > 0$ such that every graph G with $\operatorname{ind}_H(G) \leq \kappa |G|^{|H|}$ is weakly (N, ε) -restricted.

¹The very last sentence of [7] was actually the first time Erdős and Hajnal formally stated their wellknown conjecture.

(As shown in [14, 10], with more care one can even take the corresponding weakly ε -restricted sets to have size differences at most 1 in this result.) It thus would be natural (and quite tempting) to conjecture the following, which would have unified Theorems 2 and 3 and strengthened Theorem 4 considerably.

Conjecture 5 (false). For every $\varepsilon > 0$ and every graph H, there exist $N = N(H, \varepsilon) > 0$ and $\kappa = \kappa(H, \varepsilon) > 0$ such that every graph G with $\operatorname{ind}_H(G) \leq \kappa |G|^{|H|}$ is (N, ε) -restricted.

Unfortunately, the following proposition² refutes this conjecture in a strong sense.

Proposition 6. Let $N \ge 1$. Then for all integers m, n with $n \ge m \ge 20N^2$, every $\varepsilon \in (0, \frac{1}{18})$, and every graph H with $h := |H| \ge 2$, there is a graph on n vertices which has at most hmn^{h-1} copies of H and is not (N, ε) -restricted. In particular, for every $\kappa > 0$ and every integer $n \ge 20\kappa^{-1}hN^2$, there is a graph on n vertices which has at most κn^h copies of H and is not (N, ε) -restricted.

Proof. In what follows, $\Delta(G)$ denotes the maximum degree of a graph G. By taking complements if necessary, we may assume H is connected, and so H has at least one edge as $h \ge 2$.

Let F be a random graph on $m \ge 20N^2$ vertices where each edge appears independently with probability $\frac{1}{2}$. For every $T \subseteq V(F)$ with $|T| \ge \frac{1}{N}m$, since $6\varepsilon < \frac{1}{3}$, Hoeffding's inequality [11] implies that T is weakly 6ε -restricted in F with probability at most $2\exp(-\frac{1}{72}\binom{|T|}{2}) \le 2\exp(-\frac{1}{300N^2}m^2)$; and so, since $2^m \cdot 2\exp(-\frac{1}{300N^2}m^2) < 1$ (as $m \ge 20N^2$), there is a choice of F with no weakly 6ε -restricted set of size at least $\frac{1}{N}m$. Consequently F has no 3ε -restricted subset of size at least $\frac{1}{N}m$.

Now, fix such an F; and for every $n \ge m$, let G be a graph obtained from F by adding n-m isolated vertices and making each of them adjacent to every vertex in V(F). Since H has at least one edge, every copy of H in G has at least one image vertex in V(F); thus

$$\operatorname{ind}_{H}(G) \leq \sum_{i=1}^{h} \binom{h}{i} m^{i} (n-m)^{h-i} = n^{h} - (n-m)^{h} = m \sum_{i=1}^{h} n^{i-1} (n-m)^{h-i} \leq hmn^{h-1}.$$

It thus remains to show that G is not (N, ε) -restricted. Suppose not; and let $A_1 \cup \cdots \cup A_k$ be a partition of V(G) for some $k \leq N$ such that A_i is ε -restricted for all $i \in \{1, 2, \ldots, k\}$. Then $\bigcup_{i=1}^{k} (A_i \cap V(F))$ is a partition of V(F), and so we may assume $T := A_1 \cap V(F)$ has size at least $\frac{1}{N}m$. Thus T is not 3ε -restricted in F; hence $S := A_1 \setminus V(F)$ is nonempty. It follows that

$$\Delta(G[A_1]) = |S| + \Delta(F[T]) > \varepsilon |S| + 3\varepsilon |T| > \varepsilon (|S| + |T|) = \varepsilon |A_1|,$$

$$\Delta(\overline{G}[A_1]) = \max(|S| - 1, \Delta(\overline{F}[T])) \ge \max(|S| - 1, 3\varepsilon |T|) > \varepsilon (|S| + |T|) = \varepsilon |A_1|.$$

Therefore A_1 is not ε -restricted in G, a contradiction. This proves Proposition 6.

 $^{^2\}mathrm{We}$ remark that Alex Scott (personal communication) independently discovered similar counterexamples.

The graphs constructed in Proposition 6 suggest that an "exceptional" set of vertices should necessarily be removed in order for the remaining vertices to admit a partition into a bounded number of ε -restricted pieces. Our main theorem shows that this is also sufficient.

Theorem 7. For every $\varepsilon > 0$ and every graph H, there exist $\kappa = \kappa_7(H, \varepsilon) > 0$ and $N = N_7(H, \varepsilon) > 0$ such that for every $d \ge 0$ and every graph G with $\operatorname{ind}_H(G) \le \kappa d^{|H|}$, there is a set $S \subseteq V(G)$ with $|S| \le d$ such that $G \setminus S$ is (N, ε) -restricted; equivalently, G can be made (N, ε) -restricted by removing at most $C \cdot \operatorname{ind}_H(G)^{1/|H|}$ vertices where $C = \kappa^{-1/|H|}$.

We would like to make three remarks. First, Theorem 3 is a special case of Theorem 7 with d = 0; and taking $d = \varepsilon |G|$ in Theorem 7 yields Theorem 2. Thus Theorem 7 can be viewed as a remedy for the false Conjecture 5; and the counterexamples in Proposition 6 (with suitable choices of m, n depending on d and more isolated vertices added) show that Theorem 7 is optimal up to κ and N for any given value of d.

Second, Theorem 7 is related to the induced removal lemma [1, 17] which also implies Theorem 2. Here, we are dealing with the property of being (N, ε) -restricted which is weaker than *H*-freeness (by Theorem 3) and not closed under the induced subgraph relation. But the trade-off is worth considering: removing only a handful of vertices instead of adding/deleting edges; and working well for *all* graphs, including those with subquadratic number of edges and only few copies of *H*.

Third, our proof of Theorem 7 generalizes the proof of Theorem 3 given in [5], demonstrating that the argument there can be extended to graphs with a bounded number of copies of H (at the cost of removing a small number of vertices). The resulting bounds on $\kappa_7^{-1}(H,\varepsilon)$ and $N_7(H,\varepsilon)$, as a result, are better than what the regularity lemma could provide (but still huge functions, namely towers of twos of height depending solely on |H|with ε^{-1} on top). It would be interesting to prove Theorem 7 with bounds on κ^{-1} and Nsimilar to the bounds obtained in [10] or even in [3].

In what follows, for an integer $k \ge 0$, let [k] denote $\{1, 2, \ldots, k\}$ if $k \ge 1$ and \emptyset if k = 0. The vertex set of H will always be $\{v_1, \ldots, v_h\}$ for some $h \ge 1$; and we drop the subscript H from the notation ind_H .

2 A slight digression

This section provides a short and self-contained proof of Theorem 2 without using the regularity lemma, which will be used frequently in the proof of Theorem 7. The presentation here mostly follows [10].

