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Abstract

Fix € > 0 and a graph H with at least one vertex. A well-known theorem of
R6dl from the 80s says that every graph G with no induced copy of H contains
a linear-sized e-restricted set S C V(G), which means S induces a subgraph with
maximum degree at most £|S| in G or its complement. There are two extensions of
this result:

e quantitatively, Nikiforov relaxed the condition “no induced copy of H” to “at
most k|G UH | induced copies of H for some k > 0 depending on H and e;” and

e qualitatively, Chudnovsky, Scott, Seymour, and Spirkl recently showed that
there exists N > 0 depending on H and ¢ such that G is (N, €)-restricted, which
means V(G) has a partition into at most N subsets that are e-restricted.

A natural common generalization of these two asserts that every graph G with
at most |G|/l induced copies of H is (N, e)-restricted for some x, N > 0 depending
on H and e. This is unfortunately false; but we prove that for every € > 0, xk and NV
still exist so that for every d > 0, every graph G with at most xd/ ! induced copies
of H has an (N,¢)-restricted induced subgraph on at least |G| — d vertices. This
unifies the two aforementioned theorems, and is optimal up to x and N for every
value of d.

Mathematics Subject Classifications: 05C35, 05C42, 05C69

1 Introduction

Graphs in this paper are finite and simple. For a graph G with vertex set V(G) and
edge set E(G), let |G| := |V(G)|, and let G denote its complement. For S C V(G),
let G[S] denote the subgraph of G induced by S, and let G \ S := G[V(G) \ S]. For a
nonnull graph H, a copy of H in G is a graph isomorphism from H to G[S] for some
S C V(G). Let indy(G) be the number of copies of H in G; and say that G is H-free if

indy(G) = 0. Given € > 0, a subset S C V(G) is e-restricted in G if one of G[S], G[S] has
maximum degree at most €|S|. The following well-known theorem of Rodl [16] from 1986
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has become a standard tool in the investigation of the Erdés—Hajnal conjecture! [8, 7]
(see [4] for a survey).

Theorem 1 ([16]). For every e > 0 and every graph H, there exists 6 = 6(H,e) > 0 such
that for every H-free graph G, there is an e-restricted S C V(G) in G with |S| = §|G]|.

Since its inception, Theorem 1 has found many extensions. Among these is the fol-
lowing useful quantitative improvement first proved by Nikiforov [14] (see [6, 12, 13] for
several applications).

Theorem 2 ([14]). For every € > 0 and every graph H, there exist § = 0o(H,e) > 0
and k = ky(H,e) > 0 such that for every graph G with indy(G) < s|G|H!, there is an
e-restricted S C V(G) in G with |S| = §|G|.

Ro6dl’s original proof of Theorem 1 and Nikiforov’s proof of Theorem 2 (we remark
that Theorem 2 is already implicit in [16]) both employ the regularity lemma, and so
give bounds on §~! and x~! which are towers of twos of height polynomial in ¢! with
constants depending on H. Fox and Sudakov [10] offered an alternative proof of Theo-
rem 2 showing that both ¢ and x can be chosen as 2-clog’(e™") for some constant ¢ > 0
depending on H; and very recently Buci¢, Nguyen, Scott, and Seymour [3] improved this
to 2-¢los®(e™")/logloa(=™") ) [12], it is conjectured that both & and & can in fact be taken
to be a polynomial of £ in Theorem 2, which would imply the Erdés-Hajnal conjecture
itself (see [9, 12, 13] for current progress on this topic).

Recently, Chudnovsky, Scott, Seymour, and Spirkl [5] provided a qualitative refine-
ment of Theorem 1, which says that the vertex set of every H-free graph can even be
partitioned into a bounded number of e-restricted subsets. Formally, for e, N > 0, a
graph G is (N, e)-restricted if there is a partition of V(@) into at most /N subsets that are
e-restricted in G; thus G is (N, )-restricted if and only if G is.

Theorem 3 ([5]). For every ¢ > 0 and every graph H, there exists N = N(H,c) > 0
such that every H-free graph is (N, e)-restricted.

The edge density of a graph G equals |E(G)\/(|§[) if |G| > 2 and equals 0if |G| < 1. For
e >0, asubset S C V(G) is weakly e-restricted in G if one of G[S], G[S] has edge density
at most . Thus if S is %E—restricted in G then it is weakly e-restricted; and if S is weakly
Te-restricted in G then it has an e-restricted subset of size []S|]. Hence the strength of
Theorems 1 and 2 remain unaffected if “c-restricted” is replaced by “weakly e-restricted.”
As discussed in [5], however, Theorem 3 becomes significantly weaker if “(N, ¢)-restricted”
is replaced by “weakly (N, e)-restricted,” which means V(G) has a partition into at most
N subsets that are weakly e-restricted in G. Indeed, repeated applications of Theorem 2
yield the following result proved in [14].

Theorem 4 ([14]). For every € > 0 and every graph H, there exist k = k(H,e) > 0
and N = N(H,¢) > 0 such that every graph G with indy(G) < k|G| is weakly (N, ¢)-
restricted.

