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Abstract

The Yule branching process is a classical model for the random generation of
gene tree topologies in population genetics. It generates binary ranked trees—also
called histories—with a finite number n of leaves. We study the lengths `1 > `2 >
· · · > `k > · · · of the external branches of a Yule generated random history of size
n, where the length of an external branch is defined as the rank of its parent node.
When n→∞, we show that the random variable `k, once rescaled as n−`k√

n/2
, follows

a χ-distribution with 2k degrees of freedom, with mean E(`k) ∼ n and variance

V(`k) ∼ n
(
k − πk2

16k

(
2k
k

)2)
. Our results contribute to the study of the combinatorial

features of Yule generated gene trees, in which external branches are associated with
singleton mutations affecting individual gene copies.

Mathematics Subject Classifications: 05A15, 05A16, 05C05, 60C05

1 Introduction

Tree models of speciation are crucial in biological studies for testing hypotheses about
evolution. From the spectrum of mutations observed across a set of genes, statistical
methods [10] enable the inference of a tree representing the ancestry relationships among
the sampled genetic sequences. The comparison of the inferred tree with model predictions
can assist in the analysis of the biological forces that have driven the evolution of the
considered genes.

The reconstruction of the gene tree from genome data can be subject to several types
of errors. Measuring branches in proper units of time, one problem is estimating the
exact edge lengths of the tree from the polymorphism observed along the considered
chromosomes. For example, assuming that molecular differences have accumulated at a
constant rate, the human-chimpanzee divergence is estimated to date back to 4.3 millions
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years ago, while—at the moment—the oldest fossil with human-like features is 100,000
years older (pag. 31 of [19]). A less informative but more robust inference approach
can proceed by restricting the tree search space to infer only the “topology”—i.e., the
branching pattern and the relative temporal order of the speciation (splitting) events—of
the gene tree, which will be then compared with tree topologies considered under a proper
neutral model.

The Yule distribution [14, 25] is a fundamental probability model of tree topologies,
also called “histories”, used in evolutionary analyses. Histories are full binary rooted
trees, with a ranking of internal nodes that divides the tree in different layers (Fig. 1A).
The probabilistic features of Yule distributed histories have been subject of numerous
investigations (see, e.g., [2, 18, 20, 21, 22]), with a particular interest on combinatorial
properties that affect the frequency spectrum of mutations in population genetic tree
models. Our focus is on the length distribution of tree branches. Branch length can be
seen as a discrete parameter—when only the number of tree layers spanned by a branch
is considered—or as a time related quantity—when each tree layer is in turn considered
with a length given by a continuous random variable. In the latter case, histories are
called “coalescent” trees. While branch length of coalescent trees has been widely studied
(see, e.g., [1, 5, 6, 7, 11, 12, 16]), the discrete length of the edges of a random history has
received less attention.

In this paper, extending previous results [9], we investigate the distribution of the
different lengths of the external branches—i.e., those branches ending with a leaf—of
random histories of given size selected under the Yule model. External branch length is
an important parameter to study as it relates to singleton mutations in the site frequency
spectrum of population genetic trees. Denoting by `k the kth largest length of an external
branch in a Yule distributed random history of n leaves, our main finding is that, for every
k > 1, the rescaled variable n−`k√

n/2
follows asymptotically a χ-distribution with 2k degrees

of freedom, with convergence of all moments (Theorem 9).
The paper is organized as follows. We introduce terminology and some useful proper-

ties of histories in Section 2, showing in particular that external branch lengths in random
histories can also be analyzed in terms of peaks of random permutations. In Section 3, we
refine calculations of [9] finding a closed formula for the probability of the length, `1, of the
longest external branch in a random history of given size n and a recurrence for computing
the probability of the kth largest length, `k, of an external branch. For increasing n, the
asymptotic distribution of the variables `1, `2, . . . , `k, . . . is finally examined in Section 4.
Our results on the discrete variables `k parallel those obtained by Bocharov et al. [3] on
the distribution of the time length of the kth longest external branch of a random tree of
depth t generated under the Yule pure-birth process.
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2 Yule histories, external branches and non-peak values of per-
mutations

For a given positive integer n, a history [20] of size n is a full binary rooted tree with
n leaves and n − 1 ranked internal nodes (Fig. 1A). The rank of each internal node
is defined by an integer label in [1, n − 1] bijectively associated with the node. The
labeling decreases along any path from the root toward a leaf of the tree, determining a
temporal ordering of the coalescent events—the merging of two edges—that characterize
the branching structure of the tree. In a history of size n, there are 2n − 1 edges, or
branches. A branch connecting an internal node and a leaf is said to be an external branch.
The length of a branch is the difference between the rank of the nodes it connects. If the
branch is external, then its length is simply the rank of its parent node.

In population genetics, histories are tree structures that represent the evolution of
individual genes from a common ancestor. Conditioning on a given history, an infinite
sites model [19] produces a set of mutations across the genes associated with the leaves
of the tree. Roughly speaking, mutations occur as random events along the branches of
the history (Fig. 1B), with each branch containing a number of mutations that depends
on its length, and with each mutation affecting only the set of gene copies descended
from the branch it belongs to. In particular, a history with one or more “long” external
branches will be associated with a biological scenario in which one or more gene copies
will possess a “large” number of singleton mutations—i.e., mutations affecting only one
individual. A random history of size n selected under a proper null model distribution
describes the evolutionary relationships of n individual genes randomly sampled from a
population under neutral evolution, and the length of the longest external branches in
the random history relates to the largest number of singleton mutations that characterize
single individuals in the sample.