For $\varepsilon > 0$, a graph G, and disjoint subsets A, B of V(G), B is ε -sparse to A in G if every vertex in B is adjacent to fewer than $\varepsilon |A|$ vertices of A in G, and ε -dense to A in Gif it is ε -sparse to A in \overline{G} . Say that B is ε -tight to A if it is either ε -sparse or ε -dense to A. The following lemma implicitly appears in [10, Lemma 4.1], which in turn generalizes an old result of Erdős and Hajnal [8, Theorem 1.5]. This result will also be useful later on. **Lemma 8.** Let H be a graph, and let $\varepsilon_1, \ldots, \varepsilon_{h-1}, \delta_1, \ldots, \delta_{h-1} \in (0, 1)$. Let G be a graph, and let D_1, \ldots, D_h be disjoint nonempty subsets of V(G) such that for all indices i, j with $1 \leq i < j \leq h$, there do not exist $A \subseteq D_i$ and $B \subseteq D_j$ with $|A| \geq \prod_{t=j}^{h-1} \varepsilon_t \cdot |D_i|$ and $|B| \geq \frac{\delta_{j-1}}{j-1} \prod_{t=j}^{h-1} \varepsilon_t \cdot |D_j|$ satisfying B is ε_j -sparse to A if $v_i v_j \in E(H)$ and ε_j -dense to Aif $v_i v_j \notin E(H)$. Then there are at least $\prod_{t=1}^{h-1} (1-\delta_t)\varepsilon_t^t \cdot \prod_{i=1}^h |D_i|$ copies φ of H in G with $\varphi(v_i) \in D_i$ for all $i \in [h]$.

Proof. Induction on $h \ge 1$. We may assume that $h \ge 2$. For $i \in [h-1]$, let P_i be the set of vertices in D_h with fewer than $\varepsilon_{h-1}|D_i|$ neighbors in D_i if $v_iv_h \in E(H)$ and the set of vertices in D_h with fewer than $\varepsilon_{h-1}|D_i|$ nonneighbors in D_i if $v_iv_h \notin E(H)$. By the hypothesis, $|P_i| \le \frac{\delta_{h-1}}{h-1}|D_h|$ for all $i \in [h-1]$. Let $D'_h := D_h \setminus (\bigcup_{i \in [h-1]} P_i)$; then $|D'_h| \ge (1-\delta_{h-1})|D_h|$.

Now, for each $u \in D'_h$ and $i \in [h-1]$, let D^u_i be the set neighbors of u in D_i if $v_i v_h \in E(H)$ and the set of nonneighbors of u in D_i if $v_i v_h \notin E(H)$; then $|D^u_i| \ge \varepsilon_{h-1}|D_i|$ for all $i \in [h-1]$. Thus for all indices i, j with $1 \le i < j \le h-1$, there do not exist $A \subseteq D^u_i$ and $B \subseteq D^u_j$ with $|A| \ge \prod_{t=j}^{h-2} \varepsilon_t \cdot |D^u_i|$ and $|B| \ge \frac{\delta_{j-1}}{j-1} \prod_{t=j}^{h-2} \varepsilon_t \cdot |D^u_j|$ such that B is ε_j -sparse to A if $v_i v_j \in E(H)$ and ε_j -dense to A if $v_i v_j \notin E(H)$. So by induction, there are at least $\prod_{t=1}^{h-2} (1-\delta_t)\varepsilon_t^t \cdot \prod_{i=1}^{h-1} |D^u_i|$ copies φ_u of $H \setminus v_h$ in $G \setminus D_h$ with $\varphi_u(v_i) \in D^u_i$ for all $i \in [h-1]$. Summing up over all $u \in D'_h$, we deduce that there are at least

$$\sum_{u \in D'_h} \left(\prod_{t=1}^{h-2} (1-\delta_t) \varepsilon_t^t \cdot \prod_{i=1}^{h-1} |D_i^u| \right) \ge |D'_h| \left(\prod_{t=1}^{h-2} (1-\delta_t) \varepsilon_t^t \right) \left(\varepsilon_{h-1}^{h-1} \prod_{i=1}^{h-1} |D_i| \right)$$
$$\ge \prod_{t=1}^{h-1} (1-\delta_t) \varepsilon_t^t \cdot \prod_{i=1}^{h} |D_i|$$

copies φ of H in G such that $\varphi(v_i) \in D_i$ for all $i \in [h]$. This proves Lemma 8.

Corollary 9. Let $\varepsilon \in (0,1)$, let H be a graph, and let $\kappa = \kappa_9(H,\varepsilon) := (4h)^{-h} \varepsilon^{\binom{h}{2}}$. Then every G with $\operatorname{ind}(G) \leq \kappa |G|^h$ contains disjoint $A, B \subseteq V(G)$ with $|A|, |B| \geq (2h)^{-2} \varepsilon^{h-1} |G|$ such that B is ε -tight to A.

Proof. We may assume $|G| \ge h$. Let D_1, \ldots, D_h be disjoint subsets of V(G) each of size $\lfloor \frac{1}{h} |G| \rfloor$; then $|D_t| \ge \frac{1}{2h} |G|$ for all $t \in [h]$. It suffices to apply Lemma 8 with $\varepsilon_t = \varepsilon$ and $\delta_t = \frac{1}{2}$ for all $t \in [h]$.

For $\varepsilon_1, \varepsilon_2, \kappa > 0$ and a graph H, let $\beta(H, \kappa, \varepsilon_1, \varepsilon_2)$ be the largest constant β with $0 < \beta \leq 1$ such that every graph G with $\operatorname{ind}(G) \leq \kappa |G|^h$ has an induced subgraph with at least $\beta |G|$ vertices and edge density at most ε_1 or at least $1 - \varepsilon_2$; then $\beta(H, \kappa, \varepsilon_1, \varepsilon_2)$ is decreasing in κ and $\beta(H, \kappa, \varepsilon_1, \varepsilon_2) = 1$ for all $\kappa > 0$ whenever $\varepsilon_1 + \varepsilon_2 \geq 1$ (and so whenever $\varepsilon_1 \varepsilon_2 \geq 1$). We need the following lemma.

Lemma 10. Let $\varepsilon_1, \varepsilon_2 > 0$, let H be a graph, and let $\eta := \eta_{10}(H, \varepsilon_1, \varepsilon_2) := \frac{1}{2}(2h)^{-2}(\frac{1}{4}\varepsilon)^{h-1}$ where $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$. Then for every κ with $0 < \kappa \leq \kappa_9(H, \frac{1}{4}\varepsilon)$, we have

$$\beta(H,\kappa,\varepsilon_1,\varepsilon_2) \ge \eta \cdot \min(\beta(H,\eta^{-h}\kappa,\frac{3}{2}\varepsilon_1,\varepsilon_2),\beta(H,\eta^{-h}\kappa,\varepsilon_1,\frac{3}{2}\varepsilon_2)).$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(3) (2023), #P3.22

Proof. Let $\beta_1 := \beta(H, \eta^{-h}\kappa, \frac{3}{2}\varepsilon_1, \varepsilon_2), \beta_2 := \beta(H, \eta^{-h}\kappa, \varepsilon_1, \frac{3}{2}\varepsilon_2), \text{ and } \beta_0 := \eta \cdot \min(\beta_1, \beta_2).$ Let G be a graph with $\operatorname{ind}(G) \leq \kappa |G|^h$; we need to show there is a set $S \subseteq V(G)$ with $|S| \geq \beta_0 |G|$ such that G[S] has edge density at most ε_1 or at least $1 - \varepsilon_2$. By Corollary 9, G has disjoint subsets $A, B \subseteq V(G)$ with $|A|, |B| \geq 2\eta |G|$ such that B is $\frac{1}{4}\varepsilon$ -tight to A; and we may assume B is $\frac{1}{4}\varepsilon$ -sparse to A.