IThe very last sentence of [7] was actually the first time Erddés and Hajnal formally stated their well-
known conjecture.
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(As shown in [14, 10], with more care one can even take the corresponding weakly
e-restricted sets to have size differences at most 1 in this result.) It thus would be natural
(and quite tempting) to conjecture the following, which would have unified Theorems 2
and 3 and strengthened Theorem 4 considerably.

Conjecture 5 (false). For every ¢ > 0 and every graph H, there exist N = N(H,e) >0
and x = k(H,e) > 0 such that every graph G with indy(G) < x|G|H! is (N, ¢)-restricted.

Unfortunately, the following proposition? refutes this conjecture in a strong sense.

Proposition 6. Let N > 1. Then for all integers m,n with n > m > 20N?, every
e € (0, %8), and every graph H with h .= |H| > 2, there is a graph on n vertices which has
at most hmn"~1 copies of H and is not (N,¢)-restricted. In particular, for every k > 0
and every integer n > 20k~ 'hN?, there is a graph on n vertices which has at most kn"
copies of H and is not (N, e)-restricted.

Proof. In what follows, A(G) denotes the maximum degree of a graph G. By taking
complements if necessary, we may assume H is connected, and so H has at least one edge
as h > 2.

Let F' be a random graph on m > 20N? vertices where each edge appears inde-
pendently with probability 1. For every T C V(F) with |T| > +m, since 6e < 3,
Hoeffding’s inequality [11] implies that T is weakly 6Ge-restricted in F' with probablity
at most 2exp(—= (")) < 2exp(—g=m?); and so, since 2™ - 2 exp(—g5emm?) < 1 (as
m > 20N?), there is a choice of F' with no weakly Ge-restricted set of size at least %m.
Consequently F' has no 3e-restricted subset of size at least %m.

Now, fix such an F'; and for every n > m, let G be a graph obtained from F' by adding
n —m isolated vertices and making each of them adjacent to every vertex in V(F'). Since
H has at least one edge, every copy of H in G has at least one image vertex in V' (F); thus
b h
. i h—i h h i—1 h—i h—1
1ndH(G)§Z<i>m(n m)"  =n"—(n—m) —mZn (n—m)"" < hmn"".

=1 i=1

It thus remains to show that G is not (N, e)-restricted. Suppose not; and let A; U
-+ U Ay be a partition of V(G) for some k < N such that A; is e-restricted for all
i€ {1,2,...,k}. Then Ule(AZ- NV(F)) is a partition of V(F'), and so we may assume
T := Ay NV(F) has size at least %m. Thus T is not 3e-restricted in F; hence S :=
Ay \ V(F) is nonempty. It follows that

A(GA]) = [S|+ A(F[T]) > ] S|+ 3¢[T| > e(|S] + [T]) = el A,
A(G[Ay]) = max(|S| — 1, A(F[T])) > max(|S| — 1,3¢|T) > e(|S| + |T]) = e|Aul.

Therefore A; is not e-restricted in GG, a contradiction. This proves Proposition 6. ]

2We remark that Alex Scott (personal communication) independently discovered similar counterexam-
ples.
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The graphs constructed in Proposition 6 suggest that an “exceptional” set of vertices
should necessarily be removed in order for the remaining vertices to admit a partition
into a bounded number of e-restricted pieces. Our main theorem shows that this is also
sufficient.

Theorem 7. For every ¢ > 0 and every graph H, there exist k = k7(H,e) > 0 and
N = N;(H,¢) > 0 such that for every d > 0 and every graph G with indy (G) < kd®/,
there is a set S C V(G) with |S| < d such that G\S is (N, e)-restricted; equivalently, G can
be made (N, €)-restricted by removing at most C -ind g (G)Y1H vertices where C = k=411,

We would like to make three remarks. First, Theorem 3 is a special case of Theorem 7
with d = 0; and taking d = ¢|G| in Theorem 7 yields Theorem 2. Thus Theorem 7 can be
viewed as a remedy for the false Conjecture 5; and the counterexamples in Proposition 6
(with suitable choices of m,n depending on d and more isolated vertices added) show that
Theorem 7 is optimal up to k and N for any given value of d.

Second, Theorem 7 is related to the induced removal lemma [1, 17] which also implies
Theorem 2. Here, we are dealing with the property of being (N, ¢e)-restricted which
is weaker than H-freeness (by Theorem 3) and not closed under the induced subgraph
relation. But the trade-off is worth considering: removing only a handful of vertices
instead of adding/deleting edges; and working well for all graphs, including those with
subquadratic number of edges and only few copies of H.

Third, our proof of Theorem 7 generalizes the proof of Theorem 3 given in [5], demon-
strating that the argument there can be extended to graphs with a bounded number of
copies of H (at the cost of removing a small number of vertices). The resulting bounds
on k7 '(H,¢) and N;(H,¢), as a result, are better than what the regularity lemma could
provide (but still huge functions, namely towers of twos of height depending solely on |H |
with €71 on top). It would be interesting to prove Theorem 7 with bounds on x~! and N
similar to the bounds obtained in [10] or even in [3].