In this paper, we focus on distributive properties of external branch length for random
histories considered under a well known model of neutral evolution. More precisely, we
will study external branch lengths ordered by size over random histories of size n selected
under the Yule probability model [14, 25], or, equivalently, over random ordered histories
of size n selected uniformly at random. An ordered history of size n is a plane embedding of
a history of size n in which subtrees carry a left-right orientation. In other words, flipping
the two subtrees stemming from a given node of an ordered history yields a different
ordered history (unless the flipped subtrees consist of only one node). The number of
ordered histories of size n is thus (n − 1)!, and the Yule distribution over the set of
histories of size n is induced by the uniform distribution over the set of ordered histories
of size n by summing the probability 1/(n − 1)! of each ordered history with the same
underlying (un-ordered) history [8]. In particular, if c(t) is the number of cherries (i.e.,
pendant subtrees with exactly two leaves) in a history t of n leaves, then 2n−1−c(t) is the
number of different plane embeddings of t, and therefore 2n−1−c(t)/(n − 1)! is the Yule
probability of the history t [20].

A series of combinatorial results on the lengths of external branches of uniformly
distributed ordered histories (or Yule distributed histories) has been obtained in [9] in
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Figure 1: Histories and gene sequences. (A) A history of size n = 8. The ranking of
internal nodes decreases along any path going from the root to the leaves of the tree. The
length of an external branch is the rank of its parent node. The different lengths of the
external branches ordered by size are `1 = 7 > `2 = 4 > `3 = 3 > `4 = 2 > `5 = 1.
(B) The history depicted in A with leaves associated with genes represented as binary
sequences with ancestral alleles of type 0 and derived alleles of type 1. A mutation (white
circle) affects only the gene sequences associated with the leaves descending from the
branch where it occurs. In this example, there is a mutation for each layer of the tree: the
ith mutation (looking from top to bottom) changes the allele at the ith locus (position)
of the gene.

relationship with a study [4] of the number of permutations of fixed size with a given set of
peak values, where the entry π(i) is a peak value in the permutation (π(1), . . . , π(i), . . . , π(n))
when i 6= 1, i 6= n and π(i− 1) < π(i) > π(i + 1). Indeed, there exists a well known [13]
bijection that associates an ordered history t of size n with a permutation πt of the first
n − 1 positive integers. The mapping t → πt can be described recursively by setting
πt = (πtL , r(t), πtR), where r(t) is the (label of the) root of t, and tL, tR are respectively
the left and right subtrees stemming from the root of t (if any). In particular, ordering
by size the different lengths `1 > `2 > · · · > `k > · · · of the external branches of t, the
kth length, `k, is easily seen to correspond to the kth largest non-peak value in the per-
mutation πt. For example, if t is the ordered history of size n = 8 depicted in Fig. 1, then
πt = (2, 6, 4, 5, 3, 1, 7) has the following non-peak values: 2, 4, 3, 1, 7, which correspond
to the different lengths `1 = 7 > `2 = 4 > `3 = 3 > `4 = 2 > `5 = 1 of the external
branches of t. By using the correspondence with non-peak values of permutations, in the
next section we calculate the probability of the variable `k in an ordered history of size n
selected uniformly at random.

3 The probability of the kth external branch length

Given an ordered history t of size n, consider the different external branch lengths of t
ordered by size as `1 > `2 > · · · > `k > · · · , where `k 6 n − k. As observed above, the
value of `k corresponds to the kth largest non-peak value in the associated permutation πt.
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In this section, we study the number hn(`1 = s1, `2 = s2, . . . , `k = sk) of ordered histories
of size n in which `j = sj for j = 1, . . . , k, which determines the probability pn(`1 =
s1, `2 = s2, . . . , `k = sk) = hn(`1 = s1, `2 = s2, . . . , `k = sk)/(n− 1)!.

We start our calculations by using the following result of [4] for the number Πn(Q) of
permutations of size n with peak values matching the elements of a given set Q :

Lemma 1 (Lemma 3.3 of [4]). Let n > 3, S ⊆ [3, n], and r = maxS if S 6= ∅, 1 otherwise.
For any 0 6 j 6 n− r − 1, we have

Πn(S ∪ [n− j + 1, n]) = 2(j + 1)Πn−1(S ∪ [n− j, n− 1]) + j(j + 1)Πn−2(S ∪ [n− j, n− 2]),

where [a, b] = {x ∈ Z : a 6 x 6 b}.

We use the lemma as follows. Fix s1, s2, . . . , sk−1, sk such that n > s1 > s2 > · · · >
sk−1 > sk, and let Z be a subset of the integers in the interval [3, sk − 1]. Then, by
replacing S = Z∪ [sk+1, sk−1−1]∪ [sk−1 +1, sk−2−1]∪· · ·∪ [s2 +1, s1−1] and j = n−s1
in the formula above, we find

Πn(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ ∪[s2 + 1, s1 − 1] ∪ [s1 + 1, n])

= Πn(S ∪ [n− j + 1, n])

= 2(j + 1)Πn−1(S ∪ [n− j, n− 1]) + j(j + 1)Πn−2(S ∪ [n− j, n− 2])

= 2(n− s1 + 1)

× Πn−1(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ · · · ∪ [s2 + 1, s1 − 1] ∪ [s1, n− 1])

+ (n− s1)(n− s1 + 1)

× Πn−2(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ · · · ∪ [s2 + 1, s1 − 1] ∪ [s1, n− 2]).