Because $\operatorname{ind}(G[B]) \leq \kappa |G|^{\hat{h}} \leq \eta^{-h} \kappa |B|^{h}$, by the definition of β and by averaging, there exists $B_1 \subseteq B$ with $|B_1| = \lceil \beta_1 \eta |G| \rceil \geq \beta_0 |G|$ such that $G[B_1]$ has edge density at most $\frac{3}{2}\varepsilon_1$ or at least $1 - \varepsilon_2$. If the latter holds then we are done, so we may assume the former holds.

Let A_0 be the set of vertices in A each with at most $\frac{1}{2}\varepsilon|B_1|$ neighbors in B_1 . Since G has fewer than $\frac{1}{4}\varepsilon|A||B_1|$ edges between A and B_1 , we have $|A_0| \ge \frac{1}{2}|A| \ge \eta|G|$. Thus $\operatorname{ind}(G[A_0]) \le \eta^{-h}\kappa|A_0|^h$, and so by the definition of β and by averaging, there exists $A_1 \subseteq A_0$ with $|A_1| = \lceil \beta_1 \eta |G| \rceil \ge \beta_0 |G|$ such that $G[A_1]$ has edge density at most $\frac{3}{2}\varepsilon_1$ or at least $1 - \varepsilon_2$. Again, we may assume the former holds.

Now, let $S := A_1 \cup B_1$; then $|S| = 2|A_1| = 2|B_1| \ge 2\beta_0|G|$. Since $G[A_1], G[B_1]$ each have edge density at most $\frac{3}{2}\varepsilon_1$ and G has at most $\frac{1}{2}\varepsilon|A_1||B_1|$ edges between A_1 and B_1 , we deduce that

$$|E(G[S])| \leq |E(G[A_1])| + |E(G[B_1])| + \frac{1}{2}\varepsilon|A_1||B_1|$$

$$\leq \frac{3}{2}\varepsilon_1 \binom{|A_1|}{2} + \frac{3}{2}\varepsilon_1 \binom{|B_1|}{2} + \frac{1}{2}\varepsilon_1|A_1||B_1|$$

$$= 3\varepsilon_1 \binom{|A_1|}{2} + \frac{1}{2}\varepsilon_1|A_1|^2$$

$$\leq \varepsilon_1 \binom{2|A_1|}{2}$$

$$= \varepsilon_1 \binom{|S|}{2}.$$

Therefore S has the desired property. This proves Lemma 10.

We are now give a proof of Theorem 2 in the following equivalent form, which leads to the dependence of $\delta_2(H, \varepsilon)$ and $\kappa_2(H, \varepsilon)$ on ε and h as mentioned in the introduction.

Theorem 11. For every $\varepsilon > 0$ and every graph H, there exist $\delta = \delta(H, \varepsilon) > 0$ and $\kappa = \kappa(H, \varepsilon) > 0$ such that every graph G with $ind(G) \leq \kappa |G|^h$ contains a weakly ε -restricted set of size at least $\delta |G|$.

Proof. Let $s := \lceil \log_{\frac{3}{2}}(\varepsilon^{-2}) \rceil$, $\eta := \eta_{10}(H, \varepsilon, \varepsilon)$, $\delta := \eta^s$, and $\kappa := \eta^{sh} \cdot \kappa_9(H, \frac{1}{4}\varepsilon)$. Note that $\eta_{10}(H, \cdot, \cdot)$ is decreasing in each of the last two components. Thus, since $\beta(H, \cdot, \cdot, \cdot)$ is decreasing in the second component and equals 1 whenever the last two components have product at least 1, applying Lemma 10 for s times yields $\beta(H, \kappa, \varepsilon, \varepsilon) \ge \eta^s = \delta$. This proves Theorem 11.

3 Key lemma

This section introduces and proves our key lemma, the following.

Lemma 12. For all $\varepsilon, \eta, \theta \in (0, \frac{1}{2})$ and every graph H, there are $\kappa = \kappa_{12}(H, \varepsilon, \eta, \theta) > 0$ and $N = N_{12}(H, \varepsilon, \eta, \theta) > 0$ with the following property. For every $d \ge 0$ and every graph G with $\operatorname{ind}(G) \le \kappa d^h$, there is a set $S \subseteq V(G)$ with $|S| \le d$ such that $V(G) \setminus S$ can be partitioned into nonempty sets

$$A_1,\ldots,A_m; B_1,\ldots,B_m; C_1,\ldots,C_n$$

where $m \leq \binom{h}{2}$ and $n \leq N$, such that

- $A_1, \ldots, A_m, C_1, \ldots, C_n$ are ε -restricted in G; and
- for every $i \in [m]$, $|B_i| \leq \eta |A_i|$ and B_i is θ -tight to A_i .

This contains [5, Theorem 1.5] as a special case with d = 0, and already gives Theorem 2 with $\varepsilon = \eta = \theta$ and $d = \varepsilon |G|$. We shall employ the same approach as in [5, Section 2], and recommend reading the detailed sketch there first. Here we explain the modifications.

We recall some definitions. For $c, \varepsilon > 0$ and a graph G, a pair (A, B) of disjoint nonempty subsets of V(G) is (c, ε) -full in G if for every $A_1 \subseteq A$ and $B_1 \subseteq B$ with $|A_1| \ge c|A|$ and $|B_1| \ge c|B|$, G has at least $\varepsilon |A_1||B_1|$ edges between A_1, B_1 ; and (A, B)is (c, ε) -empty in G if it is (c, ε) -full in \overline{G} . Thus for every c' > c and every $A' \subseteq A$ and $B' \subseteq B$ with $|A'| \ge c'|A|$ and $|B'| \ge c'|B|$, (A', B') is $(c/c', \varepsilon)$ -full if (A, B) is (c, ε) -full and is $(c/c', \varepsilon)$ -empty if (A, B) is (c, ε) -empty. A collection $\{D_1, \ldots, D_h\}$ of disjoint nonempty subsets of V(G) is a (c, ε) -blowup of H if for all distinct $i, j \in [h], (D_i, D_j)$ is (c, ε) -full if $v_i v_j \in E(H)$ and is (c, ε) -empty if $v_i v_j \notin E(H)$.

In proving Lemma 12, we shall be concerned with partitions of V(G) into "rows" of subsets and pairs of subsets as follows:

- first row: pairs $(A_1, B_1), \ldots, (A_m, B_m)$ for some $m \ge 0$ such that for all $i \in [m], A_i$ is ε -restricted, B_i is very tight to A_i and has size smaller than a tiny fraction of A_i $(B_i \text{ might be empty})$;
- second row: ε -restricted nomempty sets C_1, \ldots, C_n for some $n \ge 0$;
- third row: ε' -restricted nonempty sets D_1, \ldots, D_t for some t with $0 \leq t \leq h$, such that $\{D_1, \ldots, D_t\}$ is a (c, ξ) -blowup of $H[\{v_1, \ldots, v_t\}]$ for some appropriately chosen $c, \varepsilon', \xi > 0$; and
- fourth row: the set L of "leftover" vertices such that whenever t > 0, L has size smaller than a tiny fraction of each D_i .