In what follows, for an integer k£ > 0, let [k] denote {1,2,...,k} if &k > 1 and 0 if
k = 0. The vertex set of H will always be {vy,...,v,} for some h > 1; and we drop the
subscript H from the notation indy.

2 A slight digression

This section provides a short and self-contained proof of Theorem 2 without using the reg-
ularity lemma, which will be used frequently in the proof of Theorem 7. The presentation
here mostly follows [10].

For € > 0, a graph G, and disjoint subsets A, B of V(G), B is e-sparse to A in G if
every vertex in B is adjacent to fewer than | A| vertices of A in G, and e-dense to A in G
if it is e-sparse to A in G. Say that B is e-tight to A if it is either e-sparse or e-dense to A.
The following lemma implicitly appears in [10, Lemma 4.1], which in turn generalizes an
old result of Erdds and Hajnal [8, Theorem 1.5]. This result will also be useful later on.
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Lemma 8. Let H be a graph, and let eq,...,ep-1,01,...,0n_1 € (0,1). Let G be a graph,
and let Dy, ..., Dy be disjoint nonempty subsets of V(G) such that for all indices i, j with
1< < j h, there do not exist A C D; and B C D; with |A| > H?:_jl et - |Di| and
|B| > h ", - |D;| satisfying B is e;-sparse to A if vw; € E(H) and e;-dense to A
if viv; g_f E( ) Then there are at least thl( — &)t Hi:1|Dl| copies p of H in G with
o(v;) € D; for alli € [h].

Proof. Induction on A > 1. We may assume that h > 2. For ¢ € [h — 1], let P, be the
set of vertices in D, with fewer than e, 1|D;| neighbors in D; if v;v, € E(H) and the
set of vertices in Dj, with fewer than e, 1|D;| nonneighbors in D; if v;u, ¢ E(H). By
the hypothesis, |P;| < =Dy for all i € [h—1]. Let D = Dy \ (Uep_y Pi); then
1Dyl = (1 = 0n-1)| Dhl-

Now, for each u € D} and i € [h — 1], let D¥ be the set neighbors of u in D; if
v;vp, € E(H) and the set of nonneighbors of w in D; if v;u, ¢ E(H); then |D¥| > e,—1|D;|
for all ¢ € [h — 1]. Thus for all indices i,j with 1 < < j < h — 1, there do not exist
AC DY and B C DY with |A| > [[}"7e, - |D¥| and |B| > "?e,-|DY| such that B
is €;-sparse to A if v;v; € E(H) and ¢j-dense to A if v;v; ¢ E( ). So by induction, there
are at least [['=2(1 — &,)e! - T/ | D¥| copies @, of H\ vy, in G\ Dy, with @, (v;) € D¥ for
all 7 € [h — 1]. Summing up over all u € Dj, we deduce that there are at least

i o) o) )

ueD; \t=1 t=1
- h
H — &)zt - 1Dl
=1 i=1
copies ¢ of H in G such that ¢(v;) € D; for all ¢ € [h]. This proves Lemma 8. [

Corollary 9. Let € € (0,1), let H be a graph, and let k = ko(H,¢) := (4h)_hs(;). Then
every G with ind(G) < k|G|" contains disjoint A, B C V(G) with |Al,|B| > (2h) 2" 1G]
such that B is e-tight to A.

Proof. We may assume |G| > h. Let Dy, ..., D, be disjoint subsets of V(G) each of size
|+|G|]); then |Dy| > 5-|G| for all ¢ € [A]. Tt suffices to apply Lemma 8 with &, = ¢ and
5t 5 for all t € [n]. |

For €1,e9,k > 0 and a graph H, let S(H, k,e1,e5) be the largest constant 5 with
0 < 8 < 1 such that every graph G with ind(G) < x|G|" has an induced subgraph with
at least B|G| vertices and edge density at most £, or at least 1 — eo; then S(H, K, e1,¢€2) is
decreasing in k and S(H, k,e1,e2) = 1 for all K > 0 whenever 1 +¢5 > 1 (and so whenever
g189 > 1). We need the following lemma.

Lemma 10. Lete1,e5 > 0, let H be a graph, and let n := nio(H, e1,2) == 5(2h)2(3¢)"
where € = min(ey, 9). Then for every k with 0 < k < Kko(H, }15), we have

B(H, k,e1,e2) = n-min(B(H,n "k, 2e1,82), B(H,n "k, e1, 3e3)).
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Proof. Let 8y := B(H,n "k, 3e1,e5), Bo := B(H,n "k, €1, 3€5), and fy := 1 - min(B, fs).
Let G be a graph with ind(G) < k|G|"; we need to show there is a set S C V(G) with
|S| = Bo|G| such that G[S] has edge density at most &; or at least 1 — 5. By Corollary 9,
G has disjoint subsets A, B C V(G) with |A|, |B| > 25|G| such that B is fe-tight to A;
and we may assume B is je-sparse to A.

Because ind(G[B]) < k|G|" < n~"k|B|", by the definition of 3 and by averaging, there
exists By C B with |B;| = [/1n|G|] = Bo|G| such that G[B;] has edge density at most
%el or at least 1 — e5. If the latter holds then we are done, so we may assume the former
holds.