If we sum both sides of the latter equation over the possible subsets Z of [3, sk− 1], then
we obtain∑

Z

Πn(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ · · · ∪ [s2 + 1, s1 − 1] ∪ [s1 + 1, n]) (1)

= 2(n− s1 + 1)

×
∑
Z

Πn−1(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ · · · ∪ [s2 + 1, s1 − 1] ∪ [s1, n− 1])

+ (n− s1)(n− s1 + 1)

×
∑
Z

Πn−2(Z ∪ [sk + 1, sk−1 − 1] ∪ [sk−1 + 1, sk−2 − 1] ∪ · · · ∪ [s2 + 1, s1 − 1] ∪ [s1, n− 2]),

where the first sum counts the permutations of size n in which the first largest non-peak
value is `1 = s1, the second largest non-peak value is `2 = s2, dots, and the kth largest
non-peak value is `k = sk. Similarly, the second and third sums count respectively the
permutations of size n− 1 and n− 2 in which `1 = s2, `2 = s3, dots, and `k−1 = sk. Note
that when we set k = 1 and s1 = s, we have S = Z ⊆ [3, s− 1] and the calculation above
yields
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∑
Z

Πn(Z ∪ [s+ 1, n]) = 2(n− s+ 1)
∑
Z

Πn−1(Z ∪ [s, n− 1]) (2)

+(n− s)(n− s+ 1)
∑
Z

Πn−2(Z ∪ [s, n− 2]),

where the first sum counts the permutations of size n in which the largest non-peak value
is `1 = s, while the second and third sums count respectively the permutations of size
n − 1 and n − 2 in which the largest non-peak value is strictly smaller than s, that is,
`1 < s. By rewriting (1) and (2) in terms of ordered histories, we find

hn+1(`1 = s1, `2 = s2, . . . , `k = sk) = 2(n− s1 + 1) (3)

×hn(`1 = s2, `2 = s3, . . . , `k−1 = sk)

+(n− s1)(n− s1 + 1)

×hn−1(`1 = s2, `2 = s3, . . . , `k−1 = sk)

and

hn+1(`1 = s) = 2(n− s+ 1)hn(`1 < s) + (n− s)(n− s+ 1)hn−1(`1 < s), (4)

where hi(`1 < s) ≡
∑

j<s hi(`1 = j).
Because hn+1(`1 = s) = hn+1(`1 < s+ 1)− hn+1(`1 < s), Eq. (4) yields the recurrence

hn+1(`1 < s+ 1) = hn+1(`1 < s) + 2(n− s+ 1)hn(`1 < s) + (n− s)(n− s+ 1)hn−1(`1 < s),
which, by replacing n+ 1 by n and s+ 1 by s, reads as

hn(`1 < s) = hn(`1 < s−1)+2(n−s+1)hn−1(`1 < s−1)+(n−s)(n−s+1)hn−2(`1 < s−1),
(5)

where hn(`1 < s) = 0 if s = dn/2e (`1 is at least dn/2e), and hn(`1 < s) = (n − 1)! if
s = n (`1 is at most n− 1). In particular, when dn/2e 6 s 6 n > 3, we have

hn(`1 < s) =
(s− 1)! (s− 2)! (2s− n) (2s− n− 1)

(2s− n)!
(6)

as the right-hand side—say r(n, s)—of the latter equation satisfies the same recurrence
(5) given for hn(`1 < s). Indeed, r(n, dn/2e) = 0 and r(n, n) = (n − 1)!. Furthermore,
assuming dn/2e < s < n, a simple calculation shows that r(n, s) = r(n, s− 1) + 2(n− s+
1) r(n− 1, s− 1) + (n− s)(n− s+ 1) r(n− 2, s− 1), where we note that all the factorials
in r(n, s − 1), r(n − 1, s − 1), and r(n − 2, s − 1) are well defined being of the form m!
with m > 0.

The next proposition summarizes our enumerative results from a probability point of
view.

Proposition 2. Let n > 3. If pn(`1 = s) denotes the probability of `1 = s in an ordered
history of size n selected uniformly at random, then

pn(`1 = s) =
(s− 1)!(s− 2)!(4ns+ s− n2 − n− 3s2)

(2s− n)! (n− 1)!
, (7)
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where dn/2e 6 s 6 n− 1. Furthermore, the joint probability pn(`1 = s1, `2 = s2, . . . , `k =
sk) of `1 = s1, `2 = s2, dots, and `k = sk in an ordered history of size n selected uniformly
at random satisfies the recurrence

pn(`1 = s1, `2 = s2, . . . , `k = sk) =
2(n− s1)
n− 1

pn−1(`1 = s2, `2 = s3, . . . , `k−1 = sk) (8)

+
(n− s1)(n− s1 − 1)

(n− 1)(n− 2)

×pn−2(`1 = s2, `2 = s3, . . . , `k−1 = sk),

with initial condition given by (7).

Proof. Equation (7) follows from (6) as pn(`1 = s) = [hn(`1 < s+1)−hn(`1 < s)]/(n−1)!.
The recurrence in (8) is obtained by replacing n + 1 by n in (3) and dividing both sides
of the resulting equation by (n− 1)!.

By summing over the possible values of `1, . . . , `k−1 the joint probability pn(`1 =
s1, `2 = s2, . . . , `k = sk) yields for k > 2 the probability of `k = sk in random ordered
history of n leaves:

pn(`k = sk) =
n−1∑

s1=sk+k−1

s1−1∑
s2=sk+k−2

· · ·
si−1−1∑

si=sk+k−i

· · ·
sk−2−1∑

sk−1=sk+1

pn(`1 = s1, `2 = s2, . . . , `k = sk).

(9)
For instance, if k = 2, then we obtain

pn(`2 = s2) =

n−1∑
s1=s2+1

pn(`1 = s1, `2 = s2) (10)

=

n−1∑
s1=s2+1

2(n− s1)
n− 1

pn−1(`1 = s2) +
(n− s1)(n− s1 − 1)

(n− 1)(n− 2)
pn−2(`1 = s2)

=
2pn−1(`1 = s2)

n− 1

n−1∑
s1=s2+1

(n− s1) +
pn−2(`1 = s2)

(n− 1)(n− 2)

n−1∑
s1=s2+1

(n− s1)(n− s1 − 1)

=
(s2 − 2)!(s2 − 1)!(n− s2 − 1)(n− s2)

3(n− 1)!(2s2 − n+ 2)!