Such a partition certainly exists, with m = n = t = 0 and L = V(G). Starting from t = 0 with this partition, we shall attempt to increase t one by one for at most h steps. Let S be the set of vertices in L with the "correct adjacencies" to the collection $\{D_1, \ldots, D_t\}$, that is, those having at least a small fraction of neighbors in D_i if $v_{t+1}v_i \in E(H)$ and at least a small fraction of nonneighbors in D_i if $v_{t+1}v_i \notin E(H)$. Then $L \setminus S$ can be partitioned into (possibly empty) sets L_1, \ldots, L_t such that L_i is (very) tight to D_i for every $i \in [t]$. As the notation suggests, if $|S| \leq d$ then we stop the iteration and rearrange the sets $A_1, \ldots, A_m, B_1, \ldots, B_m, C_1, \ldots, C_n, D_1, \ldots, D_t, L_1, \ldots, L_t$ to form a partition of $V(G) \setminus S$ with the desired property (this is not hard, and the bounds on m and n will come up later).

So let us assume |S| > d. We can then apply Theorem 2 to find an ε' -restricted subset S_0 of S. Keeping in mind that $\{D_1, \ldots, D_t, S_0\}$ now form a "partial" blowup of $H[\{v_1, \ldots, v_t, v_{t+1}\}]$, we iteratively construct a nested sequence $S_0 \supseteq S_1 \supseteq \ldots \supseteq S_t$ and subsets $P_1 \subseteq D_1, \ldots, P_t \subseteq D_t$ such that each pair (S_i, P_i) is reasonably full (if $v_{t+1}v_i \in E(H)$) or reasonably empty (if $v_{t+1}v_i \notin E(H)$); then the collection $\{P_1, \ldots, P_t, S_t\}$ will be a sufficiently good blowup of $H[\{v_1, \ldots, v_t, v_{t+1}\}]$ while P_1, \ldots, P_t, S_t are still ε' -restricted (for suitable c, ε', ξ). To execute this process, we need the following useful theorem of Yuejian, Rödl, and Ruciński [15, Theorem 1.3] which allows us to extract decent fullness/emptiness from moderate denseness/sparseness. (We remark that [15, Theorem 1.3] is stated only for balanced bipartite graphs; but the proof there works equally well for unbalanced ones.)

Lemma 13 ([15]). Let $c \in (0, 1)$ and $\varepsilon \in (0, \frac{1}{4})$. Then, for $\gamma = \gamma_{13}(c, \varepsilon) := \frac{1}{2}(2\varepsilon)^{12/c} \in (0, \frac{1}{3})$, the following holds. Let G be a graph with $A, B \subseteq V(G)$ disjoint and nonempty such that G has at least $2\varepsilon |A||B|$ edges between A and B. Then there exist $A' \subseteq A$ and $B \subseteq B'$ with $|A'| \ge \gamma |A|$ and $|B'| \ge \gamma |B|$ such that (A', B') is (c, ε) -full.

Observe that L is nonempty since S is, which implies each D_i is quite large, and so we can take each P_i to have size at least a (small) fraction of D_i yet at most half of D_i simultaneously. Then each L_i is still quite tight to and tiny compared to $D_i \setminus P_i$; and we can move each pair $(D_i \setminus P_i, L_i)$ to the first row.

Now, we want to use Theorem 2 to pull out as many ε -restricted sets as possible from $S \setminus S_t$ (assuming this is nonempty) so that the resulting new "leftover" set L' still has size smaller than a tiny fraction of S_t and of each P_i ; then we can move those new restricted sets to the third row. A potential issue here is that Theorem 2 may not be applicable if $S \setminus S_t$ is not large enough while most of the copies of H in G are "concentrated" on $G[S \setminus S_t]$. This can be avoided, conveniently, by making sure that $|S_0|$ is not too large compared to |S| right in the first place (if $|S| \ge 2$), which will be done by the following simple corollary of Theorem 2 itself (we believe this is well-known, but still include a proof for completeness).

Corollary 14. For every $\varepsilon > 0$ and every graph H, there exist $\delta = \delta_{14}(H, \varepsilon) \in (0, \frac{1}{4})$ and $\kappa = \kappa_{14}(H, \varepsilon) > 0$ such that for every graph G with $\operatorname{ind}(G) \leq \kappa |G|^h$, G has an ε -restricted set T with $|T| = \lceil \delta |G| \rceil$; in particular |T| = 1 if |G| = 1 and $|G \setminus T| \geq \frac{1}{2} |G|$ if $|G| \geq 2$.

The electronic journal of combinatorics $\mathbf{30(3)}$ (2023), $\#\mathrm{P3.22}$

Proof. Let $\delta := \frac{1}{4} \cdot \delta_2(H, \frac{1}{8}\varepsilon)$ and $\kappa := \kappa_2(H, \frac{1}{8}\varepsilon)$. By Theorem 2, G has an $\frac{1}{8}\varepsilon$ -restricted set U with $|U| \ge 2\delta|G|$; in particular U is weakly $\frac{1}{4}\varepsilon$ -restricted. By averaging, there is a weakly $\frac{1}{4}\varepsilon$ -restricted subset U' of U such that $|U'| = \lceil 2\delta|G| \rceil$, and so there is $T \subseteq U'$ with $|T| = \lceil \frac{1}{2} \lceil 2\delta|G| \rceil = \lceil \delta|G| \rceil$ such that T is ε -restricted in G. In particular, if $|G| \le 4$ then |T| = 1; and if |G| > 4 then $|G \setminus T| > |G| - 1 - \delta|G| \ge \frac{3}{4} |G| - \frac{1}{4} |G| = \frac{1}{2} |G|$. This proves Corollary 14.

For $\delta, \eta \in (0, 1)$, let $\phi(\delta, \eta)$ be the least integer $p \ge 1$ with $(1 - \delta)^p \le \eta$; then $\phi(\delta, \eta) \le \delta^{-1} \log \eta$. The next corollary of Theorem 2 formalizes the process of repeatedly pulling out ε -restricted sets from $S \setminus S_t$.

Corollary 15. For every $\varepsilon, \eta \in (0,1)$, for every graph H, and for $\delta := \delta_2(H,\varepsilon) > 0$, there exists $\kappa = \kappa_{15}(H,\varepsilon,\eta) > 0$ such that for every graph G with $\operatorname{ind}(G) \leq \kappa |G|^h$, there is $T \subseteq V(G)$ with $|T| \leq \eta |G|$ such that $G \setminus T$ is $(\phi(\delta,\eta),\varepsilon)$ -restricted.