Let Ap be the set of vertices in A each with at most ie|B;| neighbors in B. Since
G has fewer than e|A||B;| edges between A and By, we have |Ag| > 3|A| > n|G|. Thus
ind(G[Ap]) < n7"k|Ap|", and so by the definition of 3 and by averaging, there exists
Ay C Ag with [Ay| = [B19|G]] = Bo|G| such that G[A;] has edge density at most 3e; or
at least 1 — e5. Again, we may assume the former holds.

Now, let S := A; U By; then |S| = 2|Ay| = 2|By| = 25y|G|. Since G[A1], G[B1] each
have edge density at most 3¢, and G has at most 3¢|A;||Bi| edges between A; and By,
we deduce that

IBGIS)] < |B@IAD] + [BGIB)] + el 41|

3 A 3 B 1
< §€1<| 1|) + 551<| 21|> + §5I‘A1||Bl|

Therefore S has the desired property. This proves Lemma 10. [ |

We are now give a proof of Theorem 2 in the following equivalent form, which leads
to the dependence of 2(H,¢) and ky(H,€) on € and h as mentioned in the introduction.

Theorem 11. For every € > 0 and every graph H, there exist § = 6(H,e) > 0 and
k = k(H,e) > 0 such that every graph G with ind(G) < k|G|" contains a weakly e-
restricted set of size at least §|G)|.

Proof. Let s := Hog%(a_zﬂ, n = mo(H,e,€), 6 :==n*, and K := " - ky(H, 1¢). Note
that n19(H, -,-) is decreasing in each of the last two components. Thus, since 8(H,-, )
is decreasing in the second component and equals 1 whenever the last two components
have product at least 1, applying Lemma 10 for s times yields (H, k,e,e) = n®* = §. This
proves Theorem 11. [ ]
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3 Key lemma

This section introduces and proves our key lemma, the following.

Lemma 12. For all £,71,0 € (0, %) and every graph H, there are k = k12(H,e,n,0) > 0
and N = Nyo(H,e,n,0) > 0 with the following property. For every d = 0 and every graph
G with ind(G) < kd", there is a set S C V(G) with |S| < d such that V(G)\ S can be

partitioned into nonempty sets
Al,...,Am; Bl,...,Bm; C’l,...,C’n

where m < (g) and n < N, such that

o Ay,... A, CL,...,C, are e-restricted in G; and
o for every i € [m], |B;| < n|Ai| and B; is 0-tight to A,.

This contains [5, Theorem 1.5] as a special case with d = 0, and already gives The-
orem 2 with ¢ = n = 0 and d = ¢|G|. We shall employ the same approach as in |5,
Section 2], and recommend reading the detailed sketch there first. Here we explain the
modifications.

We recall some definitions. For ¢,e > 0 and a graph G, a pair (A, B) of disjoint
nonempty subsets of V(G) is (¢,e)-full in G if for every Ay C A and B; C B with
|A1| > c|A| and |B;| > ¢|B|, G has at least €| A;||B;| edges between Ay, By; and (A, B)
is (c,e)-empty in G if it is (c,e)-full in G. Thus for every ¢ > ¢ and every A’ C A and
B' C Bwith |A'| > d|A| and |B'| > ¢|B|, (A, B') is (¢/,e)-full if (A, B) is (¢, €)-full and
is (¢/d,e)-empty if (A, B) is (¢, e)-empty. A collection {Dy, ..., Dy} of disjoint nonempty
subsets of V(G) is a (c, €)-blowup of H if for all distinct 4,5 € [h], (D;, D;) is (c,e)-full if
viv; € E(H) and is (¢, e)-empty if vv; ¢ E(H).

In proving Lemma 12, we shall be concerned with partitions of V(G) into “rows” of
subsets and pairs of subsets as follows:

e first row: pairs (A1, By),...,(Am, By) for some m > 0 such that for all i € [m], A;
is e-restricted, B; is very tight to A; and has size smaller than a tiny fraction of A;
(B; might be empty);

e second row: e-restricted nomempty sets C, ..., C, for some n > 0;

e third row: &'-restricted nonempty sets Di, ..., D; for some ¢t with 0 < ¢t < h, such
that {Dy,..., D} is a (¢, €)-blowup of H[{vy,...,v;}] for some appropriately chosen
¢, e’ € > 0; and

o fourth row: the set L of “leftover” vertices such that whenever ¢ > 0, L has size
smaller than a tiny fraction of each D;.
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Such a partition certainly exists, with m =n =t =0 and L = V(G). Starting from
t = 0 with this partition, we shall attempt to increase t one by one for at most h steps. Let
S be the set of vertices in L with the “correct adjacencies” to the collection { Dy, ..., D},
that is, those having at least a small fraction of neighbors in D; if v, y1v; € F(H) and
at least a small fraction of nonneighbors in D; if v,1v; ¢ E(H). Then L\ S can be
partitioned into (possibly empty) sets Ly, ..., L; such that L; is (very) tight to D, for
every i € [t]. As the notation suggests, if |S| < d then we stop the iteration and rearrange
the sets Ay,..., A, B1,..., B, C1,...,Cy, Dy,...,Dy, Ly,...,L; to form a partition of
V(G) \ S with the desired property (this is not hard, and the bounds on m and n will
come up later).