×
(
2n3 − n2(13s2 + 4) + n(s2(26s2 + 21)− 2)− s2((15s2 + 23)s2 + 2) + 4

)
,

which can be used when n > 5 and s2 is in the range dn/2e − 1 6 s2 6 n− 2. Similarly,
if k = 3, then we have

pn(`3 = s3) =
n−1∑

s1=s3+2

s1−1∑
s2=s3+1

pn(`1 = s1, `2 = s2, `3 = s3) (11)
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=
n−1∑

s1=s3+2

s1−1∑
s2=s3+1

2(n− s1)
n− 1

pn−1(`1 = s2, `2 = s3)

+
(n− s1)(n− s1 − 1)

(n− 1)(n− 2)
pn−2(`1 = s2, `2 = s3)

=
4pn−2(`1 = s3)

(n− 1)(n− 2)

n−1∑
s1=s3+2

s1−1∑
s2=s3+1

(n− s1)(n− 1− s2)

+
2pn−3(`1 = s3)

(n− 1)(n− 2)(n− 3)

×
n−1∑

s1=s3+2

s1−1∑
s2=s3+1

(n− s1)(n− s2 − 2)(2n− 2− s2 − s1)

+
pn−4(`1 = s3)

(n− 1)(n− 2)(n− 3)(n− 4)

×
n−1∑

s1=s3+2

s1−1∑
s2=s3+1

(n− s1)(n− s1 − 1)(n− 2− s2)(n− s2 − 3),

which can be coupled with (7), when n > 7 and dn/2e − 2 6 s3 6 n− 3.

4 Asymptotic distribution of the kth external branch length

In this section, we derive distributive properties of the random variable `k—the kth largest
external branch length—considered over ordered histories of size n selected under the
uniform distribution. We start by considering the case k = 1, and then generalize to
arbitrary values of k.

By dividing Eq. (6) by the number (n − 1)! of ordered histories of size n, we obtain
the probability

pn(`1 < s) =
(s− 1)!(s− 2)!

(2s− n− 2)!(n− 1)!
, dn/2e < s 6 n,

or alternatively, with u = s− 1,

pn(`1 6 u) =
u!(u− 1)!

(2u− n)!(n− 1)!
, dn/2e 6 u 6 n− 1. (12)

Our first result is the following local limit theorem.

Lemma 3. When n→∞,

(a) the probability pn(`1 = bn− x
√
n/2c) admits an asymptotic expansion of the form

pn(`1 = bn− x
√
n/2c) =

x√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)
uniformly for 0 6 x 6 x∗ ≡ n1/7.
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(b) Furthermore,

pn(`1 6 n− x∗
√
n/2) = O

(
e−n

2/7/2
)
,

with x∗ as defined in part (a).

Proof. For part (a), first assume that x 6 x∗ is such that u ≡ n−x
√
n/2 is a non-negative

integer smaller than n. Then, Eq. (12) yields

pn(`1 = u) = pn(`1 6 u)− pn(`1 6 u− 1) =
(u− 1)!(u− 2)!(4nu+ u− n2 − n− 3u2)

(2u− n)(n− 1)!
;

see also Eq. (7). Using Stirling’s formula z! ∼ zze−z
√

2πz(1 + 1
12z

+ 1
288z2

− 139
51840z3

− · · · )
and some tedious computation (which is best done with a computer algebra system) gives

pn(`1 = u) =
x√
n/2

e−x
2

2

(
1 +O

(
|x|+ |x|3√

n

))
uniformly as x = O(n1/6). Thus, for the given range of x

O
(
|x|+ |x|3√

n

)
= O(n3/7−1/2) = o(1).

This shows that the claimed expansion (without the last term) holds for this case. Note
that the case u = n, i.e., x = 0, is trivially covered as pn(`1 = n) = 0.

Next, if u is not an integer, then buc = u + O(1) = n − x
√
n/2 + O(1) = n − (x +

O(1/
√
n))
√
n/2, and thus we are in the first case with x replaced by x̃ = x +O(1/

√
n).

Hence,

pn(`1 = buc) =
x̃√
n/2

e−x̃
2/2(1 + o(1)) =

x+O(1/
√
n)√

n/2
e−x

2/2+o(1)(1 + o(1))

=
x√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)
,

which establishes the claim also in this case.
For part (b), we are interested in pn(`1 6 bn− x∗

√
n/2c). Starting from (12), we use

Stirling’s approximation log(z) = z log(z)−z+(1/2) log(2πz)+o(1) to expand log(pn(`1 6
u)) = log(u!) + log((u− 1)!)− log((2u− n)!)− log((n− 1)!) as 1

2
(2(n− 2u) log(2u− n)−

log(2u− n)− 2n log(n− 1) + log(n− 1) + (2u− 1) log(u− 1) + 2u log(u) + log(u)) + o(1).
Then, we plug in u = bn − x∗

√
n/2c = n − n1/7

√
n/2 − cn, where cn is the fractional

part of n − n1/7
√
n/2, and replace the resulting terms of the form log(n + f(n)) by

log(n) + f(n)/n− f(n)2/n2 (where f(n)/n→ 0). Simple algebraic manipulations finally
give

log(pn(`1 6 bn− x∗
√
n/2c)) = −n

2/7

2
+ o(1),

which shows the claim.
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Let us denote by Rayleigh(λ) the Rayleigh distribution with parameter λ and the weak
convergence of the sequence of random variables (Xn) to the variable X by the symbol

Xn
d−→ X. From the previous lemma, we obtain the following proposition that describes

the asymptotic distribution of the random variable `1 considered over ordered histories of
size n selected uniformly at random.