Proof. Let $\kappa := \eta^h \cdot \kappa_2(H, \varepsilon)$. We may assume $|G| \ge 1$. Let $U_0 := V(G)$; and for $i \ge 0$, as long as U_i is defined and $|U_i| > \eta |G|$, let $U_{i+1} \subseteq U_i$ such that $U_i \setminus U_{i+1}$ is ε -restricted and $|U_i \setminus U_{i+1}| \ge \delta |U_i|$, which is possible by Theorem 2 since

$$\operatorname{ind}(G[U_i]) \leqslant \kappa |G|^h = \kappa_2(H,\varepsilon) \cdot (\eta |G|)^h < \kappa_2(H,\varepsilon) \cdot |U_i|^h.$$

This produces a chain of sets $V(G) = U_0 \supseteq U_1 \supseteq \ldots \supseteq U_n$ for some $p \ge 1$ such that $|U_{i+1}| \le (1-\delta)|U_i| \le (1-\delta)^{i+1}|G|$ and $|U_i| > \eta|G|$ for all $i \in \{0, 1, \ldots, p-1\}$. In particular $\eta|G| < |U_{n-1}| \le (1-\delta)^{n-1}|G|$; thus $p-1 < \phi(\delta, \eta)$ and so $p \le \phi(\delta, \eta)$. Let $T := U_p$; then $\bigcup_{i=1}^p (U_i \setminus U_{i-1})$ is a partition of $V(G) \setminus T$ into p subsets which are ε -restricted in G. This proves Corollary 15.

Now assume we have reached t = h and obtained a decent blowup $\{D_1, \ldots, D_h\}$ of H. Observe that to be able to reach t = h means the "exceptional" set S in each step always had size more than d; so it is not hard to see that each $|D_i|$ is still more than a (tiny) fraction of d. It thus suffices to apply the following, which is a direct corollary of Lemma 8 and is an analogue of the induced counting lemma [2, Lemma 3.2].

Corollary 16. Let $\varepsilon \in (0, \frac{1}{2})$, let H be a graph, and let G be a graph with an $(\varepsilon^h, \varepsilon)$ -blowup $\{D_1, \ldots, D_h\}$ of H. Then there are at least $(1 - \varepsilon)^{h-1} \varepsilon^{\binom{h}{2}} |D_1| \cdots |D_h|$ copies φ of H in G with $\varphi(v_i) \in D_i$ for all $i \in [h]$.

Proof. This follows from Lemma 8 with $\varepsilon_t := \varepsilon$ and $\delta_t := t \cdot \varepsilon^t$ for all $t \in [h-1]$; note that $\delta_t \leq t 2^{-t+1} \varepsilon \leq \varepsilon$ since $\varepsilon \in (0, \frac{1}{2})$.

We are now ready to prove Lemma 12.

Proof of Lemma 12. Let $\xi := \frac{1}{4}\theta$ and $\varepsilon_h := \min(\varepsilon, \xi^h)$. Let $\Gamma_{t,t} = \lambda_{t,t} := 1$; and for $t = h - 1, h - 2, \ldots, 0$ in turn, do the following:

• for $i = t - 1, t - 2, \ldots, 0$ in turn, let $\Gamma_{t,i} := \lambda_{t,i+1} \Gamma_{t,i+1}$ and $\lambda_{t,i} := \gamma_{13}(\frac{1}{3}\varepsilon_{t+1}\Gamma_{t,i+1},\xi)$; and • let $\varepsilon_t := \varepsilon_{t+1} \lambda_{t,0}$.

Now, define

$$\varepsilon' := \min_{t \in \{0,1,\dots,h-1\}} \varepsilon_{t+1} \Gamma_{t,0}, \qquad \delta' := \delta_{14}(H,\varepsilon'),$$
$$\eta' := \frac{1}{2} \eta \delta' \cdot \min_{t \in \{0,1,\dots,h-1\}} \Gamma_{t,0}, \qquad N := \binom{h}{2} + (h-1) \cdot \phi(\delta',\eta')$$

Also, for i = 1, 2, ..., h in turn, do the following:

- let $\Lambda_{i,i} := \delta' \Gamma_{i-1,0}$; and
- for $t = i, i + 1, \dots, h 1$ in turn, let $\Lambda_{t+1,i} := \lambda_{t,i} \Lambda_{t,i}$.

Finally, put

$$\kappa := \min\left((1-\xi)^{h-1} \xi^{\binom{h}{2}} \Lambda_{h,1} \cdots \Lambda_{h,h}, \, \kappa_{14}(H,\varepsilon'), \, 2^{-h} \cdot \kappa_{15}(H,\varepsilon,\eta') \right)$$

For integers $m, n, t \ge 0$ with $t \le h$, an (m, n, t)-partition in G is a partition of V(G) into (not necessarily nonempty) subsets

 $A_1, \ldots, A_m; B_1, \ldots, B_m; C_1, \ldots, C_n; D_1, \ldots, D_t; L$

such that

- $m \leq {t \choose 2}$ and $n \leq t \cdot \phi(\delta', \eta');$
- $A_1, \ldots, A_m, C_1, \ldots, C_n$ are nonempty and ε -restricted;
- for every $i \in [m]$, $|B_i| \leq \eta |A_i|$ and B_i is θ -tight to A_i ;
- $\{D_1, \ldots, D_t\}$ is an (ε_t, ξ) -blowup of $H[\{v_1, \ldots, v_t\}]$; and
- if t > 0, then $|D_i| > \max(\Lambda_{t,i}d, 2\eta^{-1}|L|)$ and D_i is ε_t -restricted for every $i \in [t]$.

For the readers' convenience, let us write such a partition as follows

$$(A_1, B_1), \dots, (A_m, B_m);$$

$$C_1, \dots, C_n;$$

$$D_1, \dots, D_t;$$

$$L.$$

Observe that V(G) itself is a (0, 0, 0)-partition in G. Thus, there is $t \in \{0, 1, \ldots, h\}$ maximal such that there is an (m, n, t)-partition in G. If t = h, then $\{D_1, \ldots, D_h\}$ would be a (ξ^{h-1}, ξ) -blowup of H; so by Corollary 16, G would contain at least

$$(1-\xi)^h \xi^{\binom{h}{2}} |D_1| \cdots |D_h| > (1-\xi)^h \xi^{\binom{h}{2}} \Lambda_{h,1} \cdots \Lambda_{h,h} d^h \ge \kappa d^h \ge \operatorname{ind}(G)$$

The electronic journal of combinatorics 30(3) (2023), #P3.22

copies of H, a contradiction. Thus t < h.

Let S be the set of vertices u in L with the property that for every $i \in [t]$, u has at least $2\xi |D_i|$ neighbors in D_i if $v_{t+1}v_i \in E(H)$ and at least $2\xi |D_i|$ nonneighbors in D_i if $v_{t+1}v_i \notin E(H)$. Then there is a partition $L \setminus S = L_1 \cup \cdots \cup L_t$ such that L_i is 2ξ -tight to D_i for all $i \in [t]$. We shall prove that S satisfies the lemma; and the following crucial claim is the key step.

Claim 17. $|S| \leq d$.