So let us assume |S| > d. We can then apply Theorem 2 to find an &'-restricted

subset Sy of S. Keeping in mind that {D;, ..., Dy, So} now form a “partial” blowup of
H[{v1,...,v,v441}], we iteratively construct a nested sequence Sp 2 S; 2 ... 2 S; and
subsets P, C Ds,..., P, C D, such that each pair (S;, P;) is reasonably full (if v, qv; €
E(H)) or reasonably empty (if v;1v; ¢ E(H)); then the collection { Py, ..., P;, S;} will be
a sufficiently good blowup of H[{vy, ..., v, v;51}] while Py, ..., P, S; are still €’-restricted
(for suitable ¢,£’,£). To execute this process, we need the following useful theorem of
Yuejian, Rodl, and Rucinski [15, Theorem 1.3] which allows us to extract decent full-
ness/emptiness from moderate denseness/sparseness. (We remark that [15, Theorem 1.3]
is stated only for balanced bipartite graphs; but the proof there works equally well for
unbalanced ones.)
Lemma 13 ([15]). Let ¢ € (0,1) and ¢ € (0,). Then, for v = ms(c,e) := 1(26)*° €
(0, %), the following holds. Let G be a graph with A, B C V(G) disjoint and nonempty
such that G has at least 2¢|A||B| edges between A and B. Then there exist A C A and
B C B with |A'| = v|A| and |B’'| = v|B| such that (A’, B') is (c, €)-full.

Observe that L is nonempty since S is, which implies each D; is quite large, and so
we can take each P; to have size at least a (small) fraction of D; yet at most half of D,
simultaneously. Then each L; is still quite tight to and tiny compared to D; \ P;; and we
can move each pair (D; \ P;, L;) to the first row.

Now, we want to use Theorem 2 to pull out as many e-restricted sets as possible from
S\ S (assuming this is nonempty) so that the resulting new “leftover” set L’ still has size
smaller than a tiny fraction of S; and of each P;; then we can move those new restricted
sets to the third row. A potential issue here is that Theorem 2 may not be applicable
if S\ S; is not large enough while most of the copies of H in G are “concentrated” on
G[S '\ S¢. This can be avoided, conveniently, by making sure that |Sy| is not too large
compared to |S| right in the first place (if |S| > 2), which will be done by the following
simple corollary of Theorem 2 itself (we believe this is well-known, but still include a proof
for completeness).

Corollary 14. For every e > 0 and every graph H, there exist 6 = 614(H,¢) € (0, 1) and
k = ki4(H, ) > 0 such that for every graph G with ind(G) < k|G|", G has an e-restricted
set T with |T| = [0|G|]; in particular |T| =1 if |G| =1 and |G\ T| > 5|G| if |G| > 2.

THE ELECTRONIC JOURNAL OF COMBINATORICS 30(3) (2023), #P3.22 8



Proof. Let § := ;- 6(H, ¢) and & := ky(H, g¢). By Theorem 2, G has an ge-restricted
set U with |U| > 26|G|; in particular U is weakly %e—restricted. By averaging, there is a
weakly je-restricted subset U’ of U such that [U’| = [26|G/|], and so there is T C U’ with
IT| = [5]|U'|] = [5[26|G|]] = [|G|] such that T is e-restricted in G. In particular, if
|G| < 4 then |T| = 1; and if |G| > 4 then |G\ T| > |G| —1—06|G| > 2|G| — ;|G| = |G|
This proves Corollary 14. |

For 6,7 € (0,1), let ¢(d,n) be the least integer p > 1 with (1 — §)? < n; then
#(0,m) < 6 'logn. The next corollary of Theorem 2 formalizes the process of repeatedly
pulling out e-restricted sets from S\ S;.

Corollary 15. For every e,n € (0,1), for every graph H, and for 6 := 63(H,e) > 0,
there exists k = ki5(H,e,m) > 0 such that for every graph G with ind(G) < k|G|", there
is T CV(G) with |T| < n|G| such that G\'T is (¢(d,n),e)-restricted.

Proof. Let k := 0" - ky(H,e). We may assume |G| > 1. Let Uy := V(G); and for i > 0,
as long as U; is defined and |U;| > n|G|, let U1 C U; such that U; \ U,y is e-restricted
and |U; \ U;11| = 0|U;|, which is possible by Theorem 2 since

ind(G[U:]) < k|G|" = ka(H, €) - (n|GI)" < ria(H, ) - |Ui]".