Proposition 4. As n→∞,

n− `1√
n/2

d−→ Rayleigh(1)

with convergence of all moments. In particular, the mean and the variance of `1 satisfy
respectively

E(`1) ∼ n and V(`1) ∼
(

1− π

4

)
n. (13)

Proof. Fix an x > 0. In order to prove the limit law, we have to show that, when n→∞,
the probability of (n − `1)/

√
n/2 6 x converges to 1 − e−x2/2, which is the cumulative

function of the Rayleigh distribution with parameter 1. We first write

pn

(
n− `1√
n/2

6 x

)
= pn(n− x

√
n/2 6 `1) = pn(dn− x

√
n/2e 6 `1)

=
n∑

s=dn−x
√
n/2e

pn(`1 = s) =
x̃∑
t=0

pn(`1 = n− t
√
n/2), (14)

where the latter sum is in steps of size
√

2/n and x̃ = x + O(1/
√
n) is such that n −

x̃
√
n/2 = dn − x

√
n/2e. For n sufficiently large, we can assume x̃ 6 x 6 n1/7 and thus

use part (a) of the lemma writing (14) as

x̃∑
t=0

t√
n/2

e−t
2/2(1 + o(1)) +O

(
e−t

2/2

n

)
=

x̃∑
t=0

t√
n/2

e−t
2/2(1 + o(1)) +

x̃∑
t=0

O

(
e−t

2/2

n

)
.

(15)
Because the 1 + o(1) factor in the second sum of (15) holds uniformly, it can be put in
front of the sum obtaining

x̃∑
t=0

t√
n/2

e−t
2/2(1+o(1)) = (1+o(1))

x̃∑
t=0

t√
n/2

e−t
2/2 = (1+o(1))

x∑
t=0

t√
n/2

e−t
2/2+o(1),

where the upper limit in the last sum is now x. Moreover, the third sum in (15) can be
bounded as

x̃∑
t=0

O

(
e−t

2/2

n

)
= O

(
∞∑
t=0

e−t
2/2

n

)
= o(1).
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Hence, for n → ∞, the probability pn

(
n−`1√
n/2

6 x

)
converges to the Riemann sum∑x

t=0
t√
n/2
e−t

2/2 with step size dt =
√

2/n, which can be approximated by the integral∫ x
0
te−t

2/2dt = 1− e−x2/2, as claimed.
By a similar approach, one can also show that all moments converge. Starting from

E

(
n− `1√
n/2

)m

=
n∑
s=0

(
n− s√
n/2

)m

pn(`1 = s),

we replace s by s = n− x
√
n/2 and break the sum into two parts obtaining

√
2n∑

x=0

xmpn(`1 = n− x
√
n/2)

=
∑

06x<n1/7

xmpn(`1 = n− x
√
n/2) +

∑
n1/76x6

√
2n

xmpn(`1 = n− x
√
n/2) ≡ Σ1 + Σ2,

where all the sums proceed in steps of size
√

2/n. For Σ2, by part (b) of the lemma, we
have

Σ2 = O
(
nm/2e−n

2/7/2
)

= o(1).

For Σ1, by part (a) of the lemma, we have

Σ1 = (1 + o(1))
∑

06x<n1/7

xm+1√
n/2

e−x
2/2 +O

n−1 ∑
06x<n1/7

e−x
2/2

 .

Here, the Riemann sum in Σ1 can be approximated by the integral
∫ n1/7

0
xm+1e−x

2/2dx,

which converges to
∫∞
0
xm+1e−x

2/2dx. Overall,

E

(
n− `1√
n/2

)m

n→∞−→
∫ ∞
0

xm+1e−x
2/2dx

which proves the claimed convergence of moments. Finally, (13) follows from this conver-
gence by straightforward computation.

Note that when the limit distribution is uniquely determined by its moment sequence
(which is the case for the Rayleigh distribution), convergence of all moments implies weak
convergence. Although the second part of the proof of the latter proposition suffices to
show that also the first claim holds true, we decided to provide the calculations for the
convergence in distribution with the aim of improving the readability of the remaining
part of the proof.

In the following, our goal is to show that, for an arbitrary fixed value of k > 1, the
random variable `k follows asymptotically a χ distribution with 2k degrees of freedom.
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Indeed, note that the Rayleigh distribution found for the case k = 1 is a χ distribution
with 2 parameters.

The next lemma describes the solution to the recurrence (8) for the joint probability
pn(`1 = s1, `2 = s2, . . . , `k = sk) and a formula for the probability pn(`k = sk) given in (9)
in terms of the probability of `1 = sk in trees of size smaller than or equal to n.

Lemma 5. By setting µn(x) ≡ 2x
n−1 and νn(x) ≡ x(x−1)

(n−1)(n−2) , we have

pn(`1 = s1, `2 = s2, . . . , `k = sk)

=
∑
ω

(
k−2∏
`=0

ω
[`]
n−nω,`−` (n− nω,` − `− s`+1)

)
pn−nω,k−1−k+1(`1 = sk), (16)

where the sum runs over all words ω = ω[0] · · ·ω[k−2] of length k − 1 with letters from the
alphabet {µ, ν}, and nω,` is the number of ν in the first ` letters of ω (with nω,0 = 0).
With the same notation, we also have

pn(`k = sk) =

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

∑
ω

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk),

(17)
where s∗k ≡ n− k + 1− sk.