Proof. Suppose that |S| > d; then $|S| \ge 1$. Since $\delta' = \delta_{14}(H, \varepsilon')$ and $\operatorname{ind}(G[S]) \le \kappa d^h < \kappa_{14}(H, \varepsilon') \cdot |S|^h$

by the definitions of δ' and κ , Corollary 14 yields an ε' -restricted subset S_0 of S with $|S_0| = \lceil \delta' |G| \rceil$; in particular $|S_0| = 1$ if |S| = 1 and $|S \setminus S_0| \ge \frac{1}{2}|S| > \frac{1}{2}d$ if $|S| \ge 2$. We shall define a chain of sets $S_0 \supseteq S_1 \supseteq \ldots \supseteq S_t$ together with sets P_1, \ldots, P_t of vertices such that for all $i \in [t]$,

- $|S_i| \ge \lambda_{t,i} |S_{i-1}|;$
- $P_i \subseteq D_i$ and $\lambda_{t,i}|D_i| \leq |P_i| \leq \frac{1}{2}|D_i|$; and
- (S_i, P_i) is $(\varepsilon_{t+1}\Gamma_{t,i}, \xi)$ -full if $v_i v_{t+1} \in E(H)$ and is $(\varepsilon_{t+1}\Gamma_{t,i}, \xi)$ -empty if $v_i v_{t+1} \notin E(H)$.

To this end, assume that for $i \in [t]$, S_{i-1} and P_{i-1} have been defined. Assume $v_i v_{t+1} \in E(H)$ without loss of generality; then by the choice of L, every vertex of $S_{i-1} \subseteq S$ has at least $2\xi|D_i|$ neighbors in D_i . Thus Lemma 13 and the definition of $\lambda_{t,i}$ yield $S_i \subseteq S_{i-1}$ and $D'_i \subseteq D_i$ with $|S_i| \ge \lambda_{t,i}|S_{i-1}|$ and $|D'_i| \ge \lambda_{t,i}|D_i|$ so that (S_i, D'_i) is $(\frac{1}{3}\varepsilon_{t+1}\Gamma_{t,i}, \xi)$ -full. Let $P_i \subseteq D'_i$ with $|P_i| = \min(|D'_i|, \lfloor \frac{1}{2}|D_i| \rfloor)$; then since $\lfloor \frac{1}{2}|D_i| \rfloor \ge \frac{1}{3}|D_i| \ge \lambda_{t,i}|D_i|$ (as $|D_i| > 2\eta^{-1}|S| > 1$), $\max(\lambda_{t,i}|D_i|, \frac{1}{3}|D'_i|) \le |P_i| \le \frac{1}{2}|D_i|$. In particular, (S_i, P_i) is $(\varepsilon_{t+1}\Gamma_{t,i}, \xi)$ -full. This defines S_i and P_i in the case $v_i v_{t+1} \in E(H)$; and similar arguments with $(\frac{1}{3}\varepsilon_{t+1}\Gamma_{t,i}, \xi)$ -full replaced by $(\frac{1}{3}\varepsilon_{t+1}\Gamma_{t,i}, \xi)$ -empty also define S_i and P_i in the case $v_i v_{t+1} \notin E(H)$.

From the above construction, we see that $|S_t| = 1$ if |S| = 1 and $|S \setminus S_t| \ge |S \setminus S_0| > \frac{1}{2}d$ if $|S| \ge 2$. Let $L' := \emptyset$ if the former holds; and if the latter holds, then since

$$\operatorname{ind}(G[S \setminus S_t]) \leqslant \kappa d^h < \kappa_{15}(H, \varepsilon, \eta') \cdot |S \setminus S_t|^h$$

by the definition of κ , Corollary 15 yields $L' \subseteq S \setminus S_t$ with $|L'| \leq \eta' |S \setminus S_t|$ such that $S \setminus (S_t \cup L')$ is $(\phi(\delta', \eta'), \varepsilon)$ -restricted. Thus there is always a subset $L' \subseteq S \setminus S_t$ with $|L'| \leq \eta' |S \setminus S_t|$ such that $S \setminus (S_t \cup L')$ has a partition into nonempty ε -restricted subsets Q_1, \ldots, Q_s for some $s \leq \phi(\delta', \eta')$.

Now, let $P_{t+1} := S_t$; we shall prove that the following partition of V(G)

$$(A_1, B_1), \dots, (A_m, B_m), (D_1 \setminus P_1, L_1), \dots, (D_t \setminus P_t, L_t);$$

 $C_1, \dots, C_n, Q_1, \dots, Q_s;$
 $P_1, \dots, P_t, P_{t+1};$
 L'

The electronic journal of combinatorics 30(3) (2023), #P3.22

is an (m + t, n + s, t + 1)-partition in G, which contradicts the maximality of t. To this end, observe the following.

- Since $m \leq {t \choose 2}$ and $n \leq t \cdot \phi(\delta', \eta')$, we have $m + t \leq {t+1 \choose 2}$ and $n + s \leq (t+1) \cdot \phi(\delta', \eta')$.
- $A_1, \ldots, A_m, C_1, \ldots, C_n, Q_1, \ldots, Q_s$ are nonempty and ε -restricted by definition; and for every $i \in [t], |D_i \setminus P_i| \ge \frac{1}{2}|D_i| > 0$ from the construction of P_i , in particular $D_i \setminus P_i$ is ε -restricted since D_i is ε_t -restricted and $2\varepsilon_t \le \varepsilon$.
- For every $i \in [m]$, $|B_i| \leq \eta |A_i|$ and B_i is θ -tight to A_i by definition; and for every $i \in [t]$, $|L_i| \leq |L| < \frac{1}{2}\eta |D_i| \leq \eta |D_i \setminus P_i|$ and L_i is θ -tight to $D_i \setminus P_i$ since it is 2ξ -tight to D_i while $\xi = \frac{1}{4}\theta$.
- $\{P_1, \ldots, P_t\}$ is an (ε_{t+1}, ξ) -blowup of $H[\{v_1, \ldots, v_t\}]$ since $|P_i| \ge \lambda_{t,i} |D_i| \ge \varepsilon_t \varepsilon_{t+1}^{-1} |D_i|$ for all $i \in [t]$ and $\{D_1, \ldots, D_t\}$ is an (ε_t, ξ) -blowup of $H[\{v_1, \ldots, v_t\}]$. Also, from the above construction, for all $i \in \{0, 1, \ldots, t\}$, we have

$$|P_{t+1}| = |S_t| \ge (\lambda_{t,t}\lambda_{t,t-1}\cdots\lambda_{t,i+1})|S_i| = \Gamma_{t,i}|S_i|;$$

in particular (P_i, P_{t+1}) is (ε_{t+1}, ξ) -full if $v_i v_{t+1} \in E(H)$ and is (ε_{t+1}, ξ) -empty if $v_i v_{t+1} \notin E(H)$. Thus $\{P_1, \ldots, P_t, P_{t+1}\}$ is an (ε_{t+1}, ξ) -blowup of $H[\{v_1, \ldots, v_t, v_{t+1}\}].$

• For every $i \in [t]$, since $\Lambda_{t+1,i} = \lambda_{t,i}\Lambda_{t,i}$, $|L'| \leq \eta'|S \setminus S_t| < \eta'|S| \leq \eta'|L|$ as $|S_t| > 0$, and $\eta' \leq \Gamma_{t,0} < \lambda_{t,i}$ by the definition of η' , we have

$$|P_i| \ge \lambda_{t,i} |D_i| > \lambda_{t,i} \max(\Lambda_{t,i}d, 2\eta^{-1}|L|)$$

$$\ge \max(\Lambda_{t+1,i}d, 2\eta^{-1}\lambda_{t,i}(\eta')^{-1}|L'|) \ge \max(\Lambda_{t+1,i}d, 2\eta^{-1}|L'|);$$

and since $\Lambda_{t+1,t+1} = \delta' \Gamma_{t,0}$ and $\eta' \leq \frac{1}{2} \eta \delta' \Gamma_{t,0}$ by definition, we deduce that

$$|P_{t+1}| = |S_t| \ge \Gamma_{t,0}|S_0| \ge \Gamma_{t,0}\delta'|S| > \max(\Lambda_{t+1,t+1}d, \Gamma_{t,0}\delta'(\eta')^{-1}|L'|) \ge \max(\Lambda_{t+1,t+1}d, 2\eta^{-1}|L'|).$$

Also, for every $i \in [t]$, P_i is ε_{t+1} -restricted since D_i is ε_t -restricted; and $P_{t+1} = S_t$ is ε_{t+1} -restricted since S_0 is ε' -restricted and $\varepsilon' \leq \varepsilon_{t+1}\Gamma_{t,0}$ by the definition of ε' .