This produces a chain of sets V(G) = Uy 2 U; 2 ... D U, for some p > 1 such that
\Uir1] < (1-9)|U;| < (1-6)""YG| and |U;| > n|G| for alli € {0,1,...,p—1}. In particular
NG| < |Up-1] < (1 =06)""YG|; thus p— 1 < ¢(d,n) and so p < ¢(4,7n). Let T := U,; then

" (Ui \ Ui_1) is a partition of V(G) \ T into p subsets which are e-restricted in G. This
proves Corollary 15. |

Now assume we have reached ¢ = h and obtained a decent blowup {Dy,..., Dy} of
H. Observe that to be able to reach t = h means the “exceptional” set S in each step
always had size more than d; so it is not hard to see that each |D;| is still more than a
(tiny) fraction of d. It thus suffices to apply the following, which is a direct corollary of
Lemma 8 and is an analogue of the induced counting lemma [2, Lemma 3.2].

Corollary 16. Lete € (0, %), let H be a graph, and let G be a graph with an (", )-blowup

{D1,...,Dy} of H. Then there are at least (1 — 6)h’15(g)|D1| -+ |Dy| copies ¢ of H in
G with o(v;) € D; for alli € [h].

Proof. This follows from Lemma 8 with ¢; := ¢ and ¢; := ¢ - &' for all ¢t € [h — 1]; note
that &, < 127"'e < e since € € (0, 3). u

We are now ready to prove Lemma 12.

Proof of Lemma 12. Let ¢ := i@ and e;, := min(e,&"). Let Ty = Ay := 1; and for
t=h—1,h—2,...,0 in turn, do the following:

o fori=t—1,t—2,...,0in turn, let I';; := A\ ;41041 and Ay = 713(%5t+1f‘t7i+1, £);
and
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e let &t = Et—&—l)\t,O-

Now, define
/ = : F 5/ = 5 H ’
i tG{O,ln,l.l,.I,lh—l} Ct+11 10, 1u(H, &,
n = 1775/ . min T N = h +(h—=1)-0(7")
S22 tefod,. 1y : 5 ).

Also, for ¢ = 1,2,..., h in turn, do the following:

o let A;; :==¢'T;_1; and

o fort=4,i4+1,...,h—1in turn, let Ay, = A\ Avs.
Finally, put

Kk := min <(1 - f)h_lﬁ(g)/\h,l e Ay, k1a(H,e'), 27" /<;15(H,€,77/)> '

For integers m,n,t > 0 with ¢ < h, an (m,n, t)-partition in G is a partition of V(G) into
(not necessarily nonempty) subsets

Al;--'aAm; Bl;---aBm; Cl,...,Cn; Dl,...,Dt;L

such that
o m < (;) and n <t-¢(d',n);
o Ay, ... A, CL,...,C, are nonempty and e-restricted;

e for every i € [m], |B;| < n|A;| and B; is 0-tight to A;;

e {Dy,...,D;} is an (g4, &)-blowup of H[{vy,...,v:}]; and

e if ¢ > 0, then |D;| > max(A,;d, 2n~'|L|) and D; is e;-restricted for every i € [t].
For the readers’ convenience, let us write such a partition as follows

(Ala B1)7 R (AmaBm)7
Cla s 70717

Observe that V(G) itself is a (0,0, 0)-partition in G. Thus, there is t € {0,1,...,h}
maximal such that there is an (m, n,t)-partition in G. If t = h, then {Dy, ..., Dy} would
be a (€71, €)-blowup of H; so by Corollary 16, G would contain at least

h
2

(1= )@ Dy|- 1Dy > (1 — ) ¢G Ay - Appd® > wd" > ind(G)
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copies of H, a contradiction. Thus t < h.

Let S be the set of vertices u in L with the property that for every i € [t], u has at
least 2¢|D;| neighbors in D; if v,y1v; € E(H) and at least 2£|D;| nonneighbors in D; if
ve10; ¢ E(H). Then there is a partition L\ S = Ly U---U L; such that L; is 2¢-tight
to D; for all i € [t]. We shall prove that S satisfies the lemma; and the following crucial
claim is the key step.

Claim 17. |S| < d.
Proof. Suppose that |S| > d; then |S| > 1. Since ¢’ = 614(H,¢’) and
ind(G[S]) < kd" < ki4(H, &) -|S|"
by the definitions of ¢’ and x, Corollary 14 yields an &’-restricted subset Sy of S with
1So| = [¢'|G[]; in particular [So| = 1if |S| =1 and [S\ So| = L[S| > 3d if |S] > 2. We

shall define a chain of sets Sy D 51 D ... D S; together with sets P, ..., P, of vertices
such that for all i € [¢],

o |Si| = AeilSical;
e P, C D;and \4|D;| < |P| < 1|Dy|; and

° (S“R) is (&?Hlft,i,{)—full if Vili41 € E(H) and is (atHFt’i,&)—empty if ViVi41 ¢
E(H).

To this end, assume that for i € [t], S;_; and P,_; have been defined. Assume v;v;,1 €
E(H) without loss of generality; then by the choice of L, every vertex of S; 1 C S has at
least 2£|D;| neighbors in D;. Thus Lemma 13 and the definition of \;; yield S; C S;_4
and D] C D; with [S;] > A\;|S;-1] and |Dj] = A\;|Ds| so that (S;, Dj) is (se441T¢, &)-
full. Let P; C D} with |P;| = min(|D}|, [5|D;|]); then since [5|D;|] > %|DZ| > M| D
(as | D] > 2n7Y|S| > 1), max(A\;|Di, 5|D}]) < |P;| < §|Ds]. In particular, (S;, P;) is
(€141, €)-full. This defines S; and P, in the case v;v,4; € E(H); and similar arguments
with (éetﬂf‘t,i,g)—full replaced by (%&HFt’i,ﬁ)—empty also define S; and P, in the case
Vv ¢ E(H).