Proof. For a fixed n and k, set p′i(j) ≡ pn−i(`1 = sj, . . . , `k−j+1 = sk), µ
′
i(j) ≡

2(n−i−sj)
n−i−1 ,

and ν ′i(j) ≡
(n−i−sj)(n−i−1−sj)

(n−i−1)(n−i−2) . The recurrence (8) finds p′0(1) = pn(`1 = s1, `2 = s2, . . . , `k =

sk) by iteratively computing

p′i(j) = µ′i(j) p
′
i+1(j + 1) + ν ′i(j) p

′
i+2(j + 1). (18)

The procedure ends after k−1 steps, that is, when we obtain terms of the form pn−x(`1 =
sk) = p′x(k), for a certain value of x. For k = 4, the diagram in Fig. 2 depicts the three
iterations needed for evaluating p′0(1). The latter quantity is calculated as the sum of
the probabilities at the bottom of the diagram, each multiplied by the sum of the words
of length k − 1 over the alphabet {µ′, ν ′} that encode the different paths connecting the
corresponding leaf node to the root of the diagram. More precisely, for arbitrary values
of n and k, we have

p′0(1) =
∑
ω

(
k−2∏
`=0

ω
[`]
nω,`+`

(`+ 1)

)
p′nω,k−1+k−1(k),

where the sum runs over all words ω = ω[0] · · ·ω[k−2] of length k− 1 with letters from the
alphabet {µ′, ν ′}, and nω,` is the number of ν ′ in the first ` letters of ω (with nω,0 = 0).
By replacing indices, the latter formula is equivalent to that claimed in (16).
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μ'0(1) ν'0(1)

μ'1(2) ν'1(2) μ'2(2) ν'2(2)

μ'2(3) ν'2(3) μ'3(3) ν'3(3) μ'4(3) ν'4(3)

p'0(1)

p'1(2) p'2(2)

p'2(3) p'3(3) p'4(3)

p'3(4) p'4(4) p'5(4) p'6(4)

Figure 2: Schematic diagram of the first three iterative steps of the procedure (18) for
calculating p′0(1) = pn(`1 = s1, `2 = s2, . . . , `k = sk).
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Finally, plugging (16) into (9) yields

pn(`k = sk) =
n−1∑

s1=sk+k−1

s1−1∑
s2=sk+k−2

· · ·
sk−2−1∑

sk−1=sk+1

∑
ω

(
k−2∏
`=0

ω
[`]
n−nω,`−` (n− nω,` − `− s`+1)

)
× pn−nω,k−1−k+1(`1 = sk).

By setting s∗` = n− `+ 1− s` for ` = 1, . . . , k, the right-hand side can be written as

s∗k∑
s∗1=1

s∗k∑
s∗2=s

∗
1

· · ·
s∗k∑

s∗k−1=s
∗
k−2

∑
ω

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s

∗
`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk),

which gives (17).

With the same notation used above, we now provide two more useful lemmas.

Lemma 6. For sk = bn− x
√
n/2c, we have

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

µn−`(s`+1) =
x2k−2

2k−1(k − 1)!
+O

(
1 + x2k−3√

n

)

uniformly for 0 6 x 6
√

2n.

Proof. Note that

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

µn−`(s`+1) =
2k−1

∑s∗k
s1=1 s1

∑s∗k
s2=s1

s2 · · ·
∑s∗k

sk−1=sk−2
sk−1

(n− 1) · · · (n− k + 1)

=
2k−1r(s∗k)

nk−1
+O

(
r(s∗k)

nk

)
,

where r(z) is the polynomial r(z) ≡
∑z

s1=1 s1
∑z

s2=s1
s2 · · ·

∑z
sk−1=sk−2

sk−1. In order to

determine the asymptotic behavior of r(z), we rely on Faulhaber’s formula:

N∑
m=1

mt =
1

t+ 1

t∑
k=0

(
t+ 1

k

)
Bk(N + 1)t+1−k N→∞∼ N t+1

t+ 1

N→∞∼
∫ N

1

xtdx, (19)

where Bk denotes the k-th Bernoulli number. In particular, we use the fact that, for a
given polynomial p(u) = αku

k + · · ·+α1u+α0, the polynomial
∑b

u=a p(u) =
∑b

u=1 p(u)−∑a−1
u=1 p(u) has its term αkb

k+1

k+1
with the highest power in b and its term −αka

k+1

k+1
with the

highest power in a matching those that appear in the integral
∫ b
a
p(z)dz. As a conse-

quence, if we substitute each sum in r(z) by an integral sign, we then find a polynomial
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∫ z
1
s1ds1

∫ z
s1
s2ds2 · · ·

∫ z
sk−2

sk−1 dsk−1 with the same leading term of r(z). Furthermore, by

a simple induction on k one can show that∫ z

zk+1

zkdzk · · ·
∫ z

z3

z2dz2

∫ z

z2

z1dz1 =
1

2k

k∑
i=0

(−1)iz2k−2iz2ik+1

i!(k − i)!
,

and therefore the leading term of r(z) is that of 1
2k−1

∑k−1
i=0

(−1)iz2k−2−2i

i!(k−1−i)! , that is, x2k−2

2k−1(k−1)! .
Hence,

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

µn−`(s`+1) =
(s∗k)

2k−2

nk−1(k − 1)!
+O

(
(s∗k)

2k−3

nk−1
+
r(s∗k)

nk

)

By plugging s∗k = x
√
n/2 + O(1) into the latter asymptotic formula and performing a

straightforward expansion, we obtain the claimed result.

The next result shows that Lemma 6 gives the main term of the multiple sum in (17).

Lemma 7. For sk = bn− x
√
n/2c, we have

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`) = O

(
1 + x2k−1√

n

)

uniformly for 0 6 x 6
√

2n and for all words ω = ω[0] · · ·ω[k−2] of length k−1 with letters
from the alphabet {µ, ν} different from the word whose letters are all equal to µ.

Proof. Assume that ω has m > 1 letters equal to ν. Then, since νn(x) is a quadratic
polynomial, by again using Faulhaber’s formula (19), we obtain that

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`) =

r(s∗k)

q(n)
,

where r(z) is a polynomial of degree m+2k−2 and q(z) is a polynomial of degree m+k−1.
Thus, by setting s∗k = x

√
n/2 +O(1), we obtain that

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`) =

r(s∗k)

q(n)
= O

(
1 + xm+2k−2

nm/2

)
.