This proves Claim 17.

Now, recall that $V(G) \setminus S$ is partitioned into (possibly empty) subsets

$$A_1, \ldots, A_m; B_1, \ldots, B_m; C_1, \ldots, C_n; D_1, \ldots, D_t; L_1, \ldots, L_t$$

such that

- $m \leq {t \choose 2}$ and $n \leq t \cdot \phi(\delta', \eta');$
- $A_1, \ldots, A_m, C_1, \ldots, C_n$ are nonempty and ε -restricted;

The electronic journal of combinatorics 30(3) (2023), #P3.22

- for every $i \in [m]$, $|B_i| \leq \eta |A_i|$ and B_i is θ -tight to A_i ; and
- if t > 0, then for every $i \in [t]$, $|D_i| > 2\eta^{-1}|L_i| \ge \eta^{-1}|L_i|$, D_i is ε -restricted (since it is ε_t -restricted), and L_i is θ -tight to D_i .

By renumbering the above sets if necessary, we may assume there exist $q \in \{0, 1, ..., m\}$ and $r \in \{0, 1, ..., t\}$ such that $B_i \neq \emptyset$ for all $i \in [q]$ and $B_i = \emptyset$ for all $i \in [m] \setminus [q]$, and $L_i \neq \emptyset$ for all $i \in [r]$ and $L_i = \emptyset$ for all $i \in [t] \setminus [r]$. Then the following partition of V(G)

 $A_1, \ldots, A_q, D_1, \ldots, D_r; B_1, \ldots, B_q, L_1, \ldots, L_r; A_{q+1}, \ldots, A_m, D_{r+1}, \ldots, D_t, C_1, \ldots, C_n$

has the desired property, because $q + r \leq m + t \leq {t \choose 2} + t = {t+1 \choose 2} \leq {h \choose 2}$, and

$$(m-q) + (t-r) + n \leqslant \binom{t}{2} + t + t \cdot \phi(\delta', \eta') \leqslant \binom{h}{2} + (h-1) \cdot \phi(\delta', \eta') = N.$$

This proves Lemma 12.

We remark that, according to [15, Theorem 1.4], the choice $\gamma_{13}(c,\varepsilon) = \frac{1}{2}(2\varepsilon)^{12/c}$ is optimal up to a constant factor in the exponent. This choice leads to bounds on $\kappa_{12}^{-1}(H,\varepsilon,\eta,\theta)$ and $N_{12}(H,\varepsilon,\eta,\theta)$ which are towers of twos of height depending on h with $(\varepsilon\eta\theta)^{-1}$ on top, which results in the tower-type dependence of $\kappa_7^{-1}(H,\varepsilon)$ and $N_7(H,\varepsilon)$ on ε^{-1} and h mentioned in the introduction.

4 Finishing the proof

With Lemma 12 in hand, it now suffices to make obvious changes to [5, Section 3] to complete the proof of Theorem 7. For $\varepsilon > 0$, an integer $k \ge 0$, and a graph G, a (k, ε) -path-partition of G is a sequence (W_0, W_1, \ldots, W_k) of disjoint nonempty sets with union V(G) such that for every $i \in \{0, 1, \ldots, k-1\}$,

- W_i is ε -restricted in G;
- $|W_i| \ge 12|W_k|$; and
- $W_{i+1} \cup \cdots \cup W_k$ is $\frac{1}{12}\varepsilon$ -tight to W_i .

We need the following result from [5, Theorem 3.3].

Lemma 18 ([5]). For all $\varepsilon \in (0, \frac{1}{3})$, every graph with a $(\lceil 4\varepsilon^{-1} \rceil, \frac{1}{4}\varepsilon)$ -path-partition is $(2400\varepsilon^{-2}, \varepsilon)$ -restricted.

The following lemma allows us to "lengthen" a given path-partition of length less than $\lceil 4\varepsilon^{-1} \rceil$ by one, at the cost of removing a small number of vertices.

Lemma 19. Let $\varepsilon \in (0, \frac{1}{3})$ and $K := \lfloor 4\varepsilon^{-1} \rfloor$. Let H be a graph with $h := |H| \ge 2$. Let

$$\varepsilon' := h^{-2K}\varepsilon, \qquad \eta := h^{-2}, \qquad \theta := \frac{1}{12}h^{-2K}\varepsilon,$$

$$\kappa = \kappa_{19}(H,\varepsilon) := h^{-2Kh} \cdot \kappa_{12}(H,\varepsilon',\eta,\theta), \qquad N = N_{19}(H,\varepsilon) := N_{12}(H,\varepsilon',\eta,\theta).$$

Let k be an integer with $0 \leq k \leq K$. Let $d \geq 0$, and let G be a graph with $\operatorname{ind}(G) \leq \kappa d^h$ such that G has a $(k, h^{2(k-K)}\varepsilon)$ -path-partition (W_0, W_1, \ldots, W_k) . Then there is a set $S \subseteq V(G)$ with $|S| \leq h^{-2k}d$ such that $G \setminus S$ is $(h^{2(K-k)}(2400\varepsilon^{-2} + N) - N, \varepsilon)$ -restricted.

Proof. We proceed by backward induction on k. If k = K then the conclusion follows by Lemma 18. We may assume that k < K and that the lemma holds for k + 1. Since

$$\operatorname{ind}(G[W_k]) \leqslant \kappa d^h \leqslant \kappa_{12}(H, \varepsilon', \eta, \theta) \cdot (h^{-2(k+1)}d)^h,$$

by Lemma 12 applied to $G[W_k]$ with d replaced by $h^{-2(k+1)}d$, there is $T \subseteq W_k$ with $|T| \leq h^{-2(k+1)}d$ such that $W_k \setminus T$ can be partitioned into nonempty sets

$$A_1,\ldots,A_m,B_1,\ldots,B_m,C_1,\ldots,C_n$$

where $m \leq \binom{h}{2}$ and $n \leq N$, such that

- $A_1, \ldots, A_m, C_1, \ldots, C_n$ are ε' -restricted in G; and
- for every $i \in [m]$, $|B_i| \leq \eta |A_i|$ and B_i is θ -tight to A_i .