From the above construction, we see that |S;| = 1if [S| = 1 and |S\ S| > |S\So| > 2d
if | S| > 2. Let L' := () if the former holds; and if the latter holds, then since

ind(G[S\ i) < kd" < kis(H,e,n) - |S\ S|

by the definition of x, Corollary 15 yields L' C S\ S; with |L'| < #/|S \ S| such that
S\ (St UL)is (¢(8',n),e)-restricted. Thus there is always a subset L' C S\ S; with
|L'| < 7/|S\ S| such that S\ (S; U L) has a partition into nonempty e-restricted subsets

Q1,...,Qs for some s < ¢(8',17).
Now, let Py := S; we shall prove that the following partition of V(G)

(A17Bl)7 ey (Am7Bm>7 (-Dl \ P17L1)7 ey (Dt \ Pt7Lt);

Cl,...,Cn,Ql,...,QS;
Pla"')-PhPt-l—l;
L/
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is an (m +t,n + s,t + 1)-partition in G, which contradicts the maximality of ¢. To this
end, observe the following.

Since m < (1) and n < t-¢(8', 1), we have m+t < (“3') and n+s < (t+1)-¢(5', 7).

Ay oo AL CL L CL Q. .., Qg are nonempty and e-restricted by definition; and
for every i € [t], |D; \ P;| > 5|D;| > 0 from the construction of P;, in particular
D; \ P, is e-restricted since D; is g;-restricted and 2¢; < e.

For every i € [m], |B;| < n|A;| and B; is #-tight to A; by definition; and for every
i € [t], |L;| <|L| < in|D;] < n|D;\ P;| and L; is 0-tight to D; \ P; since it is 2¢-tight
to D; while £ = i&.

{P1,...,P}isan (g1, &)-blowup of H[{vy,...,v;}] since |P;| > A | Di| > &g, | D
for all ¢ € [t] and {Dy,...,D;} is an (&, &)-blowup of H[{v1,...,v:}]. Also, from
the above construction, for all i € {0,1,...,¢}, we have

|Pt+1| = |St| = (/\t,t/\t,t—l ce )‘t,i+1)|Sz'| = Ft,z‘|5z‘|§

in particular (P;, Piyq) is (6441, &)-full if vuy € E(H) and is (441, &)-empty
if vv, ¢ E(H). Thus {P,...,P, P} is an  (g441,&)-blowup of
H[{vi, ..., v, vp41}]-

e For every i € [t], since Api1; = MMy, [L] < oS\ Si| < 7|S] < 0/|L] as |S| > 0,
and ' < I'yp < A¢; by the definition of 7', we have

|By| = M| Di| > A max(Ag;d, 207 L)
> max(Av1id, 20 A () 7L |) = max(Apyrd, 207 [L]);

and since Ayyq 441 = 0’ and 7/ < %77(5’ 't ¢ by definition, we deduce that

|Peyr] = [Si| = TiolSol = T00'|S| > max(Asi11d, Trod' () L))
> max(Ayy141d, 20 L]).

Also, for every i € [t], P; is e441-restricted since D; is e;-restricted; and Py = Sy is
ei41-restricted since Sy is €'-restricted and € < .41 o by the definition of €.

This proves Claim 17. O
Now, recall that V(G) \ S is partitioned into (possibly empty) subsets
Ay, AL By, By Cuy oo Cs Dy ooy Dy Ly ooy Ly
such that
o m < (é) and n < t-¢(d',n);

e Ay,... A, C1,...,C, are nonempty and e-restricted;
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e for every i € [m], |B;| < n|4;| and B; is 6-tight to A;; and

e if ¢t > 0, then for every i € [t], |D;| > 2n~|L;| = n~'|L;|, D; is e-restricted (since it
is g;-restricted), and L; is 6-tight to D;.

By renumbering the above sets if necessary, we may assume there exist ¢ € {0,1,...,m}
and r € {0,1,...,t} such that B; # () for all i € [¢] and B; = () for all i € [m] \ [¢], and
L; #0 for alli € [r] and L; = 0 for all i € [¢] \ [r]. Then the following partition of V(G)

Ala"'7Aanla"‘7D'f'; B17"'7BqaL17"'aLT‘; Aq+17"‘7AmaD7’+17'"7Dt7017"'acn

has the desired property, because ¢ +r < m+1t < (;) +t= (tgl) < (g), and

(m—q)+(t—7r)+n< (t) +t+t-9(' 1) < (g) +(h—=1)-¢(',n) = N.

2

This proves Lemma 12. |

We remark that, according to [15, Theorem 1.4], the choice y13(c, €) = $(2¢)'%/¢ is opti-
mal up to a constant factor in the exponent. This choice leads to bounds on k5 (H, €, 7, 0)
and Nyo(H,¢e,n,0) which are towers of twos of height depending on h with (enf)~! on top,
which results in the tower-type dependence of k7 '(H,¢) and N;(H,e) on e~} and h men-
tioned in the introduction.