From this the result follows by observing that x 6
√

2n.

From the last three lemmas, we can now deduce the following generalization of
Lemma 3.
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Corollary 8. When n→∞,

(a) the probability pn(`k = bn− x
√
n/2c) admits an asymptotic expansion of the form

pn(`k = bn− x
√
n/2c) =

x2k−1

2k−1(k − 1)!
√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)
uniformly for 0 6 x 6 x∗ ≡ n1/7.

(b) Furthermore,

pn(`k 6 n− x∗
√
n/2) = O

(
nk−1e−n

2/7/2
)

with x∗ as defined in part (a).

Proof. First, note that for any given word ω of length k − 1 over the alphabet {µ, ν} (in
the sense of Lemma 5), we have

pn−nω−k+1(`1 = bn−x
√
n/2c) = pn−nω−k+1(`1 = bn−nω−k+1−x̃

√
(n− nω − k + 1)/2c),

where x̃ = x + O(1/
√
n). As a consequence, by applying part (a) of Lemma 1 with x

replaced by x̃ and n replaced by n− nω − k + 1, it follows that part (a) of Lemma 3 also
holds when pn is replaced by pn−nω−k+1. Moreover, also part (b) of Lemma 3 holds true
when pn is replaced by pn−nω−k+1. Indeed, from (12), we find

pn−nω−k+1(`1 6 n∗) =
n∗!(n∗ − 1)!

(2n∗ − n+ nω + k − 1)!(n− nω − k)!

=
(n− 1) · · · (n− nω − k + 1)

(2n∗ − n+ nω + k − 1) · · · (2n∗ − n+ 1)
· n∗!(n∗ − 1)!

(2n∗ − n)!(n− 1)!

= O(pn(`1 6 n∗)),

where nω ≡ nω,k−1 and n∗ ≡ bn− x∗
√
n/2c.

In order to prove part (a) of the corollary, assume 0 6 x 6 x∗ and set sk = bn −
x
√
n/2c. From (17), we find

pn(`k = sk) =

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

[ k−2∏
`=0

µn−`(s`+1)pn−k+1(`1 = sk)

+
∑

ω 6=µµ···µ

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk)

]
.

Then, the expansion of Lemma 1 for the factors pn−nω,k−1−k+1(`1 = sk) coupled with
Lemmas 6 and 7 yield

pn(`k = sk) =

[
x√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)]
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×
s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

[
k−2∏
`=0

µn−`(s`+1) +
∑

ω 6=µµ···µ

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)]

=

[
x√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)]

×
[

x2k−2

2k−1(k − 1)!
+O

(
1 + x2k−3√

n

)
+O

(
1 + x2k−1√

n

)]
=

x2k−1

2k−1(k − 1)!
√
n/2

e−x
2/2(1 + o(1)) +O

(
e−x

2/2

n

)
,

as claimed in (a).
For part (b) we can write pn(`k 6 n − x∗

√
n/2) =

∑
x pn(`k = bn − x

√
n/2c) =∑

x pn(`k = sk), where the sum proceeds in steps of
√

2/n over the range x∗ 6 x 6
√

2n

and we set sk = bn− x
√
n/2c. Hence, by using (17) together with Lemmas 6 and 7, we

obtain

pn(`k 6 n− x∗
√
n/2)

=
∑
x

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

∑
ω

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk)

=
∑
ω

∑
x

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk)

=
∑
x

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

(
k−2∏
`=0

µn−`(s`+1)

)
pn−k+1(`1 = sk)

+
∑

ω 6=µµ···µ

∑
x

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)
pn−nω,k−1−k+1(`1 = sk)

=
∑
x

pn−k+1(`1 = sk)

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

(
k−2∏
`=0

µn−`(s`+1)

)

+
∑

ω 6=µµ···µ

∑
x

pn−nω,k−1−k+1(`1 = sk)

s∗k∑
s1=1

s∗k∑
s2=s1

· · ·
s∗k∑

sk−1=sk−2

(
k−2∏
`=0

ω
[`]
n−nω,`−`(s`+1 − nω,`)

)

=
∑
x

pn−k+1(`1 = sk)

[
x2k−2

2k−1(k − 1)!
+O

(
1 + x2k−3√

n

)]
+

∑
ω 6=µµ···µ

∑
x

pn−nω,k−1−k+1(`1 = sk)

[
O
(

1 + x2k−1√
n

)]
.
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Finally, since x 6
√

2n, we have

pn(`k 6 n− x∗
√
n/2) = O

(
nk−1

)∑
x

pn−k+1(`1 = sk)

+O
(
nk−1

) ∑
ω 6=µµ···µ

∑
x

pn−nω,k−1−k+1(`1 = sk)

= O
(
nk−1

)
pn−k+1(`1 6 n∗)

+O
(
nk−1

) ∑
ω 6=µµ···µ

pn−nω,k−1−k+1(`1 6 n∗)

= O
(
nk−1

)
O
(
e−n

2/7/2
)

= O
(
nk−1e−n

2/7/2
)
.

The next theorem, which extends Proposition 4, is our main result.