If m = 0 then $G \setminus T$ is $(k + N, \varepsilon)$ -restricted and we are done (note that $h \ge 2$ and $k \le 4\varepsilon^{-2}$); thus we may assume $m \ge 1$. It follows that $|W_k| \ge |A_1| \ge \eta^{-1}|B_1| \ge h^2 \ge 2m$, and so $|W_i| \ge 12|W_k| \ge 24m$ for all $i \in \{0, 1, \dots, k-1\}$. Thus for each such i, W_i has a partition $W_i^1 \cup \cdots \cup W_i^m$ with $|W_i^j| \ge \lfloor \frac{1}{m} |W_i| \rfloor \ge \frac{1}{2m} |W_i| \ge h^{-2} |W_i|$ for all $j \in [m]$. Let $U_j := \bigcup_{i=0}^{k-1} W_i^j \cup (A_j \cup B_j)$ for every $j \in [m]$.

Claim 20. For all $j \in [m]$, $(W_0^j, W_1^j, \ldots, W_{k-1}^j, A_j, B_j)$ is a $(k + 1, h^{2(k+1-K)}\varepsilon)$ -pathpartition of $G[U_j]$.

Proof. It suffices to observe the following.

- A_j is $h^{2(k+1-K)}\varepsilon$ -restricted since it is ε' -restricted and $\varepsilon' = h^{-2K}\varepsilon$; and also, for each $i \in \{0, 1, \dots, k-1\}, W_i^j$ is $h^{2(k+1-K)}\varepsilon$ -restricted since W_i is $h^{2(k-K)}\varepsilon$ -restricted and $|W_i^j| \ge h^{-2}|W_i|$.
- For every $i \in \{0, 1, ..., k-1\}$, since $12|W_k| \leq |W_i| \leq h^2|W_i^j|$, we have

$$12|B_j| \leq 12\eta |A_j| \leq \min(12h^{-2}|W_k|, |A_j|) \leq \min(|W_i^j|, |A_j|)$$

• B_j is $\frac{1}{12}h^{2(k+1-K)}\varepsilon$ -tight to A_j by the definition of θ ; and also, for every $i \in \{0, 1, \ldots, k-1\}, (W_{i+1}^j \cup \cdots \cup W_{k-1}^j) \cup (A_j \cup B_j)$ is $\frac{1}{12}h^{2(k+1-K)}\varepsilon$ -tight to W_i^j since $W_{i+1} \cup \cdots \cup W_k$ is $\frac{1}{12}h^{2(k-K)}\varepsilon$ -tight to W_i and $|W_i^j| \ge h^{-2}|W_i|$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(3) (2023), #P3.22

This proves Claim 20.

By Claim 20 and induction, for each $j \in [m]$, there is a set $S_j \subseteq U_j$ with $|S_j| \leq h^{-2(k+1)}d$ such that $G[U_j \setminus S_j]$ is $(h^{2(K-k-1)}(2400\varepsilon^{-2} + N) - N, \varepsilon)$ -restricted. Put $S := \bigcup_{j \in [m]} S_j \cup T$; then $|S| \leq (m+1)h^{-2(k+1)}d \leq h^{-2k}d$ as $h \geq 2$, and since

$$m \cdot (h^{2(K-k-1)}(2400\varepsilon^{-2}+N) - N) + n \leqslant h^2 \cdot (h^{2(K-k-1)}(2400\varepsilon^{-2}+N) - N) + N \\ \leqslant h^{2(K-k)}(2400\varepsilon^{-2}+N) - N,$$

we see that $G \setminus S$ is $(h^{2(K-k)}(2400\varepsilon^{-2}+N)-N,\varepsilon)$ -restricted. This proves Lemma 19.

We are now ready to finish the proof of Theorem 7, which we restate here for the reader's convenience.

Theorem 21. For every $\varepsilon > 0$ and every graph H, there exist $\kappa = \kappa(H, \varepsilon) > 0$ and $N = N(H, \varepsilon) > 0$ such that for every $d \ge 0$ and every graph G with $ind(G) \le \kappa d^h$, there is a set $S \subseteq V(G)$ with $|S| \le d$ such that $G \setminus S$ is (N, ε) -restricted.

Proof. We may assume $h \ge 2$. Let $\kappa := \kappa_{19}(H, \varepsilon)$ and $N := h^{2K}(2400\varepsilon^{-2} + N_{19}(H, \varepsilon))$. Then Theorem 21 follows from Lemma 19 applied to the $(0, h^{-2K}\varepsilon)$ -partition V(G) of G.

Acknowledgements

We would like to thank Alex Scott and Paul Seymour for stimulating discussions. We are also grateful to the anonymous referees for helpful comments, in particular to a referee who informed us about [15]. This work was partially supported by AFOSR grants A9550-10-1-0187 and FA9550-22-1-0234, and NSF grant DMS-2154169.

References

- N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster. The algorithmic aspects of the regularity lemma. J. Algorithms, 16(1):80–109, 1994.
- [2] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs. *Combinatorica*, 20(4):451–476, 2000.
- [3] M. Bucić, T. Nguyen, A. Scott, and P. Seymour. Induced subgraph density. I. A loglog step towards Erdős-Hajnal, *preprint*, arXiv:2301.10147, 2023.
- [4] M. Chudnovsky. The Erdős-Hajnal conjecture—a survey. J. Graph Theory, 75(2):178–190, 2014.
- [5] M. Chudnovsky, A. Scott, P. Seymour, and S. Spirkl. Strengthening Rödl's theorem, preprint, arXiv:2105.07370, 2021.
- [6] M. Chudnovsky, A. Scott, P. Seymour, and S. Spirkl. Erdős-Hajnal for graphs with no 5-hole. Proc. Lond. Math. Soc. (3), 126(3):997–1014, 2023.

- [7] P. Erdős and A. Hajnal. On spanned subgraphs of graphs. In Contributions to graph theory and its applications (Internat. Colloq., Oberhof, 1977) (German), pages 80–96. Tech. Hochschule Ilmenau, Ilmenau, 1977.
- [8] P. Erdős and A. Hajnal. Ramsey-type theorems. volume 25, pages 37–52. 1989. Combinatorics and complexity (Chicago, IL, 1987).
- [9] J. Fox, T. Nguyen, A. Scott, and P. Seymour. Induced subgraph density. II. Sparse and dense sets in cographs, *preprint*, arXiv:2307.00801, 2023.
- [10] J. Fox and B. Sudakov. Induced Ramsey-type theorems. Adv. Math., 219(6):1771– 1800, 2008.
- [11] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., 58:13–30, 1963.
- [12] T. Nguyen, A. Scott, and P. Seymour. Induced subgraph density. III. The pentagon and the bull, *preprint*, arXiv:2307.06379, 2023.
- [13] T. Nguyen, A. Scott, and P. Seymour. Induced subgraph density. IV. New graphs with the Erdős–Hajnal property, *preprint*, arXiv:2307.06455, 2023.
- [14] V. Nikiforov. Edge distribution of graphs with few copies of a given graph. Combin. Probab. Comput., 15(6):895–902, 2006.
- [15] Y. Peng, V. Rödl, and A. Ruciński. Holes in graphs. *Electron. J. Combin.*, 9(1):#R1, 18, 2002.
- [16] V. Rödl. On universality of graphs with uniformly distributed edges. Discrete Math., 59(1-2):125–134, 1986.
- [17] S. Sapir and A. Shapira. The induced removal lemma in sparse graphs. Combin. Probab. Comput., 29(1):153–162, 2020.