4 Finishing the proof

With Lemma 12 in hand, it now suffices to make obvious changes to [5, Section 3] to
complete the proof of Theorem 7. For € > 0, an integer k£ > 0, and a graph G, a (k,¢)-
path-partition of G is a sequence (Wy, Wy, ..., Wy) of disjoint nonempty sets with union
V(@) such that for every i € {0,1,...,k — 1},

e W, is e-restricted in G,

o [Wi] > 12W,; and

o Wis U---UWj is $5e-tight to W;.

We need the following result from [5, Theorem 3.3].

Lemma 18 ([5]). For all e € (0,3), every graph with a ([4e™'], te)-path-partition is
(240072, ¢)-restricted.

The following lemma allows us to “lengthen” a given path-partition of length less than
[4e71] by one, at the cost of removing a small number of vertices.
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Lemma 19. Let ¢ € (0,3) and K := [4e™"]. Let H be a graph with h :=|H| > 2. Let

1
"= h2K =h"? 0:=—h e
€ & M : 6

K= kig(H, &) := h . k15(H, €'\, 0), N = Nyy(H,¢) := Niy(H,€',n,0).

Let k be an integer with 0 < k < K. Let d > 0, and let G be a graph with ind(G) < kd"
such that G has a (k, h**=%)g)-path-partition (Wy, Wy, ..., Wy). Then there is a set S C
V(G) with |S| < h=%d such that G\ S is (h*5=%)(2400e2 + N) — N, ¢)-restricted.

Proof. We proceed by backward induction on k. If & = K then the conclusion follows
by Lemma 18. We may assume that £ < K and that the lemma holds for k£ + 1. Since

ind(GWy]) < kd" < k1o(H, €'\ n,0) - (R2EFD )R,

by Lemma 12 applied to G[W,] with d replaced by h=2+1d, there is T C W with
7| < h=2*+1d such that W}, \ T can be partitioned into nonempty sets

Ay, ..., An By,....Bpn,Ch,... O

where m < (g) and n < N, such that

e Ay,... A, ,C4,...,C, are e’-restricted in GG; and
e for every i € [m], |B;| < n|4;| and B; is 6-tight to A;.

If m =0 then G\ T is (k 4+ N,e)-restricted and we are done (note that h > 2 and
k < 4e72); thus we may assume m > 1. It follows that |[W| = |Ai| = 07| By| = h? > 2m,
and so |W;| = 12|Wy| = 24m for all i € {0,1,...,k — 1}. Thus for each such ¢, W; has a
partition W} U -+ U™ with [W/| > [ L|W;|] > 25 |[W;| > h2[W;] for all j € [m]. Let
= U0 W/ U (4, U By) for every j € [m].
Claim 20. For all j € [m], (W, Wi, ...,Wi_,,A;,B;) is a (k + 1, R2*F1=K)g) _path-
partition of G[Uj;].

Proof. 1t suffices to observe the following.

o Aj;is W1 Ferestricted since it is ¢'-restricted and & = h™2Ke; and also, for each
i€{0,1,...,k—1}, W} is h*FH=Fe_restricted since W; is h2*Fe-restricted and
(W = h=2|Wi.

e For every i € {0,1,...,k — 1}, since 12|W,| < |[W;| < h2|W/|, we have
12|B;| < 12n]4;] < min(12h~2[Wyl, [4;]) < min((W7 |, |4;)).

e B; is 1—12h2(k+1_K)5—tight to Aj by the definition of #; and also, for every i €
{0,1,...,k—1}, (W], U---UW]_)U(A; U By) is $h**1=K)e_tight to W since

Wig1 U= UWy is 5h2FFetight to W; and [W/| > h=2|Wj.
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This proves Claim 20.

By Claim 20 and induction, for each j € [m], there is a set S; C U; with [S}]
h=2k+Dd such that G[U; \ S;] is (h2E~*=1 (2400672 + N) — N, ¢)-restricted. Put S :
Uje[m] S; UT; then |S] < (m + 1)h=2k+Dd < h=%d as h > 2, and since

/A O

m - (h2EF1(2400672 + N) — N) +n < h? - (W2 Bk (240062 + N) = N) + N

<h
< R*ER(24006e72 + N) — N,
we see that G'\ S is (R*5~%) (240062 + N) — N, )-restricted. This proves Lemma 19. B

We are now ready to finish the proof of Theorem 7, which we restate here for the
reader’s convenience.

Theorem 21. For every € > 0 and every graph H, there exist k = k(H,e) > 0 and
N = N(H,e) > 0 such that for every d > 0 and every graph G with ind(G) < kd", there
is a set S C V(G) with |S| < d such that G\ S is (N, e)-restricted.

Proof. We may assume h > 2. Let k := kig(H,g) and N := h?%(2400e~2 + Ny9(H, ¢)).
Then Theorem 21 follows from Lemma 19 applied to the (0, h~2£¢)-partition V(G) of
G. |
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