Theorem 9. For a fixed k > 1, let `k be the kth largest external branch length in a
random ordered history of size n selected uniformly at random and denote by χ(2k) the
χ-distribution with 2k degrees of freedom. Then, as n→∞,

n− `k√
n/2

d−→ χ(2k),

with convergence of all moments. In particular, the mean and the variance of `k satisfy
respectively

E(`k) ∼ n and Var(`k) ∼

(
k − πk2

16k

(
2k

k

)2
)
n. (20)

Proof. Following the proof of Proposition 4, we show that all moments converge, which
implies convergence in distribution. Starting from

E

(
n− `k√
n/2

)m

=
n∑
s=0

(
n− s√
n/2

)m

pn(`k = s),

we replace s by s = n− x
√
n/2 and break the sum into two parts obtaining

√
2n∑

x=0

xmpn(`k = n− x
√
n/2) =

∑
06x<n1/7

xmpn(`k = n− x
√
n/2)

+
∑

n1/76x6
√
2n

xmpn(`k = n− x
√
n/2) ≡ Σ1 + Σ2,

where all the sums proceed in steps of size
√

2/n. For Σ2, by part (b) of the latter
corollary, we have

Σ2 = O
(
nm/2+k−1e−n

2/7/2
)

= o(1).

the electronic journal of combinatorics 30(3) (2023), #P3.23 18



For Σ1, by part (a) of Corollary 8, we have

Σ1 =
1 + o(1)

2k−1(k − 1)!
·
∑

06x<n1/7

xm+2k−1√
n/2

e−x
2/2 +O

n−1 ∑
06x<n1/7

e−x
2/2

 .

Hence, the Riemann sum in Σ1 can be approximated by the integral
∫ n1/7

0
xm+2k−1e−x

2/2dx,

which converges to
∫∞
0
xm+2k−1e−x

2/2dx. Overall,

E

(
n− `k√
n/2

)m

n→∞−→ 1

2k−1(k − 1)!

∫ ∞
0

xm+2k−1e−x
2/2dx

=
1

2k−1(k − 1)!
· 2m/2+k−1 Γ

(
m+ 2k

2

)
= 2m/2

Γ
(
m
2

+ k
)

Γ(k)

which proves the claimed convergence of moments. Finally, (20) follows from this conver-
gence by straightforward computation. For instance, setting m = 1 we obtain

n− E(`k)√
n/2

n→∞−→
√

2πk
(
2k
k

)
4k

, (21)

and similarly for the variance.

5 Conclusions

For random histories of fixed size n selected under the Yule probability model, or, equiv-
alently, for ordered histories of size n selected uniformly at random, we have studied the
variable `k defined as the kth largest length of an external branch. Measuring the length
of an external branch as the rank of its parent node, Theorem 9 shows that the rescaled
variable Lk ≡ n−`k√

n/2
follows asymptotically a χ-distribution with 2k degrees of freedom

(Fig. 3), with convergence of all moments. The mean of `k is shown to be asymptoti-
cally equivalent to n, independently of k. More precisely, by plugging the approximation(
2k
k

)
≈ 4k√

πk
into (21), we find that E(`k) behaves like n −

√
k n for increasing n. The

variance of `k is asymptotically equivalent to
(
k − πk2

16k

(
2k
k

)2)
n.

Our approach has used a well known correspondence between trees and permutations,
in which the kth largest length of an external branch of an ordered history of size n is the
kth largest non-peak value in the associated permutation of size n− 1 (Section 2). Thus,
Proposition 2 and Theorem 9 also contribute to the study of the probabilistic properties
of the value-peaks of permutations investigated in [4].

In this paper we focused only on the discrete length of the external branches of random
trees. Nevertheless, our results can also find applications in the analysis of the time length
of the external branches of trees generated under the “coalescent” [15, 17, 24] and “Yule”
[14, 25] processes. A coalescent tree of size n is a pair consisting of a random Yule history
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Figure 3: Probability that for n = 1000 the rescaled variable Lk ≡ n−`k√
n/2

is less than

or equal to x ∈ [0, 5] (in steps of 0.2), when k = 1 (dots), k = 2 (squares), and k = 3
(triangles). Values are calculated from Eqs. (7), (10), and (11). Solid lines give the
cumulative function for the χ-distribution with 2k degrees of freedom, with k = 1, 2, 3
from left to right.

t of n leaves and a sequence (τ2, . . . , τn) of independent exponentially distributed random
variables assigning a time length to the different layers of t (Fig. 1). The variable τi
gives the time length of the layer in which exactly i branches of t coexist, and its mean
is E(τi) = 1/λi, with λi =

(
i
2

)
. Hence, the expected value of the time length of an

external branch of t of discrete length s can be calculated as
∑n

i=n+1−s E(τi) = 2
n−s −

2
n
.

By using our finding that E(`k) ≈ n −
√
k n, we thus see that, in a random coalescent

tree of large size n, the mean of the kth time length of an external branch will behave
roughly like 2√

k n
. In a Yule generated tree with speciation rate λ and time depth t, the

variable τi is exponentially distributed with mean 1/(λ · i) and the expected number of
leaves in the tree is n = eλ t. Under this setting, Bocharov et al. [3] study the time length
Lt of the longest external branch showing (among other things) that Lt/t converges to
1/2 in mean and probability when t → ∞. This is in agreement with our observation
that the discrete length `1 is on average close to n −

√
n. Indeed, if an external branch

spans n −
√
n layers of the tree, then the mean of its time length can be calculated as

above by summing the expectations of the variables τn, τn−1, . . . , τn+1−n+
√
n, which gives

Lt ≈ 1
λ
( 1
n

+ 1
n−1 + · · ·+ 1√

n+1
) ≈ 1

λ
(log n− log

√
n) = 1

λ
log
√
n ≈ 1

λ
log
√
eλt = t

2
.

In Section 6 of [9], the number of mutations seen in a single individual of different
human and zebrafish populations is analyzed within the neutral scenario of coalescent
trees by means of Yule histories. Singleton mutations—i.e. mutations affecting single
individuals—can be modeled as random events occurring along the external branches of
the tree. Doubleton mutations—which affect pairs of individuals—take place along those
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branches of the tree from which exactly two leaves descend. It would be of interest to
broaden the calculations of this article to investigate the length of the longest tree edge
connecting the root node of a cherry subtree to its parent node.

It would also be nice to extend the results of [23] on the time length of a random
branch and a random external branch in a tree generated under the Yule process to the
discrete setting of Yule histories.
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